


specifics are elaborated in Section IV. Experimental results

presenting the autonomous reassembling operation are shown

in Section V, and our conclusions are drawn in Section VI.

II. RELATED WORK

In the field of robotics, the rendezvous problem –and more

specifically the close-proximity coordination with possible

collaborative physical attachment (i.e. System-of-Systems

assembling)– has been extensively studied in multi-robot

deployments of Unmanned Ground Vehicles (UGVs) and

Unmanned Air Vehicles (UAVs) [2, 25–32]. The works in

[33, 34] focus on generating pre-designed ground vehicle

waypoints and aerial vehicle routing with specific endurance

optimization objectives (e.g., recharging), and [35] presents

strategies for collaborative battery swapping scheduling,

while others [36] focus on system development to achieve

UGV-to-UAV marsupial powering. HALE UAV [32] demon-

strated GPS-assisted fixed-wing touchdown on a wheeled

mobile platform where the UGV has to be manually accel-

erated and aligned with the aircraft for successful landing.

Even if the limiting factor of human intervention is dis-

regarded, most approaches to some extent rely on the re-

quirement for –at least– intermittent wireless communication

between the air vehicle and the ground platform.

To achieve airborne tracking with the purpose of re-

assembling an Aerial & Ground robot team, [31] proposes

a strictly vision-based rendezvous cone-guidance scheme

using a monocular camera. Another established method

is to employ visual servoing relying on Fiducial markers

for vision-based landing [37, 38]. Such approaches remain

limited in terms of operating altitude ranges, due to the

reduced accuracy of the derived distance estimates, or the

complete failure at detecting any realistically-sized marker

that could be placed on a ground system.

Moreover, the ground system type of choice –wheeled

robots–, is limited to traversing relatively flat terrains;

Legged Locomotion systems have demonstrated their vast

superiority in negotiating unstructured real-world terrains

[39] in the wild. Even though such systems have been

combined with multicopters [40], it is commonly assumed

that networking connectivity between agents is a constantly

present facilitating factor for the considered tasks.

In case of unforeseen communication outage (subsystems

failure, cyberattacks, requirement for “bandwidth-quiet” op-

eration” e.g., to prevent mission hijacking [41]), our ap-

proach can still facilitate the air-to-ground reassembling by

relying on strict visual and onboard perception and state

estimation [42, 43], given an approximately know rendezvous

region at realistic flight altitudes for wide-area surveying

micro-sized UAVs. This also surpasses the capacity of sim-

ilar concepts [44] which employ multicopters tailored to

constrained environments, due to the hybrid flight envelope

offered by a VTOL / Fixed-Wing micro aerial robot, with the

additional capacity to be recharged in-the-field while docked

onto the ferrying legged system [24].

III. PROPOSED APPROACH

This section details the primary components of the pro-

posed communication-less air-to-ground Reassembling.

A. Autonomous Hybrid Micro Aerial System

The flying platform used is the MiniHawk–VTOL [45,

46], a rapidly–prototyped fixed–wing VTOL aircaft designed

with the focus on adaptability for research and ease of

manufacture. The aircraft has a 800mm wingspan, wing area

of 17dm2, an all–up–weight of 1100g to 1400g, and can

sponsor a variety of sensory devices and compute elements.

Here we use the Intel©T265 VIO sensor, a USB Webcam,

a Benewake©TFMini Plus micro 1D LiDAR sensor, and

the mRo PixRacer Pro flightstack with its accompanying

Magnetometer and IMU suite. These systems are used by

the Khadas VIM3 single–board computer for GPS–denied

navigation in an unstructured outdoor environment.

B. Legged Locomotion System

The other key unit of our marsupial system–of–systems is

the Boston Dynamics Spot®, a 12–DoF quadrupedal robot

with 14kg payload capacity that offers a runtime of 90

minutes. Spot carries an in–house designed docking and

recharging backpack (DRB) that is rigidly mounted to the

rails on its back with a passive self–centering design that

allows the MiniHawk–VTOL to align itself by centering

and sliding towards the edge once it has landed on the

backpack. Additionally, the backpack houses three sets of

actuated claws that engage to latch onto the skids of the

MiniHawk–VTOL to hold it firmly in place during any

dynamic motion of the Spot locomotion as well as provide

electrical contact for rapid charging to replenish the energy

reserves of the MAV. Affixed at the center of the backpack is

a small Fiducial-Tag of dimensions 5.6cm×5.6cm allowing

for visual localization of the backpack for precision landing.

C. Air-to-Ground System Reassembling

In this work, we address the problem of reassembling an

aerial and a ground robotic unit in the context of deployment

of the marsupial system–of–systems performing a large–

scale surveillance mission that allows for a significant exten-

sion of the MAV’s operational capacity via repeated docked–

recharging offered by the legged robot. More specifically,

we aim to perform the reassembling by leveraging onboard

perception without the need for any wireless communica-

tion between the team’s agents in an environment possibly

affected by radio degradation or wireless signal jammers.

We consider an autonomously surveying MAV flying in a

fixed–wing configuration following an arbitrary path over

unmapped and unstructured terrain as well as the legged

robot present in the vicinity over the ground terrain executing

its independent mission objective. Our proposed pipeline

executes as soon as the surveying MAV’s energy reserves

decline past a threshold, at which point, the MAV begins to

find the Spot legged robot via the aerial imagery captured

by the onboard color-camera and subsequently land on it to

leverage fast charging.
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center–of–mass of the aircraft and its heading vector as well

as another vector ξWT = [xT , yT , zT , ψT ]
T representing the

estimated Fiducial-Tag 3D position and yaw angle, both ex-

pressed in an inertially aligned world frame of reference FW .

Ideally, the estimated Fiducial-Tag state can be forwarded as

a reference command to the low-level position controller to

achieve docking, however, large positional tracking error can

cause aggressive overshoot which entails the need for a high–

level position commander. We employ the carrot–chasing

algorithm that essentially conditions a predefined trajectory

by following an incremental virtual waypoint rather than

a distant one to avoid overshooting and obtain a smooth

system response. Mathematically, we define the virtual carrot

waypoint as W = ξWB + n̂l, with n̂ being a unit vector in the

direction of the vector v = ξWT − ξWB and l being a tunable

parameter that controls the spacing between the current and

the virtual waypoint.

At the same time, the pose of the Fiducial-Tag is continu-

ously estimated from the small-FoV color-camera. Evidently,

the detection accuracy improves with greater scale, i.e. the

pose estimates get more accurate as the tag gets closer.

This requires us to follow a particular trajectory profile

such that the tag remains in the camera view even with

the roll and pitch motion of the vehicle along the path.

Given the slight nose-up hover stance of the vehicle, we

achieve the profiling by selecting two waypoints, a) an

intermediate waypoint ξWTi at an offset of a meter above the

tag, and b) a final waypoint ξWTf with an offset of a 0.25m

above the tag. Overall, the vehicle is first commanded to

reach the intermediate waypoint ξWTi and after converging,

subsequently aims to reach the final waypoint ξWTf . Both

ξWTi and ξWTf are considered reached when the following

convergence criteria are met:

|ex| < τx, |ey| < τy, (|ez| < τz || z < zref ), |eψ| < τψ, (5)

|vx| < τvx , |vy| < τvy , |vz| < τvz , |vψ| < τvψ ,

The convergence threshold values τi for the final waypoint

ξWTf , are stricter than those for the intermediate waypoint ξWTi ,

i.e. the MAV follows a smooth trajectory profile as it passes

through ξWTi and as it reaches ξWTf the vehicle is constrained

to maintain small positional and velocity errors. This ensures

that the MAV is positioned to hover directly above the tag,

followed by triggering a landing command on the authority

of the onboard computer allowing it to perform a vertical

descent until the skids come in contact with the DRB and

finally disarms automatically. Lastly, the rear switch on the

DRB is activated by the impact force of the MAV sliding

onto it, engaging the claws to grip the vehicle and hold it in

place.

It is highlighted here, that we use both the small-FoV

color camera and the wide-angle fisheye camera for esti-

mating the Fiducial-Tag pose. For real-time deployment and

computational efficiency, we switch between the two camera

image streams instead of detecting the tag with both at the

same time, significantly speeding up the system performance.

The switch happens as soon as the intermediate waypoint

ξWTi is reached. We leverage the complementary benefits

provided by the two cameras, i.e. the narrow-FoV camera

with a larger focal length provides better pose estimates from

greater distances while the fisheye camera provides a wider

view of the scene from near range. This behavior is extremely

desirable to get continuous estimates of the tag detection,

especially near the last leg of the landing, as the vehicle has

the tendency to drift due to external disturbances such as

ground effect and/or wind gusts.

iii) Deep Learning Network Training and Implementation

For the purposes of Spot detection we leverage the

YOLOv3 [47] Deep Learning framework, which is capa-

ble of discerning multiple instances of object classes in

aerial images with densely packed, distributed with large–

scale variation. In this work, we train the network on our

custom dataset containing aerial images of the Spot robot

by leveraging transfer learning approach. The dataset was

collected over a period of a few months to incorporate images

with different environments, seasons, multiple altitudes as

well as varying lighting conditions, containing over 3000

images. In order to deploy the trained model on the NPU

on-board Khadas VIM3, it is required to be quantized, which

refers to the techniques of converting the floating point

weights to lower bandwidths such as integers. This allows

for a more compact representation of the model, without

compromising inference time accuracy while significantly

reducing the computational cost.

IV. SYSTEM PERFORMANCE

In this section, we discuss the performance of the trained

Deep Learning network across various image scales and

backgrounds, essentially demonstrating the efficacy of the

deployed network for our envisioned task.

A. Deep-Learned Detection Statistics I

Table I provides the precision, recall, mean-Average-

Precision (mAP), and f1 score for detections across different

altitudes measured in meters above the ground level (AGL)

by the proposed Deep Learning architecture, essentially

demonstrating its performance at various scales. The network

exhibits superior performance with high precision as well

as recall scores, indicating its ability to generalize across

various scales. It can be observed that the accuracy of detec-

tions decreases with the rise in altitude, which is an expected

behavior as very few pixels belonging to the relevant class

category are observed. Figure 3 depicts a few instances of

Spot detections at 20m, 40m, and 60m AGL altitudes. It is

noted here that the network is able to get accurate results at

the 60m altitude mark which is almost imperceptible even to

the human eye.

B. Deep-Learned Classification Statistics II

In this sub-section we discuss the performance of the

network in detecting Spot in different environments, and

against different backgrounds. Table II provides precision,

recall, mAP, and f1 scores for Spot detection across different

backgrounds encountered in the field deployment such as

asphalt, snow, mud, and bushes, and Figure 4 depicts few
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The following row shows indicative imagery captured by

video footage in the field, using a camera mounted on top of

the Legged robot and pointed at the Docking & Recharging

Backpack, as well as a handheld camera. More specifically in

this sequence, we demonstrate: i) the view from the ground

robot while the aerial vehicle is approaching, ii) the hovering

pose corresponding to the intermediate waypoint, at which

point the fisheye-camera is close enough to establish detec-

tion of the Fiducial-Tag, iii) the hovering pose corresponding

to the final waypoint, which is the last step before the final

landing command is issued, iv) the moment right before

touchdown into the pad, and v) the eventual reassembled

system-of-systems.

B. Reassembling under Wind-Gust

The middle set of rows in Figure 5 illustrates a case where

a sudden wind gust is experienced at the last phase of the

air-to-ground reassembling operation.

More specifically, we point out the fourth subfigure in

the Yellow box sequence that illustrates the instantaneous

forward deviation w.r.t. the final waypoint (yellow arrow).

A video instance of this deviation can also be observed in

the lower row, where the second subfigure shows the vehicle

approaching the final waypoint, but in the third subfigure it

has been “blown away” from it. The plots also clearly show

this gust’s effect on the vehicle’s x state around the 110
s mark, but also additionally illustrate the vehicle’s general

struggle against wind perturbations (also in y state). Overall

the fourth subfigure of the video instances row shows how

the final touchdown occurs with the vehicle off-center, but

eventually ends up aligned and safely landed due to the

DRB’s passive docking design.

It is also noted in the Blue box how it is highly realistic

to assume that Deep-Learned visual servoing is insufficient

for the proposed operation, as the Legged robot constantly

comes comes out of view during the approach. The Fiducial-

Tag based method gives consistent guidance into the pad,

due to its ability to provide a full relative-pose estimate. The

Red box also shows the significant utility of the wide-FoV

fisheye-camera in shorter distances, as the Fiducial-Tag can

still be observed even during the deviations caused by wind

gusts, ensuring relative reference consistency during the final

position-hold operation.

C. Reassembling under Perturbation

The last set of rows in Figure 5 illustrates a case where

wind ripples are experienced during the last phase.

Similarly to what was described before, the fourth sub-

figure in the Yellow box shows the vehicle after touchdown

has been achieved, but it can clearly be seen that from its

pose history (sequence of smaller transform axes) that it

struggled with repeated perturbations “blowing” it around.

Again, especially the y state plots indicate the time evolution

of this phenomenon around 160-190 s, and second and

third video instances show the magnitude of this side-to-side

relative motion that inhibits the pipeline from commanding

the final landing. The final touchdown moment in given in

the subsequent image, as well as a closeup of the eventually

reassembled marsupial system-of-systems.

Finally, indicative instances of airborne detection of the

Legged robot even under relative rotation are given in the

Blue box, and additional instances of the utility of the wide-

FoV fisheye-camera during short-range relative motion (as

expected due to wind perturbations experienced in real-world

field missions) are given Red box, where in the Fiducial-Tag’s

visibility is maintained.

VI. CONCLUSIONS

In this work, we presented a pipeline for the air-to-ground

reassembling of an Aerial & Legged marsupial System-of-

Systems operating within the context of wide-field collabora-

tive surveying missions, which does not depend on Vehicle-

to-Vehicle communication. The proposed system was studied

w.r.t. its operating performance in real-world field conditions

against different altitude scales and operating environments,

and its effectiveness was demonstrated in field experiments

of the air-to-ground reassembling operation.
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