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ABSTRACT

Search Engines such as Google, Baidu, and Bing have
revolutionized the way we interact with the cyber world
with a number of applications in recommendations, learn-
ing, advertisements, healthcare, entertainment, etc. In
this paper, we design search engines for sign languages
such as American Sign Language (ASL). Sign languages
use hand and body motion for communication with rich
grammar, complexity, and vocabulary that is comparable
to spoken languages. This is the primary language for
the Deaf community with a global population of ~ 500
million. However, search engines that support sign lan-
guage queries in native form do not exist currently. While
translating a sign language to a spoken language and us-
ing existing search engines might be one possibility, this
can miss critical information because existing translation
systems are either limited in vocabulary or constrained
to a specific domain. In contrast, this paper presents a
holistic approach where ASL queries in native form as
well as ASL videos and textual information available on-
line are converted into a common representation space.
Such a joint representation space provides a common
framework for precisely representing different sources
of information and accurately matching a query with
relevant information that is available online. Our system
uses low-intrusive wearable sensors for capturing the
sign query. To minimize the training overhead, we ob-
tain synthetic training data from a large corpus of online
ASL videos across diverse topics. Evaluated over a set of
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Deaf users with native ASL fluency, the accuracy is com-
parable with state-of-the-art recommendation systems
for Amazon, Netflix, Yelp, etc., suggesting the usability
of the system in the real world. For example, the re-
call@10 of our system is 64.3%, i.e., among the top ten
search results, six of them are relevant to the search
query. Moreover, the system is robust to variations in
signing patterns, dialects, sensor positions, etc.
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1 INTRODUCTION

The revolution in natural language processing and deep
learning has led to advances in information retrieval,
knowledge extraction, representation learning, and ques-
tion answering. By exploiting these techniques, search
engines such as Google, Baidu, and Bing enable several
applications in learning, recommendations, resolving
technical issues, home maintenance, health care, and
advertisements [16, 82, 94, 99] and thus have become
an integral part of human life.

The capabilities of search engines extend to a wide
variety of spoken natural languages with seamless infor-
mation sharing across different languages powered by
advances in language translation techniques [25, 91]. In
this paper, we extend the benefits of search engines to
sign languages which are a form of natural languages
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Figure 1: The vision of SignQuery is to build a query system that serves
Deaf users. In SignQuery, users could sign (captured by Inertial Measure-
ment Unit, IMU sensors) instead of typing text to search for relevant doc-
uments (e.g. ASL videos) that are already in a native sign language, thus
improving accessibility. To realize this, SignQuery takes advantage of the
idea of cross-model embedding to embed various modalities into a joint
embedding space. For a given query, SignQuery could return relevant docu-
ments by searching for the embeddings with high similarities.

that use the visual-manual modality for communication
instead of audio. Primarily used by the Deaf community,
sign languages mainly use hands and non-manual mark-
ers (e.g., face and body) to produce a natural language
with its own grammar and lexicon with a large vocabu-
lary and complexity similar to spoken languages [15, 33].
The population of the deaf and hard of hearing (DHH)
individuals today, is upward of 10 million in the US
and ~500 million globally [1, 72]. Therefore, we believe
enabling a natural system and interface for querying
with sign languages can tremendously improve the ac-
cessibility to mainstream products that have long been
inaccessible to signed languages.

Towards bridging this gap, this paper proposes a sys-
tem called SignQuery, that supports queries in American
Sign Language (ASL). Figure 1 depicts the high-level
overview of the system. It consists of a system of wear-
able sensors such as smart rings, using which SignQuery
tracks the hand motion of users to capture the query. The
sensory information is converted into a representation
that can be searched in a database of existing ASL videos
or English text for recommending and providing relevant
information in response to their query. To achieve such
a search engine for better serving the Deaf community,
one naive solution is to employ a two-step process in
which sign language translation systems [20, 38] can
be utilized to translate signs and videos to text. Search
engines that are designed for hearing people can also be
utilized. Such a naive solution heavily relies on accurate
sign-to-text and video-to-text systems. Unfortunately, de-
spite the recent efforts on sign language recognition and
translation [20, 40, 67], the systems that perfectly in-
terpret sign languages are still in concept development.
Most systems have focused on constrained domains (e.g.,
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weather forecast) [20, 21], leading to a generalization
problem when comes to open-vocabulary searching in
a collection of sign videos that covers various activities
such as sports, entertainment, personal care, education,
home and garden. In contrast, by encoding signs, text,
and videos into the same representation space as shown
in Figure 1, SignQuery performs direct matching without
the low-accurate two-step process [31]. We experimen-
tally justify such a choice in §5.3.5.

Prior work in this area mainly includes queries that are
submitted in textual format, which is then matched with
appropriate sign language videos online [31] to extract
the videos that best match the queries. However, such
a system overlooks an important fact which is language
deprivation. Millions of deaf children are born to parents
and educators that do not know sign language or are
qualified to teach Deaf Education, resulting in severe
language deprivation and literacy challenges [3, 77].
While text-based search is a solution for Deaf users who
are also fluent in text, we believe providing a system that
supports queries in a native language format is essential
to ensure equitable access principles [19] for all Deaf
users to search online. Additionally, the system can be
used for instructional and educational purposes. Also,
while cameras can be another alternative to wearable
sensors, in contrast to camera-based approaches [52, 56]
that can be privacy-sensitive and need good lighting
and resolution, wearable sensors like SignQuery offer
solutions that are privacy-agnostic and work anywhere
including heavy occlusions or outdoors where the user
is constantly moving.

Building the SignQuery system has a lot of challenges:
(i) Sign languages involve complex and intricate motions
of fingers from both hands. (ii) The modality of data
captured from wearable sensors (i.e., Inertial Measure-
ment Unit, IMU) is different from the target database
online for searching, which is typically in the form of
videos and text. IMU data from the query needs to be
matched with online video and text to extract relevant
documents corresponding to the query. (iii) The success
of deep learning models in domains like speech and com-
puter vision can be widely attributed to the availability of
large-scale and diverse training datasets. However, there
is no such training data currently available for wearable
sensors with ASL. (iv) Similar to spoken languages, sign
languages such as ASL also have accents and dialects
(e.g., signing patterns). The SignQuery system must pro-
vide consistent accuracy across such natural variation.

SignQuery exploits a number of opportunities to ad-
dress the above challenges. (i) Low intrusive wearable
devices in the form of smart rings are designed to cap-
ture the hand motions of the querying sign language
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user. (ii) Deep Learning algorithms are designed to con-
vert wearable sensor data, video, and text into a com-
mon representation space for measuring similarity and
ranking the items in the database when the modality
of querying (e.g., wearable sensor data) is different
from the modality of targets (e.g., videos, text) in the
database. (iii) Leveraging on the success of synthetic
training data [55, 641, SignQuery derives training data
from How2Sign [32], a comprehensive database of sign
language videos in ASL with a large vocabulary size,
and on diverse topics such as arts, sports, personal care,
education, home and garden. Virtual IMU data is ex-
tracted from How2Sign without any overhead of train-
ing data generation from actual wearable devices. (iv)
The How2Sign database is generated from a diverse set
of users across different backgrounds, accents, and di-
alects. Therefore we believe building SignQuery on top
of How2Sign provides inherent robustness to variation
across users and accents.

An extensive real-user study with a group of Deaf
native ASL signers is conducted to validate the perfor-
mance of SignQuery with a vocabulary size of 15896. In a
nutshell, SignQuery achieves a recall@10 of 64.3%, sug-
gesting six out of the top ten search results is relevant
to given queries, and qualitative results (see Fig. 10)
depict SignQuery retrieves relevant documents given
queries. These results are comparable with state-of-the-
art recommendation systems for Amazon, Netflix, Yelp,
etc [23, 58], indicating the usability of the system in
the real world. Furthermore, the accuracy is also consis-
tent across variations in dialects/accents, sensor wearing
positions, and signing speeds, indicating the robustness.

In summary, we enumerate our contributions below:
® To our best knowledge, SignQuery is the first system
that supports searching in a database of existing ASL
videos or English text for recommending and providing
relevant information in response to queries in native
sign languages (i.e., ASL) by Deaf users. ® We encode
the query space (i.e., IMU data) and the search space
(i.e., ASL videos and text) into a common representation
space, allowing the direct matching of the query with on-
line documents to retrieve the most relevant documents
in response to the query. ® We extended the How2sign
dataset with virtual IMU data pairs for multimodal learn-
ing. ® We conducted an extensive real-user study with
Deaf users to validate the feasibility of SignQuery.

2 RELATED WORK

Visual Language Retrieval. Lee et al. [57] align words
and image objects with similar semantics. Gabeur et
al. [37] embed cues from audio, text, and videos into

one retrieval space. Liu et al. [60] leverage video analysis
tools to create a unified retrieval space. SPOT-ALIGN [31]
links text with sign videos in a common space, emphasiz-
ing sign-video and text alignment. Differing from these
text-based queries, SignQuery allows for sign language
(ASL) searches. This approach offers better accessibility
to Deaf users particularly when the search space includes
ASL videos and a more natural interface for Deaf users,
especially for those using ASL as their main communica-
tion mode due to language deprivation [3, 77].

Finger Motion Analytics using Wearables. Numer-
ous wearables, such as IMU, WiFi, and acoustic signals,
have been explored for finger motion recognition [63,
65, 74, 81, 86, 100]. Systems like uWave [59] utilize
IMUs for user identity and device interaction. Finge-
rIO [70] and FingerPing [95] employ acoustic signals
for gesture classification. ZeroNet [64] uses IMU data
from videos for hand gesture classification, while Cap-
band [85] and ThumbTrak [83] adopt capacitive and
proximity sensors respectively. ElectroRing [50] merges
electrode and IMU signals for detailed finger gesture
detection. However, unlike these systems which mostly
target predefined gestures, to the best of our knowledge,
SignQuery stands out as the first work centered on sign
language native search engines, addressing challenges
in representation learning, recommendation, and valida-
tion with actual sign language users.

Finger Motion Analytics using Cameras. Depth cam-
eras like Kinect [52] and Leap motion [56] provide
sophisticated finger motion tracking, and deep learn-
ing algorithms enable 3D tracking with just RGB cam-
eras [18, 47, 68]. However, cameras have limitations, in-
cluding privacy concerns, lighting and resolution needs,
and the requirement for the user to be within the cam-
era’s sight. For more mobility, wrist-mounted cameras
have been researched [44, 51, 92], but they present
challenges in capturing all fingers and sensitivity to back-
ground temperatures. Unlike these methods, SignQuery
offers a versatile solution free from environmental con-
straints and privacy issues.

Sign Language Recognition and Translation using
Cameras. Sign language recognition tasks have been
explored mainly in the vision world [40, 67, 104] where
researchers want to align signs with extracted visual fea-
tures. Camgoz et al. [21] propose a joint transformer of
sign language recognition and translation where connec-
tionist temporal classification loss is applied to achieve
an end-to-end training manner. Although the above work
demonstrated encouraging performance for translating
sign languages into spoken languages such as English,
and Germany in constrained domains (e.g., weather fore-
cast), these systems still lack the ability of cross-domain
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generalization [54, 87], leading to inaccurate searching
intents if such systems are employed in SignQuery. Thus,
in contrast to these work, SignQuery captures the signs
directly through IMU sensors and embeds them into a
joint space with text and sign videos.

Sign Language Recognition and Translation using
Wearables. Wearables have been explored for sign lan-
guage recognition and translation. This includes elec-
tromyography (e.g., MyoSign [98], DeepSLR [90]), IMU
(e.g., FInGTrAC [61], SignSpeaker [43], WearSign [97]),
wearable cameras (e.g., DeepASL [36]), and acoustics
(e.g., SonicASL [48]). These papers explore recognition
or translation in constrained domains with a limited vo-
cabulary (e.g., 20 - 150 words). Moreover, none of the
above work was validated with Deaf users with native
fluency. In contrast, SignQuery provides a natural user in-
terface for querying directly in sign languages (e.g., ASL)
with a search space of 15896 words that covers multiple
domains such as sports, arts, personal care, education,
home and garden. with high accuracy as validated by a
user study of Deaf users with native ASL fluency.

3 PRELIMINARY
3.1 American Sign Language

Sign languages use gestures instead of sound for com-
munication. They are considered a class of natural lan-
guages with their own grammar and lexicon. There are
over 200 sign languages with millions of speakers [10].
ASL is primarily used in the USA and parts of Canada.
The majority of ASL signs involve the motion of one
hand that is dominant including fingers and the other
hand can also be a part of some ASL signs to comple-
ment the meaning. Fig. 2a shows the hand poses for
fingerspellings (FS) of A, S, and L. Fig. 2b and Fig. 2c
show hand motions involved in signing “eat” and “bike”.

(@) ASL
spelling [6]

Finger- (b) ASL sign:
Eat [8]

(c) ASL sign:
Bike [7]

Figure 2: Examples of hand poses and motions in ASL

Moreover, facial grammar (by facial expressions) can
be used to complement hand gestures. Eyebrows are
raised to ask a yes/no question, show emphasis, etc. The
entire signing motion including hands and facial gram-
mar is denoted as gloss in linguistic terms. For simplicity,
we use the word to represent the meaning (eat, bike,
etc.) of the gloss and sign to represent the actual motion.
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3.2 IMU Data and Virtual IMU Generation

IMU Data Introduction. IMU sensors are popularly used
in motion tracking applications in AR/VR, sports analyt-
ics, smart healthcare, etc. An IMU primarily consists of an
accelerometer, a gyroscope, and a magnetometer. An ac-
celerometer measures the sum of acceleration and grav-
ity vector. A magnetometer measures the direction of the
magnetic field, whereas the gyroscope sensor measures
the angular velocity. The accelerometer, magnetometer,
and gyroscope sensors conduct the measurements in the
local frame of reference of the sensor. To convert the
measurements to the global frame (relative to earth), the
orientation [103] of the sensors is first determined that
computes the rotation of the sensor relative to the global
frame. Briefly, SignQuery adopts opportunistic calibration
techniques [103] and complementary filters to estimate
orientations. SignQuery adopts A3 [103] to opportunisti-
cally select measurements from magnetometers and ac-
celerometers when they are free of magnetic interference
or motion artifacts, and fuses them with gyroscope mea-
surements, thus periodically resetting drifts in gyroscope
integration, as well as handling effects of magnetic inter-
ference and motion artifacts. SignQuery’ experiments are
conducted in environments with magnetic interference
from objects such as metallic doors, furniture, etc. Given
the opportunistic fusion of sensors, similar to A3, we
do not observe the effects of environmental artifacts or
long-term drift. More details are elaborated in A3 [103].
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Figure 3: Synthesized virtual IMU data looks similar to real IMU data,
indicating the feasibility of training with synthetic data.

Virtual IMU Generation. Designing a highly accu-
rate SignQuery system over a large vocabulary requires
high-quality and large-scale training data. However, gen-
erating such data on wearable devices could be time-
consuming and laborious and there is no public dataset
that is available. Therefore, SignQuery leverages tech-
niques from IMUTube [55] and ZeroNet [64] to synthe-
size virtual IMU data from large-scale online sign videos
for training. m Body Size Standardization: Keypoints ex-
tracted from videos are in units of pixels, and camera
parameters are needed to convert to centimeters [68].
Yet, these parameters may not be available for public
videos. Also, the extracted key points from videos depend
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on the user’s body size. To compensate for this difference
in body sizes of users, we use body size standardization
adopted from [64] which allows working in the rela-
tive space without the need for camera parameters that
may not be available for public videos. m Synthesizing
Accelerometer Data: Locations of finger joints and the
wrist are first extracted from videos. Then we double-
differentiated the location data with finite differences to
approximate the accelerometer data. Finally, we trans-
form data to a common frame of reference (local frame
of the wrist). m Synthesizing Orientation Data: In addi-
tion to the accelerometer data, deep learning models of
SignQuery also use the orientation information extracted
by the IMU. Toward this end, we estimate the orientation
via the vector between the bottom finger joint and the
fingertip as a direction vector to capture the orientation.
Lastly, orientation data is converted to a common frame
of reference (local frame of the wrist). Fig. 3 presents
the comparisons of synthetic IMU data and real IMU.
Evidently, the synthesized data looks similar to real ones.
Note that IMU data for training is synthesized from video,
while data for testing is collected by our sensor device
(83.3) from native ASL users (§5).

3.3 Sensor Device in SignQuery

Justification on Sensor Device Choice. Depicted in
Fig. 4, we aim to design an unobtrusive, portable, and
low-power sensor device for comfortable wearing. Al-
ternatives like sensor gloves [11, 26, 101] are known
to impede natural and dexterous finger motion [79].
Platforms like OuraRing [73] are proprietary without
access to raw sensor data. Armbands like EMG [62] have
high overhead in calibration and training data. In con-
trast, our sensor device can work anywhere (validated
in §5) while allowing users to perform normal daily
life activities including working on their laptops (typing,
browsing, etc.), eating, drinking, etc. Our sensor device
is inspired by [101] and upgraded in the following ways:
(i) flexible printed circuit board (FPCB) is exploited such
that a ring-shaped and lightweight sensor device is re-
alized to enhance the flexibility when users are signing.
(ii) A low-power wireless microcontroller is integrated
to achieve power consumption of 32 mA (i.e., support-
ing an ~16 hours battery life), which is 6.19x energy
efficient than [101]. The details of our platform design
are elaborated on next.

Sensor: Depicted in Fig. 4c, we embed ICM20948 [46]
(Fig. 4d) which provides 9-axis IMU data (accelerometer,
magnetometer, and gyroscope) on fingers and wrist.

Microcontroller: The IMU sensors are controlled by
a microcontroller. To fit into a compact form factor on

22 mm
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Figure 4: Design a portable wireless sensing device in SignQuery: (a)
Microprocessor with BLE (b) Battery (c) IMU finger module (d) IMU sensor

the wrist, we self-develop the microcontroller (Fig. 4a)
based on MDBT42Q-512KV2 [78], which uses nRF52832
System-on-Chip (SoC) [71] with BLE, 64 MHz ARM Cor-
tex M4F CPU, 512kB flash memory, and 64kB RAM.

PCB Design: We design finger IMU sensors in the
shape of a ring using FPCB with electronics that can
bend. A 2-layer PCB design is used for the wrist sensor to
embed electronics on both sides of the PCB and minimize
sizes. Autodesk EAGLE [4] was used for PCB design.

Communication: The microcontroller communicates
with the finger sensors using Serial Peripheral Interface
(SPI) [80] to assemble IMU data, which is streamed over
BLE to a smartphone at a sampling rate of 100 Hz.

Battery: We use a 3.7V, 500mAh LiPo battery (Fig. 4b)
housed within the wrist module. Overall power consump-
tion is about 32mA for continuous streaming of sensor
data, thus offering a battery life of about 16 hours.

Packaging and Weight: For the finger ring module
as shown in Fig. 4c, we used Fused Deposition Model-
ing (FDM) technology [5] to build 3D printed housing
with the TPU (Thermoplastic Polyurethanes) material
for elasticity, flexibility, and comfort. We create several
different sizes of rings to accommodate different users.
The wrist module which integrates the microcontroller
is enclosed by a PLA (Polylactic Acid) plastic casing for
sturdiness and rigidity. Overall, the size of breakout for
finger rings module and wrist module are 10 mm x 5.8
mm X 0.05 mm (W x L x H) and 22 mm x 30 mm X
1.6 mm respectively. The total weight of the device is
21.2g. The average weight of each finger sensor ring
is 0.3g. The total weight of the wrist sensor module is
19.7g, including the PLA housing (6.7g), microcontroller
PCB (3.3g) and the LiPo battery (9.7g). The form factor
of the finger modules is comparable to a ring whereas
the form factor of the wrist module is comparable to a
smartwatch.

Software Framework: The software is implemented
on the NRF52832 microcontroller using C++ and ap-
propriate libraries for IMU, BLE streaming, and sensor
addressing via SPI protocol [45, 84]. The microcontroller
reads data from six IMUs over SPI and then streams the
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Figure 5: User experience survey on SignQuery compared with two
alternative sensing devices.

data to a mobile device over BLE with a sampling rate
of 100 Hz and a low-latency of 11.1 ms.

Usability Study for the Sensor Device: We conducted
a usability survey to evaluate the user experience of the
SignQuery sensor device in comparison to two other
finger motion tracking devices: CyberGlove [26] and
EMG [9]. Participants wore each device for three hours
during regular daily activities, such as working on lap-
tops or eating. Afterwards, they rated each device in
terms of ease of use, comfort, and appearance on a scale
from O to 10. The results, shown in Fig.5, indicate that
CyberGlove was less favorable due to its weight, which
restricted dexterity. The Myo offered better comfort but
required tedious calibration and skin warming during
each wear. Though single-ring sensors, like[2, 102], are
another possible comparison, they don’t track all fingers,
hence were excluded from our study. The current Sign-
Query version stands out for its usability during daily
activities. Looking ahead, as discussed in §6, we aim to
harness large language models to grasp the ASL’s finger-
based semantic nuances, hoping to refine the SignQuery
design into a more compact, ring-like form for greater
accessibility.

4 SIGN LANGUAGE QUERY

In this section, we define retrieval tasks formally, and
describe the key signal processing and deep learning
modules in the underlying SignQuery.

4.1 Cross Model Retrieval Formulation

Given a query q, the objective of SignQuery is to find the
best match p from a target set P (e.g., ASL videos, or
English text). To realize this, we aim to encode a query
g and its corresponding target p into a joint embedding
space Q such that the similarity of f5(g) € Q and fp(p) €
Q is maximized if and only if the target p is the best
match for the query q. Specifically, we define two main
tasks based on the types of queries and targets.

m IMU-to-Video (12V): SignQuery encodes IMU query
signing (captured by smart rings which are worn on
users’ fingers, see §3.3) to find the best matching video
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from the joint embedding space. Formally, we have

v= argrzlvax sim(f7(i), fv (v)), €y

where V denotes a set of sign videos, sim(i,0) = i-v
denotes the dot product of two embeddings as both are
unit-normalized, i and v denote IMU and video respec-
tively, and fj(-) and fi/(-) denote the encoding functions
for IMUs and videos respectively.

m Text-to-Video (T2V) : SignQuery also supports Text-to-
Video queries for Deaf users who are bilingual with ASL
and English. Similarly, we define the task as follows.

v = argnqq/ax sim( fr (), v (v)), 2)

where t and v denote text and video respectively, and
fr(-) and fi/(-) denote the encoding functions for text
and videos respectively.

Although not our main goal, as a byproduct of the
above formulation with the joint embedding space, Sign-
Query can also perform secondary tasks such as Video-
to-IMU (V2D and Video-to-Text (V2T) where we retrieve
IMU and text matchings in response to a video query.
Moreover, IMU-to-Text (12T) and Text-to-IMU (T2I) where
we retrieve text (or IMU) matchings in response to an
IMU (or text) query, are supported for completeness.

4.2 Learning Network of SignQuery

An ASL user submits queries to search engines using
wearable IMU data. In response to the query, ASL videos
(or text) from a large online database are searched to ob-
tain relevant videos (or text) corresponding to the query.
To facilitate matching between IMU query, video, and
text data which are inherently in different modalities,
we encode them into a joint representation space to pro-
mote accurate searching and matching. As illustrated in
Fig. 6 and described in §3.2, SignQuery extracts virtual
IMU data from sign videos. Later, sign videos, the cor-
responding IMU, and text are encoded into a common
representation space that allows matching IMU queries
with relevant videos or text. Next, we elaborate on how
we encode different modalities.

4.2.1 Video Encoding Branch fy.

Video Simplification: To encode a video, one naive
idea is to directly apply a video encoder (e.g., 13D [22],
Video Transformer [14]). However, these models are tai-
lored for tasks such as video understanding, and video
classification. Directly using those weights may result
in discrepancy because a sign video mainly contains a
user signing in the air, which is semantically simple,
while videos (e.g., a man riding a bike in a park, a dog
chasing a cat on the grass) are semantically richer. Also,
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Figure 6: SignQuery Overview. In training, Video, IMU, and Text are embedded into a joint embedding space such that the similarity of the same contents
from different modalities is maximized. In inference, we freeze the IMU encoding network and rank all available sign videos in the database given the input
IMU query. We then recommend the highest-ranking videos. Note that we show the 12V task due to space limitation, we provide other retrieval results in §5.

the salient information (e.g., hand motions) can be eas-
ily ignored since sign videos contain much redundancy
and insignificant information (e.g., background and ap-
pearance of signers) [24], leaving training from scratch
challenging. Moreover, while the IMU signing data in
SignQuery is captured by smart rings worn on fingers
(§3.2), sign videos contain information not only from
hands, but also from the signer’s head movement, body
movement, and facial expressions. As shown in Fig. 7,
when two different users sign for the same sentence,
their poses and facial expressions are different, while
hand motions are quite similar. Therefore, we propose
the Video Simplification technique that reduces the infor-
mation discrepancy between video and IMU. Specifically,

"Do you want to make chocolate chip cookies?"
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Figure 7: (a) Users are signing for the same sentence, and their upper
body poses and facial expressions are different. (b) Hand motions captured
by IMU sensors are similar.
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each video will be preprocessed by an off-the-shelf hand
keypoint extractor (Google MediaPipe [96]), then we
transform the locations of fingers with respect to wrists
according to §3.2. To match the information from smart
rings (which are worn on the bottom of fingers), we fur-
ther keep locations from the bottom joints of all fingers.

Video Encoding Network ¥,: As shown in Fig. 6, the
proposed video encoding network ¥, builds upon the
success of ResNet [41], and we replace all 2D operations
with 1D operations (e.g., convolutions, normalization).
In detail, the location data v € R*™*" (¢ denotes time
and n = 2 X 5 x 3 denoting the location data from two
hands, each with five joints, and each joint with three
axes) is normalized by a GroupNorm operation [93] in-
dependently along with feature dimension, then goes
through a series of blocks of 1D-Conv with skip connec-
tions, pooling, and activation functions in between, and
a GRU [29] is connected at the end to learn temporal
information. Finally, a mean pooling operation is used
to generate an embedding ¥, (v) € RY.

4.2.2  IMU Encoding Branch fi.

Virtual IMU Generation: Note that there is no large-
scale public training data currently available for wear-
able sensors with ASL, resulting in the impossibility of
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training a joint embedding space for cross-model re-
trieval. Toward this end, SignQuery synthesizes IMU
training data from a sign video dataset (How2Sign [32],
more details in §5.2) and that is sufficient to train a joint
embedding space. As shown in Fig. 6, after the location
is obtained from the same hand keypoint extractor, the
data is then double-differentiated with a finite time win-
dow. The virtual IMU is thus generated. More details can
be found in §3.2, ZeroNet [64], and IMUTube [55] as we
adopt techniques from these papers to generate virtual
IMU data as well as handling domain shift between real
and virtual IMU data. Finally, as also depicted in the
figure, during the inference stage, the real IMU data can
be used for making inferences with the model trained
and domain adapted with virtual IMU data.

IMU Encoding Network ¥;: Similar to Video Encoding
Network ¥,, we propose to use a similar architecture
for IMU encoder ¥;. The input vector dimension is n =
2 X 10 x 3 denoting the IMU data from two hands, each
hand with five sensor rings, and each ring with three
axes of acceleration and orientation data. The output of
the IMU Encoding Network is ¥;(i) € R?.

4.2.3 Joint Space Learning and Loss Function. Inspired by
the marginal ranking loss, the Max of Hinge (MH) loss
penalizes the model according to the negatives closest
to each training query [35]. Formally, given a pair of
(i,v), the hardest negatives for IMU and video are given
by i = argmax;,,; sim(j,0) and o = argmax;,, sim(i, j)

respectively. Thus, the MH loss is defined as
Ly = max,u [a + sim(i, o) — sim(i, v) ],
+max;n [a + sim (i, 0) — sim(i,0)],

(3

where [x], = max(0, x) and « denotes the margin. From
Eq. 3, one can see that the margin is fixed along the
training process. However, we empirically found that a
varying margin leads to better performance. Thus, we
define a Restricted Max of Hinge (RMH) loss as follows.

Lryy = maxu [a(t) + sim(i, o) — sim(i, 0) ],
+max;u [a(t) + sim(i¥, v) — sim(i,0)],

a(t) Z: 8.05 1:2 “)

where t denotes training epochs. We found this trick
helpful because, during the first few epochs, the learned
embeddings are not stable, thus leading to inaccurate
o or ifl. Therefore, we restrict the hardest negative
selection, then release the restriction when models are
more stable. We empirically validated the design in §5.

4.2.4 Text Encoding Branch fr. Although Deaf users pri-
marily use sign language, SignQuery still provides text
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Table 1: Dataset Property Comparisons between How2Sign
(train/evaluation set) and Our User Study (testing set). Note that
the signers from these two datasets have no overlapping. Note that our
study is across months and the training and testing data were collected
years apart.

How2Sign [32]  SignQuery (Ours)

Properties

(Train/Evaluation) (Test)
Language ASL ASL
Duration (h) 79 24
No. of Signers 11 12
No. of Sentences 24109 / 3178 2571
Modality Video, Text Video, Text, IMU

queries for users who are bilingual with both sign lan-
guage (ASL) and spoken language (English). To encode
a text query into the joint embedding space of IMU
and video, we adopt similar processing steps in [31] for
the text encoder fr which consists of three components:
(i) pre-trained word embeddings to encode individual
words; (ii) the NetVIAD [13] to learn relation among
word embeddings; (iii) and a simple fully-connected
layer to get a fixed-length vector fr(t) € R?. Note that
since minimizing the loss function (Eq. 4) for all three
modalities at the same time is not applicable, we take ad-
vantage of CLIP [76] training scheme: a joint embedding
space for IMU and video is first trained using the pro-
posed loss, then we embed text into the same joint space
with a frozen IMU encoding network, supervised by the
loss in Eq. 4. In the end, SignQuery supports query inputs
in form of signs (IMU) or text per users’ preference.

5 EVALUATION

5.1 Implementation

SignQuery is implemented on a combination of desktop
and smartphone devices. Our deep learning models are
implemented with Pytorch [75] library and the train-
ing is performed on a desktop with Intel i7-8700K CPU,
16GB RAM memory, and an NVIDIA Quadro RTX 8000
GPU. We set the dimension of embeddings, d, to 768,
and the number of convolution layers, N, to 4. We use
the Adam optimizer [53] with a batch size of 128 and
a learning rate of 3e-4. To avoid overfitting issues that
may happen in the training process, we apply the L2 reg-
ularization [17] with a parameter of 0.02 and also add
dropouts [89] with a parameter of 0.4. Note that we opt
for the parameters based on simple grid search methods.
Once a model is generated from training, the inference is
done on a smartphone device using Pytorch Mobile [34]
on Samsung S20 and OnePlus 9 Pro smartphones.
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5.2 Datasets, and Evaluation Protocols

Dataset for Training. In SignQuery, we derive from a
recently published ASL dataset How2Sign [32], a mul-
timodal dataset with videos and corresponding trans-
lations in English. How2Sign consists of 79 hours of
continuous instructional videos in ASL, which cover a
wide variety of topics such as sports, entertainment, per-
sonal care, education, home and garden. We use videos
and translations for training and evaluating our deep
learning model. The training and evaluation sets consist
of 24109 and 3178 data points respectively, and overall,
the vocabulary size is 15,896. To extract hand keypoints,
we use Google MediaPipe [96] that estimates keypoints
based on hand anatomical constraints. We believe it is
sufficient to represent signs, thus making training a reli-
able joint embedding space possible.

Dataset for Testing. To validate SignQuery, we con-
duct a study with 12 Deaf users with native ASL fluency
(6 females, 6 males). The study has been approved by
the IRB committee. The users are aged between 20-50
and weigh between 45-96kgs. During the study, sign
videos are played and users are required to understand
and re-sign the same content while wearing the sensor
device on both hands with the sensor snugly fit on the
fingers as shown in Fig. 4. Each user takes 3 breaks with
removing and remounting the sensor device in between
and the total study time per user is two hours. We sum-
marize training (and evaluation), and testing datasets in
Table 1.

Metrics of Evaluation. To evaluate retrieval perfor-
mance, we follow the protocols used in the existing
retrieval literature [31, 60, 66] and report standard met-
rics recall@K (recall at rank K, R@XK, higher is better)
and Median Rank (MedR, lower is better). For example,
recall@10 being 30 indicates that 30% of the top 10
recommendations by SignQuery in response to the user’s
query are relevant.

Tasks of Evaluation. Although we have six tasks with
IMU, video, and text modalities, since the objective is to
verify the viability of using signs as queries directly, we
mainly evaluate SignQuery using IMU and video, namely
the retrieval task of IMU-to-Video (12V) by default. We
show other tasks briefly for completeness.

5.3 Performance Evaluation

To assess the performance of SignQuery, we conduct
the following analysis: m We first evaluate the retrieval
performance on the How2Sign database, which validates
our idea of providing a natural way for Deaf users to
search online. m We then conduct robustness studies to
characterize the performance of SignQuery under various

Table 2: SignQuery performance of all tasks on How2Sign. Note that eval
denotes the evaluation set from How2Sign, while test denotes all data in
the test set from our user study (§5.2). L, V, and T denote IMU, Video, and
Text respectively. For example, 12V denotes the IMU-to-Video task where we
retrieve relevant video matchings in response to an IMU query.

R@11 R@57 R@107 MedR|
eval test eval test eval test eval test

Tasks

I2v. 321 281 604 52.7 70.5 643 3.5 5.5
2T 334 31.6 63.6 558 78.6 675 3.0 43
T2v. 315 280 71.5 534 787 608 3.0 5.0
v2l 338 29.7 659 573 76.7 69.6 3.0 4.0
T21 33.6 29.2 742 57.2 84.6 67.7 2.0 4.0
V2T 34.6 289 751 525 781 641 3.0 5.5

situations such as dialect, race, gender, signing speed,
ages. m We also perform an ablation study to validate the
design choice in SignQuery. m We compare SignQuery
with the state-of-the-art method on the same retrieval
tasks. m We also provide qualitative results from different
tasks to show the retrieval performance of SignQuery. m
Finally, we evaluate power consumption and latency of
SignQuery on smartphones.

5.3.1 Retrieval Results on How2Sign.

Table 2 describes the overall performance of Sign-
Query on all six tasks that we defined in §4 with the
How2Sign dataset. Evidently, SignQuery returns good
retrieval results on both evaluation and test sets, which
suggests that the quality of virtual IMU generation is
sufficient to compare with real IMU data, despite the
minute difference between them. Furthermore, the per-
formances of 12V and T2V are close (e.g., 28.1 vs 28.0
for recall@1, and 64.3 vs 60.8 for recall@10), indicating
directly using signs as queries is a viable and better so-
lution for Deaf users considering that the sign language
is the native language and therefore, they may express
their ideas naturally. Moreover, Fig. 8a depicts the over-
all rank distributions on three tasks. Clearly, the retrieval
performance of these tasks is comparable. Interestingly,
one can see that 80% of documents related to the queries
are found before rank 20, suggesting that SignQuery can
retrieve the most relevant items within the first 20 re-
sults for all queries. We believe this is sufficient because
normally people would at most check the first 15-20
results before they update their queries. These results
are comparable with state-of-the-art recommendation
systems for Amazon, Netflix, and Yelp dataset [23, 58],
suggesting the usability of SignQuery in the real world.

5.3.2  Robustness Study.

Generalization to New Users. Fig. 8b depicts the
variation in retrieval performance of 12V across users.
Our inspection of the variations indicates that some users
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have variations or dialects. We observed different sign
patterns for some users, which we believe is the main
source of the variations. Nevertheless, for recall@1, user
2 has the worst performance, which is 22.1% off from the
average performance and the accuracy is pretty stable
across users. Note that we only use synthetic training
data and yet the accuracy is consistent across completely
new and real test users. Therefore, we believe SignQuery
provides a stable retrieval performance on various users
with diversity in gender, body masses, sizes, etc.
Robustness to Races and Genders. Fig. 8c describes
the retrieval performance of SignQuery on different races
and genders. Overall, we believe SignQuery provides sta-
ble performance over different races and genders. Asian
Americans perform slightly worse. We believe this is
probably because the How2Sign dataset has very few
Asian Americans which just represents the generic sam-
ple of the population in the USA. Nevertheless, the ab-
solute numbers are reasonable for a recommendation
and query system, indicating the ability of SignQuery to
adapt to unseen races. SignQuery can also perform stable
across genders. In a nutshell, we believe SignQuery has
the ability to generalize to both races and genders.
Robustness to Speed. To validate the impact of sign-
ing speeds, Based on text lengths and the corresponding
video lengths of the collected data, we roughly cate-
gorize all users into three groups, i.e., slow (0.41 sen-
tences/second or 86.1 words/minute), normal (0.57 sen-
tences/second or 119.7 words/minute), and fast (0.68
sentences/second or 142.8 words/minute). . Evidently,
as shown in Fig. 9a, SignQuery can adapt to different
signing speeds. We believe this is due to the model archi-
tecture where multiple 1D convolution blocks are used

Recalls, higher is better

80

[EDRecall@ 1@lRecall @5[JRecall@1q

m
&

[(IRecall@ 1EmRecall @5JRecall@1q

2
3

S
&
\
N G & o o w ®
Median Rank, lower is better
Recalls, higher is better
D S 2
3 3 3
o o ~N @
Median Rank, lower is better

—
—
—

25, 35] (35, 45]
Age groups

(o)

>45

[CBEETIS

0
Session 1

Session2  Session3  Session 4

(@

Figure 9: SignQuery provides a stable retrieval performance over (a) signing speeds (b) sentence lengths (c) age groups (d) sensor positions and orientations.

and connected by skip connections similar to ResNet [41]
as features at different levels are then integrated to-
gether to account for the information calculated from
different speeds.

Robustness to Various Sentences Lengths. Fig. 9b
shows the variation as a function of the length of the
sentence. SignQuery is also adapted to different sentence
lengths and the retrieval performance does not degrade
with the increasing sentence lengths. This is because our
training data consists of different lengths of sentences.
Therefore, SignQuery can easily adapt to various lengths.

Robustness to Age Groups. Due to the language
evolving, users of different ages may use signs differ-
ently (e.g., some users may do a sign twice to emphasize,
while others may not). To validate SignQuery is robust
to such variations, we split users into four age groups
as shown in Fig. 9c. Evidently, SignQuery is able to deal
with a wide span of ages. We believe this is because in
addition to diverse training data, the sequence learning
module employed in SignQuery, even if some signs are
emphasized/missing, based on the context, SignQuery
can infer the meaning of signs.

Robustness to Sensor Position and Orientation.
Fig. 9d depicts the variation in accuracy across sessions.
Note that during user study, we remove and remount the
sensor devices when users have breaks. Hence, we can
validate any effects of changes in sensor position or ori-
entation with respect to the human body. Evidently, the
retrieval performance is stable across four sessions. This
is because the sensor devices fit snugly to both hands,
and any minor variation in positions/orientation across
breaks is typically much smaller than the hardware noise
floor, thus having a negligible impact on the accuracy.
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Table 3: SignQuery can adapt to different surroundings and potential
magnetic interference.

Locations  Surroundings R@17 R@57 R@107
Conf. Room projectors 25.8 46.3 52.7
Studio lights,cameras 27.5  49.3 58.7
Hall empty 28.0 534 60.8

Robustness to Magnetic Inferences. Since our user
study was conducted at three different places and each
place has different surroundings (e.g., tables, chairs,
lights, projectors, and cameras), potentially resulting in
magnetic inferences, we summarize the retrieval perfor-
mance when data was collected at these places in Table 3.
Evidently, SignQuery is not affected by the surroundings
thanks to the opportunistic error compensation strate-
gies from A3 [103], making SignQuery ubiquitous.

5.3.3 Ablation Study.

In this ablation study, we focus on the main designs
of SignQuery, i.e., video simplification, Lrypy, and se-
quence modeling. For other design choices (e.g., tempo-
ral aggregation methods), we only provide the design
consideration as follows. While more sophisticated pool-
ing (compared to mean pooling) methods can be applied,
SignQuery is opt for simple and efficient methods which
have been validated in other retrieval work [30, 66].

Effectiveness of Video Simplification. We conduct an
ablation study for video simplification with the tasks of
12V and T2V as shown in Table 4. For the model with-
out video simplification, we extract features directly
from videos using pretrained I3D [22] weights, then the
rest part is the same as SignQuery (i.e., sequence learn-
ing with GRU, and Lgypg). Unsurprisingly, we observe
21.6%, 21.4%, and 22.0% improvement for recall@1,
recall@5, and recall@10 respectively, when compared
with the full version of SignQuery. This is because of
the following reason: information from sign videos is
redundant and even irrelevant (e.g., backgrounds, ap-
pearances of signers). Therefore, the embeddings with
such noisy information are inaccurate in common rep-
resentation space. In contrast, SignQuery employs the
video simplification technique that makes the model
learn from the most direct information sources. Despite
sign language being complex, hand motions are always
the first cues to check to fully understand the meaning.

Effectiveness of Lzyy. Compared to the Max of Hinge
loss that penalizes the model according to the most neg-
ative samples for each query), we conducted an ablation
study for the Restricted Max of Hinge loss we proposed
to mitigate the effect of unstable embeddings at the be-
ginning of training time. As shown in Table 4, Lryu
brings improvements on all three tasks. As stated in §4,

Table 4: Study the effectiveness of Video Simplification and Lryy (§4).

I2v
Settings R@1T R@57 R@107T MedR]
w/o Video Simpli. 23.1 43.4 52.7 10.7
W/0 LryH 254 504 62.5 6.0
SignQuery 28.1 52.7 64.3 5.5
12T
Settings R@17 R@57T R@10T MedR|
W/0 Lrmu 31.1 529 62.0 5.0
SignQuery 31.6 558 67.5 4.3
T2V
Settings R@17T R@57 R@107T MedR]
w/o Video Simpli. 25.8  46.3 52.7 6.5
W/0 Lrmu 27.5 493 58.7 6.0
SignQuery 28.0 534 60.8 5.0

Table 5: The impact of sequence modeling on performance.

Sequence Modeling R@17 R@57 R@107 MedR]|

No Modeling 124 311 44.7 13.5
LSTM [42] 27.4  53.5 63.1 6.0
bi-GRU 28.2 533 65.2 5.0
GRU [29] 28.1 527 64.3 5.5

the learning process typically is not stable, leading to
inaccurate embeddings for finding the most negative
samples in the Max of Hinge Loss. Therefore, instead of
finding the hardest negatives with some margins, we set
the margin to zero to restrict the selection and after a
few epochs, we release the restriction by setting margins
back. We found this trick helpful to stabilize the train-
ing process, thus improving the retrieval performance
(e.g., 10.6%, 4.6%, and 2.9% improvement for recall@1,
recall@5, and recall@10 respectively).

Impact of Sequence Modeling Methods. To assess
the quality of the sequence learning module in Sign-
Query, we compare the design choice GRU [29] with
other alternatives such as No Modeling (i.e., the sequence
of features is aggregated by mean pooling directly),
LSTM [42], and bi-directional GRU. We report the per-
formance of 12V in Table 5. Evidently, sequence modeling
brings a great improvement compared to the No Mod-
eling. However, we only observe marginal differences
in the other methods, thus we chose GRU by consid-
ering the tradeoff between performance and sizes of
the parameters. We plan to use sophisticated sequence
modeling (e.g., Transformers [88]) in future research.

5.3.4 Comparing with the State-Of-The-Art.

To show the effectiveness of SignQuery, we compare
it with a vision-based method SPOT-ALIGN [31] which
is the first work to propose the T2V retrieval task in a
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Table 6: Comparison with SPOT-ALIGN [31]. Note that since there is no
public code for SPOT-ALIGN, we re-implement the idea based on the descrip-
tion of the paper. We present the improvement in red and the decrement in
blue. We also present the performances reported in SPOT-ALIGN in "()" with
gray color. Evidently, SignQuery outperforms SPOT-ALIGN for most of the
metrics.

Metrics SPOT-ALIGN [31] SignQuery diff (%)

R@17 22.4 (32.8) 28.0 +25.0(-14.6)
T2V R@57 46.3 47.7) 53.4 +15.3(+11.9)
R@107 63.2 (52.9) 60.8 -3.8(+14.9)
MedR| 6.0 7.0) 5.0 +16.7(+28.5)
R@17 23.1 (23.3) 28.9 +25.1(+24.0)
vor R@57T 47.4 (48.5) 52.5 +10.8(+8.2)
R@107 53.7 53.7) 64.1 +19.4(+19.9)
MedR| 7.0 7.0) 5.5 +21.4(+21.9)

Figure 10: Qualitative results on IMU-to-Video and IMU-to-Text . For

each query, we show the query in form of IMU signals from the left and
right hand (only index finger due to space limitation) and text (on the
bottom of the IMU signal, and the text is not seen during training, only for

visualization). For IMU-to-Video , we show frames from the top 3 ranked
video as well as their corresponding text (text and videos that are found
at ground truth ranks are not used during retrieval, only for visualization

purposes). For IMU-to-Text , we show the top 3 ranked text. Evidently,
retrieved items are relevant to the queries.

sign video database. As it only has video and text, we,
therefore, compare the retrieval performance of Sign-
Query on T2V and V2T tasks. As depicted in Table 6, Sign-
Query outperforms SPOT-ALIGN on most of the metrics.
For T2V and V2T, we observe ~25% improvement on
recall@1 because SignQuery simplifies sign videos by

H. Zhou, T. Lu, K. McKinnie, J. Palagano, K. DeHaan, M. Gowda

Table 7: Justification of joint embedding space with the task of I2V.
translation-based denotes both queries and targets need to be converted
to text before matching, while SignQuery performs direct match in a joint
embedding space.

Method R@1T R@57 R@107 MedR]
translation-based 16.2  32.5 47.3 17
SignQuery 28.1 52.7 64.3 5.5

focusing on important information. We believe the per-
formance of SignQuery is promising because it provides
a natural, ubiquitous, and privacy-preserving solution
while being agnostic to lighting, background, and other
ambient conditions.

5.3.5 Justification for the proposal of joint embedding space.
It’s crucial for SignQuery to facilitate native sign lan-
guage queries, upholding equitable access principles [19].
While some Deaf users might opt for translation-based
methods [20, 21], these demand converting signs and
sign videos into text, often leading to data loss. Un-
like these systems, SignQuery utilizes a joint embedding
space where signs and sign videos converge in a shared
space. This ensures direct and accurate searches based
on similarity (i.e., relevant documents with the same or
similar contextual meanings will be closer in the shared
representation space). To justify SignQuery, we compare
with translation-based search as shown in Table 7. Evi-
dently, SignQuery with direct search returns documents
that are more relevant than that of the method of trans-
lation, justifying our choice of joint embedding space.

5.3.6 Qualitative Results.

Fig. 10 depicts retrieval results qualitatively. Since
our main objectives are using IMU queries directly, we
present the query results for 12V and I2T. Evidently, Sign-
Query accurately retrieves the corresponding target given
queries. Even when the queries are vague, SignQuery
can return the items that look relevant to the query due
to the joint embedding space for IMU, video, and text.
Overall, we believe these results are encouraging in the
context of applications in query systems for Deaf users.

5.3.7 Power Consumption and Latency.

The power consumption of the sensor device itself
was discussed in §3. Here, we analyze the power con-
sumption of the deep learning model of SignQuery when
implemented on smartphones using Batterystats and
Battery Historian [12] tools. Since users’ signing can
be short or long, we analyze the power consumption
based on sentence lengths. As depicted in Fig. 11, contin-
uous processing discharges at the rate of ~12% on both
phone models. And the average latency of execution of
the deep learning model for different lengths on Sam-
sung S20 and Oneplus 9 Pro are 30.0 ms and 41.1 ms
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Figure 11: Power consumption and latency analysis on different models
with different sentence lengths.

respectively, suggesting the real-time processing ability
of SignQuery. Furthermore, when only the screen is on,
the discharge rate is only 2.1% and 1.9% for Samsung
S20 and Oneplus 9 Pro respectively.

6 DISCUSSION

Applications Leveraging Large Language Models. Large
Language Models (LLMs) like ChatGPT have revolution-
ized natural language processing. While SignQuery cur-
rently retrieves documents using signed queries, its in-
tegration with LLMs can open up more applications.
Current sign-to-text translation systems have limited do-
mains, leading to accuracy issues. However, using Sign-
Query with diverse training can serve as a starting point
for improved translations, especially when combined
with the analytical prowess of LLMs. Additionally, the
data from SignQuery can aid in creating sign language
animations, beneficial for both the Deaf community and
learners of sign language. In essence, combining Sign-
Query with LLMs offers vast potential.

Decreasing Form Factor. As stated in §3.3, the sensor
device of SignQuery was selected out of many candidates
(e.g., Armbands, gloves) based on the requirements of
being unobtrusive, portable, and low-power for com-
fortable wearing. To further improve the accessibility
of SignQuery, we plan to learn the structure of seman-
tic meaning of ASL between fingers, inspired by how
BERT [28] explored semantic meaning between words.
We also plan to leverage LLMs such as ChatGPT to refine
the accuracy of premature translation of sign languages.
We believe this opens up opportunities to further de-
crease the size of the sensing device by only using a
few sensors or even a pair of rings and watches, thus
increasing the accessibility of SignQuery.

Employing Advanced Algorithms to Make Sign-
Query Efficient. SignQuery incorporated simple but ef-
fective deep learning algorithms, such as ResNet [41]
and Gated Recurrent Unit [29]. Future research aims
to implement more advanced algorithms that possess
powerful feature learning and sequence modeling ca-
pabilities, to further enhance the system’s performance.

While advanced algorithms like Transformers [88] typi-
cally offer good performance, their deployment cost on
mobile devices could be high due to the large number
of parameters (in the millions, or more) required. To ad-
dress this challenge, SignQuery intends to utilize model
compression techniques [27, 39] to achieve a balance
between performance and energy consumption. Addi-
tionally, SignQuery plans to optimize its current search
strategy, which involves a matrix multiplication of the
query with all existing target embeddings, to identify
relevant items based on calculated similarities. This strat-
egy can be enhanced by incorporating advanced approx-
imation algorithms (e.g., approximated nearest neigh-
bor [49, 69]) to improve search speed, thus making
SignQuery more efficient.

7 CONCLUSION

SignQuery realized a search engine that supports sign
language queries in native form, which is essential to
provide the Deaf community equitable access to highly
relevant information for applications like recommenda-
tions, learning, advertisements, healthcare, and enter-
tainment. SignQuery proposed a deep learning algorithm
to transform wearable sensor data, video, and text into
a joint embedding space for measuring similarity and
ranking the items in the database when the modality of
querying (wearable sensor data) is different from the
modality of targets (videos, text). To reduce the train-
ing overhead, SignQuery leveraged the idea of synthetic
training and derived virtual training data from sign lan-
guage videos in ASL on diverse topics. Evaluated by a
comprehensive user study with native Deaf users, Sign-
Query achieved the recall@10 of 64.3%, namely, among
the top ten search results, six of them are relevant to the
search query. Moreover, SignQuery was robust to users
with diversity in dialects, ages, weight, signing speed,
etc. While the performance is encouraging, we believe
this opens ample opportunities for future research in
several areas, especially in the area of ASL query using
wearable sensors.
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