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Figure 1: OmniRing is designed by integrating low-cost off-the-shelf electronic components based on SoC architecture into a flexible PCB

that can bend in the form factor of a ring. IMU and PPG sensors are embedded for enabling motion analytics and healthcare applications.

The hardware is enclosed in a 3D-printed waterproof case that allows smooth contact with the skin. Overall form factor weighs about 2.5 g

with a week of battery life for comfortable and long-term wearing including while sleeping and swimming.

ABSTRACT

This paper presents OmniRing, an open-source smartring plat-
form with IMU and PPG sensors for activity tracking and health
analytics applications. Smartring platforms are on the rise be-
cause of comfortable wearing, with the market size expected
to reach $92 million soon. Nevertheless, most existing plat-
forms are either commercial and proprietary without details
of software/hardware or use suboptimal PCB design resulting
in bulky form factors, inconvenient for wearing in daily life.
Towards bridging the gap, OmniRing presents an extensible
design of a smartring with a miniature form factor, longer bat-
tery life, wireless communication, and water resistance so that
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users can wear it all the time. Towards this end, OmniRing ex-
ploits opportunities in SoC, and carefully integrates the sensing
units with a microcontroller and BLE modules. The electronic
components are integrated on both sides of a flexible PCB that
is bent in the shape of a ring and enclosed in a flexible and
waterproof case for smooth skin contact. The overall cost is
under $25, with weight of 2.5g, and up to a week of battery
life. Extensive usability surveys validate the comfort levels.
To validate the sensing capabilities, we enable an application
in 3D finger motion tracking. By extracting synthetic training
data from public videos coupled with data augmentation to
minimize the overhead of training data generation for a new
platform, OmniRing designs a transformer-based model that
exploits correlations across fingers and time to track 3D finger
motion with an accuracy of 6.57𝑚𝑚. We also validate the use
of PPG data from OmniRing for heart rate monitoring. We be-
lieve the platform can enable exciting applications in fitness
tracking, metaverse, sports, and healthcare.
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1 INTRODUCTION

Sensor-embedded smartrings are being envisioned for many
applications in the areas of fitness tracking, gesture analyt-
ics, and healthcare [35, 36]. Consequently, the market size
is booming and is expected to reach $92 million in the next
few years [3]. Multiple popular commercial products are avail-
able on the market [64] such as OuraRing [57] which tracks
sleep, stress, activity levels, etc. In contrast to sensor embed-
ded gloves [2] or strap [9] based platforms that are known
to cause discomfort and preclude precise finger motion [62],
rings can be designed in aesthetic and ergonomic form factors,
that are comfortable to wear and allow natural finger motion,
as validated by a recent user experience study [20]. Moreover,
since there is no display like smartwatches and the advent
of low power microcontrollers, a longer battery life can be
supported, thus making it possible to wear them all the time
including sleeping and swimming. This offers a platform with
deeper and more intimate levels of sensing information.

Towards this end, this paper designs a smartring platform
called OmniRing with embedded sensors with the following
requirements: (i) Aesthetically pleasing appearance and form
factor with small weight and size. (ii) Longer battery life (iii)
Wireless communication with a smartphone app for streaming
raw sensor data for analytics (iv) Ability to cover a wide array
of sensing applications. (v) Water resistance (vi) Extensibility
to add additional sensors (vii) Low cost.

Prior works in the academic community [9, 43, 48] do not
satisfy all of the above requirements either due to suboptimal
PCB designs resulting in bulky form factors or due to lack of
wireless communication resulting in wired prototypes making
it hard to wear in daily life. On the other hand, commercial
products available on the market satisfy most of the above
requirements. However, their platform is closed without any
details about the software or hardware. For example, none of
the internal details of the hardware and electronics of OuraR-
ing platform is publicly available, and there are no APIs that
allow the developers to access the raw sensor data. In con-
trast to such works, we design our platform to satisfy all of
the requirements above while sharing full details of hardware,
software, and firmware. We will open-source our platform with
this paper for the community to develop interesting use cases.

Towards satisfying the above requirements, Fig. 1 depicts
OmniRing design. We leverage innovations in system-on-chip
(SoC) architecture to integrate computing and wireless com-
munication into a small chip and also exploit advances in
printed circuit board (PCB) design by printing the circuit on
both sides of a flexible printed circuit board (FPCB) that is
bent in the shape of a ring. We incorporate inertial measure-
ment unit (IMU) and photoplethysmography (PPG) sensors
that can enable a wide range of applications in motion analyt-
ics (IMU) and healthcare (PPG + IMU). The entire electronics
is embedded in a 3D-printed waterproof case designed using a
combination of Resin and Thermoplastic Polyurethane (TPU)
materials that provide smooth contact with the skin surface,
thus allowing long-term and comfortable wearing. The PCB

was assembled using commercial-off-the-shelf (COTS) elec-
tronic components and printed using a self-assembly PCB man-
ufacturer, thus keeping the overall manufacturing cost under
$25 with an overall weight ≈ 2.5g which is even lighter than
the commercial OuraRing [57]. With the use of the COTS com-
ponents and low-cost manufacturing techniques, we believe
this allows new designers and developers to extend OmniRing

to incorporate additional capabilities.
To validate OmniRing in the context of a real-world use-

case, we develop a concrete application of 3D finger motion
tracking, which can enable exciting applications in the ar-
eas of augmented and virtual reality (AR and VR) [53, 56],
sports analytics [32], sign languages [74], smart healthcare,
etc [37, 38]. In contrast to camera-based approaches [1, 6]
that can be privacy sensitive and need good lighting and res-
olution, wearable sensors like OmniRing can offer solutions
that are privacy-agnostic and work anywhere including heavy
occlusions or outdoors where the user is constantly moving.

Such 3D tracking is challenging for many reasons: (i) Search
space for 3D finger pose is large (24 degrees of freedom, DoF)
and tracking them without sensors on all fingers is an undercon-
strained problem without closed-form equations. To address
this, OmniRing takes a learning based approach that exploits
the inter-finger correlations to fill the gaps in sensing and au-
tomatically learns the mapping between sparse sensor data
and 3D finger motion. (ii) To train the above ML models, there
are no large-scale high-quality training datasets because creat-
ing such datasets is expensive and time-consuming [41, 46].
This is particularly true for newly developed wearable plat-
forms like OmniRing. Motivated by recent success in harvest-
ing synthetic training data from videos [46, 51], we adopt a
similar approach. However, in contrast to prior works (i.e.,
IMUTube [46], ZeroNet [51]) that classify 10-50 predefined
gestures, OmniRing tracks continuous 24 DoF finger motion.
Furthermore, data augmentation techniques are designed to
handle the domain difference between real and synthetic data
and develop robustness to diversity across users and variation
in sensor position, orientation, etc. To the best of our knowl-
edge, OmniRing is the first work to harvest synthetic training
data from videos for solving a problem where the search space
is continuous finger motion. We believe this will bootstrap
many applications in sign language recognition, smart health-
care, etc., where collecting training data is challenging.

A user experience study is conducted, in which OmniRing

satisfies the users with high ratings across multiple dimensions
such as comfort, appearance, and weight, suggesting the in-
creasing acceptability of such ring-based form factors in daily
life. For validating finger motion performance, a systematic
study with diverse users achieves a joint position accuracy
of 6.57𝑚𝑚 and the joint angle accuracy of 8.68◦. The accu-
racy is consistent over finger joints, various users, and longer
durations of free-living experiments. Examples of qualitative
reconstruction results are shown in Fig. 13.

We enumerate our contributions below: ■ Design of a sensor-
embedded smartring by exploiting innovations in flexible PCB,
3D printing, and low-cost manufacturing to enable continuous
sensing with long battery life and small form factor for diverse
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applications in motion analytics and healthcare. ■ Demon-
strated the feasibility of extracting training data from public
videos for 3D finger motion tracking with OmniRing, and de-
velopment of a transformer-based architecture that identifies
opportunities in inter-finger correlations for tracking all fingers
without the need to place sensor rings on all fingers. ■ Con-
ducted a systematic user study to validate the comfort levels
and acceptance of OmniRing in daily life as well as validating
the performance of 3D finger motion tracking with robustness
to user diversity, changes in sensor position, and ability to
perform under free living conditions. ■ We will open-source
OmniRing for the community to extend it with novel capabili-
ties in hardware and applications.

2 RELATED WORK

Wearable Sensing Platforms: While sensor-embedded gloves
are popular for gesture recognition with IMU, flex, and ca-
pacitive sensors [16], prior studies note that wearing gloves
precludes the user from performing activities requiring fine
precision because they can hinder natural dexterous hand
motion [62]. Strap-based sensors [9, 84] might be another al-
ternative. However, they limit the mobility of the hand because
different fingers are bound by straps. In contrast, OmniRing

uses sensor-embedded rings that allow natural finger motion
activities and are comfortable for wear during activities includ-
ing sleeping and swimming. EMG sensors are used for finger
tracking [50, 52], but they need calibration and warming of
the skin to be in proper contact with the electrodes which takes
up to 5 minutes during each instance of wearing, leading to
usability issues. Wrist-based sensing including capacitive [71],
inertial, and acoustic sensors [18] is popular for hand motion
recognition. However the recognition is limited to discrete
gestures, thus limited in capturing 3D finger motion.

Smartring Platforms: DualRing uses IMU sensors on the
fingers to classify nine discrete gestures [48]. However, the sen-
sors are connected by a wire for data collection which can limit
comfortable usage for a long time. TypingRing [55] detects
typing activities based on IMU sensors placed on the finger.
However, the sensor is bulky in size because the development
boards are directly connected to each other without carefully
compressing them into a PCB. AuraRing [58] uses a magnetic
ring for tracking finger motion by sensing the magnetic field
changes at the wrist. In contrast, OmniRing implements the
entire sensing and SoC logic on the ring as opposed to sensing
magnetic field at the wristwatch thus allowing extensibility
to incorporate additional sensors like PPG by offering a fully
self-contained smartring platform. Similarly, several ring-based
platforms that include various modes of sensing such as IMU,
temperature, pressure, and ECG have been designed as out-
lined in a recent survey paper [73]. However, most of these
platforms are either bulky due to suboptimal PCB design, not
easily wearable for a long time due to choice of material and
lack of water resistance, or need to be connected via a wire
for data access, and so on. The commercially available OuraR-
ing [57] is perhaps the closest to our platform. However, the
technical details are closed due to the proprietary nature of

the hardware and there is no access to the raw sensor data
for developers. To the best of our knowledge, OmniRing is the
first opensource platform that satisfies all of the requirements
outlined in the second paragraph of Sec. 1.

Cameras: Related to 3D finger tracking in OmniRing, depth
cameras like Kinect [6] and Leap [1] can also track 3D finger
motion. Even monocular RGB cameras can capture the 3D fin-
ger motion [23, 26, 53]. While such works are transformative,
cameras are known to be privacy-invasive, they require the
user to be in view of the camera, and they need good lighting
and resolution. This might be impractical in settings with heavy
occlusions or outdoors where the user is continuously moving.
Digits [44] and DorsalNet [80] use wrist-mounted visual and
infrared cameras for 3D finger pose tracking. However, the
camera needs to sit high enough on the wrist or even reach
the palm to capture the full range of finger motion. FingerTrak
[40] uses wearable thermal cameras to track finger motion,
but the system is not robust to background temperatures (sun,
heater, etc) and changes in sensor position due to wrist mo-
tion. In contrast, OmniRing’s solution is ubiquitous while being
robust to ambient conditions (occlusions, lighting) and natural
variation in sensor positions and wrist motions.

Harvesting Training Data from Videos: Synthetic data
from motion capture videos (like ViCON [75]) is used for train-
ing body pose tracking algorithms with 6 IMUs [41]. In contrast
to high-fidelity ViCON cameras and body motion tracking, Om-

niRing uses low-fidelity videos and performs finger motion
tracking. OmniRing is inspired by recent works like IMUTube
[46] which extracts training data from YouTube videos for ac-
tivity classification (walking, running, sitting, etc). In contrast
to full-body activity classification, OmniRing solves a differ-
ent problem of 3D finger motion tracking. Other innovative
works [47, 68, 70, 83] have also explored the use of videos for
training human activity recognition and gesture classification.
Work in [61] extracts 2D pose from videos for classifying 10
exercises. Similarly, the work [51] classifies 50 sign language
gestures. In contrast to such works that classify predefined
gestures of motion activities (running, sitting, eating, waving,
etc.), OmniRing performs 3D tracking of completely arbitrary
finger motion which could be used in any applications like
AR/VR, sign language recognition, etc.

3 THE OMNIRING PLATFORM

In this section, we describe the platform design of OmniRing

with embedded IMU and PPG sensors and BLE communication
for motion analytics and healthcare applications. First, we elab-
orate on the design principles of OmniRing. Later, we describe
the design of the form factor, hardware, and software.

3.1 Design Principles

Our main objective when developing the OmniRing platform
was to provide a general-purpose hardware sensing platform
for the wearable research community that allows for the ex-
ploration of state-of-the-art sensing capabilities on ring form
factor devices. We were guided by the following principles
throughout the design and development process.
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Aesthetics and Social Acceptance: OmniRing must be light-
weight and have a good appearance to receive better social
acceptance. Commercial platforms like OuraRing [57] and
FinchRing [33] have gained favorable reviews online [4], an
extensive in-situ usability study conducted recently using a
mock ring [20] has validated the acceptance by users for con-
tinuously wearing rings for applications in activity monitoring,
user interfaces, mobile payments, and healthcare. These stud-
ies indicate that ring-based form factors have attracted a lot
of attention recently because users are comfortable wearing
them all the time. Therefore, OmniRing is designed in the form
factor of a lightweight ring.

Longer Battery Lifetime and Easy Recharging: Long bat-
tery life enables continuous monitoring of users’ activity and
health metrics including sleep monitoring. OmniRing should be
easy and convenient to be recharged periodically. OmniRing is
designed using a low-power microcontroller that can monitor
the sensors with up to a week of battery life before recharging.

Wireless Communication: The OmniRing platform should
be portable and wireless to transmit data to a smartphone, so
that users can access data anywhere and anytime. Furthermore,
the data can be processed with powerful AI algorithms on edge
devices for analytics. OmniRing is designed with a SoC with
integrated BLE with low-power requirements and a small size.

Coverage of a Wide Range of Applications: The small form
factor of a ring does not allow embedding many sensors. Thus,
we only embed IMU and PPG sensors with complementary sens-
ing abilities. While IMU provides motion analytics applications
like activity detection, augmented reality, and sports analyt-
ics, the PPG sensor enables healthcare applications like heart
rate and blood pressure monitoring [15], emotion and sleep
sensing [42]. Thus, we believe the choice of sensors supports
diverse applications in motion analytics and healthcare.

Water Resistance: The platform should be waterproof to
protect against adverse environmental conditions like rain and
snow and allow analytics during water sports and swimming.
Furthermore, the material that interfaces with the skin surface
must be comfortable for long-term wearing. The materials for
enclosing the electronics are carefully chosen and 3D-printed
with appropriate shape to satisfy this requirement.

Openness and Extensibility: OmniRing’s hardware and
software platform should be easily extensible by the research
community. Because of the requirements of a small form factor,
the current version of OmniRing only integrates IMU and PPG
sensors which can still cover a diverse range of motion analytics
and healthcare applications. However, other sensors such as
temperature, ECG, and ultrasonic sensors can be included
depending on the requirements of an application. We believe
open sourcing OmniRing will promote extensibility.

Manufacturability and Cost-Effectiveness: In order for the
community to leverage the OmniRing platform for research,
they must be able to easily manufacture the device at an afford-
able cost. To achieve this, we focused on low-cost commercial
off-the-shelf (COTS) electronic components. These components
would be integrated into a custom PCB, specifically designed to
be manufactured, and components assembled, by a self-service
PCB assembly manufacturer at a nominal cost.

3.2 Platform Design

Figure 2: Schematic Design of
Microcontroller module of OmniR-
ing

Form Factor Design: Our goal
is to design a lightweight, wa-
terproof and comfortable ring
that can be worn throughout
the day and night while being
embedded with electronics and
sensors that can sense the user
activity, heart rate, etc., and
stream the data wirelessly for
analytics, as depicted in Fig. 3a.
While prior works adopt certain
electronic components [43, 48] that can provide rapid proto-
typing, this results in a bulky form factor because such com-
ponents when combined together can be suboptimal for the
overall device size. Therefore, we exploit the following op-
portunities to decrease the form factor size while satisfying
the requirements of embedded sensing and electronics. (i) We
design the electronics using a FPCB that we bend in the shape
of a ring. We assemble a custom microcontroller and sensing
hardware into the FPCB, the details will be elaborated shortly.
We also integrate a battery in the shape of an arc into the ring
(Fig. 1) to power the hardware. (ii) We enclose the hardware
inside a waterproof case, the material of which is comfortable
for skin contact and long-term wearing. We selected clear resin
material using Stereolithography (SLA) 3D printing technology
for an optically clear, stable, and aesthetically pleasing appear-
ance. The inner ring is designed to fit a particular user’s finger
size and developed using fused deposition modeling (FDM)
technology with TPU materials for flexibility and comfortable
skin contact. The overall form factor is depicted in Fig. 1, it
weighs between 2.5-2.8g depending on finger sizes and is com-
parable to the commercially available OuraRing which weighs
4-6g [57].

Hardware and Power Circuitry: Given the small size of the
Digital 

Signal 

Processing

9DoF IMU

PPG Sensor

SpO2

Heart Rate

Accelerometer

Gyroscope

Compass

(a) Overview of Om-
niRing

NRF52832
SoC

9-axis
IMU

SPI

Voltage regulator

Lithium Battery

BLE

PPG

I2C

(b) Hardware Ar-
chitecture

Figure 3: Usage and Hardware Architecture Design of OmniRing

form factor as discussed above, the main challenge would be to
embed the following hardware components within the limited
space. (i) Sensing hardware which includes IMU and PPG sen-
sors in the current edition of OmniRing (ii) A microcontroller
(MCU) to assemble the data from the sensors and stream them
wirelessly to a smartphone companion app. (iii) BLE module
for communication with a smartphone companion app. (iv)
Battery circuitry to support diverse requirements of the above
hardware components. Various hardware components were
carefully assembled into a double-sided FPCB as shown in
Fig. 4 to fit the form factor requirements. The hardware archi-
tecture is depicted in Fig. 3b. We redesigned NRF52832 [12]
MCU which interfaces with the rest of the electronics based
on the design of Sparkfun nRF52832 Breakout [66], as shown
in the schematic diagram Fig. 2. The MCU consists of a 2.4
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GHz radio frequency (RF) transceiver for BLE and ARM Cortex-
M4 32-bit 64 MHz processor with floating-point unit (FPU)
and supports multiple interfaces such as SPI, I2C, and UART.
Such an SoC-based design choice results in a miniature MCU
(6𝑚𝑚 × 6𝑚𝑚). The IMU chip incorporated is ICM20948 [5]
which provides 9-axis IMU data and interfaces with the MCU
using SPI. The PPG sensor incorporated is Maxim Integrated
MAX30101 [7] which provides data using 𝐼2𝐶. The whole
PCB is powered with a 15 mAh, 3.7V ring-shaped LiPo battery
with a radius of 10.55 mm and thickness of 1.6 mm, which
easily fits into the shape of a ring. Because the MCU requires
3.3 V whereas the IMU and PPG sensors require 1.8 V, we
used an advanced dual low-drop-out (LDO) voltage regula-
tor (MIC5370 [8]) for providing two independently-controlled
power sources. Finally, we also integrate a circuit to protect
PCB and battery from short current or overcharging. Overall,
the power consumption of the hardware is about 12 mA when
actively streaming the sensor data, and only about 76 𝜇A under
low power mode while the MCU is still collecting data and
only streams the data periodically to the smartphone app. This
provides sufficiently low power design to support a battery life
of a week , thus enabling applications like sleep monitoring.
In order to conveniently charge the smartring, we designed a
charger based on Adafruit MicroLipo Battery Chargers [10].
The charger is connected to USB power source via the USB
micro B cable, with charge rate of 1C.

8.3 

mm

(a) OmniRing PCB layout

PPG Sensor

MAX30101

Voltage Regulator

TXS0102DQE

SWD 

Programming

53 mm

9-DOF IMU

ICM20948LED

Voltage Regulator

MIC5370

Chip Antenna

2450AT18B100E

Slide Switch

Battery

Protection

MCU

NRF52832

Power

Pins

(b) Front view and side view of OmniRing

Figure 4: (a) Compute, sensing,

communication, and power man-

agement circuitry as laid out on

both sides of a FPCB that is later

bent in the shape of a ring (b)

Final OmniRing platform with

the PCB enclosed in cases with

either transparent or solid col-

ors. Most users in our study pre-

ferred transparent cases for ap-

pearance.

Firmware and Phone

Application: The firmware
of OmniRing includes
three main components:
(i) Collecting the data
from the IMU and PPG
sensors at the micro-
controller; (ii) Packag-
ing them into a packet;
(iii) Sending the packets
over BLE connection to
a smartphone. We use
C++, Arduino, and BLE
libraries for implement-
ing the functionalities
[13, 14, 67]. The Om-

niRing Companion Appli-
cation is an Android ap-
plication that allows in-
teraction with the sen-
sors. The firmware and
the phone app use pop-
ularly available Android and Arduino frameworks, thus can
be easily extensible by developers to incorporate additional
features.

Price Breakdown: Table 1 summarizes the retail and whole-
sale unit price for each major hardware component. All firmware
packages and programs used to develop OmniRing will be made
available at no cost. The total cost to produce a single OmniR-

ing platform is as low as $24.18, which is much lower than
existing commercial products like OuraRing [57].

Table 1: Manufacturing Cost Breakdown

Electronic Component Unit Price

(Retail) [U$]

Unit Price

(Wholesale) [U$]

MCU (NRF52832) 5.02 2.23
PPG Sensor (MAX30101) 19.95 6.60
IMU Sensor (ICM20948) 26.45 6.63
Chip Antenna 0.59 0.23
Voltage Regulator ICs 1.47 0.80
Battery Protection ICs 0.32 0.18
Case (TPU&resin Filament) 0.01 0.01
Arc Battery 8.00 7.50

Total 61.81 24.18

4 USE CASE ANALYSIS

We provide a brief overview of potential use cases of OmniRing.
Mixed Reality in Metaverse: The idea of Metaverse in-

cludes a rich interconnection of real and virtual worlds where
humans as avatars can interact with each other and software
agents [54]. This was envisioned in the early 90s as a Sci-Fi con-
cept. There is a recent push to make this vision a true reality by
exploiting advances in high-speed internet, AI, computing, and
sensing with several applications in areas like healthcare (re-
mote surgery), education (collaborative learning), etc [17, 34].
We believe OmniRing can complement existing technology to
make further inroads towards achieving this goal by providing
insight into human activity and emotion levels. We also believe
actuators can further be integrated into OmniRing in the future
to provide a user with touch and haptic feedback.

Activity Monitoring: Personalized daily-life monitoring is
popular nowadays to help people adapt an active and healthier
lifestyle. With a form-factor that allows comfortable and long-
time wearing, we believe OmniRing can help monitor daily life
activities including running, eating, drinking, brushing, sleep
cycles, etc [65].

Driving Behavior Monitoring: A useful case of behavior
analytics is monitoring drivers’ behavior [25]. By sensing the
hand motion patterns with OmniRing, perhaps an alert system
can be developed to identify risky or negligent driving and
increase the safety. Similarly, OmniRing could also warn drivers
from interacting with phones while driving.

Affective Computing and Behavior: Providing instructors
with the ability to adapt the pedagogical content to the emo-
tional state of students can make learning more engaging and
fun [39]. OmniRing can potentially interpret students’ emo-
tional states by monitoring the interbeat intervals (IBI) of the
heart as recorded by the PPG sensors. Also, the mental state of
people with autism and depression can be constantly assessed,
which can provide critical feedback to healthcare providers.

Accessibility Applications: We believe OmniRing can en-
able accessibility applications by helping people with special
needs to interact or control devices. In the context of sign
language recognition, we believe OmniRing can enable finger
motion tracking to help recognize and translate sign languages
to spoken languages to bridge the communication gap between
deaf people and hearing people.

Health Monitoring: Daily-life health monitoring offers
great benefits to users, especially those with heart diseases, hy-
pertension, etc [22]. To this end, PPG sensors in OmniRing can
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be used for monitoring of heart rate, blood pressure, and emo-
tional states of users [24]. We believe this will not only help
with better monitoring of diseases by providing fine-grained
feedback to doctors but also has the potential to cut down
medical expenses by decreasing visits to the hospital [81].

5 USER EXPERIENCE STUDY
OmniRing

Comfort

9.5

Weight

9.8

Appearance

9.7

Platform

Tapstrap

Comfort

5.3

Weight

6.6

Appearance

7.4

Platform

Myo EMG

Comfort

8.0

Weight

6.4

Appearance

3.6

Platform

CyberGlove

Comfort

4.2

Weight

2.2

Appearance

6.4

Platform

Figure 5: User experience survey on OmniRing compared with

three alternative sensing platforms

Our project is approved by the IRB. We conducted a user
experience survey with participants who wore the sensor con-
tinuously under free-living conditions at their apartments. Each
of 12 users wore several alternative platforms to OmniRing

and compared the platforms with each other. We compare
OmniRing with three other finger-based sensing or typing de-
vices: Tapstrap [9], Myo [11], and CyberGlove [2]. The users
conducted normal daily life activities including working on
their laptops (typing, browsing, etc), eating, drinking, watch-
ing movies, etc, while wearing the sensor. Participants rated
the four devices anonymously based on comfort, weight, and
appearance from 0 to 10. Myo turned out to be rigid and
not comfortable for long-time wearing and CyberGlove pre-
cludes finger motion that requires precision (cooking, typing,
etc) apart from causing sweat. While TapStrap received higher
ratings than these two, users reported it as heavy and less
comfortable for long-time wearing with restricted mobility of
fingers due to the straps. OmniRing secured the highest scores
in comfort, weight, and appearance as shown in Fig. 5. With
the careful consideration of weight, and a form factor that
allows daily life activities, we believe these results are not sur-
prising, particularly given that a recent survey using a dummy
ring also offers similar findings of social acceptance [20].

6 VALIDATION OF MOTION ANALYTICS: 3D
FINGER MOTION TRACKING

While several possible applications were discussed earlier, we
validate the capabilities of motion analytics in OmniRing by
showing the feasibility of 3D finger motion tracking using
IMU sensors. Particularly, we show the feasibility of tracking
24 DoFs of finger motion using sparse rings placed on a few
fingers. This is an unconstrained problem without well-formed
equations because the sensors are not placed on every finger
or joint. Therefore, we utilize deep learning techniques to
learn the mapping between sensor data and finger motion
that exploit correlations between motion of different fingers to
solve the underconstrained problem. However, unlike vision
and speech domains with large quantities of training datasets,
wearable devices, particularly newer ones like OmniRing have
challenges in generating training datasets for developing robust
machine learning algorithms. In solving this problem, Fig. 6
depicts OmniRing’s approach which synthesizes IMU training

data from videos and augments the data for 3D finger motion
tracking. More details are elaborated next.

6.1 Background

Public Videos
Data Augmentation

DTW

Rotational
Motion Enhancement

3D hand 

Joint

Locations

IMU Rings

Real Data

Inference

Synthetic

Data

Training

Output

Machine Learning 
Model

Real IMU Data 3D Hand Pose

Figure 6: OmniRing extracts

synthetic IMU training data

from public videos and en-

hances it with data augmenta-

tion techniques for 3D finger

motion tracking with wear-

able IMUs without the need

for real IMU training data.

Motivation: Wearable datasets
are very small in compar-
ison to their counterparts
in computer vision. Daph-

net [19] gait dataset only
has 5 hours of walking IMU
data from 10 subjects, and
PAMP2 dataset [60] only
has 7.5 hours of sensor data
from 9 subjects. Moreover to
the best of our knowledge,
such datasets do not exist
for finger motion tracking
using IMU. Thus, we synthe-
size IMU data from publicly
available videos to transfer
knowledge from the vision
domain to the wearable do-
main, which alleviates the nontrivial cost of building ImageNet-
like dataset for robust ML models of wearable.

Video Data: OmniRing identifies a public video dataset [30]
that includes intricate and diverse finger motions by multiple
users. It includes instructional videos on various activities like
cooking, gardening, health, computers, exercise, etc in Ameri-
can Sign Language (ASL). We choose this dataset because the
extremeness, complexity, and speed of finger motion patterns
in these videos will subsume finger motion patterns in other
applications like gaming and AR which are more simplistic.
OmniRing extracts finger pose from these videos using Google
MediaPipe [82]. Note that extracted locations may not be 100%

accurate because fingers can get occluded. Although MediaPipe

fills in some gaps in occlusions based on anatomical constraints,
there might still be some frames where tracking is not possible.
To this end, OmniRing uses simple interpolation and filtering
to handle low-quality frames, which was sufficient to provide
a stable accuracy for 3D finger motion tracking.
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Figure 7: Kinematic view of hand and finger motion range, and

wrist motion range

Finger skeletal model: Fig. 7a shows a kinematic view of
finger joints. The four fingers excluding the thumb have four
Degrees of Freedom (DoF) from the following finger joints: (i)
MCP joint with two DoFs (Flex/extensions - 𝜙𝑚𝑐𝑝,𝑓 /𝑒 and ab-

duction/adductions 𝜙𝑚𝑐𝑝,𝑎𝑎 as noted in Fig. 7b) (ii) PIP (𝜙𝑝𝑖𝑝)
and DIP (𝜙𝑑𝑖𝑝) joints with a single DoF (Flex/extensions). The

thumb has slightly different anatomy as its MCP and TM joints
can both flex/extend and abduct/adduct, and its IP (interpha-
langeal) joint can only flex/extend. Thus, the thumb has five
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DoFs including 𝜙𝑚𝑐𝑝,𝑓 /𝑒 , 𝜙𝑚𝑐𝑝,𝑎/𝑎, 𝜙𝑡𝑚,𝑓 /𝑒 , 𝜙𝑡𝑚,𝑎/𝑎, and 𝜙𝑖𝑝 ,

forming a 21-dimension (R21) space of joint angles with the
other four fingers.

Wrist Motion: In addition to the fingers, we also track
wrist motion. Fig. 7c depicts 3 DoFs of the wrist joint mo-
tion: i) pronation/supination, 𝜙𝑤𝑟𝑖𝑠𝑡,𝑝/𝑠 ; ii) flexion/extension,

𝜙𝑤𝑟𝑖𝑠𝑡,𝑓 /𝑒 ; and iii) radial/ulnar deviation, 𝜙𝑤𝑟𝑖𝑠𝑡,𝑟/𝑢 . As dis-

cussed earlier, the fingers and thumb have 21 DoFs whereas
the wrist has 3 DoFs, totaling 24. OmniRing tracks these DoFs.

Hand Motion Constraints: Finger joints exhibit a high
degree of correlation and interdependence [27, 49], some of
which are detailed below.
𝜙𝑖𝑝 =

1

2
𝜙𝑚𝑐𝑝,𝑓 /𝑒 , 𝜙𝑑𝑖𝑝 =

2

3
𝜙𝑝𝑖𝑝 , 𝜙𝑚𝑐𝑝,𝑓 /𝑒 = 𝑘𝜙𝑝𝑖𝑝 , 0 ≤ 𝑘 ≤

1

2
(1)

Eq. 1 suggests that to bend the DIP joint, the PIP joint must
also bend under normal finger motion (assuming no external
force). Similarly, the range of motion for PIP is limited by the
MCP joint. Besides, there is a range of motion constraints as
follows:
−15◦ ≤ 𝜙𝑚𝑐𝑝,𝑎𝑎 ≤ 15

◦, 0
◦ ≤ 𝜙𝑑𝑖𝑝 ≤ 90

◦, 0
◦ ≤ 𝜙𝑝𝑖𝑝 ≤ 110

◦

In addition, there are complex interdependencies between
joints of different fingers, which cannot be directly modeled
by equations, but our transformer architecture is designed to
automatically learn such constraints.

6.2 Extraction of Synthetic IMU data

Extracting Synthetic Accelerometer Data: We first extract loca-
tions of finger joints and the wrist from videos. The location
data is double differentiated with finite differences to approxi-
mate the accelerometer data. Thus, the synthetic accelerometer
data from videos can be used for training. Fig. 8a shows an
example of real accelerometer data and synthetic accelerom-
eter data under a common frame of reference when a user is
making a fist three times. Evidently, the two sources of data are
similar indicating the feasibility of synthesizing accelerometer
data from videos. Note that the gravity was subtracted from
accelerometer measurements for this comparison by estimating
the orientation of the sensor using techniques from A3 [85].
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Figure 8: Synthetic data looks comparable with real data in y-axis

Extracting Synthetic Orientation Data: In addition to the
accelerometer data, OmniRing also utilizes the orientation data
from IMU sensors, a unit vector (y-axis in our settings) that
follows finger directions. Towards this end, we identify the
vector between MCP and PIP joints as a direction vector to
capture the orientation. We ignored x- and z-axis direction
vectors simply because the gain was negligible compared to
the increase in the number of parameters in the ML model.
Fig. 8b shows an example where synthetic direction vectors
are compared to real ones, which indicates the feasibility of
extracting synthetic orientation data from videos.

Body Size Standardization: It is easy to see that (i) Extraction
of location in units of centimeters from videos needs camera
parameters [53], which may not be available for public videos.
(ii) Without camera parameters, the extracted locations from
videos are in pixels, irrespective of user’s body size. Therefore,
we utilize body size standardization to handle differences in
body sizes of users due to the lack of camera parameters [51].

6.3 Data Augmentation

To minimize the domain discrepancy between synthetic and
real data, the synthetic training data is enhanced in size by
performing the below-described data augmentation transfor-
mations. This also increases the diversity of the dataset thus
making the ML models robust to extreme motion patterns, user
diversity, variation in sensor position/orientation, etc.
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Figure 9: Data Augmentation Examples

Motion Enhancement: We enhance finger motion patterns ex-
tracted from the videos to vary the magnitude of flex/extensions
and abduction/adductions. We believe it will enhance the cov-
erage of finger motion distribution to account for all possible
configurations in practice. While performing the augmentation,
finger motion constraints (details in Sec. 6.1) are ensured, so
that the augmented motion patterns are still realistic. Fig. 9a
presents examples of such enhancements.

Dynamic Time Warping: We observed that (i) finger motion
tends to be faster users when they are certain. Otherwise, fin-
ger motion is slower. (ii) Users perform motion at different
speeds and the speed of motion can vary with time. To emulate
such diversity in real IMU data and make ML models robust
at inference, OmniRing utilizes Dynamic Time Warping (DTW)
based augmentation to create augmented versions of the origi-
nal data. Fig. 9b depicts examples of the original data being
stretched and compressed.

Rotation Augmentation: Sensor position/orientation might
vary under regular usage, particularly when the user removes
and remounts the sensor rings multiple times in a day. Thus, we
introduce perturbations in the direction vectors in the training
data to increase the diversity of sensor position/orientation.
Fig. 9c shows an example where the augmented data looks
similar in shape to the original data but includes perturbations
in the direction vectors.
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Figure 10: ML model processes inertial sensor input via two

branches: (i) Temporal Encoder exploits time dependencies, (ii)

Finger Relation Encoder leverages inter-finger correlations, and

finally, two branches together contribute to hand pose prediction.
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6.4 Learning based 3D Finger Motion Tracking

OmniRing’s ML model for 3D finger motion tracking is de-
picted in Fig. 10. Our model can exploit temporal relationships
and inter-finger correlations of finger motions. It consists of
two branches: Temporal Encoder exploits dependencies across
time and Finger Relation Encoder exploits dependencies across
fingers. While Temporal Encoder employs transformer and self-

attention mechanism that are efficient for processing series data
in natural language processing and also in videos [28, 29, 72],
Finger Relation Encoder is designed on the observation that
finger motions exhibit rich inter-finger correlation. Experimen-
tal results (Sec. 6.7) suggest that both branches are critical in
making inferences with sparse sensors on a high-dimensional
search space (24 DoF). Details are elaborated next.

This design choice has other benefits over choices like CNNs
(evaluated in Sec. 6.7) including: (i) In contrast to CNN, where
spatial dependencies are a function of kernel sizes and network
depth, and the ability to capture spatial dependencies depends
on the distance between input elements, transformer captures
spatial dependencies independent of the distance between in-
put elements. This is relevant for applications in AR/VR and
sports analytics, with a coordinated sequence of motions to
achieve a specific task. (ii) Unlike LSTM, the attention values
and data processing in transformer are amenable to paralleliza-
tion, thus enhancing efficiency.

Input. The input data x ∈ R𝐶×𝑁 , where 𝐶 = 36 represents
6-dimensional input (acceleration and direction vectors) from
sensors (fingers and wrist) and 𝑁 denotes the number of time
samples. To prepare input for Temporal Encoder and Finger Re-

lation Encoder, we use a sliding window to generate M chunks
along the time axis, x𝑡𝑖 :𝑡𝑖+𝑊 = 𝐶ℎ𝑢𝑛𝑘 (x) ∈ R𝐶×𝑊 , 𝑖 ∈ [1, 𝑀]

and we select𝑊 = 700 empirically.
Temporal Encoder. To explore temporal dependencies, we

employ a Transformer Encoder [72] as shown in Fig. 10. We
embed the inputs, x𝑡𝑖 :𝑡𝑖+𝑊 , by a Linear Projection (LP) layer
and then positional information is added by a Positional Em-
bedding layer (PE), which are later utilized in the self-attention

layer of Temporal Encoder (TE) to encode dependencies (across
time) into the learned representations 𝑥𝑡𝑖 :𝑡𝑖+𝑊 .

Finger Relation Encoder. The design of Finger Relation En-

coder lies on a simple observation: finger motions are correlated
as the motion of fingers can influence others (e.g., moving the
middle finger most likely triggers the movement of the ring
finger). To leverage the relation information across fingers, we
perform below operations: Given the input x𝑡𝑖 :𝑡𝑖+𝑊 ∈ R𝐶×𝑊 ,

we first reorganize the input x𝑡𝑖 :𝑡𝑖+𝑊 ∈ R𝐶×𝑊 into x′
𝑡𝑖 :𝑡𝑖+𝑊

∈

R
𝐶′×𝑊 ′

where 𝐶′
= 6 and 𝑊 ′

=
𝐶
𝐶′ ×𝑊 . As wrist motion is

independent of fingers, we only keep the inputs from 5 fingers

to get x′′
𝑡𝑖 :𝑡𝑖+𝑊

∈ R(𝐶′−1)×𝑊 ′
. Secondly, we calculate the finger

relation as follows.

f𝑡𝑖 :𝑡𝑖+𝑊 = (x′′𝑡𝑖 :𝑡𝑖+𝑊 ) (x′′𝑡𝑖 :𝑡𝑖+𝑊 )𝑇 ∈ R(𝐶′−1)×(𝐶′−1) (2)

And lastly, we incorporate this information, f𝑡𝑖 :𝑡𝑖+𝑊 , into our
model by a Multi-Layer Perceptron (MLP) module to obtain the

representation for finger relations 𝑓𝑡𝑖 :𝑡𝑖+𝑊 .

Branch Fusion and Output. The representations from the
temporal encoder and the finger relation encoder are fused
by a simple addition operation (we omit the validation details
due to space limitation) and then passed a Fully-Connected

(FC) layer to produce the final prediction of finger joint angles,
𝑦𝑡𝑖 :𝑡𝑖+𝑊 ∈ R18×𝑊 . Lastly, we concatenate all 𝑀 chunks (ŷ𝑡𝑖 :𝑡𝑖+𝑊
and y𝑡𝑖 :𝑡𝑖+𝑊 ) to get 𝜙 ∈ R18×𝑁 and 𝜙 ∈ R18×𝑁 for optimization.
Among the 24 DoF finger joint angles discussed in Sec. 6.1,
18 joint angles are predicted by the model (R18×𝑁 above)
whereas the rest is inferred based on constraints with more
details elaborated next with the description of the loss function.

Loss Function. As stated early, OmniRing aims to track
finger motions instead of classifying. Therefore, we adopt Mean
Square Error loss as our main loss. We define L𝑚𝑠𝑒 as follows.

L𝑚𝑠𝑒 =

𝑗=18∑︁

𝑗=1

(𝜙 𝑗 − 𝜙 𝑗 )
2 (3)

In Equation 3, 𝜙 𝑗 denotes the prediction and 𝜙 𝑗 denotes the

training labels from videos. The 𝜙 𝑗 ’s above include MSE errors
for: (i) Four flex/extension angles of MCP joint from four fin-
gers (excluding thumb) (ii) Four MCP adduction/abduction

angles of the MCP joint from four fingers (𝜙 𝑗,𝑚𝑐𝑝,𝑎𝑎 ∀𝑗 ∈ [1, 4])

(iii) Four PIP joint angles from four fingers (𝜙 𝑗,𝑝𝑖𝑝 ∀𝑗 ∈ [1, 4])
(iv) Flex/extension and abduction/adduction angles of MCP
and TM joints of the thumb, a total of four angles (𝜙𝑚𝑐𝑝,𝑓 /𝑒 ,

𝜙𝑚𝑐𝑝,𝑎/𝑎 , 𝜙𝑡𝑚,𝑓 /𝑒 , 𝜙𝑡𝑚,𝑎/𝑎) (v) Flex/extension and Radial/ulnar

deviation angles of the wrist ( 𝜙𝑤𝑟𝑖𝑠𝑡,𝑟/𝑢 , 𝜙𝑤𝑟𝑖𝑠𝑡,𝑓 /𝑒). In addi-

tion, to encourage the similarity of the overall shapes of 𝜙 𝑗

and 𝜙 𝑗 , we incorporate a cosine similarity loss into our loss
function.

L𝐶𝑜𝑠𝑖𝑛𝑒𝑆 𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =

𝑗=18∑︁

𝑗=1

𝜙 𝑗 · 𝜙 𝑗

𝑚𝑎𝑥 ( | |𝜙 𝑗 | |2 · | |𝜙 𝑗 | |2, 𝜖)
, 𝜖 = 10

−6 (4)

The overall loss function is now expanded below.

L𝑎𝑛𝑔𝑙𝑒 = L𝑚𝑠𝑒 + 𝛼L𝐶𝑜𝑠𝑖𝑛𝑒𝑆 𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (5)

where we set 𝛼 to 0.4 empirically.
Note that the loss function (Eq. 5) does not include 𝜙𝑑𝑖𝑝 ,

or 𝜙𝑖𝑝 because we compute them directly from anatomical
constraints in [27, 49] (more details in Sec. 6.1). The prona-
tion/supination angle (𝜙𝑤𝑟𝑖𝑠𝑡,𝑝/𝑠) for the wrist is also directly

computed from the orientation of the wrist sensor [63].

6.5 User Study

Data Collection Methodology: Since there is no publicly avail-
able IMU dataset for finger motion tracking, we collect our own
dataset using the platform described in Sec. 3. The collected
real IMU data is only for testing. The training data is extracted
from sources of online videos as identified in Sec. 6.1. Our
study has been approved by the IRB. We conducted a study
with 12 users (8 males, 4 females), aged between 20-47 and
weighing between 44-105 kgs. For stress testing OmniRing

across all possible hand poses, we follow the guidelines from
the literature [49] to cover an exhaustive space of all possible
hand poses. The majority of possible hand poses are known
to be one of these base states or transitioning between these
poses [69] based on anatomical feasibility constraints. The
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users are allowed to make natural and random finger motions
while ensuring that the above base states are included in their
motion pattern in random order. This ensures good coverage
by incorporating the entire range of motion of possible hand
poses. Each user participates in 5 sessions of 5 mins while
removing and remounting the sensor across sessions to val-
idate robustness to natural changes in sensor positions and
orientation. Wrist and arm mobility is varied across sessions as
indicated in Fig. 11. The accuracy was also studied for longer
duration free-living experiments.

Parallel Up Up (Left/Right) Bend Mobile

Figure 11: Wrist orienta-
tions/positions vary in different
sessions.

Labels for Validation:

The collected data includes
9-axis IMU and the fingers’
3D coordinates and joint an-
gles are captured by the
Leap depth camera [1]. The IMU data provides motion data for
3D finger tracking. The leap data serves as ground truth. We
note that Leap has location tracking error < 0.2𝑚𝑚 [79], thus
sufficient for ground truth. Since OmniRing performs contin-
uous finger tracking instead of discrete gesture classification,
we employ the loss function defined in Eq. 5 in our system.

6.6 Implementation

The ML model is implemented with Pytorch. The training is
done on a desktop with Intel i7-8700K CPU, 32GB RAM, and
an NVIDIA RTX 2080 GPU. We use Adam optimizer [45] (𝛽1 of
0.9, 𝛽2 of 0.98), a varied learning rate based on [72]. To avoid
overfitting, we apply the L2 regularization (parameter of 0.01)
and a dropout rate (parameter of 0.5) following each layer.
Once trained, the inference is done on smartphones (Samsung
S20, OnePlus 9 Pro) using Pytorch Mobile [31].

6.7 Motion Tracking Performance

To assess the performance of OmniRing, we conduct the follow-
ing analysis: ■ Since no public datasets exist for IMU-based
3D finger motion tracking, we perform a comparison with
naive baselines including ablation studies. This validates the
importance and effectiveness of design choices of OmniRing.
■ We conduct robustness studies to characterize the perfor-
mance of OmniRing over accuracy vs fingers, users, number of
sensors, and long durations (ability to handle sensor drifts).
■ We provide a qualitative reconstruction of hand poses and
compare the results to the ground truth. ■ We evaluate the
power consumption and latency on smartphones when execut-
ing ML models. ■ Finally, we contrast features and accuracy of
OmniRing with prior work.

6.7.1 Ablation Studies.

Ablation Study of Baselines: We convert joint angle errors
to position errors and present position error (millimeters) for
most results. Table 2 shows OmniRing against three baselines.
■ CNN-LSTM-based Model: We build a CNN-LSTM-based model
for the same tracking problem to verify that the design of
OmniRing’s ML model is effective in capturing temporal rela-
tions for time-series data. In comparison to this design, we

observe that OmniRing reduces the error by 20.4% and 23.2%
for median and mean location error respectively. ■ w/o Co-

sine Similarity Loss: The results show, by encouraging similar
shapes of the output and the ground truth with Eq. 4, the loca-
tion error decreases by 16.4% and 9.2% for median and mean
respectively. ■ w/o Finger Relation Encoder: FRE as in Sec. 6.4
aims to take finger relations into consideration. To test its ef-
fectiveness in tracking 3D finger motions, we build a model
without this module. FRE improves the accuracy by 20.4% and
18.2% for median and mean location error respectively.

Ablation Study of Data Augmentation: We also study the
effectiveness of individual data augmentations in OmniRing

as shown in Table 2. ■ Motion Enhancement decreases mean
location error by 5%, which shows the effectiveness of increas-
ing the coverage of finger motion distribution in reality. ■
DTW Augmentation also improves performance by a similar
degree, by incorporating different speeds of different parts of
finger motion into the training data. ■ Rotation Augmentation

emulates the diversity of wearing positions in daily life, and im-
proves OmniRing by 4.6% for mean location error. Overall, the
combination of all three data augmentation techniques boost
the performance of OmniRing by 24.1% and 23.2% for median
and mean location errors respectively, which demonstrates that
OmniRing can acquire knowledge from a different domain with
the help of simple but effective data augmentation methods,
and henceforth mitigate the need of large-scale IMU datasets.

6.7.2 Robustness Studies.

Accuracy vs Fingers and Wrist is depicted in Fig. 12a.
Synthetic training data and data augmentation transformations
incorporate the full range of motion across fingers and wrist,
enabling accurate tracking of all fingers and wrist.

Accuracy vs Users: Depicted in Fig. 12b, OmniRing achieves
consistent accuracy across users with minor variations. The
variation happens because some users perform faster motions.
Nevertheless, the user with the worst performance only has
≈ 1 mm (1.35◦) higher error than average. Given the diverse
sources from which the synthetic training data was generated
with the added diversity via data augmentations, we believe
OmniRing generalizes to a variety of users.

Accuracy vs. Number of Sensors is depicted in Fig. 12c.
The position of sensors for each case is also indicated, The ML
model input shape in Sec. 6.4 was appropriately adjusted to
work with sparse sensors. There is a graceful degradation in
accuracy with fewer sensors. With a high degree of interaction
between fingers, the motion of one finger will cause other
fingers to move, thus enabling tracking them even without
sensor rings on all fingers, which can further enhance the
comfort levels of wearing.

Longer Session Experiments (Free-Living Conditions):

We conducted free-living experiments to study long-term ef-
fects like potential drifts. Users were instructed to wear the
sensor continuously for 6 hours at their apartments. At the end
of each hour, we conduct a 5-minute session of finger motion
as per our user study protocol described earlier. In between
sessions, the users conducted daily activities including work-
ing on their laptops (typing, browsing, etc), eating, drinking,
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Baselines Comparisons (errors in millimeters)

Model
50%-ile

Error

90%-ile

Error
Mean STD

Median

Absolute Dev

Mean

Absolute Dev

CNN-LSTM-based Model 8.25 21.65 10.32 8.78 4.74 6.46
w/o Cosine Similarity Loss 7.86 17.14 8.73 5.69 3.03 4.25

w/o Finger Relation Encoder 8.25 19.99 9.70 6.58 3.53 5.07
OmniRing (Ours) 6.57 17.10 7.93 5.85 2.98 4.44

Data Augmentation Study (errors in millimeters)

Model
50%-ile

Error

90%-ile

Error
Mean STD

Median

Absolute Dev

Mean

Absolute Dev

w/o Data Aug. 8.66 22.47 10.63 7.81 4.16 6.02
Only Motion Enhancement 6.81 18.49 8.35 6.42 3.23 4.88

Only DTW Aug. 6.84 18.29 8.35 6.27 3.10 4.74
Only Rotation Aug. 6.61 18.75 8.31 6.53 3.14 4.98
OmniRing (Ours) 6.57 17.10 7.93 5.85 2.98 4.44

Table 2: We present the effectiveness of different components in our ML model. In a nutshell, Finger
Relation Encoder improves the performance by 20.4% and data augmentation techniques boost the tracking
accuracy by 24.1%. More details are presented in the text.
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Figure 12: (a) Accuracy over Fingers and Wrist (b) Accuracy over Users
(c) Accuracy degrades gracefully with lesser sensors (d) Error does not
accumulate over long-duration and free-living experiments

watching movies, etc., while wearing the sensor. The results
are depicted in Fig. 12d. As expected, the accuracy does not
degrade with time. This is because OmniRing does not perform
long-term integration of data, which is the main source of
drift errors [76]. In contrast, OmniRing opportunistically resets
drifts, and eliminates magnetic interference based on A3 [85].
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Figure 13: Qualitative tracking re-

sults show that OmniRing tracks

hand poses closely even without

placing sensor rings on all fin-

gers.

6.7.3 Qualitative Results.

Fig. 13 depicts the qual-
itative results. The fig-
ure compares the track-
ing of hand poses by Om-

niRing with reference to
the real hand and ground
truth (from Leap). Ev-
idently, OmniRing can
capture a wide range of
finger motions with de-
cent accuracy, even with-
out the need to place sen-
sor rings on all fingers by exploring the inter-finger correlations.
Overall, we believe these results are promising in the context
of applications in activity tracking, sport analytics, etc.

6.7.4 Power Consumption and Latency. To make OmniRing real-
time, at any given instant of time, we feed previous few chunks
to the ML model, The latency of execution on Samsung S20 and
OnePlus 9 Pro are around 8.4 ms and 7.6 ms respectively, suffi-
cient for real-time applications. The real-time power discharge
rate is 14.43% and 16.72% per hour for Samsung S20 and
OnePlus 9 Pro, while the discharge rate under the low-power
mode is around 6% for both models.

6.7.5 Comparison with Vision and other Wearables: OmniRing

achieves a tracking error of 6.57mm, while work such as WR-
Hand [52] has an error of 18.57mm, FingerTrak [40] achieves
an error of 9.44mm, and a pure camera-based [23] has an
error of 14.2mm. Note that this might not be a fair compar-
ison as the hardware, sensor data, etc., is different, and the
respective datasets and customized hardware is not publicly
available yet in all cases. Nevertheless, we believe its promising
that OmniRing’s accuracy is comparable to prior efforts while

offering additional benefits over prior works as identified in
Sec. 2 such as providing a ubiquitous, comfortable, and more
privacy-preserving solution while being agnostic to lighting,
background, and other ambient conditions.

7 PRELIMINARY VALIDATION OF HEALTH
ANALYTICS: HEART RATE ESTIMATION

For the sake of completeness, we conduct a basic feasibility
of extraction of raw PPG data from OmniRing for heart rate
estimation. A discussion of other use cases of PPG was provided
in Sec. 4 and we leave a thorough investigation of this space
for future work. OmniRing is incorporated with a PPG sensor
for health related sensing tasks such as heart rate, 𝑆𝑝𝑂2, etc. A
PPG sensor illuminates the skin and measures the absorption
which can be used for detecting blood volume changes in
the subcutaneous tissues of the skin due to the pumping of
blood during the cardiac cycle. Therefore by measuring the
absorption, metrics like heart rate and blood pressure can
be computed [24]. To validate the PPG data, we conducted
a preliminary study for heart rate monitoring, in which we
asked users to perform simple activities (i.e., standing, sitting,
running, and standing) and collected PPG data for estimating
the heart rates. Fig. 14a shows an example of PPG data that
is processed by a bandpass filter and biometric characteristics
(e.g., Systolic/Diastolic peaks, IBI, etc) denoted in the figure
can be utilized to monitor heart rates. We estimated the heart
rates when users remain static after each activity and Fig. 14b
depicts OmniRing monitors heart rates closely.

In addition, we studied heart rate monitoring accuracy for
individuals as shown in Fig. 14c. Overall, the heart rate esti-
mation is stable across different users. Worthy noting that our
users not only span a various range of ages and body shapes
but also cover different skin tone colors. However, we don’t
see significant difference between light and dark skin tones.
Our findings are consistent with recent research [21, 59]. We
believe this preliminary study has demonstrated that OmniRing

has the potential to enable healthcare applications in addition
to motion tracking. We hope the community will use the plat-
form to explore more specific uses cases of the PPG sensor.
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Figure 14: OmniRing can also monitor heart rate closely.

8 DISCUSSION AND FUTURE WORK

Extensibility of OmniRing to Incorporate Additional Sen-

sors: This paper shows the feasibility of incorporating IMU
and PPG sensors in the current OmniRing design. While IMU
can be used in several applications in activity recognition, the
PPG sensor can be used in health analytic applications includ-
ing heart rate, sleep, and emotion monitoring. However, we
believe we have only scratched the surface. Additional sensors
such as ECG and EDA can be incorporated for applications in
heart disease detection and stress levels. Moreover, integrating
touch and haptic sensors can enable feedback to the user in
applications like gaming. While the space might be limited to
include all sensors in one ring, different sensing modalities can
be integrated into different rings if the user is willing to wear
rings on multiple fingers. We are currently exploring these
tradeoffs and we hope that the community can extend our
platform to enable exciting new possibilities.

On-Device Computing: The MCU in OmniRing currently
sends the sensor data to a smartphone app for analytics. How-
ever, given that the CPU (ARM’s Cortex-M4) can support signal
processing and machine learning [78], we will consider the
tradeoffs between on-device computing/preprocessing and of-
floading the sensor data as a part of our future work.

Authentication and Biometry: While we focus on motion
analytics and healthcare applications in this paper, we believe
the platform can be extended for applications in biometric
authentication. For example, the heartbeat pattern is known
to be a fingerprint that is characteristic of a person [77]. The
heart rate estimation from the PPG sensor in OmniRing can be
exploited for authenticating an individual.

9 CONCLUSION

OmniRing shows the feasibility of designing a low cost (≈ $25)
smartring by exploiting advances in SoC, flexible PCB and 3D
printed materials in creating a device with a small form-factor
and long battery life, comfortable for wearing day and night.
IMU and PPG sensors were embedded within OmniRing to
enable an array of diverse applications in motion analytics and
healthcare. While the IMU sensors can enable applications like
activity tracking, sports analytics, and augmented reality, the
PPG sensor can enable applications like monitoring of heart
rate, blood pressure, emotion and sleep. A user experience

study was conducted that indicates the acceptability and com-
fort levels of OmniRing for wearing in daily life. To validate
the sensing capabilities of OmniRing, we enable an application
in 3D finger motion tracking. While generating training data
could be an overhead for new wearable devices, synthetic train-
ing data was extracted from public videos and enhanced with
data augmentation. A transformer based machine learning
model was designed to exploit correlations across fingers and
time to enable accurate tracking without placing sensors on
all fingers. Finally, a basic validation of use of PPG sensors in
an application in heart rate monitoring was provided. Despite
promise, we believe we only scratch the surface. Our platform
is fully extensible and we believe the community can expand
OmniRing with additional hardware and software capabilities.
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