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Both the Cambrian explosion, more than half a billion years ago, and its Ordo-
vician aftermath some 35 Myr later, are often framed as episodes of
widespread ecological opportunity, but not all clades originating during
this interval showed prolific rises in morphological or functional disparity.
In a direct analysis of functional disparity, instead of the more commonly
used proxy of morphological disparity, we find that ecological functions of
Class Bivalvia arose concordantly with and even lagged behind taxonomic
diversification, rather than the early-burst pattern expected for clades orig-
inating in supposedly open ecological landscapes. Unlike several other
clades originating in the Cambrian explosion, the bivalves’ belated acqui-
sition of key anatomical novelties imposed a macroevolutionary lag, and
even when those novelties evolved in the Early Ordovician, functional dis-
parity never surpassed taxonomic diversity. Beyond this early period of
animal evolution, the founding and subsequent diversification of new
major clades and their functions might be expected to follow the pattern of
the early bivalves—one where interactions between highly dynamic environ-
mental and biotic landscapes and evolutionary contingencies need not
promote prolific functional innovation.
1. Introduction
Biological diversification has many modes, ranging from early bursts to slow
accumulations [1–3]. Much work identifying these evolutionary modes uses
temporal or phylogenetic patterns in a single macroevolutionary currency,
such as taxonomic diversity, ecological functions or morphological disparity,
but a richer understanding derives from multi-dimensional analyses [4,5]. For
example, ‘non-adaptive radiations’ [6] produce many taxa with relatively
little ecological and morphological differentiation (e.g. woodland salamanders),
whereas the Cambrian explosion of metazoan life famously produced an early
burst of morphological disparity and ecological function with relatively low
taxonomic diversity [7]. Major taxonomic classes or orders established during
the Cambrian might also be expected to exhibit rapid ecological expansion;
however, most studies of these clades have quantified morphology as a proxy
for ecological functional groups [2,3,8,9], potentially confounding these two
biodiversity dimensions [10]. In fact, echinoderms showed an early burst in
morphology but not in function [11]. Further, early bursts in form or function
are generally gauged by timing, without directly testing whether the rise in
functional diversity, or disparity, exceeds the null expectation given the pace
of taxonomic diversification [1,3]. Whether functional disparity preceded, was
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Figure 1. Taxonomic diversification outpaces functional disparification of Bivalvia from its origin in the mid-Cambrian to the end of the Ordovician. (a) Arithme-
tically, genus diversity accumulates to a greater degree than functional disparity starting in the Early Ordovician. (b) The same as (a) but with functional disparity
scaled to the range of logged genus richness. (c) Diversity-disparity analysis of genus richness (logged) and functional disparity.
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concordant with, or lagged behind the Ordovician rise in
taxonomic diversity, can be tested directly in Class Bivalvia
primarily using specific shell traits in their phylogenetic
context to infer function.

Unlike trilobites [12] and several echinoderm classes [13],
bivalve taxonomic diversity apparently remained low through
the Cambrian, producing at most four genera across the first
36 Myr of the Class’s evolutionary history [14,15] (electronic
supplementary material, figure S1). Bivalves did participate in
the ensuing Great Ordovician Biodiversification Event, estab-
lishing all six of their major clades [16,17] and generating 176
genera among 50 families (electronic supplementary material,
figure S1), before suffering significant losses in the end-Ordovi-
cian mass extinction that we treat here as the end of this initial
phase of the group’s evolution. Bivalve functional disparity also
appears to have remained low throughout the Cambrian and
rose significantly by the end of the Ordovician [14,18–20].
Here we test whether Bivalvia, which originated during the
Cambrian explosion to become one of the most biodiverse
animal groups through the Phanerozoic, exhibited an early
burst of ecological function over the first 80 Myr of their
evolutionary history.
2. Material and methods
Genus-level stratigraphic ranges were used to quantify taxonomic
diversity across 22 operational time bins generally corresponding
to stratigraphic stages, from the mid-Cambrian to the end of the
Ordovician (primarily compiled from [16] and an extensive
update to [21]; details in the electronic supplementary material,
text S1.1, dataset S1). To quantify functional disparity, we assigned
each bivalve genus to a functional groupdefined on four attributes:
feeding, position in the substratum, attachment and mobility
(Table S2, as in [22]; electronic supplementary material, dataset
S1). This framework captures approximate ecological equivalen-
cies among distantly related taxa and can thus detect stability,
shifts and expansions in ecological attributes at macroevolutionary
scales [22].

We test an early burst in ecological function against other evol-
utionary patterns using a diversity-disparity analysis [23], where
the accumulation of functional disparity (number of functional
groups) is compared to log-transformed diversity (number of
genera); genus richness is log-transformed because unimpeded
taxonomic diversification is most often an exponential process,
whereas a stochastic increase in disparity tends to be linear
[23,24]. Both diversity and disparity are range-standardized,
respectively, so that each point in time is scaled to the minimum
and maximum number of functional groups or genera attained
during the study interval. An early-burst dynamic would involve
a greater accumulation of functional groups relative to genus rich-
ness. Although the origin of each functional groupmust be tied to a
genus, the trajectory of bivalve diversification could, theoretically,
enter the upper left region of the diversity-disparity space during
the initial phase of diversification, i.e. exhibit an early burst, if func-
tional groups appear in rapid succession through the first part of
the group’s history (‘burst of function’ field in figure 1c). Further,
the uneven distribution of bivalve genera among functional
groups both today and in the geological past [22,25] and the
uneven scatter of bivalve functional groups in morphospace [26]
means that functional richness cannot proxy for morphological
disparity, or vice versa. Thus, this diversity-disparity analysis is
not a mere rescaling of the more common morphology-taxonomy
comparisons but instead provides a new, complementary perspec-
tive. Uncertainty in diversity-disparity analyses, and thus in the
inferred evolutionary dynamic, was assessed through sensitivity
analyses assuming different sampling and diversification trends
during the study interval (electronic supplementary material,
text S2; described in context with the results below).
3. Results
(a) No early burst
Early bivalve evolution did not exhibit an early burst of ecologi-
cal function relative to taxonomic diversification (figure 1),
instead showing little taxonomic diversification and functional
disparification through their first approximately 36 Myr. Both
genus richness and functional disparity increased at the highest
proportional rates through the Early Ordovician (time intervals
10–12 versus 13–20 in figure 1b), but even here, more genera
accumulated relative to functional groups (figure 1c). This lag
in functional disparity also holds when starting the analysis
in the earliest Ordovician (electronic supplementary material,
figure S4), which would assume a fundamental change in evol-
utionary dynamic at that time, possibly associated with the
acquisition of a gill adapted for suspension-feeding as well as
respiration [14]. From the latest Early Ordovician (interval 13)
onwards, new genera accumulated almost exclusively within
already established functional groups (points lying below the
diagonal line in figure 1c).

Although the earliest bivalve functional group never
diversified, those originating at the start of the Ordovician
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Figure 2. Origination and genus richness of bivalve functional groups through the early Palaeozoic.
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accumulated the highest number of genera through the
study interval (figure 2; electronic supplementary material,
figure S3). One of the earliest groups rapidly attained high
richness but declined by the end of the study interval
(figure 2, FG-2), while the other two more gradually accumu-
lated genera to remain major constituents of the global biota
(figure 2, FG-3–4). Ultimately, 76% of genus richness concen-
trated in only 31% of functional disparity (136 genera among
the four richest functional groups, electronic supplementary
material, figure S2), similar to the uneven distributions seen
in the Late Permian, Late Cretaceous, and today [22,25].
(b) Sensitivity tests
The Late Cambrian interval of low bivalve diversity might
reflect either a genuine extinction event or poor sampling
and preservation (time intervals 5–9); both scenarios have
been suggested for Late Cambrian echinoderms [27]. How-
ever, simulating range extensions of the first and last
appearances of genera that occur in time intervals on either
side of that low-diversity Cambrian interval results in an
even greater accumulation of genera relative to functional
groups (i.e. farther below the diagonal 1 : 1 line, electronic
supplementary material, text §S2.3 and figure S5).

The discrete nature of functional groups and their
inherent link to genus origination may lower the probability
of recovering an early-burst dynamic in the Cambrian or the
Early Ordovician. However, prescribing each of the first
13 genera originating in the study interval to one of the 13 dis-
tinct functional groups results, on average, in a greater
accumulation of functional disparity relative to taxonomic
richness for three Early Ordovician intervals (nos. 11–13,
electronic supplementary material, figure S6). Thus, an
early burst was theoretically possible given the data structure,
but is inconsistent with the observed pattern, even if the
Cambrian Pojetaia and Fordilla occupied different functional
groups [28]. Recovering this early-burst dynamic would
require at least a doubling of functional disparity above the
five functional groups known in the earliest Ordovician—
not from unsampled genera, but by re-assigning approxi-
mately 22% of the genera in interval 10 to other, distinct
functional groups currently unknown from that time
(electronic supplementary material, figure S6). This scenario
appears unlikely given the general consensus on the distinc-
tive modes of life indicated by the shell form of Ordovician
bivalves [18,29,30]. The more inclusive nature of functional
groups should also make them more robust to sampling
than genus-level diversity, a bias running counter to the
results reported here.

A simulation that comes closer to ‘replaying life’s tape’,
allowing genera to originate at any point through the study
interval and belong to any functional group, results most
often in a slight excess of functional disparity relative to
genus diversity (electronic supplementary material, figure
S7). Although the initial accumulation of diversity relative
to disparity is higher for the observed data, the 95% confi-
dence intervals of the rescaled, simulated series overlap the
observed one for all but three time points, most dramatically
the earliest Ordovician, where genera accumulated more
rapidly than functional disparity (electronic supplementary
material, figure S7). Thus, the observed long Cambrian lag
appears to be unlikely under random diversification, but
the relative rates of accumulation of taxonomic diversity
and functional disparity are not inconsistent with such
stochastic diversification dynamics—and not an early burst.
4. Discussion
The observed diversity-disparity trajectory and the sensitivity
analyses rule out an early burst dynamic for this initial
phase of bivalve evolution, owing to the greater production
of new genera relative to new functional groups. This result
is not a rescaling of the relationship between taxonomy and
morphology, as the functions assigned to genera were deter-
mined from fossil material using a subset of traits in their
phylogenetic context (most after [31]), along with direct evi-
dence of living position (e.g. [18,32]). Thus, functional
disparity is not strictly tied to overall morphological disparity,
permitting the comparison between diversification patterns as
measured in multiple macroevolutionary currencies.

Finer subdivision of ecological functions is unlikely to
dramatically alter these findings. The largest body sizes for
both infaunal and epifaunal bivalves evolved later in this
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study interval [28,33], and extensive tiering within soft and
hard substrata developed later in the Phanerozoic, as the Ordo-
vician suspension feeders and deposit feeders lack evidence for
long siphons [15,34] and the oldest deep-boring bivalves are
mid-Silurian [35]. Only the chemosymbiotic solemyoids lived
deep within the sediment (electronic supplementary material,
dataset S1). Bivalve functional disparity did not saturate
during the Ordovician radiation, increasing with continued
taxonomic diversification to 17, 30 and 49 functional groups
by the Late Permian, Maastrichtian and Recent ([22,25], elec-
tronic supplementary material, figure S8), suggesting that the
bivalve body plan remained capable of producing many
additional functions through the Phanerozoic [36].

The initial diversification of bivalves appears to be a two-
phase process, but these phases do not correspond to those
seen in other well-studied Early Palaeozoic groups. Trilobites,
blastozoans and crinoids generally show a burst of higher
taxa and morphospace occupation (often presumed to reflect
functional diversification [8,36,37]). Instead, bivalves exhib-
ited a significant macroevolutionary lag [23,29,38] between
their Cambrian origin (approx. 521 Ma) and their taxonomic
and functional diversification (starting approximately
485 Ma), perhaps also seen for bryozoans ([39,40] but see
[41]). Indeed, the lone Cambrian bivalve functional group
was always genus-poor and was lost in the Ordovician,
assuming that Neofordilla was phylogenetically and ecologi-
cally close to the Cambrian forms. Phylogenetically, the
failure of Cambrian, stem-group bivalve families to diversify
does not fit the general expectation of an expansion-and-
decline stem-group dynamic [42]. This lag and the sub-
sequent Ordovician diversification have been attributed to
various evolutionary and environmental drivers. An extinc-
tion event evidently collapsed the cosmopolitan Cambrian
bivalve distribution to siliclastic Gondwanan habitats [43],
perhaps delaying the origin of a muscular hydrostatic foot,
byssus and/or feeding gill, which opened up a wide range
of potential functions [14,30,44]. The onset of their Ordovi-
cian diversification coincided with an increase in nutrients
and ocean ventilation [45] and the transformation of the sea-
floor from surfaces stabilized by microbial mats to softer,
bioturbated sediments [15,29], with bivalves expanding into
both on- and offshore habitats with soft- and hard-ground
substrata [43]. Thus, bivalves may be another instance of a
clade whose diversification required a chain of derived
characters, rather than a single “key innovation” [46,47].

For clades not participating in the initial Cambrian burst of
form and function, shifting environmental conditions, changes
to gene-regulatory controls and/or interference from the diver-
sification of other clades with similar functions [7,45,48] may
have impeded the proliferation of morphologies or functions
in the Ordovician relative to taxonomic diversification. Stro-
phomenid brachiopods showed an Ordovician burst in trait
disparity associated with rapid taxonomic diversification [49]
and so might resemble the bivalves if evaluated using the
approach in figure 1. Rapid morphological evolution in the
Cambrian did not always guarantee bursts of functional dis-
parity (e.g. echinoderms [11]). Bivalves may show a related
pattern, where most major body plans were established in
the Early Ordovician (i.e. the six extant major clades [17]),
but those originations did not correspond to relatively high
functional disparification.

The origin of each new functional group might promote
the rapid accumulation of new genera within it to produce
bottom-heavy diversity patterns, reflecting exploitation of
vacant ecological space [50,51]. However, only one Ordovician
bivalve functional group is bottom-heavy (figure 2, FG-2),
while the others slowly accumulate genera or remain genus-
poor throughout their Ordovician histories (figure 2),
producing a common, skewed distribution of genera among
functional groups (electronic supplementary material, figure
S2). The first three functional groups to appear in the Ordovi-
cian accumulated the greatest number of genera during the
study interval (FG-2–4), but richness rankings were unstable
both during the Ordovician and beyond. Different functional
groups ‘dominate’ in terms of genus richness by the end-
Permian, end-Cretaceous, and today [22,25], suggesting
that functional groups wax and wane with the biotic and
physical environment, and are not entirely determined by
timing or rates of origination. Early evolution of a functional
group is thus no guarantee of long-term success—as also
seen in the taxonomic and functional declines of the Ediacaran
and Cambrian biotas—and early bursts of taxa within func-
tional groups are not required for taxonomic diversification
to outpace functional disparification across the entire biota as
long as new functional groups enter the system in a more
episodic fashion.

5. Conclusion
Diversification is not always concentrated at the inception of
a clade or at the founding of a new functional group. Ecologi-
cal or evolutionary impediments, from pre-empted niche
space to developmental limitations, may restrict rapid expan-
sion across biodiversity dimensions. The Early Cambrian was
apparently a singular opportunity for new clades to evolve
within a relatively empty ecological landscape, perhaps
with complex but flexible gene-regulatory controls [7,52].
Although many of the major metazoan body plans and
clades were established at this time, bivalves did not undergo
an increase in taxonomic, morphologic and functional diver-
sity until the Ordovician, in contrast with several other
similarly ranked groups. This macroevolutionary lag may
result from a delayed acquisition of key anatomical novelties
or a lower degree of morphological modularity than in the
more segmented clades that underwent Cambrian radiations
[53,54]. Even in their Ordovician diversification, bivalves
failed to show a burst of functional disparity relative to taxo-
nomic diversity, although this was not a non-adaptive
radiation either. Such concordant patterns may tend to
characterize clade radiations occurring outside the Early
Cambrian, as seen in the accumulations of biodiversity
dimensions in later originating clades, and in recoveries
from mass extinctions [55]. The failure of past opportunities
to promote rapid and extensive entry into new functions tem-
pers expectations for the macroevolutionary response of
global biodiversity to ongoing and impending environmental
and climatic crises.
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