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A B S T R A C T

In this work, we relate fiber plasticity in soft composites to the loss of ellipticity of the governing equations of
equilibrium of a composite under non-monotonic uniaxial loading. The loss of ellipticity strongly indicates the
emergence of localization phenomena in the composite,reminiscent of the emergence of kinking instabilities
in tendon,which occur as a response to tendon ‘‘overload’’without requiring any macroscopic compressive
loading.We examine softcompositeswhere both fibersand matrix can be highly extensible and plastic
deformations are present in the fiber phase.We first propose a transversely isotropic constitutive modelfor
the fibers allowing for plastic deformations,taking into accounta single slip direction,consistentwith the
microstructure of hierarchically assembled collagen fibers. Following, we propose a simple hyperelastic model
for the matrix and combine the two following the Voigtassumption.We then formulate a generalloss of
ellipticity criterion foran elastoplastic materialsubjected to finite deformations.We use this criterion to
indicate criticalconditions for loss ofellipticity in the softcomposite and individually in the fiber phase,
under various loading–unloading paths. Results show that plastic deformation of the fiber phase during tensile
loading can lead to ellipticity breakdown during elastic unloading while, macroscopically, the material is still
in tension,indicating the possible onset of an instability.

1. Introduction

Recentadvancements in fiber technology have led to the devel-
opmentof hierarchicalfibers,composed ofbuilding blocks such as
carbon nanotubes (CNTs), that exhibit plastic deformations to combine
extensibility,strength,toughness (Beese etal., 2013) and multifunc-
tionality (Li et al., 2018).Advanced biosynthesis approaches on the
other hand have also led to the development of plastically deforming
fibers from biopolymers based on collagen,silk and cellulose (Burla
et al., 2020; Larsson etal., 2014;Wang et al., 2017;Ansari et al.,
2014; Li et al., 2012; Wu et al., 2019). Nature’s design and novel nano-
materialsynthesis techniques incite the exploration ofa bio-inspired
template for the optimization of soft fiber-reinforced composites, which
dictates thatthe fiber phase can exhibitplastic deformations (Yod-
muang et al.,2015;Cheung et al.,2008;Gea et al.,2010;Lee et al.,
2012; Sehaquiet al., 2011; Callenset al., 2014). This template is
followed in biological materialswhen high extensibility,toughness
and fatigue resistance are necessary,as plastic deformation in the
fiber phase leads to increased energy dissipation.More specifically,
tendon and ligaments, are soft composite materials with aligned ductile
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collagen fibers (Baldwin etal., 2014;Veres etal., 2013,2014) and
a soft matrix. As a result of their architecture and available dissi-
pation mechanisms,they exhibit high extensibility,toughness,and
fatigue resistance as they undergo repeated loading (Freedman et al.,
2014;Thorpe and Screen,2016).This bio-inspired template is very
promising for the design of the next generation ofsoft composite
materials,with target applications in the replacement of load-bearing
soft tissues (e.g. meniscus, ligament, tendon) and multifunctional tough
‘‘ligaments’’for soft robotics (Pan et al., 2020).

In biological fiber-reinforced soft composites such as ligament and
tendon,plasticity is known to occur through levelsof the tendon
hierarchy, and significant attention has been recently given to plasticity
at the fibril level (Herod et al., 2016; Vereset al., 2014; Baldwin
et al., 2016; Vereset al., 2013, 2015; Baldwin et al., 2014; Tang
et al., 2010). An interesting phenomenon thathas not been fully
understood in tendon is fiber kinking, which is observed when tendon is
unloaded upon repeated cyclic loading as seen in Fig. 1. Fiber kinking
is treated as a precursor to tendon damage and its emergence is not
fully understood (Andarawis-Puriet al., 2009, 2012b,a,2015;Fung
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Fig. 1. Multiphoton microscopy ofnaive (left) and cyclically loaded (right) ratpatellar tendons.Cyclic loading is conducted in uniaxialtension for 7200 cycles at1 Hz, where
each cycle peaked at 40 N (40% of the ultimate load).Images were captured in an unloaded state.The arrows in the cyclically loaded state correspond to localized deformations,
often referred to as ‘‘kinking’’.

et al., 2010; Neviaseret al., 2012). Kink-band formation hasalso
been observed extensively in the context of engineering fiber-reinforced
composites,mainly under compressive loading (Budiansky and Fleck,
1994; Sivashanker et al., 1996; Berbinau et al., 1999). The damage in
tendons under fatigue loads has been related to the developmentof
diseases such as tendinopathy, see Freedman et al. (2014) and Maffulli
et al. (2003). This disease has been especially associated with the late
stagesof accumulated tendon damage,characterized by rupture of
fibers. In this context, few researchers have addressed the progression
process ofdamage thatprecedes rupture,see Andarawis-Puriet al.
(2009),Natali et al.(2005),Ciarletta and Ben Amar (2009),Ciarletta
et al. (2008). Shen et al.(2010) studied the mechanical behavior at a
fibril level of collagen of biological structures stretched in one direction
and characterized the fracture into brittle or plastic.Andarawis-Puri
and Flatow (2011) investigated three different levels of fatigue damage
on rat tendons and noticed the formation of kinks on the tendons under
lower levels of fatigue. Jozsa et al. (1984) studied collagen fibrils and
found the presence of kinks in spontaneously ruptured human tendons.

Despite these contributionsof the aforementioned studies,kinks
were only treated as a precursor to materialfailure in cyclic loading,
and the formation of these repeated deformation patternswas not
fully analyzed.On the other hand,the understanding ofthe damage
progression in tendonsis essentialfor tendinopathy prognosis,and
also for informing exercise-based treatments. In parallel, plasticity was
observed in tendon experiments:from discrete plasticity (see Veres
et al. (2013,2015),Herod et al.(2016),Veres et al.(2014),Baldwin
et al. (2016,2014)) at the fibril level which alters the morphology of
the fibers to macroscopic plasticity under cyclic loading at the tendon
level (see Fung et al. (2009), Andarawis-Puri et al. (2012a)). Tang et al.
(2010) attempted to validate the origins ofplasticity by identifying
the plastic deformation mechanisms presentin collagen fibrils when
loaded in uniaxial tension through computational molecular dynamics
modeling.Furthermore Fung etal. (2009) and Vereset al. (2013)
argued that this plastic deformation of the fibers was the major cause of
the formation of kinks in tendons.Understanding how multiscale me-
chanics of soft composites can lead to similar localization phenomena
under non-monotonic loading is a crucial first step towards understand-
ing this localization phenomenon in tendons.In this work,we aim to
investigate whether plastic deformations in the fiber phase can indeed
be responsible for localization in the composite under tensile loading
conditions. We use the concept of loss of ellipticity to indicate critical
conditions that can potentially lead to localization.

To the best of our knowledge,there is currently no theoretical
work in the literature to address the effectof fiber plasticity on the
macroscopic stability ofsoft fiber-reinforced composites.In contrast,

there are numerous studies dealing with the effect ofmatrix plastic-
ity on the development of instabilities and failure of polymer–matrix
composites(e.g., graphite-epoxy)under compressive loading condi-
tions along the fiber direction (see,e.g.,Budiansky and Fleck (1993)
and Fleck (1997)). These studieshave established thatthe plastic
deformation in the matrix hasa significanteffecton the compres-
sive failure of these materialsand that the dominantfailure mode
is localized plastic kinking (e.g.,Kyriakides et al.(1995) and Vogler
et al. (2000)). Given the inherent difficulties involved in the microme-
chanicalanalysis of these instabilities,following the pioneering work
by Rosen (1965),severalauthors have utilized composite materials
with lamellar microstructures as two-dimensionalapproximations of
the fiber-reinforced compositesof interest.Along these lines,a de-
tailed investigation ofmicroscopic and macroscopic instabilitieson
finitely strained elastoplastic laminates has been carried outby Tri-
antafyllidisand co-workers(e.g., Triantafyllidisand Maker (1985)
and Nestorović and Triantafyllidis (2004)).An importantfinding of
these works is that macroscopic (long wavelength) instabilities, which
may be conveniently computed from the loss ofellipticity (LOE) of
the associated homogenized constitutive equations, is an upper bound
to the microscopic (short wavelength) instabilities (see also Geymonat
et al. (1993)).In more recent work,d’Avila et al.(2016) have shown
that the LOE ofthe homogenized behavior ofhyperelastic laminates
leads to a macroscopically unstable behavior (strain localization) in
certain cases, but not in others, depending crucially on the constitutive
relations of the constituent phases. Furthermore,Furer and Castan eda
(2020) have demonstrated that the onset of macroscopic instabilities
in neo-Hookean laminates is determined by the loss of globalrank-1
convexity ofthe principalsolution,which usually occurs before the
loss of strong ellipticity and leads to the formation of microstructure
(lamellar domains)at a mesoscopic length scale.In addition to the
above contributions,the LOE of phenomenological,nonlinear elastic,
transversely isotropic constitutive relations has been studied by several
authors(e.g., Merodio and Ogden (2002),Triantafyllidisand Abe-
yaratne (1983),Merodio and Ogden (2003),Qiu and Pence (1997a)).
Furthermore,an analysis ofthe onsetof macroscopic instabilities in
hyperelastic fiber-reinforced elastomers under generalloading condi-
tions has been carried outby Agoras etal. (2009b) by studying the
LOE of the associated homogenization models of Agoras et al. (2009a)
and DeBotton et al. (2006).

The motivation for this work is the fact that there is no clear
mechanistic understanding of how the ubiquitous phenomenon of fiber
kinking emerges in tendon due to so-called ‘‘overload’’.There have
been severalexperimentalstudieson the topic, but no theoretical
or computationalstudieshave been able to provide a mechanistic
interpretation of the phenomenon. In this work, we aim to investigate
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the pathway that could possibly lead to a similar instability in a soft
fiber-reinforced composite to emerge. More specifically, we investigate
the LOE of the composite in the contextof non-monotonic loading
allowing for plastic deformations in the fiber phase. LOE, as mentioned
previously, does not necessitate localization but in many problems indi-
cates it. The proposed model is not a complete model of the mechanical
behavior tendon, but a simple approximation that can relate to tendon
as it shares some low-level common features such as a ductile stiff fiber
phase corresponding to collagen fibers,and a soft and elastic matrix
phase corresponding to proteoglycans and elastin.The main purpose
of this work is to investigate theoretically the role offiber plasticity
on the LOE in soft fiber-reinforced compositesunder tensile cyclic
loading. To this end, we model the material of the matrix as an isotropic
hyperelastic solid and thatof the fibers as a transversely isotropic
elastoplastic solid.Transverse isotropy is used in the fiber phase to
maintain the hierarchy observed in the fiber phase itself,as will be
further discussed.A simple constitutive modelfor the macroscopic
response ofthe composite is derived by employing a Voigt-type of
approximation. The loss of ellipticity of the model under cyclic loading
and the effect of fiber plasticity are discussed in detail.

The paper is organized as follows. In Section 2, we provide a general
description ofthe problem considered in thispaper,as well as an
introduction on basic concepts on the kinematics of finite deformations,
including the theory of multiplicative decomposition of the deformation
gradient for plasticity. Additionally, in the same section, we provide an
outline of the stress power relations and of the relations characterizing
the elastic and the plastic behavior of a general nonlinear material, and
finally, we provide a description of the incremental elastoplastic consti-
tutive equations. In Section 3.1, we formulate the effective behavior for
the soft composite with fiber plasticity considering the Voigt approx-
imation.In Section 4,we formulate a general loss of ellipticity (LOE)
condition for the incremental equations of equilibrium that can be used
both at the macroscopic levelof the homogenized composite and at
the microscopic level of its homogeneous constituents, in the context of
finite elastoplasticity. In Section 5, we discuss numerical results, where
we study the thermodynamic limitof the constitutive modelof the
fiber phase and the composite under uniaxial elastic loading;we also
investigate the onset of instabilities in the composite and individually
in the fiber phase. In the Appendix, we include a discussion on how to
determine the thermodynamic limit of a hyperelastic materialmodel.
We also repeatone setof the calculations shown in Section 5 for a
thermodynamically stable free energy function and verify that the trend
in the results of loss of ellipticity remains unaltered.

Standard notation is used throughout the article.Tensors offirst,
second,and fourth order are denoted by boldface letters.The compo-
nents ofall tensors are referred to a fixed Cartesian system,defined
by the orthonormal basis vectors , with  = 1, 2, 3, and are denoted by
lightface italics. For definiteness, let  and  be vectors,  and  second-
order tensors, and  and  fourth-order tensors, with components ,
, , , , and , respectively.The summation convention
is used throughoutfor repeated indices.The scalar productof any
pair of tensors of the same order is denoted by a dot,e.g.,we write
 ⋅  =  and  ⋅  = , whereas the dyadic product between
tensor of any order is denoted by the symbol ⊗,e.g.,( ⊗ ) = 
and ( ⊗ )= . We make use of no particular symbol to denote
linear mappingsor compositionsof mappingsand let their precise
meaning be inferred from the context,for instance,() =  ,
()=  , and ()= . The superscripts −1 and  denote
respectively the inverse and the transpose of a second- or a fourth-order
tensor,e.g.,( ) =  and ( ) = . The prefixes tr and det
indicate the trace and the determinant, the superscript  the deviatoric
part, and the subscripts  and  the symmetric and anti-symmetric parts
of a second-order tensor.A superimposed dot on a tensor denotes the
material time derivative of that tensor. The second-order identity tensor
is denoted by  and its components by .

Fig. 2. A simplified schematicrepresentation ofthe multi-scalemicrostructurein
tendons.Part (a) shows a unidirectional,fiber-reinforced composite,idealizing the
actual microstructure in tendons at the higher level.A typical fiber in part (a) is made
up of a bundle of aligned long fibrils, as shown in part (b), while each individual fibril
consists of a large number of aligned short sub-fibril building blocks,as shown in part
(c).

2. Modeling fiber plasticity in soft composites

In this work, we focus our attention on a class of composite materi-
als consisting of a soft matrix reinforced by a single family of fibers, as
shown in the schematic representation of Fig. 2(a). The fibers are taken
to be aligned along a given direction, defined by the unit vector 0 in
the unstressed state, and to exhibit elastoplastic, transversely isotropic
behavior,with symmetry axis 0. The matrix,on the other hand,is
assumed to exhibit isotropic and hyperelastic behavior with respect to
the unstressed state.

The above hypotheses are motivated by the microstructure and the
local material behavior in tendons. In particular, the proteoglycans and
elastin matrix in these materials are amorphous and can accommodate
large elastic deformations.In contrast,the collagen fibers are char-
acterized by a preferred direction and exhibitmicrostructure attwo
well-separated levels of hierarchy: at the higher level, each individual
fiber is actually a bundle ofaligned long fibrils (Fig.2(b)), while at
the lower level,each fibril is an assembly ofaligned short sub-fibril
building blocks (Fig.2(c)).Under appropriate loading conditions,the
sub-fibril blocks can slide with respect to each other along the axis 0,
thus producing a permanent axial strain at the fibril level. The central
hypothesis of the present work is that the plastic deformations in the
fiber phase play a key role in the loss of ellipticity of the governing
equationsof equilibrium for the macroscopic behaviorof the com-
posite under cyclic loading and,possibly,in the onset of macroscopic
instabilities that are observed experimentally in tendons (Fig. 1).

In the sequelof this section,following Pereda etal. (1993),we
discuss a transversely isotropic constitutive model, accounting for finite
elastic and plastic strains,which is being used in subsequent sections
to characterize the materialbehavior of the fiber phase in the soft
composites of interest.

2.1. Kinematics

Consider a homogeneous solid with a reference configuration 0
at some fixed time 0 and a current configuration  at an arbitrary,
subsequent time . Let the deformation of the material from 0 to  be
described by a one to one and differentiable mapping  = (, ), where
 and  denote the position vectors of a typicalmaterial point in 0
and , respectively. The deformation gradient  in 0 is defined as the
second-order tensor with components = ∕ . In order to ensure
the impenetrability of the material, it is assumed that  ≡ det  > 0.

Following Lee (1969),it is further assumed that  may be decom-
posed multiplicatively as

 = , (1)
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where the tensors  and  describe respectively the elastic and plastic
parts of the deformation and are,thus, taken to be invertible,with
  ≡ det  > 0 and  ≡ det  > 0.

The decomposition (1) introduces a local,intermediate configura-
tion , which may be regarded either as the deformed state for the
plastic part or as the reference state for the elastic part of the defor-
mation. The symmetries and constitutive equations for both the elastic
and the plastic behavior ofthe materialmay be conveniently stated
in , as detailed further below.Note, however,that expression (1)
defines the intermediate state only up to a rigid body rotation. In order
to resolve this ambiguity,in this work, we choose the intermediate
configuration to be isoclinic (Mandel, 1971), such that the orientation
of the symmetry axis of the materialin  remains fixed at alltimes
and, therefore, coincides with its orientation 0 in 0.

Given the decomposition (1), any elastic and plastic strain measure
may be defined in terms of  and , respectively.In this work, we
will only make use of the Green elastic strain tensor

 =
1
2

(− ) , (2)

where  =  is the elastic right Cauchy–Green deformation tensor
and  is the second-order identity tensor.

Letting  = ̇Y (, ) denote the velocity field,the velocity gradient
 in  is defined as the second-order tensor with components  =
 Y∕. It follows that  =̇Y−1, which,by taking into account (1),

implies that

 =̇Y−1+ 
−1,  = ̇Y−1, (3)

where  is the velocity gradient tensor in the intermediate configura-
tion. The tensors  and  may be decomposed into the deformation
rate tensors

 = ≡ + ,  =
̇Y−1

,

 =



−1
,  = (),

(4)

and the spin tensors

 =  ≡  +  ,   =
̇Y−1

 ,

  =



−1
 ,   = (),

(5)

where the subscripts ‘‘s’’and ‘‘a’’indicate respectively the symmetric
and anti-symmetric part of the second-order tensor to which they are
attached.

2.2. Stress power

It follows from the above definitions that the stress power  per unit
volume of intermediate configuration may be decomposed accordingly
into an elastic part  and a plastic part  as follows

 =  ⋅  ≡ + ,  =  ⋅̇Y,  =  ⋅ , (6)

where we have introduced the stress measures

 = ,  = −1−,  = −, (7)

with  denoting the Cauchy stress tensor.The tensors ,, and 
in (6) are commonly referred to as the (elastic) Kirchhoff,the second
Piola–Kirchhoff, and the Mandel stress, respectively. The Cauchy stress
 is assumed to be symmetric,so that the tensors  and  are also
symmetric, but  is not symmetric, in general.

Next, we define the elastic and plastic parts of the material behavior
in the intermediate configuration.In particular,we first establish ap-
propriate relations between the conjugate variables (, ) and (, ),
and then we combine these relations to obtain the corresponding rate
form of the elastoplastic equations.

2.3. Elastic behavior

The elastic properties ofthe materialare defined in the isoclinic
configuration in terms ofa strain–energy density function  () =
̇[ (), which is such that  = ̇Y and, therefore,

 = 


. (8)

For later reference,it is remarked thatthe rate form of the above
constitutive equation is

̇Y =  ̇Y,  =
2


. (9)

In addition,making use of (7)2 and (9),it is straightforward to show
that

▵ =  ,  =  







 

+
1
2


+  + + 


, (10)

where we have introduced the co-rotational rate ▵ = ̇Y + −   .
Note that, the fourth-order modulus tensors   and  in (10) and (9)
possess both the major and the minor symmetries.

For the purpose of this work, the strain–energy density functioṅ[
is assumed to be a transversely isotropic invariant of , with symmetry
axis 0. Hence,the function  may be written in the form (Ericksen
and Rivlin, 1954; Spencer, 1984)

̇[ () =  (1, 2, 3, 4, 5), (11)

where 1, 2, 3, 4, and 5 constitute a complete set oftransversely
isotropic invariants of  defined by

1 = tr, 2 =
1
2


(tr)2 − tr()2


,

3 = det , 4 = 0 ⋅ 0, 5 = 0 ⋅ ()20,
(12)

with ()2 = . Note that,the functions 1, 2, and 3 are the
principal, isotropic invariants of , while 4 and 5 depend explicitly
on 0. Therefore,in the special case that  is independent of 4 and
5, (11) reduces to

̇[ () =  (1, 2, 3), (13)

and describes an isotropic hyperelastic material.In passing,it is re-
marked that the properties of the matrix phase in the composite materi-
als of interest are completely characterized by means of a strain–energy
function of the form (13).

2.4. Plastic behavior

Motivated by the behavior of collagen fibers in tendon (see Fig.2
and relevantdiscussion),we assume thatthe plastic deformation of
the material is constrained to be isochoric and axisymmetric, with the
associated symmetry axis being 0. In particular,we assume that the
material obeys the yield criterion

(, ) = − () = 0,  = 0 ⋅  0, (14)

along with the associative flow rule

 = ̇Y,  =



= (0 ⊗ 0) , (15)

where ̇Y ≥ 0 is the plastic multiplier, to be determined further below,
and the superscript ‘‘’’ in the above expressions denotes the deviatoric
part of the tensor to which it is attached. The yield stress  in (14) is
assumed to be given as a function of the accumulated plastic strain ,
which is also determined further below.

Given that 0 defines the direction of certain material line
elements—which,in the case of tendon,correspond to the fibrils and
sub-fibrils—it follows that, in the intermediate configuration,

̇Y0 =

  + 0 ⊗ 0 − 0 ⊗ 0




0 =  0 = , (16)
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where (16)2 follows from the flow rule (15), while (16)3 is due to
the fact that the intermediate configuration is isoclinic and, therefore,
̇Y0 = . Eq. (16)3 implies that 0 is the axial vector of , which in turn
allows us to choose

  = , (17)

with no loss of generality (see, e.g., Aravas (1994)).
Thus, we find that  =  and, therefore,̇ Y−1= . Taking into

account the flow rule (15), the latter equation implies that  describes
an axisymmetric shear of the form

 = 0 ⊗ 0 + −1∕20 ⊗ 0 + 0 ⊗ 0

, (18)

where 0 and 0 are any pair of unit vectors in the transverse plane
which together with 0 form an orthonormalbasis,while  is the
plastic stretch along 0, which is given in terms oḟ Y by

̇Y


=
2
3

̇Y. (19)

In addition,assuming that  is plastic-work conjugate to the ax-
isymmetric stress , so that

 =  ⋅  =  ⋅  = ̇Y, (20)

it follows that

̇Y = ̇Y. (21)

The above expression constitutes the evolution equation for .
Given (15) and (17),the plastic deformation rate and spin tensors

(4)3 and (5)3 in the current configuration take the form

 = ̇Y



−1
, (22)

and

  = ̇Y



−1
 , (23)

respectively.
Given the yield condition (14) and the evolution equation (21), the

consistence conditioṅ Y = 0 takes the form

 ⋅ ̇Y − ̇Yℎ  = 0, ℎ =



. (24)

Taking the time derivative of (7)3, and making use of the result (10),
it is found that

̇Y = 

 + 




−, (25)

where

=
1
2


−−  + + 


. (26)

Note that the tensor is anti-symmetric with respectto its first
and symmetric with respect to its second pair of indexes. Substituting
expression (25) in the consistency condition (24),and making use of
the fact that  =  − , with  given by (22), it can be shown that

̇Y =
1

 ⋅ , (27)

where

 =

 + 




−1,  =  ⋅



−1+ ℎ, (28)

where we recallthat ( ) = . It follows from the aforemen-
tioned symmetriesof   and  that the second-ordertensor is
symmetric.

2.5. Incremental elastoplastic behavior

Taking into account the fact that  =  − , as well as Eqs. (22)
and (23) for  and  , respectively,with ̇Y given by (27),the rate
Eq. (10) may be recast in the form

▿ = ,  =  −
( ̇Y)

 ⊗ , (29)

where ▿ = ̇Y −  +  is the Jaumann derivative of  and (̇Y) is the
unit step function; recall that (̇Y) = 1 if ̇Y > 0 and (̇ Y) = 0 otherwise.
Note that,the modulus tensor  in (29)2 has both the major and the
minor symmetries.

Finally, for the numericalintegration of the elastoplastic constitu-
tive equations presented in this section, we refer to the work by Pereda
et al. (1993),where an efficientalgorithm can be found for a more
general class of anisotropic materials,which can be easily adapted to
the present case.

3. Estimates of the Voigt type for soft composites with fiber plas-
ticity

In this section,we propose a simple constitutive modelfor the
macroscopic behavior ofthe unidirectionalsoft composites ofinter-
est. The proposed modelaims to resolve some basic characteristics
of tendon from a micromechanicalperspective,such as the ductile
response of collagen fibers and the elastic response of the surrounding
matrix, but purposely neglects some other well-established features of
the response which resultfrom undulation ofthe collagen fibers at
their un-recruited state,such as the toe and linear regimes present
in the stress–strain response (Szczesny et al.,2012) and the tension–
compression asymmetry. The main motivation for these idealizations is
twofold: (i) when plastic deformations are taken into account in macro-
scopic tendon and connective tissue studies, plasticity is usually lumped
at the composite leveland the intricate response due to the elastic
mismatch between fibers and matrix is neglected, and (ii) focusing on a
very simple microstructure will allow us to gain insight on the existence
of governing mechanisms that could also dictate the response of more
realistic microstructures.

3.1. Effective behavior

Consider a composite materialmade outof an isotropic and hy-
perelastic matrix phase,reinforced by a large number of elastoplastic
and transversely isotropic fibers,as defined in the previous section.
In the undeformed configuration, the fibers are assumed to be aligned
along the symmetry axis 0 of their transverse isotropy. In what follows,
we make use of the superscripts ‘‘m’’and ‘‘f’’to distinguish between
quantitiesthat refer to the matrix and the fibers,respectively.For
instance, the notations  and  are used for the volume fractions of
the phases in the reference configuration, which are such that  + =
1.

In order to determine the macroscopic constitutive behavior of the
composite,we employ the approximation ofthe Voigt type thatthe
deformation gradientfield in the composite is uniform allthe time.
Therefore,

 = ,  =  = , (30)

where  denotes the macroscopic deformation gradient, while  and
 stand for the deformation gradients in the matrix and the fiber
phase,respectively.This assumption implies thatthe corresponding
stress field in the composite is uniform per phase and,therefore,the
macroscopic Kirchhoff stress  is given by

 =  +  , (31)

where  and  are the Kirchhoff stresses in the phases,which are
related to the corresponding Cauchy stresses  and  by

 =  ,  =  , (32)

where  = det . Note that, in the context of (32)2, use has been made
of the fact that  = , with  = det , which follows from the plastic
incompressibility of the fiber phase.The macroscopic Cauchy stress 
can be shown (Hill, 1972) to be given in terms of  and  by

 = −1 . (33)
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The above result, which holds independently of the Voigt assumption,
may be shown directly in the present context by making use of Eqs. (31)
and (32), along with the equation  =  + . In connection with
the latter equation, it is remarked that, due to the Voigt approximation,
the volume fractionsof the phasesare independentof the applied
deformation gradient .

At this point, it is relevantto recall from the discussion in the
previous section that

 =   ,  =
 


, (34)

where  is the Green elastic strain tensor,given by (2),while   =
  () is the strain–energy density of the fiber phase, which is taken
to be some given transversely isotropic function of the form (11).For
completeness, we also remark that

 =   ,  =
 


, (35)

where  is the Green strain tensor in the purely elastic matrix and
  =   ()is the corresponding strain–energy density,which is
assumed to be a given isotropic function of the form (13).

Given that, by assumption, (30) holds at all times, it follows that

 = ,  = , (36)

where  is the macroscopic velocity gradient,while  and  are
the velocity gradients in the phases.Hence,the Jaumann derivatives
(i.e., the co-rotational rates with the macroscopic spin  = ()) of 
and  are given by

▿ =  , ▿ =  , (37)

where  = () is the macroscopic deformation rate tensor,whereas
  and   are the corresponding incremental modulus tensors of the
phases. Recall that the components of   are determined by expression
(29)2 in the previous section.In addition, it follows from the result
(10)2 that the components of   are given by

 =     +
1
2


+  + + 


,

 =
2 
  

.

(38)

Thus,taking into account the expressions (31) and (37),we find that
the Jaumann derivative ▿ of the macroscopic Kirchhoff stress is given
by

▿ = ,  =   +    . (39)

Note that, the macroscopic modulus tensor  in (39), just like its local
counterparts   and   , possessesboth the major and the minor
symmetries.

4. Incremental equations of equilibrium: local and global loss of
ellipticity

The ellipticity of the incrementalequations of equilibrium for the
homogenized composite ofinterestand for its homogeneous phases
may be concisely analyzed in a unified manner.In particular,in this
section we focus our considerations on a homogeneous solid,charac-
terized by an incremental constitutive equation of the form

▿ = ℒℒℒ, ℒℒℒ =  −1 −  ⊗ , (40)

where ▿ is the Jaumann derivative ofthe Cauchy stress.Note
that, the macroscopic constitutive equation (39)for the composite
may be easily recastin the form (40), with the modulus tensor 
given by (39)2. The corresponding constitutive equation for each of its
constituent phases may also be written in the form (40), where  =  

and  = , with  =  for the matrix and  =  for the fiber phase.

For latter reference,it is remarked that Eq.(40) may be rewritten in
the form

̇Y =(ℒℒℒ − ℛℛℛ ) or ̇Y=

ℒ − ℛ




, (41)

where ℛℛℛ is a fourth-order tensor with components

ℛ =
1
2


−  − + 


. (42)

Note that ℛℛℛ is symmetric with respect to its first and antisymmetric
with respect to its second pair of indexes.

In the absence of body forces, the equilibrium equations ∕ =
0 for the material under consideration may be written in the rate form

 Y


−





= 0, (43)

which, by making use of (41), specialize to


ℒ − ℛ

2


+
[




ℒ − ℛ


−



] 


= 0. (44)

Expressions (44) constitute a system of linear PDEs of the second-order
for the velocity field  in the material.

Adopting standard terminology in the linear theory of PDEs (e.g.,
Renardy and Rogers(2004)), the term involving the second-order
derivatives of  in Eqs. (44) is referred to as the principal part of these
equations, while the second-order tensor  with components

  =

ℒ − ℛ


, (45)

where  is any non-zero vector,is referred to as the symbolof the
principal part.If det  ≠ 0 for all realvectors  ≠ ,then the system
of PDEs (44) is called elliptic, it has no real characteristic surfaces and
admits no solutions with discontinuous partial derivatives.

For the purpose ofthis work, we henceforth restrictattention to
uniform deformation paths, so that the fourth-order tensors ℒℒℒ and ℛℛℛ—
which determine the symbol  and, in extend, the type of the system
of PDEs (44)—are independent of .It is important to bear in mind,
however,that both ℒℒℒ and ℛℛℛ depend inherently on the deformation
gradient ,as well as on the current state of the material,as defined
by the associated internalvariables.With no loss of generality,it is
convenientto view a path of deformation asbeing applied on the
initially undeformed material by a uniform deformation gradient  =
(),which varies (monotonically or not) with time from its initial
value (0) = .

For any given deformation path,the system ofPDEs (44) for the
elastoplasticmaterialsof interestis known to be strongly elliptic
(i.e., det  > 0 for allreal  ≠ ) in the linear-elastic regime,but as
the deformation becomes nonlinear, a critical state may be reached at
which the governing equations o equilibrium (44) may lose ellipticity.
This happens when there exists at least one real vector  ≠  for which

det  = 0. (46)

When the above condition is first met, it becomes possible to have solu-
tions with discontinuous partial derivatives of  across a characteristic
surface with normal . The emergence of such discontinuous solutions
is often regarded as a precursor for the development of material insta-
bilities and failure, such as the formation of shear and kink bands, and
it is therefore of great significance. It should be emphasized, however,
that the loss ofellipticity (LOE) condition (46) is necessary,but not
sufficient for the onset of instabilities.Note that,in order to examine
(46) at any given stage ofthe deformation,it suffices to restrict the
analysis to unit vectors .

In passing, it is remarked that the condition derived by Rice (1976)
(see also Rudnicki and Rice, 1975) for the localization of deformation
in a narrow band of a homogeneously deformed,homogeneous solid,
exhibiting piecewise linear incremental behavior,can be shown to be
equivalent to the LOE condition (46).
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The onset of the LOE of the governing equilibrium equations is dis-
cussed in more detail in the following section, in the context of specific
constitutive models and loading conditions,both at the macroscopic
levelof the composite and at the microscopic levelof its constituent
phases. As indicated earlier, the failure of ellipticity which is examined
in the present work is exclusively induced by the variation of the fourth-
order tensors ℒℒℒ and ℛℛℛ with the prescribed deformation.Given that
these tensors represent inherent materialproperties,in what follows,
the onset ofthe LOE of the corresponding equilibrium equations for
the materialunder consideration is simply referred to as the LOE of
that material.

5. Results and discussion

In this section,we present the results of mechanicalresponse and
LOE for a reinforced material composed by 80% in volume of ductile
fibers embedded in an elastic matrix.The matrix is taken to be hy-
perelastic and its free energy density function follows a compressible
neo-Hookean material model




=

2

(1 − 3 − 2 ln  ) +


2
( − 1)2, (47)

where 1 = tr is the firstinvariantof  calculated using the total
deformation gradient . The fibers are taken to be elastoplastic and its
elastic properties are defined in terms of a compressible neo-Hookean
model with an additional standard reinforcementterm  (4) (Tri-
antafyllidis and Abeyaratne, 1983; Merodio and Ogden, 2002), due to
the microstructure of the fiber material, as seen in Fig. 2(b), consisting
of aligned fibrils




=

2

(1 − 3 − 2 ln  ) +


2
( − 1)2 +


2

(4 − 1)2, (48)

where 1 = tr and 4 = 0 ⋅ 0 are the first and fourth invariants
of , respectively, calculated from the elastic part of the deformation
gradient. For both matrix and fibers,the value of is chosen to
be large enough to obtain nearly incompressible phases.In (48), the
reinforcement parameter  = 0 retrieves to the originalneo-Hookean
model, while  → ∞ corresponds to an inextensible material (Qiu and
Pence,1997b).This reinforcement function has its second derivative
given by  ε(

4
) = , and since we choose values ofreinforcement

parameterto be  ≥ 0, we obtain  ε(
4
) ≥ 0 and the function

 (4) is convex (Tiel, 1984). The neo-Hookean model representing the
matrix phase in our formulation is known to have a stable response,
however it is also known thermodynamic instability may arise from the
reinforcement term in the augmented neo-Hookean model used for the
fiber phase (Qiu and Pence, 1997b; Guo et al., 2007). The specific free
energy density function of the fiber phase, as prescribed in (48) has to
be further examined, as a thermodynamic instability indicated that the
material model no longer represents the actual material behavior. We
detailthe analysis of the thermodynamic limit of energy functions in
Appendix A.

The plastic behavior of the fibers follows the rules in Section 2.4,
where the yield stress function in (14) is specialized to

 = ℎ + 0
[
1 − exp


−

0

]
. (49)

This hardening modelwas proposed by Gasser and Holzapfel(2002)
and we chose itbecause we wanted to accountfor possible nonlin-
earities in the internal evolution of the variables. In fact, as discussed
by Sun and Chen (1989), fiber composites do not show a well-defined
yield point and nonlinearity appears in the stress–strain relation gradu-
ally, which is a statement valid for a hierarchical fiber material, as seen
in Bosia et al. (2010).

The loading is 3D uniaxialstress applied in the initialdirection
of the fibers 0, which in our systems coincide with the firstbasis
vector of the Cartesian coordinate system,i.e.0 ≡ 1. The numerical
experimentsconducted in this section are displacementcontrolled,

prescribing the principalstretch 1 in the direction of the loading,
and calculating the other corresponding principalstretches 2 and 3
according to the uniaxial stress state, i.e. = 0 for ,  ≠ 1, 1.

All elastic moduli and stress normalizations are with respect to the
shear modulus of the fibers  . The normalized bulk and shear moduli
for the fibers and matrix are taken to be 


= 


= 1000 and  = 1,

 = 10, respectively.The overlines thatdenote normalization are
hereon omitted,thus all stresses and modulithat appear are normal-
ized.For the plastic response of the fibers,we use a normalized yield
stress of  = 1500.

First, we investigate the material response of the composite, as well
as the material response in each phase through one loading/unloading
cycle.For this, we consider the cases ofa perfectly plastic response
and a hardening response for the fiber phase. Following, we investigate
the implicationsof thermodynamic stability ofthe materialmodel
studied in this work.In the final part of this section,we investigate
the material stability of the composite under several loading/unloading
cycles,where we focus on the LOE in the composite as wellas LOE
of the material in the fiber phase.We performed this last analysis on
materials with differentnormalized fiber reinforcementmoduli (=
10, 1000), with and without hardening in order to analyze the influence
of fiber stiffness and plasticity in the overallmaterialresponse and
stability.The parameters ofthe hardening modelused are ℎ = 50,
0 = 200 and 0 = 0.1.

5.1. General response and thermodynamic limit

We first perform a single loading/unloading cycle in tension, start-
ing from the unstretched state where  = ,reaching a maximum
stretch of1 = 2.5 in the loading direction and returning to a state
where the stretch in the loading direction is 1 = 1. Fig. 3 outlines the
relationship between the Kirchhoff stress in the direction of the loading
(11), for the composite (Fig. 3(a)), the fibers (Fig. 3(b)) and the matrix
(Fig. 3(c)), plotted against the stretch 1. As seen in Fig. 3(b), the fibers
reach the yield point and present an elastoplastic behavior beyond that
point,whereas the response of the matrix is purely elastic (Fig.3(c)).
The response with and without hardening can be identified between
the solid and the dashed lines in Fig. 3.

As previously mentioned, the material model used to represent the
fibers following the elastic strain–energy density in (48) can present
a thermodynamic instability when subjected to uniaxialcompressive
stress.Beyond the onsetof this instability, the materialmodel no
longer represents the physical behavior of the material and thus cannot
be used.Thus we wish to study this pathology ofthe modelfor the
specific materialparameters thatwe use in this paper.From (A.2),
it follows that the materialis stable as long as the second derivative
of the strain–energy function remains greater or equalto zero. The
second derivative ofthe strain–energy function denotes the slope of
the stress–stretch relationship.For this investigation,we restrictour
attention to the elastic response prior to yielding. To perform this task,
we consider a body composed of just the fiber material experiencing a
homogeneous stress state under uniaxial loading,and we test a range
in tension and compression withoutthe consideration ofplasticity.
It is important to note that the thermodynamic instability is present
even for the purely elastic case.In Fig. 4(a), the elastic stress–stretch
response of the fibers is calculated in uniaxialloading,under tension
and compression, for different values of the anisotropic reinforcement
modulus . When loaded in compression (for an increasing compressive
load, starting from 1 = 1), the response shows a change in the sign
of the slope of the stress–stretch curve,which indicates a violation of
the thermodynamic stability, rendering the results beyond this point as
non-physical. In fact, to reach an extreme compression state, 1 → 0, we
would expect to impose a high levelof compressive stress,i.e. 11 →
−∞; an observation notconsistent with the results ofthe model.As
seen in Fig. 4(b), the higher the anisotropic reinforcement modulus, the
earlier the thermodynamic instability occurs. As we approach  = ∞, a
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Fig. 3. General stress–stretch response of the material (stretch in the direction of the fibers  spatial Kirchhoff stress in the direction of loading) in which the black line represents
the curve for a materialwith no evolution of internalvariables and red lines represents a materialsubjected hardening effect for:(a) composite (b) only the stress on fibers phase
(c) only the stress on the matrix phase.

Fig. 4. Limit up to which the materialmodelis stable and can be used to represent the materialconstitutive behavior for different values ofreinforcement modulus.(a) shows
the elastic stress–stretch curves for fibers loaded uniaxially,instability occurs for compressive stretches and starts where the circles are plotted.(b) shows the compressive stress
and square of stretches in the direction of the fibers at which instability occurs for each stress–stretch curve in Fig.4a.

limit of critical stretch is attained with 2
1

= 0.5,where the instability
occurs.Summarizing,the pathology ofthe materialmodelemployed
for the fiber phase emanated at moderate to high compression during
uniaxialloading.As the goalof this study is to study load cycling in
tension the material model can still be valid. Moving forward it will be
crucial to look at the individual stress–strain response of the fiber phase
to make sure thermodynamic stability is maintained in more complex
elastoplastic loading/unloading cycles. Nevertheless, in Appendix B we
consider a strain–energy function (DeBotton et al.,2006) which does
not violate the thermodynamic limit. We investigate the response of the
new material model to verify that the trends of LOE are not affected by
the use of a constitutive model which is unstable for a known range of
deformations.

5.2. Loss of ellipticity during non-monotonic loading

To examine localization during non-monotonic loading,as moti-
vated by the discussion fortendon,we considera fiber-reinforced
composite material under uniaxial loading. The material experiences a
homogeneous stress state in each individual phase, following the Voigt
assumption. We impose the load by applying a stretch 1, starting from
the undeformed configuration  = ,and incrementally increase 1 to
a maximum tensile stretch in that cycle max,i

1 , where the superscript
 ∈ [1, ] is an integer representing the cycle number,where  is the
total number of cycles (e.g. max,1

1 = 2.5 in the first cycle), see Fig. 5(a).
From the maximum tensile stretch, we decrease 1 by small increments
into the compressive stretch regime, down to a minimum stretch value
min

1 . Next, we starta new cycle by increasing the stretch again to
a higher value for the maximum stretch (max,+1

1
> max,

1
) and then

compress to attain min
1 , which does not depend on the cycle number.

We repeat this procedure for the total number of cycles. In each of the
loading cycles,we check for LOE in the composite,as well as in the
fiber phase, using the condition formulated in Section 4.

Through this study,we investigate the influence ofthe reinforce-
ment modulus  and hardening on the material stability of the compos-
ite. We first study the case of a material with reinforcement modulus
of  = 10 with perfectly plastic fibers.Following,we study two cases
with hardening, and reinforcement modulus at two discrete levels,  =
10, 1000,spanning two orders of magnitude.We conduct this study to
investigate the effect of different ratios of reinforcement modulus with
respect to the matrix shear modulus.

Material with low reinforcement modulus (=10)without
hardening. For the case of a materialwith a reinforcement modulus
of  = 10 without hardening,results are shown in Fig.5, Fig. 6 and
Table 1. We applied 11 loading cycles, that are individually numbered
in Fig. 5(a),which shows the evolution of the Kirchhoff stress for the
composite versus the stretch in the loading direction.It is important
to note thatcycle 1 is purely elastic,during tensile loading,tensile
unloading, as well as compressive loading and unloading. Cycles 2–11
exhibit an elastic and elastoplastic response during tensile loading,a
purely elastic response during tensile unloading,and a purely elastic
response during compressive loading and unloading.The thermody-
namic material stability limit,following the discussion in Section 5.1,
will also point to the minimum compressive stretch forwhich the
material description is valid. That means that the compressive response,
numerically calculated up to very small values of 1 → 0 might not be
acceptable below a certain stretch threshold ther m,cr it

1
. This threshold

has no impact on the rest of the results,as compressive loading and
unloading are completely elastic,thus there are no history-dependent
processes that could be influenced by this pathology. In the numerical
calculation,we check for LOE for each incrementof the load. We
also check for the threshold of the thermodynamic material instability,
ther m,cr it

1 , for each cycle by looking at the fiber stress–stretch response.
We first focus on LOE ofthe composite.To do that, we zoom in

on the stress–stretch response.Fig. 5(b) corresponds to a segment of
Fig. 5(a) in the compressive regime for the 11 cycles, where following
the curves from right to left corresponds to compressive elastic loading.
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Fig. 5. Stress–stretch curve of the composite and LOE points for a materialwith reinforcement modulus  = 10 and no hardening.(a) shows the 11 loading and unloading steps
applied to the material.(b) shows LOE in the composite,where the squares with circles inside represent the points ofLOE. (c) shows the criticalstretches and composite stress
for LOE analysis in the fibers.

Fig. 6. Stress–stretch curve of the fibers and LOE points for a materialwith reinforcement modulus  = 10 and no hardening.(a) shows the criticalstretches and fibers stress for
LOE analysis in the composites,where the squares with circles inside represent the points of LOE.(b) shows LOE in the fibers.

The Kirchhoff effective stress for the composite is plotted against the
stretch in the loading direction. Squares with circles inside correspond
to positions where LOE occurs following the elastoplastic LOE calcu-
lation (this convention to representLOE points is followed for the
rest of the paper).We observed thatLOE for the composite occurs
during compressive loading as seen in Fig.5(b). The criticalstretch,
determined by the LOE,occurs at lower absolute stresses and higher
stretches for higher cycles,as plasticity is increasingly induced,up to
the 7th cycle. For instance, in the first cycle, we observe that the critical
stress is crit, 1

comp ≈ −3.1 and the critical stretch is crit, 1
1 ≈ 0.9 while for

the 5th cycle, crit, 1
comp ≈ −2.6 and crit, 1

1 ≈ 1.29. However, after the 7th
cycle,there is a change to that trend.To rationalize why this occurs,
we focus on the stress–stretch response of the fibers in the composite,
plotting the Kirchhoffstress for the fiber againstthe stretch in the
loading direction in Fig.6(a). In this plot it is clearly seen that LOE
occurs pastthe threshold ofthe thermodynamic materialinstability,
ther m,cr it

1 for cycles 8–11, as the slope sign during compressive loading
changes at higher stretches compared to when LOE occurs.

Following,we focus on LOE of the materialin the fiber phase as
the composite experiences the same loading cycles (Fig.5(a)). To do
that,we zoom in on the stress–stretch response and investigate first
Fig. 5(c), which correspondsto a segmentof Fig. 5(a) for the 11
cycles.Here,following the curves from right to left also corresponds
to unloading or compressive loading steps.The Kirchhoff effective
stress for the composite is plotted againstthe stretch in the loading
direction.From that, we observe thatLOE in the fibers occurs not
only during a macroscopic compressive loading (cycles 1–2) but mostly
during elastic unloading in macroscopic tension (cycles 3–11), as seen
in Fig. 5(c), which is consistent with the observation of fiber kinking in
tendon during cyclic loading.Similar to the onset of instability in the
composite, LOE in the fiber phase occurs earlier during the compressive
loading or tensile unloading process for higher cycles.As plasticity is
induced (from cycle 1 to 11), the critical stresses and stretches increase.
To investigate if the LOE prediction for the fibers is valid in each cycle,

we look at the stress–stretch response of the fibers in the composite,
plotting the fiber Kirchhoffstress againstthe stretch in the loading
direction in Fig.6(b). In this plot, it is clearly seen thatLOE of the
fibers never occurs past the threshold of the thermodynamic material
instability,ther m,cr it

1 , as the slope of the stress–stretch curves changes
sign much later during the compressive loading steps, at a stress range
that is not shown in this zoomed-in section of the fiber stress–stretch
plot. However,we can observe from the segment of the fibers stress–
stretch plot in Fig.6(a) that the change in sign of the slop occurs at
stresses lower than any criticalstresses on the fiber phase shown in
Fig. 6(b), thus the predictions of LOE in the fiber phase in all 11 cycles
are acceptable.

The main observation from the LOE calculated in the fiber phase
(reported in Fig.5(c) and Fig.6(b)), is that instabilities in the fiber
phase, for high cycle numbers, can occur at tensile stresses at both the
composite and at the fiber levels.The criticalstress in the composite
is compressive in the first, and purely elastic, cycle and in the second
cycle;however,from the third to eleventh cycles,characterized by
higher levels of plastic deformation, LOE is found when the composite
experiences tensile stresses.A similar trend is noted on the critical
stresses on the fiber phase in Fig.6(b), which shows that LOE occurs
when the fibers are under compressive stress for the first 8 cycles, but
under tensile stress from the 9th cycle onward.This finding is one of
the key results obtained in this study because,from widely accepted
literature in reinforced materials,this type of instabilities is known
to occur when the materialis subjected to compressive loading;in
contrast,here we suggestthat it can also occur when the material
experiences a tensile stress state.

By examining LOE in the composite (Fig. 5(b) or Fig. 6(a)), or in the
fiber phase (Fig. 5(c) or Fig. 6(b)), we note that many of the instabilities
fronts occur at tensile stretches (crit

1 > 1). Nevertheless, when we look
at the elastic component of the critical stretches of the fibers on Table 1,
we notice that the critical elastic stretches of the fibers are compressive
(crit

1 < 1) on both composite LOE analysis (first row) and fibers LOE
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Table 1
Critical elastic stretches for each unloading step of a composite with reinforcement  = 10 and no hardening.The second row shows the criticalstretches for the LOE analysis in
the composite and the third row shows the criticalstretches for the ellipticity analysis in the fibers.

e,cr it Step

1 2 3 4 5 6 7 8 9 10 11

LOE comp 0.9084 0.9013 0.8779 0.8500 0.8173 0.7807 0.7381 0.6888 0.6308 0.5629 0.4769

LOE fibers 0.9750 0.9752 0.9752 0.9752 0.9752 0.9752 0.9752 0.9752 0.9752 0.9752 0.9752

analysis (second row).This contrasting behavior suggests thatthere
is a mismatch in the elastic deformation field ofthe phases,while
the total deformation field remainscompatible following the Voigt
assumption. This mismatch leads to a bulk stress during unloading: as
the elastic strain is released,the composite reaches an intermediate
configuration,which is macroscopically stress-free,however,at the
same time, each phase (matrix and fibers) experiences a non-zero stress
state. For instance, the stress-free configuration of the composite during
the 11th cycle,after tensile unloading,occurs ataround 1 ≈ 1.7,
(where the last curve cross the -axis in Fig. 5(c)), in contrast, we note
from Fig.6 that at the same load 1 = 1.7,the stress on the fibers is
negative.

Another interesting remark in this set of results is on the difference
between the LOE prediction in the composite and the LOE prediction in
the fiber phase. Comparing the LOE in the composite shown in Fig. 5(b)
and Fig. 6(a) with LOE in the fiber phase shown in Fig. 5(c) and
Fig. 6(b), we observe that instability in the fibers is expected to precede
the onset of instability in the composite, if the LOE leads to a bifurcated
state. We additionally highlight that LOE occurred for values of angle
 near ∕2, which corresponds to a configuration where the surfaces of
discontinuity have their normalaligned with the fiber reinforcement.
As discussed earlier,this configuration of the surface of discontinuity
is expected to the localization pattern of the kink-band type. It is also
worth noting that LOE was not observed during plastic loading for any
of the test cases.

We finally note that LOE in the fibers can occur in tension due to the
fact that, even though the composite is under a uniaxial stress state, the
phases are individually experiencing an axisymmetric stress state since
they are not fully incompressible. We note that we chose different levels
of compressibility for the two phases (different bulk to shear moduli
ratios) and this introduces an axisymmetric stress state in the phases
where the stress components 

22 = 33 ≠ 0 and 22 = 33 ≠ 0.For the
fiber phase, when 

11
> 0 and 

22
= 

33
> 0 the LOE can occur due to

the presence of a pressure which does not affect LOE.
Material with low reinforcement modulus (=10) with harden-

ing. We now modify the previous material model with reinforcement
parameter  = 10 to incorporate hardening effects with an evolution
function defined in (49).We impose the same loading conditions of
11 cycles ofuniaxial load applied in the direction ofthe fibers,and
observe the stress–stretch response of the composite,shown in Fig.7.
In Fig. 7(b), we take a segmentof Fig. 7(a) and plot the Kirchhoff
stress–stretch curves in addition to the LOE points (squares with circle
inside). In Fig. 8(a), we plot the Kirchhoff stress for the fiber against the
stretch and, from that, we detect which of those LOE points calculated
for the composite are valid.We note that,for the cycles 8–11,LOE
occur at points after the change in sign of the stress–stretch curves for
those cycles,hence,the only acceptable loss of ellipticity calculations
are for cycles 1–7.Next,we study LOE in the fiber phase in Fig.7(c)
and Fig.8(b). In Fig. 7(c), we show the stress–stretch response of the
composite and note thatLOE occurs at compressive states only for
the first two cycles.In Fig. 8(b), we show the stress–stretch response
for the fibers and LOE points,which happen,at all cycles,before the
thermodynamic limit,and,at compressive stress for the first 9 cycles
and at tensile stresses for the last two. In summary, we conclude that,
by adding hardening to the model,the stress–stretch curves and the
critical stretches at which LOE occurs, for both the composite and ma-
trix phases, do not change significantly. Examining Table 2, we notice
that the elastic critical stretches of the fibers are also compressive.

Material with high reinforcement modulus (=1000) with hard-
ening. The last case of our resultsconsistsof a material with an
even higher anisotropic reinforcement parameter, = 1000,and with
hardening. Fig. 9(a) shows the stress–stretch response for this material
subjected to 13 loading cycles imposed in the direction of the fibers.
We observe that,by increasing the reinforcement parameter,yielding
starts for an even lower stretch value in the firstcycle (compare to
Fig. 7(a)). In Fig. 9(b), we look at the stress–stretch response ofthe
composite from a segment of Fig. 9(a) and plot the LOE points obtained
from the composite instability analysis.LOE in the composite occurs
for a compressive stress state for all the cycles and the critical points
predicted in this analysis are acceptable since they lie allbefore the
thermodynamic limiting stretches ther m,cr it

1
. The last can be confirmed

by looking at Fig. 10(a), which shows the fiber stress–stretch curves and
the LOE of composite, which clearly occurs much before the change in
sign of the slope of the fiber stress–stretch curve in all 13 cycles.

If we focus on the LOE on the fiber phase for this strongly reinforced
material, we observe some interesting results. Fig. 9(c) shows the stress
of the composite plotted against the stretch, which is also a segment of
Fig. 9(a) with addition of the points of LOE of the fibers. The first and
purely elastic cycle is the only cycle where the instability occurs when
the composite is in compression. As plastic deformation is induced for
the second and latercycles,the composite loses ellipticity undera
tensile stress state. Unlike the material with reinforcement parameter of
 = 10 with hardening, the material with  = 1000 has all plastic cycles
losing ellipticity in the tensile range of loading. This fact suggests that
plasticity, induced by the reinforcement term (

4) in the strain–energy
function in (48), and therefore enhanced by a higher reinforcement
parameter , induces the material to lose ellipticity earlier and at tensile
stresses. When we turn our attention to the stress state of the fibers in
those points of instability in Fig. 10(b), we see a similar response. The
fibers are under compression at the first point of LOE, but under tension
for all the other cycles, which are plastic. This response suggests that,
as we increase the magnitude of the plastic deformation (by increasing
the reinforcementparameter thatcauses plasticity to happen or by
stretching the material further into the yield point), LOE (and possibly
the instabilities) in fibers of a composite materialtends to occur in a
different stress state:from a compressive to a tensile regime.Table 3
includes the criticalelastic stretches for each unloading step for the
composite and the fiber phase.

As previously mentioned, in Appendix B we use an alternate strain–
energy function (DeBotton et al., 2006) for the elastic response of the
fiber phase, which does not violate the thermodynamic limit. Thus we
are able to test the same loading routine and search for loss of ellipticity
in the composite and in the fibers.We focus on the cases where the
reinforcementmodulus is = 1000,consider hardening effects and
keep all the other parameters the same.The trend of the results from
Appendix B is in agreement with the trend of results presented in this
section,confirming thatall the conclusions thatwere made for our
material system can be generalized to composite with an elastic matrix
and elastoplastic fibers.

6. Concluding remarks

In this work, we investigate the interplay ofan elastic matrix
materialwith ductile fibers of a unidirectionally fiber-reinforced soft
composite materialto the LOE of the governing equations ofequi-
librium of the composite subjected to non-monotonic tensile loading
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Fig. 7. Stress–stretch curve ofthe composite and LOE points for a materialwith reinforcementmodulus  = 10 with hardening.(a) shows the 11 loading and unloading steps
applied to the material.(b) shows LOE in the composite,where the squares with circles inside represent the points ofLOE. (c) shows the criticalstretches and composite stress
for LOE analysis in the fibers.

Fig. 8. Stress–stretch curve ofthe fibers and LOE points for a materialwith reinforcementmodulus  = 10 with hardening.(a) shows the criticalstretches and fibers stress for
LOE analysis in the composites,where the squares with circles inside represent the points of LOE.(b) shows LOE in the fibers.

Fig. 9. Stress–stretch curve ofthe composite and LOE points for a materialwith reinforcement modulus  = 1000 with hardening.(a) shows the 11 loading and unloading steps
applied to the material.(b) shows LOE in the composite,where the squares with circles inside represent the points ofLOE. (c) shows the criticalstretches and composite stress
for LOE analysis in the fibers.

Fig. 10. Stress–stretch curve of the fibers and LOE points for a materialwith reinforcement modulus  = 1000 with hardening.(a) shows the criticalstretches and fibers stress for
LOE analysis in the composites,where the squares with circles inside represent the points of LOE.(b) shows LOE in the fibers.
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Table 2
Criticalelastic stretches for each unloading step of a composite with reinforcement  = 10 with hardening.The second row shows the criticalstretches for the LOE analysis in the
composite and the third row shows the criticalstretches for the ellipticity analysis in the fibers.

e,cr it Step

1 2 3 4 5 6 7 8 9 10 11

LOE comp 0.9084 0.9033 0.8837 0.8586 0.8288 0.7952 0.7566 0.7130 0.6617 0.6020 0.5310

LOE fibers 0.9750 0.9749 0.9749 0.9748 0.9749 0.9752 0.9747 0.9749 0.9749 0.9749 0.9748

Table 3
Critical elastic stretches for each unloading step ofa composite with reinforcement  = 1000 with hardening.The second row shows the criticalstretches for the LOE analysis in
the composite and the third row shows the criticalstretches for the ellipticity analysis in the fibers.

e,cr it Step

1 2 3 4 5 6 7 8 9 10 11 12 13

LOE comp 0.9992 0.9975 0.9966 0.9954 0.9941 0.9926 0.9909 0.9890 0.9870 0.9847 0.9823 0.9797 0.9770

LOE fibers 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

in the direction of the fibers.We perform this study as a means to
postulate a mechanism for macroscopic instabilities that emerge in a
fashion similar to macroscopic kinking instabilities in tendon.Similar
to the phenomenology of tendon kinking, here we show that LOE can
arise during elastic unloading (while stillin tension) once significant
plastic deformation of the fiber phase has taken place.We formulate
a material model for the composite by using neo-Hookean strain–
energy functions to characterize the constitutive behavior of the phases
and the Voigt assumption to approximate the macroscopic constitutive
behavior of the composite. In order to analyze the onset of localization
in this material, we examine the condition of LOE, which indicates the
possibility of onset of localization in a material. We focus both on LOE
that can occur in the composite, and in the fiber material. To do so, we
formulate an LOE criterion that can be used for an elastoplastic material
employing plasticity theory at finite strains based on the multiplicative
decomposition ofthe deformation gradientand hyperelastic laws to
characterize the elastic response of the material.

The main insightgained from this work was thatLOE can occur
under a tensile stress state in the direction of the fibers,and that this
effectis caused by plastic deformations ofthe fibers and the elastic
mismatch between the fibers and matrix.An advantage ofthe Voigt
approximation is that it allows obtaining explicit expressions for both
the local and the macroscopic incremental modulus tensors in terms of
the applied deformation gradient, which in turn simplifies considerably
the examination of the associated LOE conditions for the fiber phase
and for the composite.Uniquely,we notice that LOE initializes in the
fiber phase, but as we do not investigate postbuckling in this study we
cannot provide insight on how this localization evolves. We show that
upon cycling that induces plastic deformations in the fiber phase,the
LOE occurs in the fiber materialfor tensile stresses in the composite.
This observation proposes a shift in the way we look at the problem
of instabilities in soft composite materials since previous studies have
been focusing on elastic localizations arising only under compressive
loading in the direction ofthe fibers.These results provide the first
mathematical description of the mechanism through which fiber kink-
ing in tendon and ligaments could possibly emanate, emphasizing that
plasticity ofthe fiber components is extremely importantfor under-
standing the macroscopic response of biological soft composite tissues.
It is important to note that collagen fibers are commonly thought of
as not being able to take compressive loads due to their undulated
state, but the studies that support this claim focus on individual fibers
and neglect the complexity of the microscopic stress state.Here it is
suggested, that fiber plasticity can lead to a complex stress state where
a tensile state in the matrix and a compressive load in the fibers might
exist;this situation is very different than a macroscopic compressive
load. Even for undulated fibers,one can think of the fiber–matrix
interplay due to the elastic mismatch, as a distributed traction on each
fiber bundle that acts as a compressive load,not as an externalload

that is applied at the ends of the fibers. This key observation is critical
towards developing micromechanically accurate models for tendon.

A well-known disadvantage of the Voigt approximation, which has
been used in the presentwork to model the homogenized behavior
of the material,is that it accounts for the underlying microstructure
only through the volume fractions ofthe phases.For this reason,it
would be interesting to pursue a more detailed homogenization analysis
of the instabilitiesstudied in this work and explore the effect of
important microstructuralfeatures in these composites,including the
fiber shape and distribution.As the first step to this end,following
the work by Triantafyllidis and Maker (1985) and Nestorović and Tri-
antafyllidis (2004), composite materials with lamellar microstructures
may be used as two-dimensionalapproximations ofthe actualfiber-
reinforced composites of interest.These idealized microstructures are
useful not only for studying the critical conditions for the LOE of the
homogenized response ofcomposite materials butalso for analyzing
the stability oftheir post-bifurcation behavior (d’Avila etal., 2016).
Work along these lines is currently under developmentand will be
published in an upcoming study.From the practicalpoint of view in
biomechanics, a more important project which is worth pursuing is to
develop a predictive modelfor the mechanicalbehavior oftendons,
incorporating detailed information on the microstructure and on the
properties ofthe constituentphases,which could in turn help shed
light on the damage cascade during cyclic loading and overloading
in these materials, with the ultimate objective to guide exercise-based
treatments for tendinopathy.
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Fig. B.11. Stress–stretch curve ofthe composite and LOE points for a materialwith reinforcementmodulus  = 1000 with hardening for the new energy-function for the fibers
(Eq. (B.1)). (a) shows the 13 loading and unloading steps applied to the material.(b) shows LOE in the composite,where the squares with circles inside represent the points of
LOE. (c) shows the criticalstretches and composite stress for LOE analysis in the fibers.

Fig. B.12. Stress–stretch curve ofthe fibersand LOE points for a materialwith reinforcementmodulus = 1000 with hardening forthe new energy-function forthe fibers
(Eq. (B.1)). (a) shows the criticalstretches and fibers stress for LOE analysis in the composites,where the squares with circles inside represent the points ofLOE. (b) shows LOE
in the fibers.

Appendix A. Thermodynamic limit

In order to examine the thermodynamic stability of the constitutive
model,the Drucker stability criterion must be satisfied.The Drucker
criterion was first postulated by Hill (1958) and states that the internal
work due to mechanical stresses and corresponding deformation of the
material can only increase

 ⋅  ≥ 0, (A.1)

for elastic materials with no damage mechanisms.This last condition
tells us that this criterion holds as long as the stress value increases
with an increase in strain, or decreases with a reduction in strain.Liu
(2012) established a similar criterion to evaluate the thermodynamic
stability of hyperelastic constitutive functions,and specialized it to a
state of uniaxial deformation in hyperelastic materials as

 2 ()∕ 2 ≥ 0, (A.2)

where W is the energy function characterizing the elastic response of
the material and  denotes, in this equation, the stretch in the direction
of the applied uniaxial load. Since the 2 ()∕ 2 represents the sign
of the slope in the stress–stretch curve, this condition tells us that any
change in the stress should result in a change in the strain of the same
sign,thus yielding essentially the same criterion as (A.1),however in
terms of the strain–energy function.

We examine the elastic loading/unloading materialresponse prior
to yielding ( = ) under uniaxialloading in the direction ofthe
fibers (which corresponds to the condition  = 0 for ,  ≠ 1, 1 in
this work). We do that by taking the energy function ofthe fibers
in (48), computing the Kirchhoffstress ofthe fibers using (34),and
then calculating 11∕ 11 to check for the thermodynamic condition,
following (A.2). We, therefore, check if 

11∕ 11≥ 0 holds at all times
or if there is such a range of stretch values at which the constitutive
behavior violates the Drucker stability criterion.

Appendix B. A thermodynamically stable strain–energy function
for the fiber phase

The strain–energy function used in this work to represent the fiber
phase in (48) reaches a thermodynamic limit (discussed in Appendix A)
during compressive loading for values of reinforcement that are large
enough.Here,we check the validity ofour calculations reported in
Section 5 by changing the constitutive model of the fiber phase to the
following strain–energy function



() =



2


1 − 3 − 2 ln 


+

2

( − 1)2+

2

(

4 +
2

√
4
 − 3

)

, (B.1)

which has the advantage of satisfying the thermodynamic limitations
for all possible deformations.It is remarked thatin the incompress-
ibility limit  → 1, the above expression takesthe form of the
homogenized strain–energy function determined by DeBotton etal.
(2006) for a fiber-reinforced composite with neo-Hookean constituents.
It is also remarked thatonly the reinforcementterm for the fiber
phase is modified,while the energy-function of the matrix in (47) is
kept unchanged. We follow the same kinematics, plasticity and loss of
ellipticity formulation described throughout this paper, and we plot the
same set of results as in Section 5.2 for the reinforcement modulus of
 = 1000 in Figs. B.11–B.12.

Essentially, the trends of results remain the same as for the results
generated from the energy-function used for the fibers throughout this
work (48) when this lastone is restricted to the physically admissi-
ble range ofthe energy function,before the thermodynamic limitis
reached. From Fig. B.11, we verify that, as reported in Section 5, loss
of ellipticity calculated in the fiber phase occurs prior to the loss of
ellipticity in the composite and that the loss of ellipticity of the fibers
can occur when the material is under tensile state (Fig.B.11(c)).Loss
of ellipticity is also found either during elastic unloading or elastic
compressive loading.
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