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Abstract: Online testing for behavioral research has become an increasingly used tool. Although more
researchers have been using online data collection methods, few studies have assessed the replicability of
findings for speech intelligibility tasks. Here we assess intelligibility in quiet and two noise-added conditions for
several different accents of English (Midland American, Standard Southern British, Scottish, German-accented,
Mandarin-accented, Japanese-accented, and Hindi-English bilingual). Participants were tested in person at a
museum-based laboratory and online. Results showed little to no difference between the two settings for the
easier noise condition and in quiet, but large performance differences in themost difficult noise conditionwith an
advantage for the participants tested online. Technology-based variables did not appear to drive the setting effect,
but experimenter presence may have influenced response strategy for the in-person group and differences
in demographics could have provided advantages for the online group. Additional research should continue
to investigate how setting, demographic factors, experimenter presence, and motivational factors interact to
determine performance in speech perception experiments.
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1 Introduction

There has been growing interest in using online data collection for behavioral research studies, which only
intensified during the COVID-19 pandemic. Many advantages have been noted for online data collectionmethods,
including more diverse participant pools, particularly compared to university-based laboratories, lower costs
to the researcher, faster and more efficient data collection, less experimenter bias or impact of participant
expectations, and greater ease of sharing with other researchers (Buhrmester et al. 2011, 2018; Casler et al. 2013;
Rezlescu et al. 2020; Slote and Strand 2016; Yoho et al. 2019). However, researchers have also noted some
drawbacks. In some studies, participants tested online have shown lower accuracy and longer response latencies
(Dandurand et al. 2008; Pare and Cree 2009) and higher dropout rates (Cronk and West 2002; Dandurand et al.
2008) than in-lab participants. Further, there is a loss of control over many variables when testing online
including technology employed by participants and the presence of environmental distractions or inattention
(Buhrmester et al. 2018). Researchers must take much more care in writing instructions for web-based tasks
because they are not physically present to address any confusions (Ramsey et al. 2016). Finally, there have been
concerns raised about the lack of naivety for the participants, particularly whenAmazonMechanical Turk is used
with commonly employed tasks (Peer et al. 2017).

One of the central questions regarding these data collection methods is whether findings from laboratory-
based studies can be replicated with online testing. Numerous studies have shown replication for a range of
cognitive and linguistic tasks using participants tested online (Balota et al. 2001; Crump et al. 2013; Ramsey et al.
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2016; Sprouse 2011). However, few studies have used online testing for auditory-based experiments and specif-
ically word recognition experiments. Beyond the general concerns about online testing, researchers have noted
additional concerns for studies that include auditory or audiovisual stimuli, such as lack of control over the
headphones or speakers, output volume, and ambient noise levels (Merchant et al. 2021; Slote and Strand 2016).
Despite these concerns, online testing has become more prevalent in speech perception research (Borrie et al.
2017; Burchill et al. 2018; Jiao et al. 2019; Liu and Jaeger 2018; Xie et al. 2018; Yoho et al. 2019; Yoho and Borrie 2018),
including work investigating perception of nonnative speech (Cooper and Bradlow 2018; Melguy and Johnson
2021; Vaughn 2019).

Although online testing has become more common, there are few published reports assessing the replica-
bility of online versus in-lab results for intelligibility tasks. If more researchers shift to online data collection and
these data become the foundation upon which new theories are built, an understanding of if and how data
collected online differ from data collected in laboratory studies will be essential. The extant studies have not been
consistent in their findings regarding how online and in-lab participant performance may differ. In several
studies, participants recruited and tested online show lower word recognition accuracy than participants tested
in the lab for synthesized, masked, distorted, and filtered speech (Cooke et al. 2011; Cooke and Garcia Lecumberri
2021; Mayo et al. 2012; Slote and Strand 2016; Wolters et al. 2010). Other studies have shown similar word
recognition performance across the two testing modalities (Lansford et al. 2016) when headphone quality is
considered (Cooke and Garcia Lecumberri 2021). One study showed an intelligibility advantage for those tested
online for a Spanish-accented speaker in noise compared to in-lab participants (Vaughn 2019). Although absolute
intelligibility has differed between testing modalities across studies, relative intelligibility levels appear more
stable. For example, intelligibility differences have been maintained across speech synthesis systems (Wolters
et al. 2010), listening conditions including signal-to-noise ratios and masker types (Cooke et al. 2011), speaking
styles (Mayo et al. 2012), specific lexical items (Slote and Strand 2016), and other speech intelligibility tasks (Cooke
and Garcia Lecumberri 2021).

Most recent studies used Amazon Mechanical Turk (MTurk) for participant recruitment and testing. Sample
sizes ranged from 40 to 260 participants per experiment with exclusion rates ranging from 5 to 65 % of recruited
participants. Nearly all studies required listeners to be monolingual or native speakers of English with some also
having exclusion criteria for hearing, speech, and language impairments. Although listeners tended to be young
adults, most studies included listeners of any age. Differences in demographic characteristics across participant
populationsmay account for some of the discrepancies in results described above. Two studies (Cooke and Garcia
Lecumberri 2021; Cooper and Bradlow 2018) had listeners who were tested online but recruited from university
student populations.

The goal of this study was to determine how intelligibility of talkers with a range of different regional and
nonnative accents would differ depending on data collection setting, specifically comparing a museum-based
laboratory and online testing. The examination of intelligibility across different accents provides opportunities to
examine how specific phonemic and suprasegmental aspects of the speech signalmay impact a listener’s ability to
accurately map the acoustic-phonetic signal onto words in their lexicon (e.g., Adank et al. 2009; Bent et al. 2016,
2021; Clopper and Bradlow 2008; Floccia et al. 2009). Indeed, the perception of less-familiar accents are central
elements in theories and frameworks of listening effort and speech adaptation, such as the Ideal Adaptor
Framework (Kleinschmidt and Jaeger 2015), the Ease of Language Understanding model (Rönnberg et al. 2013),
and the Framework for Understanding Effortful Listening (Pichora-Fuller et al. 2016). Furthermore, decreases in
intelligibility for speakers with nonlocal accents, particularly in difficult listening conditions (e.g., in noise), are
linked with more negative language attitudes, suggesting that there may be substantial social and professional
consequences of intelligibility differences across talkers (Dragojevic and Giles 2016).

Although this study builds on prior work that compared laboratory-based studies to online data collection,
this comparison differs in that we consider a museum-based laboratory (Wagner et al. 2015) relative to virtual
data collection using Prolific, an online participant pool specifically designed for research purposes. Additionally,
no prior studies have tested whether findings regarding intelligibility for a range of accents replicates across
in-person and virtual data collection modalities nor have they tested both quiet and noise-added conditions with
the same stimuli.
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2 Methods

2.1 Participants

The listeners included 408 adult American English–speakingmonolingual listeners between the ages of 18 and 35.
This age range was selected to reduce the likelihood of recruiting participants with age-related hearing loss or
cognitive decline. Of these, 264were tested in person at a sciencemuseum, and 144were recruited through Prolific
and tested online. All participants had self-reported typical hearing and language. An additional 47 participants
were tested but their data were not included (museum: n = 30 or 10%; online: n = 17 or 8%; see Appendix A).
Museum-based participants were not paid for their participation, as is customary in museum-based labs. Online
participants were compensated US$5.00 through the Prolific website. Participant demographics are in Appendix B.

2.2 Stimuli

The stimuli included 60 Hearing in Noise Test for Children (HINT-C; Nilsson et al. 1994) sentences produced by
seven female talkers each representing one of seven different accent varieties: three native (Midland American
English, Standard Southern British English, Scottish English), three nonnative (German-accented English,
Mandarin-accented English, Japanese-accented English), and one bilingual (Hindi-English). The nonnative
accents were chosen because the first languages of the speakers represent different language families and thus
were likely to include distinct pronunciation features. The native and bilingual accents were selected to have
talkers whose pronunciations differed from Midland American English to various extents. All speakers were
recorded in a sound-attenuated booth either at Ohio State University (the Scottish English speaker) or at Indiana
University (all other speakers) using a Marantz digital recorder and a Shure microphone. Root Mean Squared
(RMS) amplitude was equalized across the stimuli. The Midland talker and all nonnative talkers were selected
from the Hoosier Database of Native and Nonnative Speech for Children (Atagi and Bent 2013).1

2.3 Procedure

Participants were assigned to one of three accent conditions. All conditions included the Midland American
English speaker. The accents for the other conditions were as follows: (1) Japanese-accented English and Standard
Southern British English,2 (2) German-accented English and Scottish English, and (3) Hindi-English bilingual and
Mandarin-accented English.3 The combinations of accents within each condition were designed so each listener
would be presentedwith one nonnative accent and one native or bilingual accent thatwould further elicit a range
of intelligibility scores. Within each of these accent conditions, participants were randomly placed in one of three
noise conditions: quiet, +4 dB signal-to-noise ratio (SNR), or 0 dB SNR.4 For the noise-added sentences, a randomly
selected portion of an 8-talker babble file (Van Engen et al. 2014) was selected that was 1 s longer than the sentence
with a 500 ms noise lead and tail. For each combination of accent and noise condition, there were 15–18 online
participants and 26–32 in-person participants.

1 All stimuli are available in the OSF repository (https://osf.io/cnxgt/, accessed 22 April 2023). Additional materials (words, sentences,
paragraphs) from the same talkers as well as materials from other talkers (with the same and different accents as included here) are
freely available in the Hoosier Database for researchers and clinicians, which can be accessed via SpeechBox (Bradlow n.d.).
2 In-person data for this condition has been reported previously (Bent and Holt 2018).
3 In-person data for the conditionwithGerman-accented English and Scottish English aswell as the conditionwithMandarin-accented
English andHindi-English bilingual English for the quiet and the +4 dB SNR has been previously reported (Bent et al. 2021). The data for
the 0 dB SNR for these two conditions and the online data have not been previously published.
4 Python code is available in the OSF repository for mixing sentences with noise, if researchers want to create new stimuli similar to
those used here.
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Before the start of the experimental trials, participants were presentedwith nine practice trials that included
three sentences from each of the three talkers included in their assigned accents and noise condition. Then
listeners were presented with 60 experimental trials including 20 sentences from each of the talkers within their
assigned condition. The trials were blocked by talker, and the sentences were randomized within a block. The
assignment of sentences to talker was counterbalanced across listeners. No feedback was provided to listeners.
Consistent with the HINT-C scoring guidelines, participants were not penalized for the following substitutions:
the/a/an, is/was, are/were, has/had, and had/have.

In-person participants were tested in a laboratory space that is not sound-treated but is separate from
museum noise and generally quiet. The experimenter only carried out the procedure when the ambient noise
levels were low. The stimuli were presented at a comfortable listening level binaurally over Audiotechnica
headphones (model 8TH-770COM). Stimulus presentation was controlled by E-Prime (version 2.0; 2007) on a Dell
Optiplex 790 desktop computer. After the presentation of each sentence, listeners repeated what they heard
aloud, and the experimenter scored their response in real time bywriting out each response and indicatingwhich
words were not correctly perceived (see Bent and Atagi [2017] for reliability of this scoring method).

Online participants were recruited through Prolific. If theymet the inclusion and exclusion criteria, the study
would appear as one for which they were eligible and they could opt to participate. All included participants
passed a headphone screening (Woods et al. 2017), involving six trials. Each trial contains a series of three pure
tones, one of which is 180 degrees out of phase across the stereo channels, resulting in phase cancellation. The
listener is instructed to select the quietest tone. The task should be relatively easy if the participant is wearing
headphones, but difficult if listening over a loudspeaker. Listeners were provided with three opportunities to
complete the screening and could not continue if they did not successfully complete it. Online participants
reported that the noise level in their environmentwas 1.99 (range = 1–8) on a scale of 1–10 (1 = very quiet; 10 = very
loud). Participants used their own computers and headphones. The experiment was programmed in PsychoPy
(version 2020.1) and run through Pavlovia, the online platform for PsychoPy (Peirce et al. 2019). Participants typed
in what they heard. A custom Python script was run for automated scoring of participants’ responses.

3 Results

The primary statistical analysis was designed to determine how word recognition accuracy differed across the
two settings, for a range of accents and a range of noise conditions. A logistic mixed-effects regression model was
constructed to predict word recognition accuracy with accent, noise condition, setting (in-person, online), and
their interactions as fixed effects using the lme4 package for R version 4.1.1 (Bates et al. 2015; R Core Team 2021).5

The fixed effects were treatment-coded with the following reference levels: Midland for speaker accent; quiet for
noise condition; and in-person for setting. The maximal random effect structure that achieved convergence was
used and included a random intercept for items (i.e., stimulus words). Statistical significance for interactions
between the predictor variables was assessed using log-likelihood comparison of nestedmodels, and significance
of individual levels of the predictor variables were assessed with pairwise comparisons using the emmeans
package in R.

Average accuracy and individual listener scores across noise conditions, speaker accents, and settings
are displayed in Figure 1. Slope estimates, z ratios, and p values for all simple effects and interactions from
the mixed-effects model are in Appendix C. The three-way interaction between noise condition, setting, and
speaker accent was assessed for significance using log-likelihood comparisons of nested models, with the only
difference between themodels being the inclusion or exclusion of the three-way interaction. This interactionwas
significant, χ2 (12) = 140.46, p < 0.001.

To determine how the effect of setting varied across accents and noise conditions, pairwise comparisons
between online and in-person settings were carried out for each accent in each of the three noise conditions. The
setting slope estimates for each accent at each noise condition are listed in Table 1. Word recognition accuracy by

5 Statistical code for the model and associated data file are available in the OSF repository.
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online participants was significantly higher than those tested in person for all accents in 0 dB SNR. For +4 dB SNR,
there were some exceptions to the online advantage; specifically, in-person performance was significantly higher
than online for Midland, Hindi, and Mandarin accents. Similarly, in-person participants outperformed online
participants in the quiet condition for Midland, Standard Southern British, and Japanese accents, while online
participants demonstrated significantly higher accuracy for the Hindi accent. Differences between settings in
the quiet condition should be interpreted with caution, however, given that performance by participants
in both settings is near ceiling. Despite higher accuracy for most accents for the online participants, the overall
performance trend across accents in the online setting generally follows that for the in-person setting (Figure 1).

Figure 1: Listener accuracy in proportion correct across noise condition and speaker accent as a function of setting. Large black circles and
gray triangles represent mean performance; small black dots and gray dots represent individual performance, for in-person testing and
online testing, respectively. Individual panels represent the three noise conditions. Speaker accent is indicated on the x-axis.

Table : Slope estimates for pairwise comparisons of online versus in-person testing for each accent in quiet, +, and  dB SNR. Negative
estimates reflect better performance online than in person.

Dialect Quiet +4 dB SNR 0 dB SNR

Estimate z ratio p value Estimate z ratio p value Estimate z ratio p value

Midland . . <. . . <. −. −. <.
Standard Southern British . . <. −. −. <. −. −. <.
German −. −. . −. −. . −. −. <.
Scottish −. −. . −. −. <. −. −. <.
Mandarin . . . . . <. −. −. .
Hindi −. −. . . . <. −. −. <.
Japanese . . . −. −. <. −. −. <.

Accent perception across test settings 5



Beyond accuracy, one difference that was noted between the two settings was that museum-based participants
were significantlymore likely to not respond on a trial compared to online participants,Welch two-sample t-test: t
(129.53) = 8.057, p < 0.0001, d = −1.23 (in-person, M = 5.68; online, M = 0.95).

4 Discussion

The central issue addressed in this study was whether intelligibility patterns across noise conditions and accents
are similar for participants tested in person compared to an online setting. For the quiet condition, there
were significant differences for four of the seven accents with in-person participants outperforming online
participants on three (Midland, Standard Southern British, and Japanese-accented) and online participants
outperforming in-person participants on one (Hindi-English bilingual). However, performance on all accents
except the Japanese-accented talker was close to ceiling in both settings. Therefore, when participants were
presentedwith stimuli thatwere notmixedwith noise, even if the speaker had an unfamiliar accent, intelligibility
differences between the two settings were small. The finding that the online participants showed high accuracy
across nearly all accents in the quiet condition suggests that environmental or technology-related factors for
online participants such as ambient noise levels, interruptions, distractions, headphones, or operating systems do
not appear to strongly impact performance for a relatively easy task.

In contrast to the quiet condition, there were larger accuracy differences between the two settings for the
noise-added conditions. In the easier signal-to-noise ratio (i.e., +4 dB SNR), intelligibility scores averaged across
accents for the two settings were similar (online: 90.3 %, in-person: 89.8 %) and there was not a consistent
advantage for either setting. Museum-tested participants outperformed online participants for three of the
accents (Midland,Mandarin, andHindi) and online participants outperformedmuseumparticipants for the other
four accents (Standard Southern British, German, Scottish, and Japanese). For the most difficult noise condition
(0 dB SNR), the online participants showed a consistent advantage for all accents, although the gap in perfor-
mance differed depending on accent with a relatively small difference between the two settings for some accents
(e.g., Mandarin = 76 vs. 73 %) and large differences for others (e.g., Standard Southern British = 88 vs. 65 %;
Scottish = 79 vs. 54 %). For listeners from both settings, intelligibility was highest for the Midland talker and
lowest for the Japanese-accented and Hindi-English talkers with the Hindi-English talker showing the lowest
performance for both groups. Conclusions regarding accent intelligibilitymore broadly cannot bemade from this
study because there was only one talker per accent. Talkers from the accents represented here but with different
levels of proficiency (for the L2 talkers), residential histories, or language learning profiles, among other factors,
are likely to differ in intelligibility.

It is not clear what is driving the online advantage for the most difficult noise condition, particularly because
previous studies generally have shown a disadvantage for listeners tested online compared to in-lab testing
(Cooke et al. 2011; Mayo et al. 2012; Slote and Strand 2016; Wolters et al. 2010) or similar performance across
settings (Cooke and Garcia Lecumberri 2021). There are no obvious demographic or experience-based explana-
tions for the performance differences. Both groups reported similar levels of exposure to the accents in their
conditions, with the only large difference in exposure ratings appearing for the Midland accent. It is not sur-
prising that the participants tested in the museum reported greater exposure to the Midland dialect, as the
museum is in theMidland dialect region. In contrast, the online participants weremorewidely distributed across
dialect regions because online participants could participate fromany locationwithin theUnited States. However,
exposure to theMidland dialect did not appear to have a substantial impact on performance across the two groups
for the Midland speaker. The in-person participants showed a slight advantage in the +4 dB SNR condition for
the Midland dialect, but the online participants showed higher intelligibility for this speaker in the 0 dB SNR
condition. The finding that non-Midland listeners still show high word identification accuracy for this talker may
have arisen because this talker’s speech aligned with General American English (Labov 1998), which tends to be
highly intelligible to American listeners regardless of their residential history within the USA (Clopper and
Bradlow 2008), likely due to its ubiquity in mainstream media.
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Although we did not observe substantial differences in the dialect exposure ratings, it is possible that there
was variability in accent exposure that was not captured in the self-reported ratings. For example, participants
tested online could live in more diverse communities than those tested at themuseum and therefore they may be
exposed to a wider range of accent variability in their day-to-day lives. Relatedly, the participants who were
from dialect regions outside the Midland region, particularly those that are more marked (e.g., the South, New
England), may have consistent exposure to two native varieties that could engender broad advantages for speech
processing in noise (Clopper 2014). Specifically, only 10 % of our online participants reported speaking with a
Midland accent compared with 69 % of participants tested in person. Some non-Midland participants may
therefore have experience with both their own dialect and General American English, which gives them a degree
of perceptualflexibility that is not present for listenerswho primarily communicatewith otherMidland speakers,
even if they do not have explicit exposure to the test accents. Future work should include samples that are more
closely matched on region of origin to explicitly examinewhether the listener’s dialect influenced the advantages
observed for the online sample here. Additionally, incorporating questions about linguistic diversity in the
listeners’ communities could provide insight regarding how everyday exposure impacts perception of unfamiliar
accents.

If researchers want participant samples that are more diverse and representative of the wider population, it
is much easier to achieve this goal with online testing. In addition to greater dialect variability for online
participants, the online sample was also more racially and ethnically diverse compared to the museum sample.
There was a greater proportion of participants who identified as Asian or Hispanic/Latinx in the online sample
compared to the museum sample. However, participants identifying as Black/African American or Hispanic/
Latinx were still underrepresented relative to the US population (cf. Levay et al. 2016). Although neither of our
samples fully captured the racial and ethnic diversity of the broader population, both data collection sites have an
advantage over the typical populations assessed in university-based laboratories. Futurework should continue to
strive for participant samples that are more representative of the population.

Although online testing has the advantage of participant samples that tend to be more representative of
the general population in terms of race, ethnicity, educational attainment, geographic location, and other
demographic characteristics, researchers have raised concerns about online testing that could outweigh these
advantages. However, some of these concerns, particularly technological ones, may no longer be a substantial
hindrance. Most studies reporting intelligibility disadvantages for online participants collected the data at
least 5–10 years ago (Cooke et al. 2011; Mayo et al. 2012; Slote and Strand 2016; Wolters et al. 2010). Software and
hardware advances as well as the ubiquity of higher-quality headphones over the past decade may have
decreased the discrepancy between laboratory-based versus personal equipment. Furthermore, the ambient
noise levels for online testing did not appear to impact performance since generally participants tested at
home outperformed those tested in the museum (Cooke and Garcia Lecumberri 2021; Merchant et al. 2021).
Finally, our instructions were easy to understand. Therefore, task understanding was unlikely to have
impacted performance across settings, although this concern should be considered for more complex
experimental tasks.

One factor that could have influenced performance was the presence of the experimenter for the
in-person setting compared to the online setting. Specifically, the in-person participants repeated what they
heard aloud to the experimenter, who then scored their response. The online participants typed in their
response. Museum participants verbally indicated their responses because adults’ performance was
compared to children’s in another study. Since children could not type their responses, we opted to keep the
response modality the same for the children and adults tested in the museum laboratory. However, online
participants could not verbally report their responses to an experimenter and therefore we had them type
their responses. This difference in response method, and specifically the presence of an experimenter, may
have resulted in changes in listener strategy, especially when the task was difficult, as in the 0 dB SNR
condition. There are a range of research participation effects (e.g., McCambridge et al. 2014) that can change or
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bias behavior in experiments including demand characteristics (i.e., participants may try to fulfill experi-
menter implicit preferences rather than following explicit instructions; McCambridge et al. 2012). Demand
characteristics could have shifted response strategies in ways that disadvantaged the in-person group even
though both participant groups were encouraged to provide their best guess through written and/or verbal
instructions. That is, in-person participants may have felt pressure to provide correct responses so that they
would be perceived as good subjects rather than truly providing their best guess, even if their response seemed
highly implausible. This shift in response strategy may have been especially prominent in the most difficult
noise condition in which listeners were likely to experience much more uncertainty about their response. In
contrast, participants tested online could type any response without concern about whether their response
diverged substantially from the target sentence. Providing responses to more trials may have provided the
online listeners an advantage over the in-person listeners. To determine whether the experimenter presence
underlies the performance differences across settings, an additional set of museum-based participants could
be testedwho type in their responses. This change in responsemodalitymay not completely remove the impact
of demand characteristics since the participant would still be interacting with the experimenter, but there
would be a greater degree of separation between the response provision and the experimenter’s observation
of the response. Prior intelligibility studies comparing in-person and online modalities have required all
participants to type their responses (Cooke and Garcia Lecumberri 2021; Cooke et al. 2011; Mayo et al. 2012; Slote
and Strand 2016; Wolters et al. 2010) and have not observed better performance for online participants than
in-person ones, suggesting that response modality may have contributed to the in-person performance
decrements.

The only other study to directly compare in-person to online testing for nonnative-accented speech in noise
(Vaughn 2019) also found an advantage for online participants. As in Vaughn (2019), our online participants were
also significantly older than our in-person participants, but the difference was not large compared to the age
difference in Vaughn (2019); our participants were within the same age range (i.e., 18–35) with very similar
average ages (24 vs. 26 years). It should also be noted that in Vaughn (2019), nearly two-thirds of the online
participants were excluded from thefinal data set for not attending to the instructions, failing attention checks, or
not fitting inclusion criteria.

One difference for this study in contrast to most of the online versus in-person study comparisons is that
our in-person group was tested in a museum-based setting rather than a traditional university laboratory.
Other work that has directly compared data collected in museums with university laboratories found some
performance differences between the two settings. Specifically, lower performance on a word recognition in
noise task (Jones and Clopper 2019) and slower response times for a prosodic contour processing task (Ito et al.
2017) have been observed for museum-tested compared to university laboratory-based participants. Thus,
performance decrements for our in-person sample could have been linked to factors related to the museum
setting itself including more noise and distractions than a traditional university laboratory (Ito et al. 2017).
When comparing university- and museum-based laboratories, it is straightforward to determine which
setting has more noise and distractions; for the museum versus online settings used here, we cannot deter-
mine which one had more noise or distractions since we do not have objective measurements of these
variables.

The motivation for participating in the experiment could also differ across modalities. Specifically, many
laboratory-based studies use college students who are completing the study as a course requirement or are
getting paid to participate. In contrast, participants in themuseum did not receive payment and still participated,
largely because visitors to a science museum have an interest in science; participation provides themwith a real-
life experience as a citizen scientist and an opportunity to contribute to scientific knowledge. Finally, although
participants recruited from platforms such as Prolific or MTurk are likely completing the experiments for
monetary compensation, there may be additional motivation to complete the task to the best of their ability since
high approval ratings may lead to more and higher-paid opportunities on the platform. Future work could
explicitly manipulate whether listeners are compensated for their participation to determine how this factor
impacts performance.
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In conclusion, these results provide support for using online data collection methodologies for word
recognition tasks. Although researchers should be aware that absolute intelligibility levels may differ across
testing settings, particularly for difficult tasks, relative difficulty across talkers appears stable.

Appendix A: Exclusion criteria

Most exclusion criteria for participants who completed the entire protocol were applicable for both in-person and
online participants, including not meeting the language background criteria (museum: n = 8; online: n = 2),
frequent exposure to the accents other than Midland American English included in the experiment (i.e., a rating
of 5 on a scale of 1–5 where 1 = no exposure and 5 = frequent daily exposure; museum: n = 14; online: n = 3),
self-reported speech/hearing problems (museum: n = 2) and technical problemswith the software (museum: n = 4;
online: n = 4). Other criteria only applied to specific contexts. Specifically, online participants were asked if they
turned off all devices prior to the start of the experiment; they were excluded if they reported that they did not
turn off other devices (n = 2). The online participants identified as not complying with the task did not provide
responses for more than 10 % of trials for the Midland American English speaker (n = 6). Not fitting the age range
criteria (i.e., not being between 18 and 35 years old) only impacted in-person participants (n = 2) because the
recruitment platform used for online recruitment automatically screens out participants who are outside of
the specified age range. Online participants who did not pass the headphone screening could not continue to the
experimental task (n = 28), but this criterion did not impact in-person participants who were provided with
headphones. An additional 21 online participants did not complete the intelligibility task due to either
experimenter error (n = 2) or withdrawing following completion of the demographic survey (n = 19). Thus,
combined with the headphone screening failures, a total of 49 online participants began the study but did not
complete the full protocol (accounting for 23 % of online participants who began the study).

Appendix B: Participant demographics

Participant demographics for participants tested in the museum and online are provided here. Tests of group
differences on age, race, and ethnicity variables between the in-person and online participants are also shown.
Dialect is based on participant self-report of their regional dialect, which was indicated by the participant
selecting a dialect region on a map which best matched their regional accent.6

Museum Online Group differences

Total (in data set)  

Age (years) M = .;
range = –

M = .;
range = –

t (.) = ., p < .,
d = .

Race White American % (n = ) % (n = ) χ () = ., p = .
Black or African American % (n = ) % (n = )
Asian American % (n = ) % (n = )
Bi- or multiracial % (n = ) % (n = )
American Indian or Alaska Native % (n = ) % (n = )
Native Hawaiian or other Pacific
Islander

% (n = ) .% (n = )

Other % (n = ) .% (n = )
Prefer not to say % (n = ) .% (n = )

Ethnicity Hispanic/Latinx % (n = ) % (n = ) χ () = ., p < .
Not Hispanic/Latinx % (n = ) % (n = )
Prefer not to say % (n = ) % (n = )

6 Given that folk linguistic dialect regions do not correlate directly with the regions defined by sociolinguists based on authentic
production (Niedzielski and Preston 2000), this self-reported dialect may reflect where participants identify as being from more than
their accent. However, our goal was to capture dialect exposure and this kind of regional identity provides a good index of primary
dialect exposure.

Accent perception across test settings 9



(continued)

Museum Online Group differences

Dialect Midland % (n = ) % (n = ) χ () = ., p < .
North % (n = ) % (n = )
South (including Florida) % (n = ) % (n = )
West % (n = ) % (n = )
Mid-Atlantic % (n = ) % (n = )
New England % (n = ) % (n = )
Western Pennsylvania % (n = ) % (n = )
Multiple or other % (n = ) % (n = )
Chose not to respond % (n = ) % (n = )

Gender Woman % (n = ) % (n = ) χ () = ., p = .
Man % (n = ) % (n = )
Nonbinary % (n = ) % (n = )
Other % (n = ) .% (n = )

Dialect
exposure

Midland American English . . t () =−., p < ., d = .
Standard Southern British English . . t () = −., p = ., d = .
Scottish English . . t () = ., p < ., d = .
German-accented English . . t () = ., p < ., d = .
Indian English or Hindi-accented
English

. . t () = ., p = ., d = .

Japanese-accented English . . t () = ., p = ., d = .
Mandarin-accented English . . t () = −., p = ., d = .

Appendix C

Summary of the logistic mixed-effects model predicting word accuracy from listener setting, talker dialect, noise
condition, and their interactions.

Estimate SE z ratio p value

Intercept . . . <.
Variety (reference = Midland)
Standard Southern British . . . .
German −. . −. .
Scottish −. . −. .
Mandarin −. . −. <.
Hindi −. . −. <.
Japanese −. . −. <.

Condition (reference = quiet)
 dB SNR −. . −. <.
+ dB SNR −. . −. <.

Setting (reference = in-person)
Online −. . −. <.

Variety × condition
Standard Southern British ×  dB SNR −. . −. <.
German ×  dB SNR −. . −. <.
Scottish ×  dB SNR −. . −. <.
Mandarin ×  dB SNR . . . .
Hindi ×  dB SNR −. . −. <.
Japanese ×  dB SNR . . . .
Standard Southern British × + dB SNR −. . −. <.
German × + dB SNR −. . −. <.
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(continued)

Estimate SE z ratio p value

Scottish × + dB SNR −. . −. <.
Mandarin × + dB SNR . . . .
Hindi × + dB SNR −. . −. .
Japanese × + dB SNR −. . −. .

Variety × setting
Standard Southern British × online −. . −. .
German × online . . . .
Scottish × online . . . .
Mandarin × online . . . .
Hindi × online . . . <.
Japanese × online . . . .

Condition × setting
Online ×  dB SNR . . . <.
Online × + dB SNR . . . .

Variety × setting × condition
Standard Southern British ×  dB SNR × online . . . <.
German ×  dB SNR × online −. . −. .
Scottish ×  dB SNR × online . . . .
Mandarin ×  dB SNR × online −. . −. <.
Hindi ×  dB SNR × online −. . −. <.
Japanese ×  dB SNR × online −. . −. .
Standard Southern British × + dB SNR × online . . . <.
German × + dB SNR × online −. . −. .
Scottish × + dB SNR × online . . . .
Mandarin × + dB SNR × online −. . −. .
Hindi × + dB SNR × online −. . −. <.
Japanese × + dB SNR × online . . . <.
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