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ARTICLE INFO ABSTRACT

Keywords: In this work, we relate fiber plasticity in soft composites to the loss of ellipticity of the governing equations of
Loss of ellipticity equilibrium of a composite under non-monotonic uniaxial loading. The loss of ellipticity strongly indicates the
Soft composites emergence of localization phenomena in the compuositéniscent of the emergence of kinking instabilities
E:Zitrizltr;kmg in tendon,which occur as a response to tendon ““overlowithout requiring any macroscopic compressive

loading.We examine softcompositeshere both fibersand matrix can be highly extensible and plastic
deformations are present in the fiber pha¥e.first propose a transversely isotropic constitutive nfiodel

the fibers allowing for plastic deformationaking into accouna single slip directionconsistentvith the
microstructure of hierarchically assembled collagen fibers. Following, we propose a simple hyperelastic model
for the matrix and combine the two following the VoigssumptionWe then formulate a generddss of

ellipticity criterion foran elastoplastic materiaubjected to finite deformation#/e use this criterion to

indicate criticalkconditions for loss ofellipticity in the softcomposite and individually in the fiber phase,

under various loading-unloading paths. Results show that plastic deformation of the fiber phase during tensile
loading can lead to ellipticity breakdown during elastic unloading while, macroscopically, the material is still
in tensionjndicating the possible onset of an instability.

Stability

1. Introduction collagen fibers (Baldwin eal., 2014; Veres etal., 2013,2014) and
a soft matrix. As a result of their architecture and available dissi-

Recentadvancements in fiber technology have led to the devel- pation mechanismsthey exhibit high extensibility,toughnessand
opmentof hierarchicalfibers, composed ofbuilding blocks such as  fatigue resistance as they undergo repeated loading (Freedman et al.,
carbon nanotubes (CNTs), that exhibit plastic deformations to combjng 4; Thorpe and Screen2016). This bio-inspired template is very
extensibility strengthtoughness (Beese et., 2013) and multifunc-  promising for the design of the next generation ofsoft composite
tionality (Li et al., 2018). Advanced biosynthesis approaches on the materialswith target applications in the replacement of load-bearing
other hand have also led to the development of plastically deformingys tissues (e.g. meniscus, ligament, tendon) and multifunctional tough
fibers from biopolymers based on collagesilk and cellulose (Burla “ligamentsfor soft robotics (Pan et al., 2020).
et al., 2020; Larsson etal., 2014; Wang etal., 2017; Ansari et al., In biological fiber-reinforced soft composites such as ligament and
2014; Li et al., 2012; Wu et al., 2019). Nature’s design and novel nat"é(ﬁ'don,plasticity is known to occur through levelsof the tendon

materialsynthesis techniques incite the exploratioradfio-inspired . - . . -
template for the optimization of soft fiber-reinforced composites wrﬂ'%ra“hy' and significant attention has been recently given to plasticity
P P P ' ag the fibril level (Herod et al., 2016; Vereset al., 2014; Baldwin

ictates thatthe fiber ph hibitplastic deformations (Yod-
dictates thatthe fiber phase can exhibitplastic deformations (Yod- "0 6.\ recet al., 2013, 2015; Baldwin et al.,, 2014: Tang

muang et al.2015;Cheung et al.2008;Gea et al.,2010;Lee et al., ; .
2012; Sehaquiet al., 2011; Callenset al., 2014). This template is et al., 2010). An interesting phenomenon thahas not been fully
understood in tendon is fiber kinking, which is observed when tendon is

followed in biological materialswhen high extensibility toughness } - o . -
and fatigue resistance are necessargs plastic deformation in the ~ Unloaded upon repeated cyclic loading as seen in Fig. 1. Fiber kinking

fiber phase leads to increased energy dissipatidfiore specifically, is treated as a precursor to tendon damage and its emergence is not
tendon and ligaments, are soft composite materials with aligned duf4ll¥ understood (Andarawis-Puit al., 2009, 2012b,a,2015; Fung
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Naive Fatigue Loaded

Fig. 1. Multiphoton microscopy afiaive (left) and cyclically loaded (right) raatellar tendonsCyclic loading is conducted in uniaxié&nsion for 7200 cycles at Hz, where
each cycle peaked at 40 N (40% of the ultimate lobdages were captured in an unloaded stabe arrows in the cyclically loaded state correspond to localized deformations,
often referred to as ‘‘kinking”’.

et al.,, 2010; Neviaseret al., 2012). Kink-band formation hasalso there are numerous studies dealing with the effechtrix plastic-
been observed extensively in the context of engineering fiber-reinfotgexh the development of instabilities and failure of polymer-matrix
compositesmainly under compressive loading (Budiansky and Fleck compositege.g., graphite-epoxylunder compressive loading condi-
1994; Sivashanker et al., 1996; Berbinau et al., 1999). The damagetiions along the fiber direction (see.g.,Budiansky and Fleck (1993)
tendons under fatigue loads has been related to the developrofént and Fleck (1997)). These studieshave established thathe plastic
diseases such as tendinopathy, see Freedman et al. (2014) and Maféi@formation in the matrix hasa significanteffecton the compres-

et al. (2003). This disease has been especially associated with the Igtee failure of these materialand that the dominantfailure mode
stagesof accumulated tendon damageharacterized by rupture of is localized plastic kinking (e.gKyriakides et al.(1995) and Vogler
fibers. In this context, few researchers have addressed the progressib@l. (2000)). Given the inherent difficulties involved in the microme-
process ofdamage thatprecedes rupturesee Andarawis-Puret al. chanicalanalysis of these instabilitiefgllowing the pioneering work
(2009),Natali et al.(2005),Ciarletta and Ben Amar (2009jarletta Py Rosen (1965),severalauthors have utilized composite materials
et al. (2008). Shen et a(2010) studied the mechanical behavior at a With lamellar microstructures as two-dimensiorgproximations of
fibril level of collagen of biological structures stretched in one directiBg fiber-reinforced composited interest.Along these lines,a de-

and characterized the fracture into brittle or plastindarawis-puri ~ tailed investigation ofmicroscopic and macroscopic instabilities

and Flatow (2011) investigated three different levels of fatigue dam@igikely strained elastoplastic laminates has been carried yfi-

on rat tendons and noticed the formation of kinks on the tendons uidgfYllidisand co-workers(e.g., Triantafyllidis and Maker (1985)
lower levels of fatigue. Jozsa et al. (1984) studied collagen fibrils ang"d Nestorovic and Triantafyllidis (2004)An importantfinding of

found the presence of kinks in spontaneously ruptured human tendb€S€ Works is that macroscopic (long wavelength) instabilities, which
Despite these contributionsf the aforementioned studiekjnks may be conveniently computed from the loss eflipticity (LOE) of

were only treated as a precursor to matefalure in cyclic loading, :het:ssogated h(_)m(ogentlzed C?nSt'S:)tl.ve fqbqlétt.lonf’ 'S ar: upger boun(t:i
and the formation of these repeated deformation patterwsas not 0 the microscopic {short waveleng Instabilities {see also Geymaona

fully analyzed.On the other handfhe understanding dfhe damage et al. (1993)).In more recent yvorkd AV”a. et al.(2016) have shown
U . . . . that the LOE ofthe homogenized behavior tfyperelastic laminates
progression in tendonss essentialfor tendinopathy prognosisnd

. . . ... leads to a macroscopically unstable behavior (strain localization) in

also for informing exercise-based treatments. In parallel, plasticity was, ~. . . . N

observed in tendon experimentfom discrete plasticity (see Veres C€rtain cases, but not in others, depending crucially on the constitutive
. relations of the constituent phases. Further r and Castana eda

et al. (2013,2015),Herod et al.(2016),Veres et al(2014),Baldwin p rrranks A

2020) have demonstrated that the onset of macroscopic instabilities
et al.(2016,2014)) at the fibril level which alters the morphology of.( ) P

) . S i . in neo-Hookean laminates is determined by the loss of globak-1
the fibers to macroscopic plasticity under cyclic loading at the tendQR oty ofthe principalsolution,which usually occurs before the

level (see Fung et al. (2909)' Andar?xV\.lls—Purl e_t .aI. (20.12a)).. Tang e?o@s of strong ellipticity and leads to the formation of microstructure
(2010) attempted to validate the origins gfasticity by identifying (lamellar domains)at a mesoscopic length scalén addition to the
the plastic deformation mechanisms presintollagen fibrils when  56ye contributionghe LOE of phenomenologicatonlinear elastic,
loaded in uniaxial tension through computational molecular dynamigg, nsyersely isotropic constitutive relations has been studied by several
modeling.Furthermore Fung efal. (2009) and Vereset al. (2013)  aythors(e.g., Merodio and Ogden (2002), Triantafyllidisand Abe-
argued that this plastic deformation of the fibers was the major cauge ofine (1983)Merodio and Ogden (2003Riu and Pence (1997a)).
the formation of kinks in tendondnderstanding how multiscale me- fyrthermorean analysis ofthe onsetof macroscopic instabilities in
chanics of soft composites can lead to similar localization phenomerp@,pere|astic fiber-reinforced elastomers under geneading condi-
under non-monotonic loading is a crucial first step towards understaighs has been carried ouby Agoras etal. (2009b) by studying the
ing this localization phenomenon in tendainsthis work,we aimto | OE of the associated homogenization models of Agoras et al. (2009a)
investigate whether plastic deformations in the fiber phase can indegf§ DeBotton et al. (2006).
be responsible for localization in the composite under tensile loading The motivation for this work is the fact that there is no clear
conditions. We use the concept of loss of ellipticity to indicate criticghechanistic understanding of how the ubiquitous phenomenon of fiber
conditions that can potentially lead to localization. kinking emerges in tendon due to so-called “‘overloadfiere have

To the best of our knowledge there is currently no theoretical been severalexperimentaktudieson the topic, but no theoretical
work in the literature to address the effeof fiber plasticity on the or computationaktudieshave been able to provide a mechanistic
macroscopic stability ofoft fiber-reinforced compositds. contrast,  interpretation of the phenomenon. In this work, we aim to investigate
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the pathway that could possibly lead to a similar instability in a soft
fiber-reinforced composite to emerge. More specifically, we investigate
the LOE of the composite in the contexbf non-monotonic loading

5}

allowing for plastic deformations in the fiber phase. LOE, as mentionedg Fiber
previously, does not necessitate localization but in many problems indi§
cates it. The proposed model is not a complete model of the mechanical Mimx

behavior tendon, but a simple approximation that can relate to tendon
as it shares some low-level common features such as a ductile stiff fifer

phase corresponding to collagen fibesiad a soft and elastic matrix =

-
b=

. . . ) ibri
phase corresponding to proteoglycans and eladtie. main purpose ) e — "
of this work is to investigate theoretically the role filber plasticity Ez====z=======
on the LOE in soft fiber-reinforced compositasder tensile cyclic g e

loading. To this end, we model the material of the matrix as an isotropic === —=—_ block
hyperelastic solid and thabf the fibers as a transversely isotropic
elastoplastic solidTransverse isotropy is used in the fiber phase to Fig. 2. A simplified schematicrepresentation ofthe multi-scalemicrostructurén
maintain the hierarchy observed in the fiber phase itsefwil be — S1ee7e o () Sheres nireciors loer e e apostisearsis e
further discussedA simple constitutive modefor the macroscopic ; of 5 bundle of aligned long fibrils, as shown in part (b), while each individual fibril
response ofthe composite is derived by employing a Voigt-type of consists of a large number of aligned short sub-fibril building blesk&own in part
approximation. The loss of ellipticity of the model under cyclic loadif@-
and the effect of fiber plasticity are discussed in detail.

The paper is organized as follows. In Section 2, we provide a general
description ofthe problem considered in thipaper,as well as an 2. Modeling fiber plasticity in soft composites
introduction on basic concepts on the kinematics of finite deformations,
including the theory of multiplicative decomposition of the deformatiorn this work, we focus our attention on a class of composite materi-
gradient for plasticity. Additionally, in the same section, we provide@f consisting of a soft matrix reinforced by a single family of fibers, as
outline of the stress power relations and of the relations characterizfi@Wwn in the schematic representation of Fig. 2(a). The fibers are taken
the elastic and the plastic behavior of a general nonlinear material, hBe aligned along a given direction, defined by the unit vegtior ®
finally, we provide a description of the incremental elastoplastic corf&ig unstressed state, and to exhibit elastoplastic, transversely isotropic
tutive equations. In Section 3.1, we formulate the effective behavioPfdl2Vior.with symmetry axis g The matrix,on the other hand,is
the soft composite with fiber plasticity considering the Voigt approX@ssumed to exhibit isotropic and hyperelastic behavior with respect to
imation.In Section 4,we formulate a general loss of ellipticity (LOE) the unstressed state. , ,
condition for the incremental equations of equilibrium that can be use he above hypotheses are motivated by the microstructure and the

both atthe macroscopic levedf the homogenized composite and at local material behavior in tendons. In particular, the proteoglycans and

. ) . . . elastin matrix in these materials are amorphous and can accommodate
the microscopic level of its homogeneous constituents, in the context™o . . )
. . . . . arge elastic deformations$n contrast,the collagen fibers are char-
finite elastoplasticity. In Section 5, we discuss numerical results, wherg . . . L
erized by a preferred direction and exhiliticrostructure atwo

o L ac
vye study the thermodynaml.c limiaf the Fon.st|tut|vg mode¢f the well-separated levels of hierarchy: at the higher level, each individual
fiber phase and the composite under uniaxial elastic loadirglso [iber is actually a bundle ofiligned long fibrils (Fig 2(b)), while at
. ? . . . ; Ye lower level,each fibrilis an assembly ofaligned short sub-fibril
in the fiber phase. In the Appendix, we include a discussion on how §gi4ing blocks (Fig2(c)). Under appropriate loading conditiottbe
determine the thermodynamic limit 9f a hyperelfastlc matmdbl. sub-fibril blocks can slide with respect to each other along theaxis ®
We also repeatone setof the calculations shown in Section 5 fora  thys producing a permanent axial strain at the fibril level. The central
thermodynamically stable free energy function and verify that the tFﬁ/ﬂﬁl)thesis of the present work is that the plastic deformations in the
in the results of loss of ellipticity remains unaltered. fiber phase play a key role in the loss of ellipticity of the governing

Standard notation is used throughout the artidiensors offirst,  equationsof equilibrium for the macroscopic behavioof the com-
secondand fourth order are denoted by boldface lettEne. compo-  posite under cyclic loading angossibly,in the onset of macroscopic
nents ofall tensors are referred to a fixed Cartesian systel@fined instabilities that are observed experimentally in tendons (Fig. 1).
by the orthonormal basis vectgysaith 3 = 1, 2, 3, and are denoted by In the sequelof this section,following Pereda etal. (1993), we
lightface italics. For definiteness, let 3 and 4 be vectors, L; and 1} sedigndss a transversely isotropic constitutive model, accounting for finite
order tensors, ane &nd= fourth-order tensors, with componenfs U elastic and plastic strainghich is being used in subsequent sections
W, €, ¥ S50 aNd =, respectivelyThe summation convention to characterize the materiddehavior ofthe fiber phase in the soft
is used throughoufor repeated indicesThe scalar productof any composites of interest.
pair of tensors of the same order is denoted by a dely.,we write
3-4=UWand L - i = ¥, , whereas the dyadic product between 2.1. Kinematics
tensor of any order is denoted by the symbolegy.,(3 ® 4),, = UW ) o ] ]
and (I, ® )= €,¥,,. We make use of no particular symbol to denote Con5|dler a h.omo“geneous solid with a refe'rence conﬁgurapgn R
linear mappingsor compositionsof mappingsand let their precise @t some fixed timegiand a current configuration # at an arbitrary,
meaning be inferred from the contextor instance,(13) = ¥ .U, subseguent time O. Let the defo.rmatlon' of the mat.erlabﬂmr’mabe“
(L) = €,¥,,, and (&), = =,.€,. The superscripts —1 and ¥ denotedescrlbed by a one to qqe and dlﬁerentlablg mappllng 5 = fr'aa(@, 0), where
respectively the inverse and the transpose of a second- or a fourth-S)ral%Fj 5 denote Fhe position vectors: ofa typ.|<ralatg.r|a| ppmt in %
tensor,e.g.,(1¥),, = €,, and =) The prefixes tr and det and ¥, respectively. The deformation gradient g-idrdefined as the

3456 = Ts634° : .
indicate the trace and the determinant, the superscript . the deviat Sﬁ(c:qnd order tgqsor with compo.negﬁtsfw@ﬂa ;- In order to ensure
€ impenetrability of the material, it is assumed that 7 = det = > 0.

part, and the subscripts A and n the symmetric and anti-symmetric par (S)Ilowing Lee (1969)it is further assumed that = may be decom-
of a second-order tensok.superimposed dot on a tensor denotes theposed multiplicatively as

material time derivative of that tensor. The second-order identity tenhsor y

is denoted by = and its components,py — == %9, (1)
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where the tensor$ and 2 describe respectively the elastic and plasti2.3. Elastic behavior

parts of the deformation and arethus, taken to be invertiblewith

7°=det%=> 0 and ? = det2= 0. The elastic properties ofhe materialare defined in the isoclinic
The decomposition (1) introduces a lociitermediate configura- configuration in terms of strain-energy density function y (3=

tion +3, which may be regarded either as the deformed state for the{(<¥), which is such that %=y‘and, therefore,

plastic part or as the reference state for the elastic part of the defor- _ 9y (8)

mation. The symmetries and constitutive equations for both the elastic 0%

and the plastic behavior ofhe materialmay be conveniently stated For later referencejt is remarked thatthe rate form of the above

in ¥, as detailed further belowiNote, however,that expression (1)  constitutive equation is

defines the intermediate state only up to a rigid body rotation. In order 02y

to resolve this ambiguityin this work, we choose the intermediate = ' 0%90%9 9
configuration to be isoclinic (Mandel, 1971), such that the orientatiqp addition,making use of (%)and (9),it is straightforward to show
of the symmetry axis of the material ¥ remains fixed at altimes 3¢
and, therefore, coincides with its orientatigin®ey,.
. " N . . =:_0&§ 0 =50505050 _ N
Given the decomposition (1), any elastic and plastic strain measdte ’ 3456 2307 40 538 6A DA
may be defined in terms of°-and 2, respectivelyln this work, we 14 «*
oY cspectivey TS Gat St 5%t 1 (10)
will only make use of the Green elastic strain tensor

1 where we have introduced the co-rotational rate & + x8- = °x .
=5 (et =3 (2) Note that, the fourth-order modulus tensetsaad =in (10) and (9)
. o . possess both the major and the minor symmetries.

where &= ¥ = js the elastic right Cauchy-Green deformation tensor For the purpose of this work, the strain-energy density funﬁation
and = is the second-order identity tensor. is assumed to be a transversely isotropic invariahtwifhssymmetry

Letting 4 = % (@, O) denote the velocity fidld,velocity gradient  axis . Hence the function y may be written in the form (Ericksen
— in ¥ is defined as the segond—order tensor with compongpts 8  and Rivlin, 1954; Spencer, 1984)
oo /ofb,. It follows that — =£=1, which, by taking into account (1),

implies that §A{e®) =y (61, &, 63, G G), (11)
_ —®B -1 00 0-1 9= Bl (3) yvhere 6_[ ‘62, 6_3.,, 64, and 6g S:onstitute a complete set dfansversely
3 3 isotropic invariants of %dlefined by
where %is the velocity gradient tensor in the intermediate conﬁgura—6 - tra 6 = 1 &(Sfrce@)z _ tr(z&)zb’
tion. The tensors — and]-may be decomposed into the deformation e 272 ! (12)
rate tensors I 63=det % 6, = §" «ksy, 65 = G- ()%,
"9’ =§E G+, =By (4) Wit (e®)? = «P<. Note that,the functions g, 65, and 63 are the
xg = “,:0_950—1‘6?, x% = (2 principal, isotropic invariants oP;ewhiIe_64 and & depend explicitly
? 8 } on &. Thereforejn the special case that y is independent of and
and the spin tensors 65, (11) reduces to
s=— =0 o4 19, s 0= &Q_Zo—lcd' - J—
s Bt oo " (5) )=y & a) (13)
D YT tgiw and describes an isotropic hyperelastic materialpassing,it is re-

where the subscripts “sihd “‘a”indicate respectively the symmetric marked that the properties of the matrix phase in the composite materi-

and anti-symmetric part of the second-order tensor to which they a@ds of interest are completely characterized by means of a strain-energy
attached. function of the form (13).

2.4. Plastic behavior
2.2. Stress power
Motivated by the behavior of collagen fibers in tendon (seeZFig.
It follows from the above definitions that the stress power A per anit relevantdiscussion) we assume thathe plastic deformation of
volume of intermediate configuration may be decomposed accordinglg material is constrained to be isochoric and axisymmetric, with the

into an elastic part®and a plastic part ®as follows associated symmetry axis being [ particular,we assume that the
material obeys the yield criterion
A=x o 2RY, =L A=0- (6)
50, =q-g =0, S=§ &, (14)
where we have introduced the stress measures
along with the associative flow rule
X =%t, L= 2ke=¥  p = ¥y, (7) .
g =gt 2=TT= (g ), (15)

with «* denoting the Cauchy stress tensdhe tensors %, and & .
in (6) are commonly referred to as the (elastic) Kirchhbig, second where&-= 0 is the plastic multiplier, to be determined further below,
Piola-Kirchhoff, and the Mandel stress, respectively. The Cauchy str@8él the superscript ;" In th? above expressions denot.es the Fiewatorlc
«* is assumed to be symmetrin thatthe tensors xs and I, are also part of the tensor to which it is attached. The yield strefs (&) is
symmetric, but 4 is not symmetric, in general. assumed to be given as a function of the accumulated plastic strain —
Next, we define the elastic and plastic parts of the material behav\\/l%' h Is also determlped further belgw. . —
iven that & definesthe direction of certain material line

in the intermediate configuratidm. particular,we first establish ap- e o
iat lati bet th . t iabled Gpdeéd, %) elements—whichin the case of tendorgorrespond to the fibrils and
propriate refations between the conjugate varia @pded, 3! ub-fibrils—it follows that, in the intermediate configuration,

and then we combine these relations to obtain the corresponding raste -
form of the elastoplastic equations. @@= o ‘; + ’é;@o ®H—§® Q)x% & == z®0 = 4, (16)
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where (16} follows from the flow rule (15), while (16); is due to where &= x3 — cxs + X3 is the Jaumann derivative of xghisctki
the fact that the intermediate configuration is isoclinic and, therefonenit step function; recall thatili= 1 if3"> 0 and W)’ = 0 otherwise.
@ = A. Eq. (1§)implies that @is the axial vector of?, which in turn  Note thatithe modulus tenscr #1 (29), has both the major and the
allows us to choose minor symmetries.
L= A (17) Finally, for the numericaintegration of the elastoplastic constitu-
BN tive equations presented in this section, we refer to the work by Pereda
with no loss of generality (see, e.g., Aravas (1994)). et al. (1993),where an efficientalgorithm can be found for a more

Thus, we find that§= x}and, therefored=-1= x% Taking into  general class of anisotropic materiaid)ich can be easily adapted to
account the flow rule (15), the latter equation impliestdesceibes the present case.
an axisymmetric shear of the form

o _1p8 c* 3. Estimates of the Voigt type for soft composites with fiber plas-
9 =RQep® §+ ©® €+ Hh® gy , (18) ticity

where g and ¢, are any pair of unit vectors in the transverse plane

which together with ¢ form an orthonormalbasis, while 12 is the In this section,we propose a simple constitutive modébr the
plastic stretch along,ewhich is given in terms df-by macroscopic behavior ofhe unidirectionakoft composites ofinter-
1§ 2. est. The proposed modekims to resolve some basic characteristics
It—g' = §1}." (19) of tendon from a micromechanicgberspectivesuch as the ductile

response of collagen fibers and the elastic response of the surrounding
matrix, but purposely neglects some other well-established features of
the response which resulfrom undulation ofthe collagen fibers at

In addition, assuming that%-is-plastic-work conjugate to the ax-
isymmetric stress «$0 that

By =4 %z A ,ggg): & (20) their un-recruited statesuch as the toe and linear regimes present
in the stress-strain response (Szczesny et112) and the tension-
it follows that compression asymmetry. The main motivation for these idealizations is
Eye! (21)  twofold: (i) when plastic deformations are taken into account in macro-
scopic tendon and connective tissue studies, plasticity is usually lumped
The above expression constitutes the evolution equation for —  at the composite leveand the intricate response due to the elastic
Given (15) and (17)the plastic deformation rate and spin tensorsmismatch between fibers and matrix is neglected, and (ii) focusing on a
(4)3 and (53 in the current configuration take the form very simple microstructure will allow us to gain insight on the existence
X9 = ﬁ:{,}{o#_ﬁ‘ (22) of governing mechanisms that could also dictate the response of more
- 3 A realistic microstructures.
and
o= 6:9*5’ 9_9_1@" (23) 3.1. Effective behavior
3 n
respectively. Consider a composite materiahade outof an isotropic and hy-
Given the yield condition (14) and the evolution equation (21), thperelastic matrix phaseginforced by a large number of elastoplastic
consistence conditiot' = 0 takes the form and transversely isotropic fiberas defined in the previous section.
. ocR; In the undeformed configuration, the fibers are assumed to be aligned
% 8-8h=0, h= . (24) along the symmetry axjobtheir transverse isotropy. In what follows,

we make use of the superscripts ‘“‘mfid “‘f'’to distinguish between

Taking the time derivative of g/)Jand making use of the result (10), n - . :
quantitiesthat refer to the matrix and the fibers,respectivelyFor

it is found that

. 4 & > instance, the notationd Whd W are used for the volume fractions of
A= 2 =0 tap g 7Y (25)  the phases in the reference configuration, which are such+Rat=w
where L ) . N .

14 ot In order to determine the macroscopic constitutive behavior of the
Xy o= 5 T s T 50T 395 (26) compositewe employ the approximation dhe Voigttype thatthe
. . . . . deformation gradienfield in the composite is uniform althe time.
Note that the tensor®s is anti-symmetric with respecto its first Therefore

and symmetric with respect to its second pair of indexes. Substituting
expression (25) in the consistency condition (&hd makinguseof <2 ==, 2 ===9, (30)

o . 59) i
the fact that = x5, —%with «4 given by (22), it can be shown that where = denotes the macroscopic deformation gradient, whaed=

A= }g - X, (27) =2 stand for the deformation gradients in the matrix and the fiber
- phase,respectivelyThis assumption implies thathe corresponding
whe_[e _ stress field in the composite is uniform per phase amereforethe
9= o +aﬁ7 C\i g :0_1‘63‘ - 2@‘79 z 9—1‘5’:_ h, (28) macroscopic Kirchhoff stress xs is given by
X9 =708 + Wb, (31)

where we recallthat (s )auss = Xy, It follows from the aforemen-
tioned symmetrie®sf =° and %s that the second-ordetensor2 is where %, and & are the Kirchhoff stresses in the phasesich are
symmetric. related to the corresponding Cauchy stresseme#dt by

2.5. Incremental elastoplastic behavior =Tk, =T, (32)
o where 7 = det =. Note that, in the context of, (B3¢ has been made
Taking into account the fact that &.xs, —%sas well as Eqs. (22)  of the fact that 7 =9 with 7° = det % which follows from the plastic
and (23) for & and - °, respectivelywith 4.given by (27)the rate  jncompressibility of the fiber phadthe macroscopic Cauchy stress «#
Eq. (10) may be recast in the form can be shown (Hill, 1972) to be given in terms of 7 and xs by

G==w, ==-=2-hg, (29) @ =7k (33)
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The above result, which holds independently of the Voigt assumptiofpr latter referencet is remarked that Eq(40) may be rewritten in
may be shown directly in the present context by making use of Egstiigiform
and (32), along with the equation «#<* ®AW<¥. In connection with . ¥
(32) g with he €q . : ﬁ#L—fR)- or @".=GL - R lg,

the latter equation, it is remarked that, due to the Voigt approximation, 34 3456 3450 offy
the volume fractlgnsof the phasesare independenbf the applied where®Ris a fourth-order tensor with components
deformation gradient =. 14 «

At this point, it is relevantto recall from the discussion in the 313456 = 5 O 26— Uz — 1%+ 7% - (42)

previous section that

(41)

Note that®Ris symmetric with respect to its first and antisymmetric
o = L1 0¥, L' = by i (34) with respect to its second pair of indexes.
b In the absence of body forces, the equilibrium equatigybje=
where #is the Green elastic strain tensgiven by (2)whiley * = for the material under consideration may be written in the rate form
y ! (#%8) is the strain-energy density of the fiber phase, which is taken
to be some given transversely isotropic function of the formRad ). oo,, 00, oV

1

completeness, we also remark that . _EE =0, (43)
4 4
& ==0F 7= %, (35)  which, by making use of (41), specialize to
[ 1
where ¥ is the Green strain tensor in the purely elastic matrix and QL - R, ‘6”’2\’@/ + 2 &L - R, @_% o™ _ . (44)
y 7 =7y 7(%)is the corresponding strain-energy densityhich is 3456 450 ofh,ofh,  ofb, 3 450 ofh  ofh,
assumed to be a given isotropic function of the form (13). Expressions (44) constitute a system of linear PDEs of the second-order
Given that, by assumption, (30) holds at all times, it follows that for the velocity field 4 in the material.
7= 1 (36) Adopting standard terminology in the linear theory of PDEs (e.g.,

Renardy and Rogers(2004)), the term involving the second-order
where — is the macroscopic velocity gradiewhile 2 and X are derivatives of 4 in Eqgs. (44) is referred to as the principal part of these

the velocity gradients in the phasétence,the Jaumann derivatives equations, while the second-order tensor ————==" with components
(i.e., the co-rotational rates with the macroscopic spin = 5 63 _A <
and % are given by 935 = Lause ™ Ryuse 8,86 (45)
where 1 is any non-zero vectorjs referred to as the symbobf the
g ==, & ==Tx, (37) ¢ ‘ ;

principal partlf det = Wéat@d tealAthen the system
where x93, = (Js the macroscopic deformation rate tensshereas of PDEs (44) is called elliptic, it has no real characteristic surfaces and
="' and=" are the corresponding incremental modulus tensors of ttagmits no solutions with discontinuous partial derivatives.

phases. Recall that the components' are determined by expression ~ For the purpose ofthis work, we henceforth restricattention to
(29), in the previous sectionln addition, it follows from the result ~ uniform deformation paths, so that the fourth-order t&resodsRe—

(10), that the components sf’=are given by which determine the symbol ———=—==" and, in extend, the type of the s
1= = of PDEs (44)—are independent of i is important to bear in mind,
=yse = OPadsBeisat > Gt Gnt w5t w5 however that bothZand &R depend inherently on the deformation

) gradient =as well as on the current state of the materésl defined

=7 o= L, by the associated internafariables.With no loss of generality it is
T 04 5, 04 convenientto view a path of deformation asbeing applied on the

(38) initially undeformed material by a uniform deformation gradient = =
=(0)which varies (monotonically or not) with timeféom its initial

Thus, taking into account the expressions (31) and (W& find that
the Jaumann derivative xf the macroscopic Kirchhoff stress is given
J P 9 For any given deformation patlihe system oPDEs (44) for the

by ; . . . -
elastoplastianaterialsof interestis known to be strongly elliptic

& ==x3, ==W=7 + ¥=". (39) (i.e., det reald forfglin the linear-elastic regimdgut as

the deformation becomes nonlinear, a critical state may be reached at

which the governing equations o equilibrium (44) may lose ellipticity.

This happens when there exists at least one real vector 1 # 4 for which

value =@ = =.

Note that, the macroscopic modulus teasior 29), just like its local
counterparts<L and ="', possesseboth the majorand the minor
symmetries.

4. Incremental equations of equilibrium: local and global loss of ~ det =0. (46)
ellipticity

When the above condition is first met, it becomes possible to have solu-
tions with discontinuous partial derivatives of 4 across a characteristic
surface with normal 1. The emergence of such discontinuous solutions
is often regarded as a precursor for the development of material insta-
bilities and failure, such as the formation of shear and kink bands, and

The ellipticity of the incrementalquations of equilibrium for the
homogenized composite dfiterestand for its homogeneous phases
may be concisely analyzed in a unified mannlarparticular,in this

se;tion we foc.us our considerati‘ons. ona homogeneous siiarac- it is therefore of great significance. It should be emphasized, however,
terized by an incremental constitutive equation of the form that the loss ofellipticity (LOE) condition (46) is necessarput not
F=fxs, L=7"L-w®-=, (40) sufficient for the onset of instabilitidééote that,in order to examine

(46) at any given stage ofhe deformationit suffices to restrict the
where «% is the Jaumann derivative ofthe Cauchy stresss*.Note analysis to unit vectors 1.
that, the macroscopic constitutive equation (3%or the composite In passing, it is remarked that the condition derived by Rice (1976)
may be easily recastin the form (40), with the modulus tensore= (see also Rudnicki and Rice, 1975) for the localization of deformation
given by (39). The corresponding constitutive equation for each of it a narrow band of a homogeneously deformedmogeneous solid,
constituent phases may also be written in the form (40)=wheré = exhibiting piecewise linear incremental behawan, be shown to be
and «* = 43with A = 7 for the matrix and A = 1 for the fiber phase. equivalent to the LOE condition (46).
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The onset of the LOE of the governing equilibrium equations is digrescribing the principabtretch L in the direction of the loading,
cussed in more detail in the following section, in the context of spedifid calculating the other corresponding princigiaétches 3;and Ig
constitutive models and loading conditiom®th atthe macroscopic  according to the uniaxial stress state, je=@ for 3, 4 = 1, 1.
level of the composite and at the microscopic lewélits constituent All elastic moduli and stress normalizations are with respect to the
phases. As indicated earlier, the failure of ellipticity which is examingtear modulus of the fibers. e normalized bulk and shear moduli
in the present work is exclusively induced by the variation of the fodioththe fibers and matrix are taken to be= =2 = 1000 andpe= 1,

ine

order tensordiand R with the prescribed deformatiorGiven that T = 10, respectivelyThe overlines thatdenote normalization are
these tensors represent inherent matemiapertiesjn what follows, hereon omittedthus all stresses and moduthat appear are normal-
the onset ofthe LOE of the corresponding equilibrium equations for ized.For the plastic response of the fibene use a normalized yield

the materialunder consideration is simply referred to as the LOE of stress of ¢#= 1500.

that material. First, we investigate the material response of the composite, as well
as the material response in each phase through one loading/unloading
5. Results and discussion cycle.For this, we consider the cases of perfectly plastic response

and a hardening response for the fiber phase. Following, we investigate
In this sectionwe present the results of mechanicasponse and the implicationsof thermodynamic stability othe materialmodel
LOE for a reinforced material composed by 80% in volume of ductilestudied in this work.In the final part of this sectionwe investigate
fibers embedded in an elastic matriXhe matrix is taken to be hy-  the material stability of the composite under several loading/unloading
perelastic and its free energy density function follows a compressibleycles,where we focus on the LOE in the composite as wel$ LOE

neo-Hookean material model of the material in the fiber phas®@l/e performed this last analysis on
— e g materials with differenhormalized fiber reinforcememntoduli (= =
=5 (6=3-2In7)}5(7 - 13, (47) 10, 1000), with and without hardening in order to analyze the influence

where 6 = tre# is the firstinvariantof «# calculated using the total of fiber stiffness and plasticity in the overataterialresponse and

deformation gradient =. The fibers are taken to be elastoplastic anospsliiliztnghedpa;i‘nomfters ofhe hardening modalised are j = 50,
elastic properties are defined in terms of a compressible neo-HookeSh — ando T

model with an additional standard reinforcementerm 1 (67) (Tri-
antafyllidis and Abeyaratne, 1983; Merodio and Ogden, 2002), due fr)o'
the microstructure of the fiber material, as seen in Fig. 2(b)
of aligned fibrils

1. General response and thermodynamic limit

, consistin . . . . . .
gWe first perform a single loading/unloading cycle in tension, start-

ing from the unstretched state where = = =reaching a maximum
J— iber 2 - — . . . . .
v o= %\C(Gf —-3-21In7) ; (7 — 1% +§(62 - 13 (48) stretch ofy; = 2.5 in the Ioadllng d.lrectllon .and reFurnmg tg a state
where the stretch in the loading direction;issI1. Fig. 3 outlines the

where g = tre® and ¢ = & - «%®, are the first and fourth invariants relationship between the Kirchhoff stress in the direction of the loading
of «#, respectively, calculated from the elastic part of the deformatid¢® ), for the composite (Fig. 3(a)), the fibers (Fig. 3(b)) and the matrix
gradient=°. For both matrix and fibersthe value of = is chosen to  (Fig. 3(c)), plotted against the stretchA& seen in Fig. 3(b), the fibers

be large enough to obtain nearly incompressible phase&!8), the reach the yield point and present an elastoplastic behavior beyond that
reinforcement parameter = = 0 retrieves to the origiealHookean point,whereas the response of the matrix is purely elastic 8f@)).

model, while = - » corresponds to an inextensible material (Qiu an@ihe response with and without hardening can be identified between
Pence,1997b).This reinforcement function has its second derivativethe solid and the dashed lines in Fig. 3.

given by 1£(¢)) = =, and since we choose values ofeinforcement As previously mentioned, the material model used to represent the
parameterto be = = 0, we obtain 1 E(GZ) = 0 and the function fibers following the elastic strain-energy density in (48) can present
1(69) is convex (Tiel, 1984). The neo-Hookean model representing tidethermodynamic instability when subjected to uniaxiaipressive
matrix phase in our formulation is known to have a stable response stress.Beyond the onsetof this instability, the materialmodel no
however it is also known thermodynamic instability may arise from teeger represents the physical behavior of the material and thus cannot
reinforcement term in the augmented neo-Hookean model used forkReised.Thus we wish to study this pathology dhe modelfor the

fiber phase (Qiu and Pence, 1997b; Guo et al., 2007). The specific fegecific materiaparameters thatve use in this paper.From (A.2),

energy density function of the fiber phase, as prescribed in (48) hadttfollows that the materiaik stable as long as the second derivative

be further examined, as a thermodynamic instability indicated that efi¢he strain-energy function remains greater or equalzero. The
material model no longer represents the actual material behavior. V¥econd derivative othe strain-energy function denotes the slope of
detailthe analysis of the thermodynamic limit of energy functions inthe stress-stretch relationshfor this investigationwe restrictour

Appendix A. attention to the elastic response prior to yielding. To perform this task,
The plastic behavior of the fibers follows the rules in Section 2.4,we consider a body composed of just the fiber material experiencing a
where the yield stress function in (14) is specialized to homogeneous stress state under uniaxial loadind we test a range
- . 1 in tension and compression withouthe consideration ofplasticity.
e=h >+ g4 1—-—exp— . (49) It is important to note that the thermodynamic instability is present
o

even for the purely elastic cada.Fig. 4(a), the elastic stress-stretch
This hardening modelvas proposed by Gasser and Holzapf@l002)  response of the fibers is calculated in uniaxéding,under tension
and we chose itbecause we wanted to accourtibr possible nonlin-  and compression, for different values of the anisotropic reinforcement
earities in the internal evolution of the variables. In fact, as discussadodulus =. When loaded in compression (for an increasing compressive
by Sun and Chen (1989), fiber composites do not show a well-definddad, starting from § = 1), the response shows a change in the sign
yield point and nonlinearity appears in the stress-strain relation gradfithe slope of the stress-stretch cunwaijch indicates a violation of
ally, which is a statement valid for a hierarchical fiber material, as s&®mthermodynamic stability, rendering the results beyond this point as

in Bosia et al. (2010). non-physical. In fact, to reach an extreme compression, stale we
The loading is 3D uniaxialstress applied in the initialdirection would expect to impose a high levef compressive stresise. ® 1 =
of the fibers @, which in our systems coincide with the firstbasis = —c; an observation notonsistent with the results ahe model.As
vector of the Cartesian coordinate systee®, = 0,. The numerical seen in Fig. 4(b), the higher the anisotropic reinforcement modulus, the
experimentxonducted in thissection are displacementontrolled, earlier the thermodynamic instability occurs. As we approach = = «», a
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Fig. 4. Limit up to which the materiamodelis stable and can be used to represent the matemalstitutive behavior for different valuesrefnforcement modulu&) shows
the elastic stress-stretch curves for fibers loaded uniaxiasfgbility occurs for compressive stretches and starts where the circles are glotstthws the compressive stress
and square of stretches in the direction of the fibers at which instability occurs for each stress-stretch curvain Fig.

limit of critical stretch is attained witli E 0.5,where the instability
occurs.Summarizingthe pathology ofthe materiaimodelemployed

Through this studywe investigate the influence tifie reinforce-
ment modulus = and hardening on the material stability of the compos-

for the fiber phase emanated at moderate to high compression duriitg. We first study the case of a material with reinforcement modulus

uniaxialloading.As the goalof this study is to study load cycling in

of = = 10 with perfectly plastic fibeFallowing, we study two cases

tension the material model can still be valid. Moving forward it will beith hardening, and reinforcement modulus at two discrete levels, = =

crucial to look at the individual stress-strain response of the fiber p

Ad&sel00Gpanning two orders of magnitudée conduct this study to

to make sure thermodynamic stability is maintained in more compldrvestigate the effect of different ratios of reinforcement modulus with

elastoplastic loading/unloading cycles. Nevertheless, in Appendix B
consider a strain-energy function (DeBotton et2006) which does

Kespect to the matrix shear modulus.

Material with low reinforcement modulus (==10)without

not violate the thermodynamic limit. We investigate the response oh@éening. For the case of a materiakith a reinforcement modulus
new material model to verify that the trends of LOE are not affected®by = 10 without hardeninggsults are shown in Fig5, Fig. 6 and
the use of a constitutive model which is unstable for a known rangelgi/e 1. We applied 11 loading cycles, that are individually numbered

deformations.
5.2. Loss of ellipticity during non-monotonic loading

To examine localization during non-monotonic loadinas moti-
vated by the discussion fortendon,we considera fiber-reinforced

composite material under uniaxial loading. The material experienceﬁgm

in Fig. 5(a), which shows the evolution of the Kirchhoff stress for the
composite versus the stretch in the loading directibis important

to note thatcycle 1 is purely elastic,during tensile loadingtensile
unloading, as well as compressive loading and unloading. Cycles 2-11
exhibit an elastic and elastoplastic response during tensile loading,
purely elastic response during tensile unloadimy a purely elastic
response during compressive loading and unloadifige thermody-

ic material stability limifpllowing the discussion in Section 5.1,

homogeneous stress state in each individual phase, following the VQigf 550 point to the minimum compressive stretch fowhich the

assumption. We impose the load by applying a stretsttafting from
the undeformed configuration = =ard incrementally increase tp

a maximum tensile stretch in that cycI%‘ai’t"i where the superscript
3 € [1, 8] is an integer representing the cycle numvagere 8 is the
total number of cycles (e.Q‘.aI‘H: 2.5 in the first cycle), see Fig. 5(a)
From the maximum tensile stretch, we decredsesmall increments

material description is valid. That means that the compressive response,
numerically calculated up to very small values; 6% Q might not be
acceptable below a certain stretch thresho‘lﬂfrltm'cf ¥his threshold

has no impact on the rest of the result@ss compressive loading and
-unloading are completely elastibus there are no history-dependent
processes that could be influenced by this pathology. In the numerical

into the compressive stretch regime, down to a minimum stretch valgg-ulation,we check for LOE for each incremenbf the load. We

Itrlni“. Next, we starta new cycle by increasing the stretch again to
a higher value for the maximum stretchgﬁt"'3+1> "% and then
compress to attain[l, which does not depend on the cycle number
We repeat this procedure for the total number of cycles. In each of
loading cycleswe check for LOE in the composit@s well as in the
fiber phase, using the condition formulated in Section 4.

also check for the threshold of the thermodynamic material instability,
Ittlher M. ifor each cycle by looking at the fiber stress-stretch response.

. We first focus on LOE ofthe compositeTo do that, we zoom in

drethe stress-stretch responééy. 5(b) corresponds to a segment of
Fig. 5(a) in the compressive regime for the 11 cycles, where following
the curves from right to left corresponds to compressive elastic loading.
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LOE analysis in the compositeshere the squares with circles inside represent the points of (lEhows LOE in the fibers.

The Kirchhoff effective stress for the composite is plotted against thee look at the stress-stretch response of the fibers in the composite,

stretch in the loading direction. Squares with circles inside correspoplbtting the fiber Kirchhoffstress againsthe stretch in the loading

to positions where LOE occurs following the elastoplastic LOE calcu-direction in Fig.6(b). In this plot, it is clearly seen thatOE of the

lation (this convention to representOE points is followed for the fibers never occurs past the threshold of the thermodynamic material

rest of the paper).We observed that OE for the composite occurs instability,Ittlher m.¢ihs the slope of the stress-stretch curves changes

during compressive loading as seen in Fig(b). The criticalstretch,  sign much later during the compressive loading steps, at a stress range

determined by the LOEccurs at lower absolute stresses and higherthat is not shown in this zoomed-in section of the fiber stress-stretch

stretches for higher cycless plasticity is increasingly inducad to plot. However,we can observe from the segment of the fibers stress-

the 7th cycle. For instance, in the first cycle, we observe that the criticsiich plot in Fig.6(a) that the change in sign of the slop occurs at

stress is &'rtn'; = —3.1 and the critical stretch §§"‘Bt1 = 0.9 while for  stresses lower than any criticatresses on the fiber phase shown in

the 5th cycle, &) ~ —2.6 and {{" ! = 1.29. However, after the 7th Fig. 6(b), thus the predictions of LOE in the fiber phase in all 11 cycles

cycle,there is a change to that trento rationalize why this occurs, are acceptable.

we focus on the stress-stretch response of the fibers in the composite,The main observation from the LOE calculated in the fiber phase

plotting the Kirchhoffstress for the fiber againsthe stretch in the  (reported in Fig.5(c) and Fig. 6(b)), is that instabilities in the fiber

loading direction in Fig6(a). In this plot it is clearly seen that LOE  phase, for high cycle numbers, can occur at tensile stresses at both the

occurs pastthe threshold ofthe thermodynamic materiaistability, =~ composite and at the fiber levelhe criticalstress in the composite

Itiher m.cribr cycles 8-11, as the slope sign during compressive loadirig compressive in the first, and purely elastic, cycle and in the second

changes at higher stretches compared to when LOE occurs. cycle; however,from the third to eleventh cyclescharacterized by
Following, we focus on LOE of the materiah the fiber phase as  higher levels of plastic deformation, LOE is found when the composite

the composite experiences the same loading cycles %t&)). To do experiences tensile stresséssimilar trend is noted on the critical

that, we zoom in on the stress-stretch response and investigate firsstresses on the fiber phase in F&fb), which shows that LOE occurs

Fig. 5(c), which correspond¢o a segmentof Fig. 5(a) for the 11 when the fibers are under compressive stress for the first 8 cycles, but

cycles.Here, following the curves from right to left also corresponds under tensile stress from the 9th cycle onwdids finding is one of

to unloading or compressive loading stepThe Kirchhoff effective  the key results obtained in this study becausem widely accepted

stress for the composite is plotted agairtbie stretch in the loading literature in reinforced material¢his type of instabilities is known

direction.From that, we observe thatLOE in the fibers occurs not to occur when the materialis subjected to compressive loadingn

only during a macroscopic compressive loading (cycles 1-2) but mostgtrast,here we suggesthat it can also occur when the material

during elastic unloading in macroscopic tension (cycles 3-11), as seerperiences a tensile stress state.

in Fig. 5(c), which is consistent with the observation of fiber kinking in By examining LOE in the composite (Fig. 5(b) or Fig. 6(a)), or in the

tendon during cyclic loadin@imilar to the onset of instability in the fiber phase (Fig. 5(c) or Fig. 6(b)), we note that many of the instabilities

composite, LOE in the fiber phase occurs earlier during the compredsiowgs occur at tensile stretch@ikl? 1). Nevertheless, when we look

loading or tensile unloading process for higher cydassplasticity is  at the elastic component of the critical stretches of the fibers on Table 1,

induced (from cycle 1 to 11), the critical stresses and stretches incresseotice that the critical elastic stretches of the fibers are compressive

To investigate if the LOE prediction for the fibers is valid in each cyc(llg”t < 1) on both composite LOE analysis (first row) and fibers LOE

9
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Table 1
Critical elastic stretches for each unloading step of a composite with reinforcement = = 10 and no hdtdesétgnd row shows the criticatretches for the LOE analysis in
the composite and the third row shows the critistaletches for the ellipticity analysis in the fibers.

Lt;:,cr it Step

1 2 3 4 5 6 7 8 9 10 11

LOE comp 0.9084 0.9013 0.8779 0.8500 0.8173 0.7807 0.7381 0.6888 0.6308 0.5629 0.4769

LOE fibers 0.9750 0.9752 0.9752 0.9752 0.9752 0.9752 0.9752 0.9752 0.9752 0.9752 0.9752
analysis (second row)This contrasting behavior suggests thhtere Material with high reinforcement modulus (==1000) with hard-

is a mismatch in the elastic deformation field ofhe phaseswhile ening. The last case of our resultsconsistsof a material with an

the total deformation field remaingompatible following the Voigt  even higher anisotropic reinforcement parameter,1000and with

assumption. This mismatch leads to a bulk stress during unloading: lkardening. Fig. 9(a) shows the stress-stretch response for this material

the elastic strain is releasedhe composite reaches an intermediate subjected to 13 loading cycles imposed in the direction of the fibers.

configurationwhich is macroscopically stress-freepwever,at the We observe thathy increasing the reinforcement paramegisiding

same time, each phase (matrix and fibers) experiences a non-zero dfragss for an even lower stretch value in the firsycle (compare to

state. For instance, the stress-free configuration of the composite déring(a)). In Fig. 9(b), we look at the stress-stretch responsethbé

the 11th cycle,after tensile unloadingoccurs ataround 1y = 1.7, composite from a segment of Fig. 9(a) and plot the LOE points obtained

(where the last curve cross the fb-axis in Fig. 5(c)), in contrast, we nfsten the composite instability analysiE in the composite occurs

from Fig. 6 that at the same load{= 1.7,the stress on the fibers is for a compressive stress state for all the cycles and the critical points

negative. predicted in this analysis are acceptable since they liebaffore the
Another interesting remark in this set of results is on the differentteermodynamic limiting stretché@eftm'cf ¥he last can be confirmed

between the LOE prediction in the composite and the LOE predictiobyriooking at Fig. 10(a), which shows the fiber stress-stretch curves and

the fiber phase. Comparing the LOE in the composite shown in Fig. Bfe)LOE of composite, which clearly occurs much before the change in

and Fig. 6(a) with LOE in the fiber phase shown in Fig.5(c) and sign of the slope of the fiber stress-stretch curve in all 13 cycles.

Fig. 6(b), we observe that instability in the fibers is expected to precedé we focus on the LOE on the fiber phase for this strongly reinforced

the onset of instability in the composite, if the LOE leads to a bifurcatederial, we observe some interesting results. Fig. 9(c) shows the stress

state. We additionally highlight that LOE occurred for values of anglef the composite plotted against the stretch, which is also a segment of

near /2, which corresponds to a configuration where thgys9(tacaitiofaddition of the points of LOE of the fibers. The first and

discontinuity have their normaligned with the fiber reinforcement. purely elastic cycle is the only cycle where the instability occurs when

As discussed earliethis configuration of the surface of discontinuity the composite is in compression. As plastic deformation is induced for

is expected to the localization pattern of the kink-band type. It is alate second and latercycles,the composite loses ellipticity undear

worth noting that LOE was not observed during plastic loading for atynsile stress state. Unlike the material with reinforcement parameter of

of the test cases. = = 10 with hardening, the material with = = 1000 has all plastic cycles
We finally note that LOE in the fibers can occur in tension due toltising ellipticity in the tensile range of loading. This fact suggests that

fact that, even though the composite is under a uniaxial stress statel&Beicity, induced by the reinforcement terghifsthe strain-energy

phases are individually experiencing an axisymmetric stress state sfaeetion in (48), and therefore enhanced by a higher reinforcement

they are not fully incompressible. We note that we chose different I@aetsmeter =, induces the material to lose ellipticity earlier and at tensile

of compressibility for the two phases (different bulk to shear modulistresses. When we turn our attention to the stress state of the fibers in

ratios) and this introduces an axisymmetric stress state in the phaselose points of instability in Fig. 10(b), we see a similar response. The

where the stress components & @, = 0 and §, = ¢, = 0.Forthe  fibers are under compression at the first point of LOE, but under tension

fiber phase, wheni(%» O0and§, = g3 > 0 the LOE can occur due to for all the other cycles, which are plastic. This response suggests that,

the presence of a pressure which does not affect LOE. as we increase the magnitude of the plastic deformation (by increasing
Material with low reinforcement modulus (==10) with harden- the reinforcemenparameter thattauses plasticity to happen or by

ing. We now modify the previous material model with reinforcemenstretching the material further into the yield point), LOE (and possibly

parameter = = 10 to incorporate hardening effects with an evolutiothe instabilities) in fibers of a composite mateti&tds to occur in a

function defined in (49)We impose the same loading conditions of different stress statérom a compressive to a tensile reginiable 3

11 cycles ofuniaxialload applied in the direction ofhe fibers,and includes the criticaklastic stretches for each unloading step for the

observe the stress-stretch response of the compsisiwen in Fig.7. composite and the fiber phase.

In Fig. 7(b), we take a segmenbf Fig. 7(a) and plot the Kirchhoff As previously mentioned, in Appendix B we use an alternate strain-

stress-stretch curves in addition to the LOE points (squares with ciréleergy function (DeBotton et al., 2006) for the elastic response of the

inside). In Fig. 8(a), we plot the Kirchhoff stress for the fiber againstftber phase, which does not violate the thermodynamic limit. Thus we

stretch and, from that, we detect which of those LOE points calculatse able to test the same loading routine and search for loss of ellipticity

for the composite are validWe note that,for the cycles 8-11LOE in the composite and in the fiber§/e focus on the cases where the

occur at points after the change in sign of the stress-stretch curvesr@inforcementmodulus is == 1000, consider hardening effects and

those cycleshence the only acceptable loss of ellipticity calculations keep all the other parameters the saiftee trend of the results from

are for cycles 1-7Next,we study LOE in the fiber phase in Fidg(c) Appendix B is in agreement with the trend of results presented in this

and Fig.8(b).In Fig. 7(c), we show the stress-stretch response of thesection,confirming thatall the conclusions thatvere made for our

composite and note thatOE occurs at compressive states only for material system can be generalized to composite with an elastic matrix

the first two cyclesln Fig. 8(b), we show the stress-stretch response and elastoplastic fibers.

for the fibers and LOE pointsyhich happenat all cyclesbefore the

thermodynamic limitand, at compressive stress for the first 9 cycles 6. Concluding remarks

and at tensile stresses for the last two. In summary, we conclude that,

by adding hardening to the modethe stress-stretch curves and the In this work, we investigate the interplay ofan elastic matrix

critical stretches at which LOE occurs, for both the composite and nmaaterialwith ductile fibers of a unidirectionally fiber-reinforced soft

trix phases, do not change significantly. Examining Table 2, we noticemposite materiato the LOE of the governing equations oéqui-

that the elastic critical stretches of the fibers are also compressive. librium of the composite subjected to non-monotonic tensile loading
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Fig. 7. Stress-stretch curve ¢fie composite and LOE points for a materiaifith reinforcementnodulus = = 10 with hardenin@) shows the 11 loading and unloading steps

applied to the materialb) shows LOE in the compositayhere the squares with circles inside represent the point©&f (c) shows the criticabtretches and composite stress

for LOE analysis in the fibers.
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Fig. 8. Stress-stretch curve bifie fibers and LOE points for a materiatith reinforcemenmodulus = = 10 with hardenin@) shows the criticabtretches and fibers stress for
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Table 2
Critical elastic stretches for each unloading step of a composite with reinforcement = = 10 with hBh@éesengnd row shows the criticgliretches for the LOE analysis in the
composite and the third row shows the critisatetches for the ellipticity analysis in the fibers.
Lt;:,cr it Step
1 2 3 4 5 6 7 8 9 10 11
LOE comp 0.9084 0.9033 0.8837 0.8586 0.8288 0.7952 0.7566 0.7130 0.6617 0.6020 0.5310
LOE fibers 0.9750 0.9749 0.9749 0.9748 0.9749 0.9752 0.9747 0.9749 0.9749 0.9749 0.9748
Table 3
Critical elastic stretches for each unloading ste@ @omposite with reinforcement = = 1000 with hardeRwegsecond row shows the criticatretches for the LOE analysis in
the composite and the third row shows the critigaketches for the ellipticity analysis in the fibers.
It:e,cr it Step
1 2 3 4 5 6 7 8 9 10 11 12 13
LOE comp 0.9992 0.9975 0.9966 0.9954 0.9941 0.9926 0.9909 0.9890 0.9870 0.9847 0.9823 0.9797 0.9770
LOE fibers 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

in the direction ofthe fibers.We perform this study as a means to that is applied at the ends of the fibers. This key observation is critical
postulate a mechanism for macroscopic instabilities that emerge in @wards developing micromechanically accurate models for tendon.
fashion similar to macroscopic kinking instabilities in ten@omilar A well-known disadvantage of the Voigt approximation, which has
to the phenomenology of tendon kinking, here we show that LOE capeen used in the presenwork to model the homogenized behavior
arise during elastic unloading (while stifl tension) once significant of the materialis that it accounts for the underlying microstructure
plastic deformation of the fiber phase has taken plae.formulate  only through the volume fractions dfhe phasesFor this reason,it

a material model for the composite by using neo-Hookean strain- would be interesting to pursue a more detailed homogenization analysis
energy functions to characterize the constitutive behavior of the phesate instabilitiesstudied in this work and explore the effect of

and the Voigt assumption to approximate the macroscopic constitutiiveortant microstructurééatures in these compositéscluding the
behavior of the composite. In order to analyze the onset of localizatfiter shape and distributionAs the first step to this end,following

in this material, we examine the condition of LOE, which indicates thiee work by Triantafyllidis and Maker (1985) and Nestorovi¢ and Tri-
possibility of onset of localization in a material. We focus both on LOIntafyllidis (2004), composite materials with lamellar microstructures
that can occur in the composite, and in the fiber material. To do so,way be used as two-dimensionapproximations ofhe actualfiber-
formulate an LOE criterion that can be used for an elastoplastic mategiforced composites of intereShese idealized microstructures are
employing plasticity theory at finite strains based on the multiplicativsful not only for studying the critical conditions for the LOE of the

decomposition ofhe deformation gradierdind hyperelastic laws to
characterize the elastic response of the material.

The main insightgained from this work was thatOE can occur
under a tensile stress state in the direction of the fibed that this
effectis caused by plastic deformations t¢fe fibers and the elastic
mismatch between the fibers and matmn advantage othe Voigt

homogenized response abmposite materials bulso for analyzing
the stability oftheir post-bifurcation behavior (d’Avila et., 2016).
Work along these lines is currently under developmeantd will be
published in an upcoming studfrom the practicapoint of view in
biomechanics, a more important project which is worth pursuing is to
develop a predictive modédbr the mechanicabehavior oftendons,

approximation is that it allows obtaining explicit expressions for botincorporating detailed information on the microstructure and on the
the local and the macroscopic incremental modulus tensors in termpiafperties ofthe constituenphases,which could in turn help shed
the applied deformation gradient, which in turn simplifies consideralig)ht on the damage cascade during cyclic loading and overloading
the examination of the associated LOE conditions for the fiber phasén these materials, with the ultimate objective to guide exercise-based
and for the compositélniquely,we notice that LOE initializes in the treatments for tendinopathy.
fiber phase, but as we do not investigate postbuckling in this study we
cannot provide insight on how this localization evolves. We show thairediT authorship contribution statement
upon cycling that induces plastic deformations in the fiber phlase,
LOE occurs in the fiber materi&br tensile stresses in the composite. Fernanda F. Fontenele: Methodology,Investigation,Software,
Th!S obse.r.v.athn proposes a th'ft in th? WaY we Iooklat the pr.OblemVisuaIization,Writing - original draft, Review & editing. Nelly
of instabilities in soft composite materials since previous studies haye, 45 rawis-Puri: ConceptualizationWriting - review & editing.
been focusing on elastic localizations arising only under compressivl'.;Iichalis Agoras: Conceptualizatior§upervisionWriting - review &
loading in the direction ofthe fibers.These results provide the first o iting Nikolaos Bouklas: Conceptualizatior§upervisionWriting -
mathematical description of the mechanism through which fiber k'n}‘éview & editingFunding acquisition.
ing in tendon and ligaments could possibly emanate, emphasizing that
plasticity ofthe fiber components is extremely importdot under- ) o
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Fig. B.11. Stress-stretch curve bfie composite and LOE points for a materiaith reinforcemenmodulus = = 1000 with hardening for the new energy-function for the fibers

(Eq. (B.1)).(a) shows the 13 loading and unloading steps applied to the matébipkhows LOE in the compositeyhere the squares with circles inside represent the points of
LOE. (c) shows the criticastretches and composite stress for LOE analysis in the fibers.
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(Eq. (B.1)).(a) shows the criticastretches and fibers stress for LOE analysis in the composibtese the squares with circles inside represent the point®Bf (b) shows LOE

in the fibers.

Appendix B. A thermodynamically stable strain-energy function
for the fiber phase

In order to examine the thermodynamic stability of the constitutive
model,the Drucker stability criterion must be satisfidthe Drucker The strain-energy function used in this work to represent the fiber
criterion was first postulated by Hill (1958) and states that the interphbse in (48) reaches a thermodynamic limit (discussed in Appendix A)
work due to mechanical stresses and corresponding deformation of dilneing compressive loading for values of reinforcement that are large

Appendix A. Thermodynamic limit

material can only increase

Xy == 0, (A.1)

for elastic materials with no damage mechanisrhss last condition

tells us that this criterion holds as long as the stress value increaseSy_1 ()

with an increase in strain, or decreases with a reduction in striain.

enough.Here, we check the validity ofour calculations reported in
Section 5 by changing the constitutive model of the fiber phase to the

following strain-energy function

( )
(- B 6 +v2s -3, (B.1)
64

=

-
=46 -3-2In%>

(2012) established a similar criterion to evaluate the thermodynamighich has the advantage of satisfying the thermodynamic limitations

stability of hyperelastic constitutive functiomsd specialized itto a  for all possible deformationst is remarked thatin the incompress-

state of uniaxial deformation in hyperelastic materials as ibility limit 7 -1, the above expression takethe form of the

2y (/L 22 0, homogenized. strain.—energy function.dete.rmined by DeBottoraIe.t
(2006) for a fiber-reinforced composite with neo-Hookean constituents.

where W is the energy function characterizing the elastic response #f is also remarked thatonly the reinforcementterm for the fiber

the material and L denotes, in this equation, the stretch in the direqtiwese is modifiedwhile the energy-function of the matrix in (47) is

of the applied uniaxial load. Since th {L)/.L; 2 represents the sign kept unchanged. We follow the same kinematics, plasticity and loss of

of the slope in the stress-stretch curve, this condition tells us that aeNipticity formulation described throughout this paper, and we plot the

change in the stress should result in a change in the strain of the sasame set of results as in Section 5.2 for the reinforcement modulus of

(A.2)

sign, thus yielding essentially the same criterion as (shbjyever in
terms of the strain-energy function.

We examine the elastic loading/unloading matemsponse prior
to yielding (® = =) under uniaxialloading in the direction ofthe
fibers (which corresponds to the condition,&= 0 for 3, 4 = 1, 1 in
this work). We do that by taking the energy function ofhe fibers
in (48), computing the Kirchhof$tress ofthe fibers using (34)and
then calculating dg/05 1, to check for the thermodynamic condition,
following (A.2). We, therefore, check if 5 1, = 0 holds at all times

1000 in Figs. B.11-B.12.

Essentially, the trends of results remain the same as for the results
generated from the energy-function used for the fibers throughout this
work (48) when this lastone is restricted to the physically admissi-
ble range ofthe energy functionbefore the thermodynamic limig
reached. From Fig. B.11, we verify that, as reported in Section 5, loss
of ellipticity calculated in the fiber phase occurs prior to the loss of
ellipticity in the composite and that the loss of ellipticity of the fibers
can occur when the material is under tensile state &ibl(c)).Loss

or if there is such a range of stretch values at which the constitutiveof ellipticity is also found either during elastic unloading or elastic

behavior violates the Drucker stability criterion.
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