2023 IEEE/RS/ International Conference on Intelligent Robots and Systems (IROS) | 978-1-6654-9190-7/23/$31.00 ©2023 IEEE | DOI: 10.1109/IR0S55552.2023.10341768

2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

October 1-5, 2023. Detroit, USA

Cognitive Approach to Hierarchical Task Selection for Human-
Robot Interaction in Dynamic Environments

Syed Tanweer Shah Bukhari'?, Bashira Akter Anima®, David Feil-Seifer® and Wajahat Mahmood Qazi?

Abstract— In an efficient and flexible human-robot
collaborative work environment, a robot team member must be
able to recognize both explicit requests and implied actions from
human users. Identifying “what to do” in such cases requires an
agent to have the ability to construct associations between
objects, their actions, and the effect of actions on the
environment. In this regard, semantic memory is being
introduced to understand the explicit cues and their
relationships with available objects and required skills to make
“tea” and “sandwich”. We have extended our previous
hierarchical robot control architecture to add the capability to
execute the most appropriate task based on both feedback from
the user and the environmental context. To validate this system,
two types of skills were implemented in the hierarchical task
tree: 1) Tea making skills and 2) Sandwich making skills. During
the conversation between the robot and the human, the robot
was able to determine the hidden context using ontology and
began to act accordingly. For instance, if the person says “I am
thirsty” or “It is cold outside” the robot will start to perform the
tea-making skill. In contrast, if the person says, “I am hungry”
or “I need something to eat”, the robot will make the sandwich.
A humanoid robot Baxter was used for this experiment. We
tested three scenarios with objects at different positions on the
table for each skill. We observed that in all cases, the robot used
only objects that were relevant to the skill.

I. INTRODUCTION

Recent developments in the creation of intelligent robots have
created possibilities for collaborative work between people
and robots in dynamic settings [1], [2]. As a result, it becomes
more important for robots and other agents to comprehend
teammates' implicit and explicit cues and translate those cues
into suitable actions [1], [3]. If we can tell our teammate (a
human) that "It is getting cold outside" or "I am feeling
thirsty" rather than "I want to drink cold tea using a yellow
cup," and in other situations, "I am hungry" or "I need
something to eat" rather than "I want to eat burger placed at
the right side,” we can demonstrate the importance of
understanding the environment. The teammate will infer the
connection between "cold weather", "thirst" and "drink, and
"hunger", "food" and "eat". The relationship between the two
is that "cold weather" induces "thirst" and a desire to "drink,"
whereas "hunger" elicits a desire to "eat" or "consume"
something. A colleague will therefore offer something to
"drink" and another person will offer something to "eat" as a
result.
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A robot would be expected to behave similarly to a human
teammate when collaborating in a team with a person [1] [4]
[5] [6]. Although there have been several contributions in this
area, this kind of cooperation is still difficult in human-robot
interaction [1], [7], [8], [9]. Semantic association between
words, items, and abilities can be a useful method to
understand partial or incomplete information. The human-
robot interaction (HRI) experience can be enhanced by the
robot's capability to determine what the user wishes it to do
next based on a hazy or imprecise command given a
knowledge model of the activities and objects in the
environment [1].

To meet these requirements, we have created a technique
based on our current hierarchical control [3] and cognitive
[1] designs that enables people and machines to collaborate
on activities like making tea, sandwiches, burger, coffee, etc.
together. In this respect, we have taken into account cognitive
modalities such as actuators (Robot: Baxter, verbal response),
working memory (semantic analysis, Moveit module, and
Rasa chatbot), semantic memory, perception (lingual and
verbal), and sensory memory.

A robot is needed to track activities, understand the
commands and cues of teammates, and execute the required
task(s) [10] [3]. In the past, researchers have looked at task
coordination to motivate users to complete various subtasks
carried out by a robot [3], communicate about task failures
[7], and create new tasks from vocal instructions [10]. If
people and machines can communicate vocally to discuss
how to carry out challenging jobs, it will resemble a human-
human interaction approach. However, such interaction has
the added difficulty of teammates communicating with
incomplete information or requests that leverage the
knowledge of the task and the environment.

In this study, we present a system where the robot can
complete the intended job by selecting hierarchical sub-tasks
stored in procedural memory and can grasp the context of the
environment in working memory using semantic similarity,
RASA-based natural language understanding (NLU) engine.
For task execution in a dynamic environment based on
perceptual and semantic connections, we used a cognitive
architecture (see Fig. 1). We use three scenarios to test our
research, positioning the task items for various talents at
various positions in front of the robot. By speaking with the
human in each situation, the robot may use ontology to
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comprehend the context of the environment. The robot selects
the skill it needs to do based on the semantic similarity score,
performs the skill following the hierarchical task design, and
uses the objects that come within the performing skill. The
knowledge representation (KR) based on the existing study [1]
is further tailored to accommodate the development of new
skills in robot training/teaching mode [1].

II. RELATED WORK

In human-robot interaction (HRI), robots with similar task
representations can show effective results in collaborating
with human teammates [5]. In a heterogeneous environment,
communication is likely necessary for successful cooperation
between robot and human teammates cooperation to complete
tasks [8]. The clear sharing of information might serve as the
foundation for communication. For instance, if the robot is
instructed to "choose me a red bottle," it will be able to
examine its surroundings, look for the object, and do the
necessary actions to resolve the issue [1]. Tasks like route
planning [11], human navigation guidance [12], learning [13],
and task execution [4] may all be taught or created using
explicit signals. In a related contribution, a vocal command-
based interactive method was used to let people teach tasks to
a mobile service robot [13]. Nicolescu explored how robots
may learn tasks from language-based commands and
advanced a creative strategy [10]. For socially conscious
navigation in public settings, context identification, object
detection, and scene data were used to generate context-
appropriate rules [14]. It is necessary to create linkages
between items, their effects, and the actions performed by
robots to comprehend their environment and verbal signals
from a human teammate [15]. Anthologies have been
employed in addition to verbal cues to establish a connection
between objects and their attributes [1], [16], [17]. Although
this slightly enhanced the HRI experience but only a few
relationship types—namely, isA, hasA, prop, usedFor, on,
linked-to, and homonym—were able to extract information
from implicit signals [16]. Ontology in the form of semantic
memory was also described [17], [18] , but it was unable to
analyze the scenarios like "I'm feeling hungry," in which the
robot understands the necessity to make the sandwich.

For interpreting explicit cues, we have developed semantic
memory from WordNet and ConceptNet. This memory is
further utilized for a similarity score between verbal cues,

readily available objects (teapot, lettuce, meat, bread, etc.) on
the table, and skills learned by a robot (i.e. tea and sandwich
making). As a baseline control structure, we adopted a
modified version of Nature-inspired Humanoid Cognitive
Architecture for Self-awareness and Consciousness (NiHA)
[1] (see Fig 1) and hierarchical control architecture [7], [3]. as
part of procedural memory. Our previous hierarchical
architecture [7], [3] involved humans and robots executing the
entire tree to accomplish a specific task. We have revised
hierarchical architecture [7], [3] to accommodate the learning
of new skills using the knowledge representation module.
Upon receiving the highest similarity score among the
available task objects, the architecture performs the skill
associated with that object.

III. METHODOLOGY

A. Sensory Memory

Sensory memory is part of short-term memory, which is
further classified into iconic and echoic memory. The iconic
involves the processing of brief images from a video stream
whereas the echoic memory processes auditory steam.

B. Perception Layer

1) Lingual Perception
The lingual perception has two categories, first is based on the
Natural Language Processing (NLP) layer which is further
composed of the Part-Of-Speech (POS) tagger, and
Tokenization module Tokenization modules tokenize the
spoken commands into words as nouns, verbs, and adjectives.
The second part is based on a knowledge representation
module specially tailored from existing work [1] to generalize
the procedural memory to accommodate new skills in the
form of recipes. It contains SkillNode, ObjectNode,
ActionEdge(PicknPlace), SequentialNode(THEN),
NonOrderingNode(AND), and AlternativePathNode(OR).
Further details related to POS tags represented in words
(nouns, verbs, and adjectives) can be accessed at [19].
2) Visual Perception:

The visual perception module can be developed with various
deep learning modules. To simplify the process and to test
various robot skills and cognitive capabilities we have opted
for the ROS (Robot Operating System) defined Augmented
Reality (AR) tags [20] to detect the objects on the table. AR

7993
Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on February 21,2024 at 17:20:46 UTC from IEEE Xplore. Restrictions apply.



hunger

hunger

L@ty

(a) “T am hungry”: hunger” and “food”

&f

eat

x

Antonym
RelatedTo

%,
%
»

(d) “I want to make a sandwich™:
“sandwich” and “food”

(b) “It is cold outside”™: “cold” and “tea”

oy poiejay

|B0OAG payen oy
CausesDesire

(c) “T am thirsty”: “drink” and “thirst”

gynony

@
&
food &
o8 R :
% drink
% % 2
%, T A
|

g
8
g
H
g
whuo!
-
@
\7\
;
oy
2

oo

o

(e) “I need some food”: “food” and table items

(f) “I need something to drink”: “drink” and
table items”

Fig 2 - Semantic Graphs extracted from Semantic Memory based on verbal cues.

tags help to identify and track the pose of the object to
determine where the object is.

C. Working Memory

Working Memory (WM) functions as an executive control
that is aware of the current situation and can recall earlier
events. The basic goal of WM is semantic processing, object
grounding, motion planning, and motor command
manipulations.
1) Semantic Analysis

The algorithm assesses the semantic similarity between
spoken words and item categories present in the table-top
scenario at the time. Word suditory =
{word,wordswords,...,word,}. The semantic function G :
Word qudiory — Item. The Similarity Index is being evaluated as

_ |WordAudimry n Item|

6(Vl/ordAuolil:ary ’ Item) ( 1 )

B |WordAudimry U Item|
2) Moveit
To execute our experiment, Moveit [21] was used to plan and
manipulate the robot’s hand movement to perform pick and
place objects from the surrounding environment.
3) RASA Chatbot
The RASA module has three components, natural language
understanding (NLU), natural language generation (NLG),
and RASA core. The RASA core acts executive control of the
RASA environment. The NLU unit handles intent

management whereas NLG is responsible for generating
sentences based on predefined templates. We have used
RASA as an intermediary between robot and human
teammates.

D. Semantic Memory

Semantic memory is developed from WordNet and
ConceptNet having 117,659 Synsets (WordNet Nodes),
157,300 Lemma nodes, and 1653804 Concept (ConceptNet)
nodes. There are 54 categories with 3730567 relationships
[22]. Lemma nodes are the “root words™ retrieved from the
Concept nodes that can correlate Concept nodes completely
or partially with Synsets whereas an assertion is considered
an atom of knowledge in the Semantic Network [23]. The
semantic memory is constructed as concept-relationship-
feature or concept-relationship-concept i.e. Concept (Apple)-
Relationship(IS_A)-Concept(Fruit) and Concept(Apple)-
Relationship(isUsedFor)-Feature(Eating). Complete details
about semantic memory can be accessed at [1]. Semantic
memory is used during the processing of cues and the local
association between available items and user commands (see
Fig 2 for various examples).

E. Procedural Memory

Procedural memory is what controls our actions and abilities.
This recollection is wholly dependent on the kind of agent or
robot being used. For the execution of skills, such as making
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Table 1 - Semantic Similarity Score between Tagged Words (vertical) and Available Items (horizontal). This information is used to select which objects

are most semantically related to words that the partner might say.

Bread Cheese Cup Lettuce Meat Sugar Tea Teapot
Hot 0.0080249 0.0043135 0.0049332 0.0023202 0.0069543 0.0065621 0.0116331 0.0011587
Hungry 0.0006277 | 0.0000000 | 0.0000000 | 0.0000000 [ 0.0034459 | 0.0000000 [ 0.0000000 | 0.0000000
Thirst 0.0012563 0.0000000 | 0.0057803 | 0.0052356 | 0.0006873 | 0.0000000 | 0.0051282 | 0.0000000
Sandwich 0.0224423 0.0160966 0.0065459 0.0178571 0.0176075 0.0026882 0.0108120 0.0021978
Drink 0.0100839 0.0046816 0.0175440 0.0032726 0.0074370 0.0154660 0.0146541 0.0013999
Food 0.0287881 0.0090561 0.0068393 0.0048706 0.0253697 0.0132474 0.0080704 0.0002427
Burger 0.0044108 | 0.0029791 0.0000000 | 0.0068027 | 0.0111111 | 0.0004470 | 0.0000000 | 0.0000000
Coffee 0.0025157 | 0.0033104 | 0.0233112 | 0.0053050 | 0.0048309 | 0.0062926 | 0.0588923 | 0.0066401
Cold 0.0055744 0.0054682 0.0035714 0.0026762 0.0061406 0.0026882 0.0115401 0.0000000
tea and sandwiches, we have chosen Human-Robot includes when that robot is currently working on

Collaborative Architecture. The actions to be taken are
detailed along with their hierarchical limitations by skills.

1) Hierarchical Task Representation
The hierarchical task architecture's goal is to make it possible
for complicated tasks to be executed realistically by humans
and robots. This task design is built on a complicated
hierarchical task network that enables simultaneous human
and robot work in the same environment. Nearly every single
task in the real world can be divided into more manageable
tasks and set up as a hierarchical task network. In the real
world, the task can be made up of a set of sequential, non-
sequential, and parallel sub-tasks.
Our robot control architecture lets the system encode tasks
with  different kinds of constraints, such as
SequentialNode(THEN), NonOrderingNode(AND), and
AlternativePathNode(OR) [24]. Tasks are shown in a tree
structure ObjectNode and ActionEdge(PicknPlace). The tasks
that need to be done on objects are shown by the ObjectNode,
and the actions to be taken on objects are shown by the
ActionEdge(PicknPlace).
For a task with so many tiers, each node in the architecture
keeps track of a state made up of the following: 1) Activation
Level: a number that shows how important its parent thinks it
is to run and finish a certain node, 2) Activation Potential: a
number that shows how useful the node is thought to be and
is sent to the node's parent, 3) Active: a Boolean variable that
says the behavior is active when the node's activation level is
higher than a threshold. 4) Done: a Boolean variable that is
set to true when the node has done its job. Each node always
keeps track of the above state information. By doing both top-
down and bottom-up spreading, the activation spreading
technique makes sure that the task is done right based on the
constraints.
To complete a task, activity-spreading messages are sent from
the root node to its children to spread activity levels across the
task tree. A bottom-up mechanism sends activation potential
up the tree by having nodes send status messages to their
parents about their current state. In each cycle, a loop helps
keep the state of each node in the task structure up to date by
checking the different parts of the node's state and adjusting
them as required.
The controller architecture can handle more than one robot
because it keeps a copy of the task tree for each robot. This

behavior when a robot has completed one, and the activation
potential and level for each robot and each behavior.

a) Choosing Skill

Here, first, it finds the object from the list which has the
highest semantic score then finds which skill has this object.
By doing this it finds out the skill that it wants to perform.

Algorithm 1: Choosing Skill

1: For object € object_list do
2:  If object is highest semantic_similarity score then

3: skill_object «— object

4: End If

5: End For

6: For skill € skill_list do

7:  Ifskill_object is in skill then
8: chosen_skill «— skill

9: EndIf

10: End For

After choosing the skill the hierarchical architecture updates
its activation potential and activation level. For this, another
behavior called skill behavior was added to the previous
hierarchical architecture [24] [25]. It chooses the skill it
wants to execute from the hierarchical design it wants to
execute. To do this it only spreads its Activation level value
to the child nodes belonging to the chosen skill. This allows
the child node with the Skill behavior to activate.

In the case of updating activation potential, the skill behavior
node spreads the activation potential of the single child with
the chosen skill.

Algorithm 2: Skill_behavior - Spread Activation

1: msg « {activation level = 1.0}

2: For child € children do

3:  Ifchild.skill is chosen_skill then
4: SendToChild(child,msg)

5: EndIf

6: End For

Algorithm 3: Skill_behavior-update Activation Potential
1: For child € children do

2 If child.skill is Chosen_skill then

3: activation potential < child.activation_potential

4

5:

End if
End For
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(d) Placing Tea on the table

(e) Putting Sugar in the cup

(f) Placing Sugar on the table

Fig 3 - The robot is making a cup of tea after the human said, “It is cold outside.” The robot determines to execute the Tea Making Skill after analyzing

the semantic scores of the available table objects.

2) Adding Skill Component in Hierarchical Architecture
We added a new component to the prior task architecture to
expand it. The skill that evaluates the surroundings and
interactions to determine which of a variety of duties should
be carried out. Following the contact between the person and
the robot, the semantic knowledge module decides which task
the robot should complete. The skill node receives a ROS
message in string form; it can then decide which task needs to
be executed. We can give the robot a variety of skill tasks
under the SkillNode. Whenever the robot chooses a task to
perform, it will perform the task accordingly. These skills are
designed with Nodes like SkillNode(i.e. Tea and Sandwich
making), THEN, AND, OR, ObjectNode, and
ActionEdge(PicknPlace). As shown in Fig 3, there are two
skills listed under the SkillNode: 1) Tea Making Skill and 2)
Sandwich Making Skill. The Skill component determines
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score. Two types of Skills: 1) Tea Making Skill and 2) Sandwich
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which task to run based on semantic information and the
objects that are available in the environment, the semantic
relevance of various objects to words that a user might speak
is shown in Table 1.

1IV. EXPERIMENT DESIGN

We created a speech conversation between a human
participant and a robot to demonstrate the capabilities of the
system we created and to verify the functionalities of the
cognitive and hierarchical architecture. The robot can
understand the hidden context and carry out a skill task using
items from the nearby surroundings based on the participant's
input. We experimented with a lab setting using a human
participant and a Baxter humanoid robot that was positioned
in front of a table with items. This experiment involves using
a robot to make tea and sandwiches. A Kinect v2 camera on
top of Baxter’s head and Baxter’s right-hand camera were
used to detect the object’s AR tags. The robot will decode the
tagged word from the human's speech in this human-robot
interaction and assess the items' semantic similarity scores
(see Table I) about the decoded tagged word. The architecture
will use the score to pick the most suitable skill task to
execute. If the human says a statement like “I am thirsty” or
“It is cold outside,” the tagged words will be “thirsty” and
“cold” respectively. Based on the similarity score, in both
cases, it is observed that the objects under the TeaMaking
Skill have the highest scores. As a result, the robot will decide
to perform the TeaMaking Skill. Based on the task tree (see
Fig 3), the task will be ((PicknPlace Cup) THEN ((PicknPlace
Tea) AND (PicknPlace Sugar))). According to this task
statement, the robot will first pick and place Cup, then pick
and place Tea and Sugar in a non-ordered fashion (see Fig 4).
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Fig 5 - Order of execution for Tea Making Skill - ((PicknPlace Cup)THEN((PicknPlace Tea)AND{PicknPlace Sugar))). (a) Tea Making Skill is invoked,
which initiates the PickAndPlace process for the Cup object, (b) The PickAndPlace action for the Tea which makes the robot starts pouring Tea into the
cup, (c) The PickAndPlace action for the Sugar under the AND node is activated which makes the robot adding sugar into the cup.

Fig. 5 displays the hierarchical state depiction of each stage
involved in using the TeaMaking Skill.

In comparison, the Meat object from the object collection has
the greatest semantic score connected to the tagged word
"hungry” if the person states something like "I am hungry”
(see Table 1). The robot will begin making a sandwich
because Meat is represented by the SandwichMaking skill.
The task will be ((PicknPlace Breadl)THEN((PicknPlace
Meat)OR(PicknPlace Lettuce)) THEN(PicknPlace Bread2),
again based on the tree. Therefore, the robot would choose
and put Breadl before choosing and putting either Meat or
Lettuce. The task will then be finished by the robot by picking
up and placing Bread?2.

V. RESULTS

In our experiment, when the person says, “It is cold outside.”
Speech recognition provides the ontology with a word string
spoken by the user. The Jaccard Similarity measure is used to
determine the lexical similarity from the decoded speech
between the labeled words and the accessible items, such as
"tea," "sugar," "cup,” "bread," "meat," "cheese," "lettuce,"
and "teapot” (see Table I). The ontology was able to identify
the statement's inferred context based on the score, which
shows that the spoken phrase is connected to "tea". The Tea
Making task was chosen by the ontology using the list of
objects that are both readily accessible and most closely
related to the user's speech statement. This reflects a
connection between the user’s statement, the available objects
on the table, and the available tasks that the robot can
complete.

Fig 5 illustrates the step-by-step state for the tree nodes in
our robot architecture for executing the Tea Making skill. In
the first phase, when the skill node received the object name
“Tea”, based on the highest similarity score between
available items and “Cold” (see Fig2b for related
graph). “Tea” has the highest semantic similarity score
(0.0115401 in Table I) i.e. 30.64%, among the other items i.e.
Cup (9.48%), Sugar (7.14%), Lettuce (7.11%), Breadl
(14.80%), Bread2 (14.80%) and Meat (16.31%), the task tree
then decided to execute the Tea Making Skill. The THEN

node was activated for this skill (see Fig 5a), and the robot
proceeded to pick and place the Cup (see Fig 4a Fig 4b
respectively). When the robot placed the Cup on the table, the
status of the Cup node was changed to Done from Active.
From the task tree, the robot would activate the AND node
(Fig 5b) and start picking the tea to pour into the cup (Fig 4c).
After pouring the tea into the cup, the Tea was set on the table
(Fig 4d), which made the Tea node in the task tree Done from
Active. Then, the robot moved to the next step according to
the task tree and activated the Sugar node (Fig 5¢), and start
to put sugar in the cup (Fig 4e). In the end, when the Sugar
was placed on the table (Fig 4f), all the nodes’ statuses were
changed to Done, and the whole skill task was completed
based on the tree design.

We had different table setups for experiments, but the robot
was still able to figure out the concept of the surroundings and
worked on the skill from the hierarchical task tree. Our
observations indicated that the robot does not go for objects
under different skill sets. Additionally, we provided two
statements for each skill test to validate the case scenarios.
For instance, we used statements like “T am thirsty” (see Fig2c
for graph) and “It is cold outside” (see Fig2b for graph) for
the Tea Making Skill. Likewise, for the Sandwich Making
Skill, we used statements like “1 am hungry” (see Fig2a for
graph) and “I want to make a sandwich” (see Fig2d for graph).
Furthermore, we have also tried queries “I need some food”
(see Fig2e for graph) and “I need something to drink” (see
Fig2f for graph), the respective similarity score about
extracted action verbs, nouns, and adjectives can be found in
Table 1. Therefore, we can observe that based on the ontology
approach, the system was able to understand the context
behind the user statement “It is cold outside” and choose to
perform a hierarchical skill task (Tea Making Skill) by
identifying the relationship between the context and the
objects nearby.

VI. DISCUSSION AND FUTURE WORK

This paper proposes a way to offer an efficient and flexible
human-robot collaboration environment in which the robot
teammate can perform the user’s desired task by deciphering
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both vague and clear requests in natural language form from

a human teammate. The ontology played a vital role in the

understanding of user commands due to the semantic

relationship between various concepts and features. This
architecture has the following contributions:

e  The system can find an implied link between the context
of the situation and the surrounding environment using
the ontology approach after interacting with a human
user.

e In our extended hierarchical task architecture, the robot
will only select the hierarchical sub-tasks that are most
relevant to the specific task derived from the ontology
approach.

Currently, the robot is performing the skill task after

interacting once with the human. However, in the future, we

are planning to add more scope to hold a conversation to make
the system more dynamic and diverse. Additionally, we are
hoping to apply this ontology approach in a multi-human
robot environment for more robust and diverse collaboration.
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