
Single Robot Multitasking Through Dynamic Resource Allocation

Tyler Becker1, Song Jiang1, David Feil-Seifer2, Monica Nicolescu1

Abstract— This paper addresses the problem of dynamic
allocation of robot resources to tasks with hierarchical repre-
sentations and multiple types of execution constraints, with the
goal of enabling single-robot multitasking capabilities. Although
the vast majority of robot platforms are equipped with more
than one sensor (cameras, lasers, sonars) and several actuators
(wheels/legs, two arms), which would in principle allow the
robot to concurrently work on multiple tasks, existing methods
are limited to allocating robots in their entirety to only one task
at a time. This approach employs only a subset of a robot’s
sensors and actuators, leaving other robot resources unused.
Our aim is to enable a robot to make full use of its capabilities
by having an individual robot multitask, distributing its sensors
and actuators to multiple concurrent activities. We propose a
new architectural framework based on Hierarchical Task Trees
that supports multitasking through a new representation of
robot behaviors that explicitly encodes the robot resources (sen-
sors and actuators) and the environmental conditions needed
for execution. This architecture was validated on a two-arm,
mobile, PR2 humanoid robot, performing tasks with multiple
types of execution constraints.

I. INTRODUCTION

In this paper we focus on the problem of adaptive task

allocation, from the perspective of complex robotic platforms

with multitasking capabilities (such as mobile humanoid

robots), working on tasks with hierarchical representations

and multiple types of execution constraints.

Previous work on architectural decision making and con-

trol focuses primarily on encoding tasks using representa-

tions that are compact, modular, flexible and embed the

necessary temporal constraints for a given task. However,

these existing architectures do not account for situations

(sometimes only detected at run-time) in which the efficiency

of the task execution could be improved by performing

multiple subtasks concurrently. These methods consider each

basic control module as having full control of the entire

robot (sensors, actuators) so that collisions between subtasks

cannot happen and therefore any multitasking, if considered,

is implemented explicitly, at the time when the controller is

designed. For instance, a two-arm humanoid robot (Fig. 1)

would be underutilized if it were only working on a task that

requires only one arm because the other arm could have been

used in parallel for a different purpose (e.g., to pick up two

objects concurrently). Existing task representations to date

1Robotics Research lab, Department of Computer Sci-
ence & Engineering, University of Nevada, Reno, Reno,
NV 89557, USA tbecker@nevada.unr.edu,
songjiang@nevada.unr.edu, monica@unr.edu

2Socially Assistive Robotics Group, Department of Computer Science
& Engineering, University of Nevada, Reno, Reno, NV 89557, USA
dave@cse.unr.edu

Fig. 1. This figure shows a PR2 robot picking up both of the cups in front
of it. The PR2 has two arms and they are both free, so it should pick up
both cups simultaneously.

do not provide the mechanisms needed to support adaptive,

run-time robot multitasking.

In contrast with existing approaches that consider a robot

to be an entity that is entirely allocated to a single control

module (subtask) at any given time, we view a robot to be a

collection of resources, such as actuators (arms, legs, etc.)

and sensors (cameras, lasers, etc.). We then consider each

subtask as requiring some subset of these resources. This

representation transforms the problem of allocating robots

to tasks into a problem of allocating resources to tasks. The

major challenge that stems from allowing robots to distribute

their resources across multiple concurrent tasks is that the

physical constraints (number/placement of actuators/sensors)

along with the task parameters (instantiated at task execution)

both impact the feasibility of allocations, which have to be

determined at run-time for a specific task and environment.

While highly advantageous, allowing different resources that

belong to the same robot to be employed for different tasks

requires fundamentally different approaches to allocate robot

resources in order to ensure that the allocations are feasible.

The main contribution of this research is a novel au-

tonomous control architecture based on Hierarchical Task

Trees (HTTs) which employs a new representation of robot

behaviors through a specific encoding that explicitly con-

siders the resources and environmental conditions needed

for execution. Relying on this new representation, our work

brings novel algorithms that enable a single robot to multi-

task, allowing it to allocate its resources to multiple, com-

patible, concurrent tasks. This system was validated with a

humanoid PR2 robot in a series of experiments designed

to showcase the ability of the robot to dynamically decide

when and how to multitask, while ensuring that no conflicting

actions are being performed.

The remainder of the paper is organized as follows:

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on February 21,2024 at 17:22:53 UTC from IEEE Xplore. Restrictions apply.

Section II covers the background and related work, Section

III describes the functionality of the architecture, Section

IV covers the design of the experiment, Section V reports

on our results, Section VI provides a brief discussion of the

results and Section VII concludes the paper.

II. RELATED WORKS

To date, the term multitasking has been mostly employed

to refer to single robotic systems with multiple computational

modules running concurrently. The most representative ex-

amples include the subsumption architecture [1] and behavior

based control [2]. In these architectures, multiple behaviors

concurrently process inputs from a robot’s sensors to provide

output for the actuators. However, the tasks are structured

such that only one behavior is pursued by the robot at any

given time. Although all the behaviors are running, all with

the exception of one are either not relevant due to precon-

ditions or cannot control the actuators due to suppression

of motor commands. Furthermore, the tasks fully specify

which actuators/sensors are used for each behavior, without

any ability to allocate a robot’s resources independently.

There are other task representations frequently used in

robotics. A fairly popular representation in the robotics

domain and in the video game industry is a Behavior Tree

(BT). However, while there has been extensive work on using

BTs for autonomous control, there has been little work in

the area of multitasking. The research that has been done is

primarily focused on creating safe conditions for behaviors

in the tree to run in parallel only under predefined parallel

nodes. Colledanchise et al. propose two new nodes that

provide predictable concurrent behaviors at run time [3].

Concurrent Behavior Trees [4], similar to our work, enable

the BT to keep track of resources and of the work completed

by tasks that are run in parallel in order to ensure that no

behaviors are preempted. However, these architectures still

rely on the user to define which behaviors can be run together

whereas our focus is on allowing the architecture to decide

on any behaviors which could be run in parallel.

Examples also exist of complex articulated robots (such as

the mobile humanoid PR2) using both arms simultaneously

to fold laundry [5][6]. In these situations, however, the task

steps and the actuator allocations are fully specified in the

task representation: the arms are used simultaneously and

toward the same goal. This project will focus on the ability of

a robot to decide when to pursue multiple different goals and

when to execute different behaviors simultaneously. There

are also examples of using multiple arms to complete tasks

quicker both on the same robot [7], or as distributed teams

of robots [8]. In both of these cases the ordering of the task,

as well as the allocation of the resources or robots is planned

prior to the robots starting the task.

Previous work with HTTs [9] has shown that they are

an effective way of representing and executing tasks with a

variety of temporal constraints under varying environmental

conditions. HTTs have been extended to enable both robot-

robot [10] and human-robot [11] collaboration, using a the-

ory of mind approach in which collaborators are represented

with a copy of the same controller (task tree). In the robot-

robot collaborative domain, coordination between teammates

is achieved by communication between peer nodes in the

corresponding task trees, while in the human-robot domain,

the robot maintains a simulated version of a human’s mental

model of the task. HTTs have also been extended to be

able to recover from interrupts or problems which would

undo tasks that were considered completed [12]. Because

our research is additive in nature, further as well as previous

research with HTTs could utilize multi-tasking.

As shown in [13] the MT-SR problems (multitasking

robots working on single-robot tasks) are an instance of

the Set Partitioning Problem (SPP), which is strongly NP-

hard [14]. Heuristic solutions to these problems have been

investigated for SPP ([15], [16]), but they perform poorly

in the general domain and it is unclear how they can be

transitioned to the robot domain.

The focus of this research is to design an architecture

that allows a robot to dynamically choose, at run-time, how

its own resources should be allocated, based on the current

conditions of the environment, in order to execute the task

given the specified constraints and in order to enable the

robot to multi-task.

III. METHODS

The following section provides an explanation of the

proposed architecture. First, we briefly explain the basic

functions of a HTT. Then, we describe the changes we made

to the representation of the low level behaviors. Finally, we

go over the additional logic governing the task nodes.

A. Hierarchical Task Trees

We base this work on the HTT representation introduced

in [9]. This architecture provide an abstract representation

of a task by splitting it into a series of low-level behavior

nodes, grouped together such that their ordering constraints

are maintained by high-level task nodes. Low-level behaviors

in general, represent basic time-extended control modules

that achieve or maintain certain goals. For example, picking

up an object is an example of a low level behavior: all of the

steps for the behavior (finding and then grabbing the object)

must be performed in order for the goal to be achieved,

constituting an atomic module that cannot be divided. In the

structure of the tree, these behavior nodes are represented as

leaves and they are strung together as children of internal task

tree nodes to create more complex, higher level behaviors.

A task node provides an implementation of the ordering

constraints of the tasks. There are three types of task nodes:

• AND: All of the children of an AND node must be

completed, however, they can be completed in any order.

• OR: Only one child of an OR node must be completed.

• THEN: All of the children of a THEN node must be

completed and in an order specified prior to starting the

task.

HTTs allow for the representation of arbitrarily complex

tasks and they enable opportunistic task execution based on

the particulars of the robot’s environment. This is achieved

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on February 21,2024 at 17:22:53 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. A visual representation of the resources on the PR2 that were
used in this paper. We considered both grippers, the head, and the movable
base as resources, however the definition could easily extend to sensors and
individual cameras as well.

via a two-way activation spreading mechanism: first, top-

down messages are passed from the task nodes to their

children in order to enforce the specific execution constraints,

and second, bottom-up messages are sent from the low-

level behaviors with activation potential, representing the

perceived efficiency of running a low level behavior at

the current time. Each type of low level behavior has its

own activation potential. Task nodes derive their activation

potential entirely based on the values of their children. At

run-time, the behavior with the highest activation potential

is the one that is allowed to run, gaining full control of

the robot’s resources. A complete description of this HTT

architecture can be found in [9].

B. Resources and Low Level Behaviors

We implemented three novel mechanisms in the low level

behaviors in order to facilitate multitasking: 1) a new way to

represent resources on the robot; 2) a way for the behaviors

to define what resources they need; and 3) a way for the

behaviors to pass access to resources after they finish execu-

tion. We imposed a strict definition of a low level behavior

to be an action which, if interrupted, must be restarted from

its beginning (i.e. picking up an object, or moving to a

destination). Altogether, these allow the architecture to pair

behaviors that have compatible resource needs while not

losing control of which behavior controls which resource.

A resource of the robot has the following properties:

• Type: This is to define different groups of actuators and

other resources on the robot. An example of the types

used in this paper is shown in Fig. 2.

• Number of Owners: This is the number of behaviors

which are currently using the resource.

• Channel: This is the intention with which the resource

is being used currently. Behaviors can either require

exclusive access to a resource, or share it with other

behaviors that have compatible intentions.

• Name: The physical name of the resource.

• Locked: This is a boolean value which defines whether

or not the resource is in use.

The total canonical state of the resources available on

the robot is maintained by the root node of the task tree

and is communicated to all the children nodes. As later

described in Section III-C, the architecture primarily uses this

information to determine which behaviors are compatible to

run concurrently.

By using this definition of resources, behaviors can accu-

rately describe how they intend to run, or rather what they

intend to use while running. For instance, a behavior to move

the robot to a destination requires itself to be the only user

of the move base. Resources like sensors and localization

information can be shared trivially, however, the navigation

can only have a single destination. A behavior to pick up

an object requires that the base is completely still during its

actions. This means that behaviors to pick up objects are

compatible to share control of the base with other nodes that

also require the move base locked in place, as long as they

require the base to be in the same location.

Furthermore, if behaviors specify what resources they

require and their operation mode (shared or exclusive) then

the architecture can accurately keep track of which behaviors

have control of which resources. For instance, a pick behavior

must retain control of the gripper which it was allocated

because that gripper now has an object in it. This prevents

the robot from trying to pick up two objects with the same

arm. With the move behavior, the situation becomes more

complex. First, the move behavior should pass its control

of the move base on to the behavior which runs after it.

This is based on the assumption that the move behavior was

activated with some subsequent purpose in mind, such as if

the next thing the robot needs to do is pick up an object at the

destination. This prevents the robot from becoming distracted

by some different goal. If the move behavior has control

of any of the grippers, for example, it can be presumed

that the robot was holding something with the intention of

performing an action with it at the destination. In that case,

the move behavior should also hold on to control of those

resources. In fact, the move behavior should pass on all

resources to the next behavior that is activated and has the

ordering requirement of being performed immediately after

itself. This is again based on the assumption that there is

some purpose beyond just moving to the destination.

For the move behavior, we calculate the activation potential

as the inverse of the distance from the robot to the goal which

is then scaled based on the availability of the grippers. This

is to make sure that closer destinations are preferred only if

the move behavior in question has access to resources which

it needs at the destination. A formal definition for the move

behavior’s activation potential is as follows:

ap =
n

||xo − xd||
(1)

Where n is the number of grippers available to the

behavior (e.g. the PR2 has two grippers available at the start

of a task), xo is the current position of the robot and xd

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on February 21,2024 at 17:22:53 UTC from IEEE Xplore. Restrictions apply.

is the destination of the move behavior. In order to run, the

move behavior requires exclusive control of the move base.

For the pick and place behaviors we assign a constant

high value so that they would always supersede the move

behaviors if their preconditions were met and were being

considered for running at the same time. These behaviors are

given the activation potential value which is high enough to

always be larger than the activation potential of the move

behaviors, which hit their maximum value at the closest

distance before the behavior is assumed to be done. In order

to run, the pick and place behaviors require shared control

of the move base, exclusive control of a gripper, and shared

control of the robot’s head.

C. Task Nodes

To enable multitasking, we implemented a novel approach

for the two-way activation spreading in the HTT. First, in

the top-down activation process, we include the state of

the available resources to all the messages being passed

down from parent to children nodes. In this way, all of the

nodes in the tree have an accurate representation of what

is available when they compute their activation potential.

After the activation spreading, in the bottom-up messages,

each of the leaf nodes send a request for resources up the

tree, along with their activation potential and whether or not

their request is possible (i.e. whether or not the resources

required are available). Then they wait for the request to be

accepted or denied by the parent nodes before starting their

work or sleeping, respectively. The main assumption that is

made by the root node of the tree is that on the way back

up the tree, each task node finds the locally most efficient

request from its children to pass up. This results in only the

compatible and maximally efficient set of requests in terms of

activation potential reaching the root node. The root simply

has to accept the request and allow the nodes whose requests

reached the top to run while all other nodes go to sleep until

the next time activation is spread from the root node, which

happens when any of the resources are released.

In addition, there are other considerations that the task

nodes have to address for multitasking, in particular under

the AND and THEN nodes.

1) AND Node: From the perspective of multitasking, only

nodes placed under an AND node can be ran in parallel, thus

requiring a mechanism to find compatible behaviors that can

be performed simultaneously. OR nodes activate a single

child node and THEN nodes can only run their children

in order, meaning one child node at a time. It is important

to note, however, that any task node can pass up multiple

parallel request in case there is some descendant AND node

lower in the tree.

In this node, we designed a mechanism to find the com-

patible grouping of nodes to transmit up in the tree with the

highest total activation potential. This decision is based on

the requests received from lower-level nodes, as shown in

Alg. 1. First, activation is spread to all the children nodes

in order to receive their activation potentials and resource

requests back. Next, after the requests are received they

Algorithm 1 Returns the list of compatible behaviors with

the highest total activation potential to run together. r is the

list of requests sorted by activation potential, and cState is

the current state of the resources.

procedure FindCompatible(r[1...n], cState)

tRequest← φ, i← −1
for i← 1...n do

if isPossible(r[i], cState) then

tRequest← tRequest+ {r[i]}
break

end if

end for

for j ← i...n do

state← copy(cState)
state← updateState(tRequest, state)
if isPossible(r[j], state) then

tRequest← tRequests+ {r[j]}
end if

end for

return tRequest

end procedure

Fig. 3. A tree which both objects 1 and 2 need to be picked up. If both
objects are in the same location, one of the two move behaviors should be
skipped in order to ensure that the pick behaviors are run in parallel.

are flattened into a list of requests from one node each.

If there is a descendant AND node, the requests that were

passed up together will be given equal consideration as all

other requests, rather than being considered together. For

example, if a child behavior and a descendant behavior

which is multiple levels of depth lower in the tree each

have the highest activation potential and are compatible they

should be passed up together. Next, the requests are sorted

in descending order based on their activation potential and

the first request which is possible to fulfill, i.e., all required

resources are available, is added to the list of requests to

pass higher in the tree because it is behavior with the highest

perceived efficiency. After that, the AND node checks each

subsequent request for compatibility with the list of accepted

requests and if any are compatible with the current request

they are added to the list. Finally, the compatible requests are

simply passed up the tree and all other children are rejected.

2) THEN Node: For these task nodes there could be

situations when the goals of children nodes are achieved

through changes in the environment or through the robot’s

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on February 21,2024 at 17:22:53 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. The tree used to test the architecture. The Move-Pick-Move-Place
nodes are actually represented by the subtree for object 1 on the left. They
are depicted in shorthand to conserve space.

Fig. 5. These images show PR2 simultaneously running behaviors during
experiment 1. The image on the left shows PR2 picking up both objects 1
and 2. The image on the right shows PR2 placing objects 3 and 4 together.

actions while in the process of attaining another goal. These

situations should be detected and the architecture should

prevent those nodes from being executed again.

A representative example is if there are multiple objects

that need to be picked up from the same area, to prevent the

robot from repeatedly moving to a space that it is already in it

should instead skip redundant move behaviors, thus enabling

compatible parallel requests to be conveyed upwards in the

tree. The tree corresponding to this scenario is shown in

Fig. 3. If the move behavior for object 2 is not skipped after

the move behavior for object 1 then the candidate behaviors

that are being considered by the AND node are: the pick

behavior for object 1, and the move behavior for object 2.

Since these behaviors are not compatible they will not be

run together, however, intuitively the move behavior should

be skipped for object 2 and the AND node can consider

two pick behaviors instead, which are compatible. To address

this situation, in the THEN node we added a process of

detecting and skipping the first child node in the queue if

it happens to have been fulfilled by an earlier completed

task. Each behavior node continuously checks the state of

the environment to see if its goals have been achieved. If

they have been achieved, this information is passed up to

the parent THEN node, which skips that behavior and looks

for the request from the next child in the queue. If a behavior

is skipped it is also not considered done until the subsequent

behaviors are accepted and begin running. If they are at some

point higher in the tree rejected, the THEN node reverts back

to the first node which was skipped and resets its state for

the next round of activation.

IV. EXPERIMENT DESIGN

To validate the architecture we designed and performed

experiments using a PR2 humanoid robot, which is par-

ticularly well suited as it is equipped with two arms as

well as a mobile base. The goal is to illustrate that the

architecture enables the robot to multi-task (simultaneously

pick up objects) while maintaining consistent allocations of

resources to sub-tasks. For the experiments we employed a

task that requires the robot to pick up 4 objects and place

them in 4 different destinations, without a specific imposed

ordering.

The task tree is shown in Fig. 4. We chose this tree because

this is a fairly regular task for robots in any domain (e.g.

tool retrieval, material collection, etc.). In the experiments,

the initial location of the objects, their destination and the

initial location of the robot are varied in four different

configurations (Fig. 6), in order to illustrate the ability of the

architecture to dynamically select, at run-time, the ordering

of actions based on the state of the environment. For all the

experiments, the robot has a map of the environment and

knows the locations of the objects in the map. In this task

the robot is both able to multitask as well as “split” pick-and-

place tasks, illustrating a more efficient order of completion

than a no-multitasking approach, as objects would have to be

picked and placed sequentially, thus increasing the amount

of time for the task. We chose specifically pick and place

tasks because they can fully utilize the resources of the robot,

however, this definition is generalizable to any tasks which

follow our definition of low level behaviors.

For the purposes of evaluating the performance of the

architecture, we consider optimal performance to represent

cases in which actions that could be done simultaneously

are scheduled in this way by the robot, as well as those in

which all unnecessary behaviors are skipped. This can also be

stated as the minimum number of time steps (where one step

is one full action) a given robot can take to complete a given

task. Optimality with respect to real time or optimal uses of

resources could also be of use, however, these metrics are

based also on the real world task parameters and therefore

are hard to compare between our experiments.

V. RESULTS

To show the results of the experiment, we recorded timing

diagrams of the active behaviors and their orderings. Each

graph depicts all of the low level behaviors along the y axis

and shows the times in which they were waiting, active, and

finally done along the x axis. In each experiment, all tasks

were completed successfully and the expected orderings were

achieved as shown in Fig. 7. Below we give an explanation of

the results and give a quick description of the task execution

ordering chosen by the robot.

In experiment 1, the robot first moved to the pick destina-

tion for objects 1 and 2. The redundant move behavior was

skipped and then both objects were picked up simultaneously.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on February 21,2024 at 17:22:53 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. The setup of the experiments used in this research. Each experiment in the diagram is numbered 1 through 4 on the top left. In each diagram the
squares represent depots in which objects can be placed, the blue rectangle with the R represents the starting position of the robot, each numbered green
circle represents where each respective object must be picked from, and each red circle represents where that objected must be placed.

Next, the robot moved to the place destination for object 1

and placed it. The robot then moved to the place destination

for object 2. The move behavior for picking object 3 was

skipped and object 2 was placed while object 3 was picked

in parallel. Then, the robot moved to and picked up object 4

before moving to the final destination and placing objects 3

and 4 simultaneously. For this experiment, all behaviors that

could be done simultaneously were performed at the same

time. In addition, the robot was able to identify and skip all

the behaviors that did not have to be executed, thus achieving

optimal ordering based on our criteria. Fig. 5 shows the robot

simultaneously picking objects 1 and 2 and placing objects

3 and 4 in this experiment.

In experiment 2, the robot moved to and picked object

1, followed by object 3. Then the robot moved to the

place destination for object 1 and placed it. The same was

done for object 3, after which the robot moved to and

picked up object 4 and then object 2. Finally, those objects

were placed at the destination one after the other in their

respective destinations. This experiment was suboptimal, as

there were no behaviors that were skipped or performed

in parallel. However, time was still saved due to the fact

that the pick-and-place behaviors were executed interspersed:

objects were picked and/or placed along the way to other

sources/destinations, which helped to minimize the distance

traveled with the move behaviors.

In experiment 3, the robot first moved to the destination

for picking up object 1. A redundant move behavior for

object 2 was skipped and then objects 1 and 2 were picked

simultaneously. Then, the robot moved to the destination for

object 2 and placed it. The robot then moved to the pick

destination for object 4 and picked it up, moved to the place

destination for object 1 and placed it, and then moved back

to the pick destination for object 3 and picked it up as well

(objects 3 and 4 could be picked in the same place). Finally,

the robot moved to the destination to place object 3, skipped

the redundant move behavior for object 4 and placed both

objects simultaneously. This ordering was efficient, as the

unnecessary behaviors were skipped and two objects were

placed simultaneously. However, a more optimal ordering

would have also picked objects 3 and 4 up together.

In experiment 4, the robot moved to and picked objects 4

and 2 in sequence. Then, the robot moved to the destination

to place object 2, skipped the redundant move behavior to

place object 4, and placed both objects simultaneously. The

robot then moved to and picked objects 3 and then 1 in

sequence, and again moved to the place destination for object

3, skipped the redundant move behavior for object 1 and

placed them both simultaneously. Due to the setup of the

experiment this was the optimal ordering as the unnecessary

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on February 21,2024 at 17:22:53 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Timing diagrams showing the results of all experiments. The x axis represents time in seconds, and the y axis represents the labeled behavior for
each bar. The bar is yellow for inactive behaviors, orange for active behaviors, and purple for completed behaviors. The results show that behaviors can
be skipped and can also be run simultaneously. For example, the Move 1-1 behavior in experiment 1 is skipped and the Pick 1 and Pick 2 behaviors in
experiment 3 are run simultaneously.

move behaviors were skipped and all behaviors which could

have been done in parallel were performed in parallel.

VI. DISCUSSION

Overall, the results of the four experiments showed both

optimal and slightly sub-optimal results, in comparison with

what we would consider the optimal orderings for completing

the tasks. For each experiment the optimal order would

have picked all objects that could be picked and/or placed

together simultaneously, which would have also skipped the

maximum number of behaviors. In experiments 1 and 4 the

ordering that we observed was considered optimal based on

how the experiments were set up. In experiments 2 and 3 we

noticed some suboptimal orderings.

In experiment 3, we achieved a close result to the optimal

ordering where there was just a single case in which the

architecture could have decided to multitask but did not. This

was when the robot first picked up object 4, then placed

object 1, and then went back and picked up object 3. A

more optimal ordering would have been to place object 1

first and then pick up objects 3 and 4 together, which would

have skipped a move behavior as well. The reason that the

sub optimal ordering was observed was because the move

behavior to pick up object 4 had a higher activation potential

than the move behavior for placing object 1. The computation

of this potential is based on distance to objects, but could be

further updated to incorporate other metrics.

In experiment 2 however, the architecture gained almost

no advantage from the capabilities added to facilitate multi-

tasking. The only advantage we gained in this scenario was

that since behaviors were able to hold on to resources and

were defined as single actions we did not have to serially

perform each pick-and-place separately. This saved on the

overall distance that the robot had to travel, but no behaviors

were skipped and no behaviors were done concurrently even

though some of them could have been. Again, the current

implementation of the activation potential we used takes into

account a distance-based metric, but other factors may be

considered to address other aspects of efficiency.

However, the solution is not as simple as considering

our conditions for optimality for each behavior’s activation

potential because those conditions require global information

about the tree. Currently, the biggest advantage of the cur-

rent implementation of the multitasking architecture is that

computation is cheap and requires no explicit instruction

to multitask. Therefore, any gain which we get from both

the definition of low level behaviors or from concurrently

running behaviors requires no additional considerations.

While it does lead to suboptimal orderings with regards to

our definition of optimality, generating optimal solutions is

infeasible for arbitrary tasks.

In order to achieve the optimal orderings in experiments 2

and 3, some amount of global information about the tree

is required to determine which behaviors can be skipped

and which can be done in parallel ahead of time. However,

each behavior and task node currently only has access

to local information from itself and direct children. By

limiting the decisions to be performed locally we make a

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on February 21,2024 at 17:22:53 UTC from IEEE Xplore. Restrictions apply.

greedy decision to looks at perceived efficiency (activation

potential) rather than computing the optimal solution which

is equivalent to solving the SPP. This is computationally

infeasible. Therefore, our architecture provides a novel way

of increasing the efficiency with which a task is completed by

greedily assigning resources to tasks which as shown through

our experiments can only make the task completion more

efficient, and in some cases can provide optimal answers.

This architecture is opportunistic in nature with the inten-

tion of utilizing a greedy definition of perceived efficiency

in order to pick what seems to be the best behavior to run at

a given time and world state. As stated before, experiments

1 and 4 are encouraging examples of where this architecture

can find optimal cases whereas in experiments 2 and 3

it performed similarly to a non-multitasking version of an

HTT. It is important to note, however, that the worst case in

terms of optimal orderings for this architecture is simply

the sequential ordering which tries to minimize distance

traveled. This highlights the benefits of allocating resources

to tasks rather than robots to tasks. There is little overhead

in terms of how long it takes for the architecture to find

if behaviors are compatible and to maintain the status of

the resources, and the benefits are that the orderings the

architecture chooses will always be at least efficient with

respect to the activation potential calculations. The results

from experiments 2 and 3 show that the solution is not

perfect. However, we did received benefit from tasks that

can be performed concurrently and from tasks that can be

skipped due to the changes implemented in this research.

In future work, we plan to consider resource management

when deciding if tasks can be run in parallel: this serves as a

suitable general solution for multitasking which can provide

more efficient subtask orderings while still remaining robust

to changing environments and unpredictable collaborators.

VII. CONCLUSION

In this paper we described an architecture based on HTTs

that provides a general way for the robot to dynamically

allocate its resources (sensors and actuators) in order to mul-

titask, while ensuring consistency of the resource allocations.

We achieved this by enabling the architecture to manage the

availability of resources as well as the constraints imposed by

the task. To support this and help create more efficient sub-

task orderings, we also enforced that low level behaviors are

atomic modules that run completely uninterrupted in order to

achieve a given goal. This enables the break down of more

complex sub-tasks such as a pick and place behavior into

low level behaviors that can be ordered dynamically and can

also be performed concurrently alongside other behaviors,

thus facilitating robot multitasking. We also maintained the

overall efficiency of completing the task by utilizing both

available resources and activation potential when considering

which sub-task to run, and more importantly which sub-

tasks are both compatible and efficient to run together. We

then performed multiple experiments performed with a PR2

humanoid robot, showing that with the proposed approach

to multitasking and managing resources the architecture

provides benefit to the efficiency of completing any task

by skipping redundant behaviors and performing compatible

behaviors in parallel.

ACKNOWLEDGMENT

This work was supported by the National Science Foun-

dation (IIS-1757929, IIS 2150394).

REFERENCES

[1] R. Brooks, “A robust layered control system for a mobile robot,” IEEE

Journal on Robotics and Automation, vol. 2, no. 1, pp. 14–23, March
1986.

[2] R. C. Arkin, An Behavior-based Robotics, 1st ed. Cambridge, MA,
USA: MIT Press, 1998.

[3] M. Colledanchise and L. Natale, “Handling concurrency in behavior
trees,” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2557–2576,
2022.

[4] ——, “Improving the parallel execution of behavior trees,” in 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2018, pp. 7103–7110.
[5] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel, “Cloth

grasp point detection based on multiple-view geometric cues with
application to robotic towel folding,” in 2010 IEEE International

Conference on Robotics and Automation, May 2010, pp. 2308–2315.
[6] K. Lakshmanan, A. Sachdev, Z. Xie, D. Berenson, K. Goldberg, and

P. Abbeel, A Constraint-Aware Motion Planning Algorithm for Robotic

Folding of Clothes. Heidelberg: Springer International Publishing,
2013, pp. 547–562.

[7] J. K. Behrens, R. Lange, and M. Mansouri, “A constraint
programming approach to simultaneous task allocation and
motion scheduling for industrial dual-arm manipulation tasks,”
in 2019 International Conference on Robotics and Automation

(ICRA), ser. 2019 International Conference on Robotics and
Automation (ICRA), 2019, pp. 8705–8711. [Online]. Available:
https://doi.org/10.1109/ICRA.2019.8794022

[8] L. Jin and S. Li, “Distributed task allocation of multiple robots:
A control perspective,” IEEE Transactions on Systems, Man, and

Cybernetics: Systems, vol. 48, no. 5, pp. 693–701, 2018.
[9] L. Fraser, B. Rekabdar, M. Nicolescu, M. Nicolescu, D. Feil-Seifer,

and G. Bebis, “A compact task representation for hierarchical robot
control,” in International Conference on Humanoid Robots. Cancun,
Mexico: IEEE, November 2016, pp. 697–704.

[10] J. Blankenburg, S. B. Banisetty, S. P. Hoseini, L. Fraser, D. Feil-Seifer,
M. Nicolescu, and M. Nicolescu, “A distributed control architecture for
collaborative multi-robot task allocation,” in International Conference

on Humanoid Robots, Birmingham, UK, November 2017.
[11] B. A. Anima, J. Blankenburg, M. Zagainova, S. P. Hoseini, M. T.

Chowdhury, D. Feil-Seifer, M. Nicolescu, and M. Nicolescu, “Col-
laborative human-robot hierarchical task execution with an activa-
tion spreading architecture,” in International Conference on Social

Robotics, Madrid, Spain, November 2019, pp. 301–310.
[12] J. Blankenburg, M. Zagainova, S. M. Simmons, G. Talavera, M. Nico-

lescu, and D. Feil-Seifer, “Human-robot collaboration and dialogue for
fault recovery on hierarchical tasks,” in International Conference on

Social Robotics (ICSR), CO, October 2020.
[13] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of

task allocation in multi-robot systems,” The International Journal of

Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.
[14] M. R. Garey and D. S. Johnson, ““strong” np-completeness

results: Motivation, examples, and implications,” J. ACM,
vol. 25, no. 3, p. 499–508, July 1978. [Online]. Available:
https://doi.org/10.1145/322077.322090

[15] A. Atamturk, G. Nemhauser, and M. Savelsbergh, “A combined
lagrangian, linear programming, and implication heuristic for large-
scale set partitioning problems,” Journal of Heuristics, vol. 1, pp.
247–259, 01 1996.

[16] K. L. Hoffman and M. Padberg, “Solving airline crew scheduling
problems by branch-and-cut,” Manage. Sci., vol. 39, no. 6, p. 657–682,
June 1993.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on February 21,2024 at 17:22:53 UTC from IEEE Xplore. Restrictions apply.

