Mycologia

ISSN: 0027-5514 (Print) 1557-2536 (Online) Journal homepage: www.tandfonline.com/journals/umyc20

Taylor & Francis

Taylor & Francis Group

Marasas et al. 1984 “Toxigenic Fusarium Species:
Identity and Mycotoxicology” revisited

Kerry O'Donnell, Susan P. McCormick, Mark Busman, Robert H. Proctor, Todd
J. Ward, Gail Doehring, David M. Geiser, Johanna F. Alberts & John P. Rheeder

To cite this article: Kerry O'Donnell, Susan P. McCormick, Mark Busman, Robert H. Proctor,
Todd J. Ward, Gail Doehring, David M. Geiser, Johanna F. Alberts & John P. Rheeder (2018)
Marasas et al. 1984 “Toxigenic Fusarium Species: Identity and Mycotoxicology” revisited,
Mycologia, 110:6, 1058-1080, DOI: 10.1080/00275514.2018.1519773

To link to this article: https://doi.org/10.1080/00275514.2018.1519773

@ Published online: 27 Nov 2018.

N
C)/ Submit your article to this journal &

||I| Article views: 2159

A
& View related articles '

oy

(&) View Crossmark data &'

CrossMark

@ Citing articles: 30 View citing articles (&

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=umyc20


https://www.tandfonline.com/action/journalInformation?journalCode=umyc20
https://www.tandfonline.com/journals/umyc20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00275514.2018.1519773
https://doi.org/10.1080/00275514.2018.1519773
https://www.tandfonline.com/action/authorSubmission?journalCode=umyc20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=umyc20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00275514.2018.1519773?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00275514.2018.1519773?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/00275514.2018.1519773&domain=pdf&date_stamp=27 Nov 2018
http://crossmark.crossref.org/dialog/?doi=10.1080/00275514.2018.1519773&domain=pdf&date_stamp=27 Nov 2018
https://www.tandfonline.com/doi/citedby/10.1080/00275514.2018.1519773?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/00275514.2018.1519773?src=pdf

MYCOLOGIA
2018, VOL. 110, NO. 6, 1058-1080
https://doi.org/10.1080/00275514.2018.1519773

Taylor & Francis
Taylor &Francis Group
W) Check for updates

Marasas et al. 1984 “Toxigenic Fusarium Species: ldentity and Mycotoxicology”
revisited

2, Mark Busman @32, Robert H. Proctor @2, Todd J. Ward @2,

¢, and John P. Rheeder¢

Kerry O’'Donnell @2, Susan P. McCormick
Gail Doehring?, David M. Geiser®, Johanna F. Alberts

2Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research
Service, US Department of Agriculture, Peoria, lllinois 61604-3999; ®Department of Plant Pathology and Environmental Microbiology, The
Pennsylvania State University, University Park, Pennsylvania 16802; “Mycotoxicology and Chemoprevention Research Group, Institute of
Biomedical and Microbial Biotechnology (IBMB), Cape Peninsula University of Technology, Bellville 7535, South Africa

ABSTRACT

This study was conducted to determine the species identity and mycotoxin potential of 158
Fusarium strains originally archived in the South African Medical Research Council’s Mycotoxigenic
Fungal Collection (MRC) that were reported to comprise 17 morphologically distinct species in the
classic 1984 compilation by Marasas et al., Toxigenic Fusarium Species: Identity and Mycotoxicology.
Maximum likelihood and maximum parsimony molecular phylogenetic analyses of single and
multilocus DNA sequence data indicated that the strains represented 46 genealogically exclusive
phylogenetically distinct species distributed among eight species complexes. Moreover, the
phylogenetic data revealed that 80/158 strains were received under a name that is not accepted
today (ex F. moniliforme) or classified under a different species name. In addition, gas chromato-
graphy-mass spectrometry (GC-MS) and/or high-performance liquid chromatography-mass spec-
trometry (HPLC-MS)-based mycotoxin analyses were conducted to determine which toxins the
strains could produce in liquid and/or solid cultures. All of the trichothecene toxin—producing
fusaria were nested within the F. sambucinum (FSAMSC) or F. incarnatum-equiseti (FIESC) species
complexes. Consistent with this finding, GC-MS analyses detected trichothecenes in agmatine-
containing broth or rice culture extracts of all 13 FSAMSC and 10/12 FIESC species tested. Species
in six and seven of the eight species complexes were able to produce moniliformin and beau-
vericin, respectively, whereas B-type fumonisins were only detected in extracts of cracked maize
kernel cultures of three species in the F. fujikuroi (FFSC) species complex.
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INTRODUCTION among multiple gene genealogies as landmarks for species
boundaries (Taylor et al. 2000). GCPSR-based molecular

Fusarium is widely recognized today as one of the world’s , . ) L
y 1ecos Y phylogenetic studies to date conservatively indicate that

most economically destructive and taxonomically chal-
lenging genera of mycotoxigenic plant pathogens (Geiser
et al. 2013). This is reflected, in part, by the numerous
efforts to catalog its taxonomic diversity over the past
century. These efforts have yielded vastly different esti-
mates that range from 9 to 75 species based on morpho-
logical species recognition (MSR) (Wollenweber and

Fusarium comprises at least 300 phylogenetically distinct
species based on ongoing surveys of fusaria housed in the
Agricultural Research Service (ARS) Culture Collection
(NRRL; Peoria, Illinois), the Fusarium Research Center
(FRC; Pennsylvania State University, University Park,
Pennsylvania), and the Westerdijk Fungal Biodiversity

Reinking 1935; Booth 1971; Gerlach and Nirenberg
1982; Nelson et al. 1983; Leslie and Summerell 2006).
The Fusarium taxonomic landscape has changed drama-
tically over the past two decades largely due to the intro-
duction of phylogenetic species recognition based on
multilocus genealogical concordance and nondiscordance
(O’Donnell et al. 2015). Genealogical concordance phylo-
genetic species recognition (GCPSR; see Sarver et al.
2011) is a method that identifies shared partitions

Institute (formerly the CBS-KNAW Fungal Biodiversity
Centre, Utrecht, the Netherlands). Close to half of these
phylospecies do not appear to have been formally
described and lack Latin binomials (Aoki et al. 2014).
Over the past half century, natural product chemists
and mycotoxicologists have created a vast body of litera-
ture characterizing the plethora of toxic secondary meta-
bolites produced by fusaria (e.g, fumonisins,
moniliformin, trichothecenes, and zearalenone, just to
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mention a few). Given the significant threat that these
toxins pose to agricultural biosecurity, food safety, and
plant and animal health (Wu et al. 2014), several compila-
tions have attempted to catalog the diversity of toxigenic
fusaria and the toxins they produce (Marasas et al. 1984;
Desjardins 2006; Munkvold 2017). However, toxigenic
fusaria identified using only morphological data should
be interpreted with caution because GCPSR studies over
the past two decades have revealed that the vast majority
of Fusarium species cannot be distinguished using only
MSR (O’Donnell et al. 2015 and references therein). DNA
sequence-based phylogenetic analyses have demonstrated
that morphologically defined species frequently comprise
multiple genealogically exclusive species-level lineages (ex
F. graminearum sensu lato comprises 16 phylogenetic
species; Sarver et al. 2011), which may differ in patho-
genicity, mycotoxin production, and host range
(Boutigny et al. 2011; Kuhnem et al. 2016; Lee et al.
2016). A number of factors, including the lack of clear
morphological characters separating species, have led to
the creation of MSR-based taxonomic systems that poorly
reflect Fusarium species diversity (Booth 1971; Gerlach
and Nirenberg 1982; Nelson et al. 1983; Leslie and
Summerell 2006). This confusion between differing taxo-
nomic systems has resulted in the widespread misapplica-
tion of species names to toxigenic and pathogenic isolates
in the scientific literature and in DNA/protein databases
(e.g., GenBank, National Center for Biotechnology
Information [NCBI]; O’Donnell et al. 2015). The toxi-
genic Fusarium compendium by Marasas et al. (1984) is
unique because they personally tested over half of the
strains for toxins and/or toxigenicity, and because the
strains reported in this compendium were archived in
the South African Medical Research Council (MRC) and
FRC Culture Collections. Given the preeminent position
that this 1984 treatise occupies in the mycotoxicology
literature, and the transformative impact GCPSR-based
studies have had on Fusarium systematics subsequent to
its publication, the present research was initiated to (i)
collect and analyze multilocus DNA sequence data to
reassess the species identity and phylogenetic diversity of
158 MRC strains; and (ii) test the MRC strains for myco-
toxin production in liquid media and/or rice or cracked
maize kernel cultures using gas chromatography-mass
spectrometry (GC-MS) and/or high-performance liquid
chromatography-mass spectrometry (HPLC-MS).

MATERIALS AND METHODS

Fusarium isolates studied.—The 158 MRC strains
included in the present study (TABLE 1), which were
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chosen to represent the phylogenetic diversity of
toxigenic Fusarium species reported in Marasas et al.
(1984), are currently accessioned in the Agricultural
Research Council Collection, South Africa (http://www.
arc.agric.za/arc-ppri), and the Fusarium Research Center
(http://plantpath.psu.edu/facilities/fusarium-research-
center), Pennsylvania State University, where they are
available for distribution. The MRC acronym is used
herein as reported in Marasas et al. (1984) to avoid
unnecessary confusion. In addition to the 30
Agricultural Research Service Culture Collection (NRRL;
Peoria, Illinois) strains included in this study as a
reference (SUPPLEMENTARY TABLE 1), close to 80%
of the MRC strains were archived in the NRRL prior to
the inception of this study (TABLE 1). All of the NRRL
strains are available for distribution upon request (https://
nrrl.ncaur.usda.gov/).

Molecular phylogenetic analysis.—To obtain total
genomic DNA for polymerase chain reaction (PCR), the
strains were grown in 50 mL disposable polypropylene
centrifuge tubes containing 20 mL of yeast malt broth (20
g dextrose, 5 g peptone, 3 g yeast extract, and 3 g malt
extract per L water; Difco, Detroit, Michigan) for 3-5 d on
a rotary shaker set at 200 rpm and 25 C. Mycelium was
collected on Whatman no. 1 filter paper discs over a
Biichner funnel, freeze-dried overnight, and then DNA
was extracted from approximately 100 mg of pulverized
mycelium using a cetyltrimethylammonijum bromide
(Sigma-Aldrich, St. Louis, Missouri) protocol (Gardes
and Bruns 1993). Genomic DNA stocks were diluted
1:50 in sterile MilliQ water in 96-well plates for PCR.
Portions of DNA-directed RNA polymerase second
largest subunit (RPB2) and translation elongation factor
(TEFI) were PCR-amplified and sequenced as previously
described (O’Donnell et al. 2010) to identify the MRC
strains to species (TABLE 1). Three-locus haplotypes
within the Fusarium incarnatum-equiseti (FIESC), F.
chlamydosporum (FCSC), and F. solani (FSSC) species
complexes were determined by sequencing the internal
transcribed spacer + large subunit (ITS+LSU) rDNA in
addition to RPB2 and TEFI (O’Donnell et al. 2008,
2009b). Two-locus sequence types (STs) within the F.
oxysporum species complex (FOSC) were identified by
sequencing the entire nuclear ribosomal intergenic
spacer region (IGS rDNA) together with the intron-rich
5-end of TEF1 (O’Donnell et al. 2009a). All PCR
reactions were conducted using Platinum Taq DNA
polymerase (Invitrogen, Carlsbad, California) in an
Applied Biosystems (ABI) 9700 or ProFlex thermocycler
(Emeryville, California) following published protocols
(O’Donnell et al. 2010). After Sanger sequences were
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generated using BigDye 3.1 Terminator reaction mix
(ABI, Emeryville, California) in a 9700 or ProFlex
thermocycler, they were purified using a BigDye
XTerminator kit before running them on an ABI 3730
genetic analyzer. Sequencher 5.2.4 (Gene Codes, Ann
Arbor, Michigan) was used to edit the sequence
chromatograms prior to exporting the data as NEXUS
files. NEXUS files were analyzed with Collapse 1.2 to
identify unique haplotypes (Posada 2006). In addition to
using Sanger sequences to identify the MRC strains, a
multilocus single-nucleotide polymorphism (SNP)-based
assay was run to identify trichothecene toxin-producing
fusaria within F. sambucinum species complex lineage 1
(FSAMSC-1; Kelly et al. 2016), formerly referred to as the
B-clade, and to predict their chemotype as previously
described (Ward et al. 2008; Aoki et al. 2015, TABLE 1).

Maximum parsimony (MP) and maximum likelihood
(ML) phylogenetic analyses were conducted, respectively,
with PAUP* 4.0b10 (Swofford 2003) and GARLI 2.01
(Zwickl 2006). Unweighted MP analyses were conducted
using the heuristic search option with 1000 random
sequence addition replicates, MULPARS on, and the tree
bisection-reconnection (TBR) branch-swapping algo-
rithm. ML analyses were run on the CIPRES Science
Gateway TeraGrid (https://www.phylo.org/) using the
GTR+I+T model of molecular evolution. Clade support
was assessed by 1000 ML and MP bootstrap pseudorepli-
cates of the data. Bootstrapping did not reveal any sig-
nificant conflicts between the individual partitions, so
they were analyzed as a combined data set. Ten putatively
novel phylospecies (i.e., F. sp. nov.-1 through F. sp. nov.-
10), which included representatives of five different spe-
cies complexes, were highly divergent from their closest
relatives in the multilocus molecular phylogenetic ana-
lyses presented here and in more inclusive analyses (data
not shown). DNA sequences were deposited in GenBank
under accession numbers MH582073-MH582472, and
the NEXUS files and most-parsimonious trees were
deposited in TreeBASE (accession numbers $22999 and
tree numbers Tr113002-Tr113007).

Toxin production in broth and solid rice grain
cultures.—Two types of liquid culture media were used
to evaluate trichothecene production by strains comprising
the FIESC, FCSC, and F. sambucinum species complex
(FSAMSC; TABLE 1, SUPPLEMENTARY TABLE 2).
Each strain was initially grown on V8 juice agar plates
(20% V8 juice, 0.3% CaCOs, 2% agar; Stevens 1974).
Twenty mL of agmatine medium (30 g sucrose, 1.14 g
agmatine, 1 g KH,PO,, 0.5 g MgSO4-7H,0, 0.5 g KCl, 10
mg FeSO,-7H,0) and 200 pL of trace element solution (per
100 mL: 5 g citric acid, 5 g ZnSO,7H,0, 025 g
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CuSO45H,0, 50 mg MnSO,-H,0, 50 mg H;BO;, 50 mg
NaMoO,2H,0) per 1 L distilled water (Gardiner et al.
2009) or 20 mL of yeast extract peptone dextrose (YEPD)
medium (50 g dextrose, 1 g peptone, 1 g yeast extract) per 1
L distilled water in 50-mL Erlenmeyer flasks was inoculated
with two 0.5-cm® plugs cut from V8 plates. The cultures
were grown at 28 C on a rotary shaker at 200 rpm in the
dark. After 7 d, each culture was transferred to a 50-mL
conical tube and extracted with 8 mL ethyl acetate with
shaking for 30 min. The mixture was separated with
centrifugation at 3000 rpm, after which the top ethyl
acetate layer was transferred to a 1-dram vial and dried
under a nitrogen stream. The residue was then
resuspended in 1 mL ethyl acetate for GC-MS.

Strains that failed to produce detectable levels of
trichothecenes in liquid culture were grown on auto-
claved rice (4.4 g + 1.8 mL water) in 6-dram vials at 25
C in the dark for 1 wk, after which the cultures were
extracted with 10 mL ethyl acetate for 30 min with
shaking. Each extract was transferred to a 1-dram vial
and dried under nitrogen with heat, and the dried
extracts were resuspended in 1 mL ethyl acetate and
analyzed for trichothecenes with GC-MS.

GC-MS analyses were performed with an Agilent 5873
chromatograph (Wilmington, Delaware) fitted with a
HP-5MS column (Wilmington, Delaware) and products
detected with a mass spectrometer with an electron
impact source. Samples were injected at 150 C, the tem-
perature was held for 1 min and then the column was
heated at 30 C/min to 280 C and then held for 7.7 min.
Individual peaks in chromatograms were examined for
trichothecenes. Under these conditions, 15-acetyldeoxy-
nivalenol (15ADON) is detected at 7.1 min, diacetoxys-
cirpenol (DAS) at 7.3 min, 4,15-diacetylnivalenol (4,15-
diANIV) at 8.1 min, and T-2 toxin at 10.5 min.
Trichothecenes were identified based on retention time
and comparison of ion fragmentation patterns with a
library prepared with purified standards.

Toxin production on cracked maize kernel
substrates.—All of the MRC strains were screened for
production of other mycotoxins (e.g., fumonisin,
moniliformin, beauvericin) by inoculating them on
cracked maize kernels (25 g + 11 mL water) as
previously described (Aoki et al. 2015; TABLE 1). After
14 d incubation in the dark, 10 g of each culture was
extracted with 20 mL 86:14 (v/v) acetonitrile:water for
30 min with shaking. After the extracts were clarified via
filtration, they were analyzed by high-performance liquid
chromatography-mass spectrometry (HPLC-MS), using
a Dionex Ultimate U3000 liquid chromatograph
(Phenomenex, Torrance, California) coupled to a
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QTRAP 3200 tandem mass spectrometer (AB SCIEX,
Thornhill, Ontario, Canada) with atmospheric pressure
or electrospray chemical ionization. A 0.6 mL/min
reverse-phase gradient (40%-95%) flow between
acetonitrile and water over 10 min was used to elute
fungal metabolites. HPLC-MS analyses were conducted
in positive and negative ionization modes to detect
mycotoxins. HPLC-MS and HPLC-MS/MS comparisons
of ion mass, elution time, and ion fragmentation with
purified standards were used to identify the metabolites
(Busman et al. 2012; Busman 2017). For LC-MS analysis,
the number and diversity of compounds detected was
limited by the availability of analytical standards. For
GC-MS analysis, we used analytical standards of
butenolides, culmorin, and trichothecenes to confirm
their production, but we also employed a mass
spectrometry reference library (Savard and Blackwell
2001) for untargeted analysis.

RESULTS

Identity of toxigenic MRC fusaria inferred from
phylogenetic analysis of partial RPB2 sequence
data.—Maximum likelihood (ML) and maximum
parsimony (MP) analyses of a portion of RPB2 (1839 bp
alignment, 650 parsimony-informative characters [PICs])
were conducted to obtain an initial estimate of
evolutionary relationships and species status of 158
MRC strains based on the demonstrated utility of this
locus for phylogenetic inference within Fusarium (FIG. 1,
TABLE 1). Sequences of three species in the FSSC were
selected as the outgroup based on more inclusive analyses
(O’Donnell et al. 2013). The MRC strains were received as
17 morphospecies, but ML and MP analyses of the partial
RPB2 data resolved them as 46 phylogenetically distinct
species distributed among eight species complexes.
Twelve of the 17 morphospecies harbored two or more
phylospecies, and these included nine different taxa
received as F. equiseti, seven as F. moniliforme, four as F.
graminearum, and three as F. solani (FIG. 1). Names
could not be applied to 18 of the phylospecies, and these
included 10 putatively novel species not previously noted
in published phylogenetic analyses (i.e., F. sp. nov.-1 to
-10; TABLE 1). The vast majority of the MRC strains
(138/158 = 87.3%) belonged to the FSAMSC, FIESC, or
FESC. The 79 isolates within the FSAMSC accounted for
half of the MRC strains and 14 phylospecies, followed by
the FESC with 39 strains and 11 species, and FIESC with
20 strains and 12 species. The 20 remaining MRC strains
included representatives of five species complexes and
accounted for 9 of the 46 phylospecies (TABLE 1).
Three species were disproportionately represented
among the MRC strain set, and these included F.

sporotrichioides (n = 28), F. verticillioides (n = 18), and
F. graminearum (n = 16). With the exception of the FFSC,
which received lower bootstrap scores, ML and MP
bootstrapping provided strong support (93%-100%) for
the monophyly of the seven other species complexes.
Evolutionary relationships among the species complexes
were mostly unresolved by the RPB2 data, as reflected by
poor bootstrap support along the backbone of the
phylogeny (FIG. 1). The F. oxysporum species complex
(FOSC), however, was strongly supported as sister to the
FFSC + F. commune. The latter species, which was
received as F. oxysporum MRC 2564 and 2566 from
river sediment in Japan, was the sole representative of
the F. nisikadoi species complex (FNSC) sampled in the
present study.

Phylogenetic diversity and mycotoxin potential of
MRC strains within the FSAMSC, FIESC, and FCSC.—
A two-locus data set comprising partial TEFI (686 bp
alignment, 184 PICs) and RPB2 (1856 bp alignment, 325
PICs) sequences was constructed to further investigate
evolutionary relationships and species limits of 79 MRC
strains within the FSAMSC and assess the potential of
these strains to produce mycotoxins in vitro (FIG. 2).
Sequences of MRC 2568 F. sp. nov.-2 received as F.
equiseti from river sediment in Japan and MRC 2486
received as F. chlamydosporum from peanuts in Georgia
were used to root the phylogeny based on the results
presented in FIG. 1, which indicated that these putatively
8-acetylneosolaniol- and diacetoxyscirpenol
(DAS)-producing species likely represented the earliest
diverging lineage sampled within the FSAMSC (TABLE
1). ML and MP bootstrap analyses of the two-locus data
set provided strong support (100%) for four
trichothecene toxin-producing clades that generally
correlated  with type. The trichothecenes
produced by Fusarium are divided into two broad
categories based on the presence (type B
trichothecenes) or absence (type A trichothecenes) of a
keto group at the C-8 position of the trichothecene ring
(McCormick et al. 2011). Of the trichothecenes detected
in the current study, DAS, T-2 toxin, and 8-
acetylneosolaniol are type A trichothecenes, whereas
15ADON and 4,15-diANIV are type B trichothecenes.
Within the FSAMSC, these clades were represented by
(i) a type A+B trichothecene lineage that included DAS-
producing F. sambucinum, F. venenatum (received as F.
sambucinum), and F. poae and 4,15-diANIV-producing
F. kyushuense received as atypical F. sporotrichioides; (ii)
the FSAMSC-1 lineage included 3-acetyldeoxynivalenol
(3ADON)- or 15-acetyldeoxynivalenol (15ADON)-
producing F. graminearum, 15ADON-producing F.

novel

toxin
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Figure 1. a, b. One of >5000 most-parsimonious cladograms inferred from aligned partial RPB2 sequences from 158 toxigenic MRC
Fusarium strains. Strain histories are provided in TABLE 1 and as an excel file (SUPPLEMENTARY TABLE 4). The cladogram was rooted
on sequences of six members of the F. solani species complex based on more inclusive analyses (O'Donnell et al. 2013). The 17
morphospecies listed under “Received as” were identified using morphological criteria (Marasas et al. 1984). Phylogenetic species
listed under “Identified as” were determined here based on phylogenetic analysis of DNA sequence data from portions of two to
three loci (see MATERIALS AND METHODS). Thickened black internodes identify eight monophyletic species complexes. Published
typing schemes were used to identify two-locus sequence types (STs) within the F. oxysporum species complex (FOSC) and three-
locus species haplotypes within the F. Incarnatum-Equiseti (FIESC), F. chlamydosporum (FCSC), and F. solani (FSSC) species complexes.
Species and haplotypes in the latter three species complexes are identified, respectively, by Arabic numerals and lowercase roman
letters. Maximum likelihood (ML) bootstrap values are indicated above nodes based on 1000 pseudoreplicates of the data. Maximum
parsimony (MP) bootstrap values are only indicated if they differed by =5% from the ML bootstrap value (ML/MP). Ten putatively
novel phylogenetically distinct species are listed as F. sp. nov.-1 to -10. Cl = consistency index; MPTs = most-parsimonious trees; PIC
= parsimony-informative character; Rl = retention index.
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Figure 1. (Continued).
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boothii received as F. graminearum from corn in South
Africa (MRC 460) and Zambia (MRC 121), 4,15-
diANIV-producing F. asiaticum received as F.
graminearum from Japanese barley grain (MRC 1963
and 1976), 3ADON- or 4,15-diANIV-producing F.
culmorum, and 4,15-diANIV-producing F. cerealis; (iii)
a type A trichothecene lineage that included F.
sporotrichioides and F. armeniacum; and (iv) a type A
trichothecene lineage that included MRC 2568 F. sp.
nov.-2 and MRC 2486 F. sp. nov.-10, which were
received as F. equiseti and F. chlamydosporum,
respectively (TABLE 1). In addition, MRC 2560 F. sp.
nov.-1, received as F. graminearum from Japanese corn,
was resolved as a putatively novel T-2 toxin-producing
type A trichothecene lineage whose phyletic relations
remain to be determined. With the exception of MRC
2017 F. armeniacum received as F. acuminatum, which
produced DAS, the three other MRC strains of this
species, together with 28 strains of F. sporotrichioides,
produced T-2 toxin. The putative trichothecene
chemotype of six strains in FSAMSC-1 that failed to
produce toxins in agmatine or YEPD broth, or rice
kernel cultures, was determined using a SNP-based
assay (identified by an asterisk in FIG. 2 and TABLE
1). Support for the monophyly of the trichothecene
toxin-producing clades within the FSAMSC received
strong ML and MP bootstrap support (FIG. 1), but the
relationships of these clades were mostly unresolved by
the two-locus data set (FIG. 2).

A three-locus typing scheme, which included por-
tions of TEFI (711 bp alignment, 158 PICs), RPB2
(1766 bp alignment, 268 PICs), and the ITS+LSU
rDNA (1149 bp alignment, 45 PICs) identified the 20
MRC strains nested in the FIESC as 12 phylogenetically
distinct species, including three that appear to be novel
(FIESC 34, 35, and 36; FIG. 3, TABLE 1). Sequences of
F. sp. nov.-6 from South African millet (MRC 35) and
bean hay (MRC 117) appear to represent two haplo-
types of a novel species in the F. chlamydosporum
species complex informally designated FCSC 5, and
they were used to root the FIESC phylogeny based on
more inclusive analyses (O’Donnell et al. 2013). MP
and ML analyses of the FIESC data set provided 100%
bootstrap support for monophyly of the 10 species
represented by two or more strains, and relationships
among most of the species were resolved with moderate
to high clade support (FIG. 3). However, monophyly of
the Equiseti clade was weakly supported by bootstrap-
ping (i.e., 70%). The MRC strains received as F. equiseti
were resolved as nine phylogenetically distinct species,
including two that appear to be putatively novel (i.e.,
MRC 2435 F. sp. nov.-3 = FIESC 34, and MRC 2558,
2559, and 2561 F. sp. nov.-4 = FIESC 35 from soybean
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in Japan). Similarly, the five MRC strains received as F.
semitectum appeared to comprise three phylospecies.
One of these, represented by MRC 2636, 2804, and
2806 F. sp. nov.-5 = FIESC 36 from Indian wheat and
corn, appears to be novel. Seven of the species within
the Equiseti clade and all three species within the
Incarnatum clade produced the A type DAS or B type
4,15-diANIV trichothecene when tested for toxin pro-
duction in agmatine broth (FIG. 3). Trichothecenes
were not detected in agmatine broth or rice cultures
of the outgroup strains MRC 35 FCSC 5-a and MRC
117 FCSC 5-b. Beauvericin was detected in culture
extracts of the former and moniliformin and butenolide
in the latter strain (FIG. 3, TABLE 1).

Several other toxins and biologically active metabo-
lites were detected in culture extracts of the FSAMSC,
FIESC, and FCSC strains (TABLE 1,
SUPPLEMENTARY TABLES 2-3). Butenolide was
produced by 11 species, including 9 species in the
FSAMSC, MRC 2636 FIESC 36-a, and MRC 117
FCSC 5-b. The antifungal sesquiterpene culmorin was
detected in some strains of F. graminearum, F. boothii,
and F. culmorum. Lastly, 9/14 species in the FSAMSC
and FCSC 5-a and 5-b produced the antimicrobial
griseoxanthone C (SUPPLEMENTARY TABLE 2);
beauvericin was also produced by 8/14 species in the
FSAMSC and by at least one representative of the
FIESC, FCSC, FFSC, FNSC, and FOSC (TABLE 1).

Phylogenetic diversity and mycotoxin potential of
MRC strains within the FFSC, FNSC, and FOSC.—A
two-locus data set that included partial TEFI (694 bp
alignment, 126 PICs) and RPB2 (1852 bp alignment,
211 PICs) sequences was constructed to (i) assess
species  boundaries ~ within and  evolutionary
relationships among the FFSC, FNSC, and FOSC; and
(ii) map mycotoxins produced in cracked maize kernel
cultures on the molecular phylogeny (FIG. 4). The
phylogeny was rooted on sequences of the five FOSC
strains received as F. oxysporum based on more
inclusive analyses (FIG. 1 and O’Donnell et al. 2013).
ML and MP bootstrap analyses of the two-locus data
set provided strong support for most internodes in the
phylogeny but failed to resolve relationships among the
African, American, and Asian clades of the FFSC (FIG.
4). Bootstrapping also failed to support MRC 1411 F.
thapsinum from corn from Georgia as a member of the
African clade where it was previously reported to be
nested (O’Donnell et al. 1998b). Phylogenetic analyses
resolved the 39 MRC strains within the FFSC as 11
phylogenetically distinct species (TABLE 1), including
the following two putatively novel species: MRC 2628
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2486 8-ANEO F. sp. nov.-10
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Figure 2. One of 288 most-parsimonious phylograms inferred from aligned partial TEF7 + RPB2 sequences from 79 MRC strains
representing 14 species in the Fusarium sambucinum species complex (FSAMSC). The phylogram was rooted on sequences of MRC
2568 F. sp. nov.-2 and MRC 2486 F. sp. nov.-10 based on the analysis presented in FIG. 1. Maximum likelihood (ML) bootstrap values are
indicated above nodes based on 1000 pseudoreplicates of the data. Maximum parsimony (MP) bootstrap values are only indicated if they
differed by >5% from the ML bootstrap value (ML/MP). Phylogenetic metrics include Cl, consistency index; MPTs, most-parsimonious trees;
PIC, parsimony-informative character; and RI, retention index. The primary toxins produced were determined via GC-MS and HPLC-MS,
except for six strains identified by an asterisk within FSAMSC-1. The predicted trichothecene toxin chemotype of these six strains was
determined using a published SNP-based multilocus genotyping assay (Ward et al. 2008). A clade, type A trichothecene toxin producers; A
+B clade, type A and B trichothecene toxin producers. The primary toxins produced include BEA, beauvericin; BIK, bilaverin; BUT,
butenolide; CUL, culmorin; DAS, diacetoxyscirpenol; T-2, T-2 toxin; ZEA, zearalenone; 4,15-diNIV, 4,15-diacetylnivalenol; 15ADON, 15-
acetyldeoxynivalenol; 3ADON, 3-acetyldeoxynivalenol; and 8-ANEO, 8-acetylneosolaniol. NA, strain not tested; —, none detected.



F. sp. nov.-7 from corn in Iowa and MRC 115 F. sp.
nov.-8 from a cotton boll in Alabama. Analyses of the
MRC data set resolved these species as sister to F.
verticillioides and F.  subglutinans (FIG. 4),
respectively, but more inclusive analyses resolved
MRC 2628 F. sp. nov.-7 and F. andiyazi as sisters
(O’Donnell, unpubl.). Only 2 of the 39 FFSC strains,
MRC 941 F. anthophilum from Hippeastrum sp. from
Germany and MRC 2324 F. proliferatum from a cotton
boll in Alabama, were received correctly identified
under names accepted today. The 33 strains received
as F. moniliforme represented seven different
phylospecies (i.e., F. fujikuroi, F. proliferatum, F.
pseudonygamai, F. subglutinans, F. thapsinum, F.
verticillioides, and F. sp. nov.-7). The phylogenetic
results revealed that the name F. subglutinans was
applied to three MRC strains that were identified
herein as F. temperatum (MRC 134 from corn from
Zambia), F. bulbicola (MRC 940 from Haemanthus sp.
from Germany), and F. sp. nov.-8 (MRC 115 from corn
from South Africa). Similarly, MRC strains 2564 and
2566, received as F. oxysporum from river sediment in
Japan, were identified as F. commune, which is nested
within the FNSC (FIG. 4). Lastly, a two-locus typing
scheme (TEFI [634 bp alignment] + IGS rDNA [2220
bp alignment]) indicated that the five MRC strains
received as F. oxysporum each represented a unique
sequence type (ST), including the novel ST 257
represented by MRC 2536 from Japan (FIG. 4).
HPLC-MS analyses of cracked maize culture extracts
revealed that fumonisins (FB = FB;, + FB, + FBj) at
20.2 ug/mL or 1 ppm were only produced by three
species within the FFSC; these included 2/6 F. fujikuroi,
2/4 F. proliferatum, and 15/18 F. verticillioides MRC
strains tested (FIG. 4, SUPPLEMENTARY TABLE 3).
Eight of the FFSC strains, including F. bulbicola, F.
proliferatum, F. pseudonygamai, F. verticillioides, and
F. sp. nov.-7, produced significant levels of the cyto-
toxic polyketide 8-O-methylbostrycoidin at >1.0 pg/
mL. In addition, several representatives of the FFSC,
FNSC, and FOSC were able to produce the polar myco-
toxin moniliformin, the cyclic hexadepsipeptide beau-
vericin, and the reddish pigment bikaverin on cracked
maize cultures. Moniliformin at >1.0 pg/mL was
detected in 8/11 species in the FFSC, F. commune,
and F. oxysporum, but not in F. bulbicola, F. verticil-
lioides, and F. subglutinans (FIG. 4,
SUPPLEMENTARY TABLE 3). The highest monilifor-
min production was detected in F. pseudonygamai
where it ranged from 71.55 to 106.5 ug/mL, followed
by MRC 2628 F. sp. nov.-7 at 75.1 pug/mL. Beauvericin
was detected in culture extracts of three species within
the FFSC (F. fujikuroi, F. proliferatum, and F.
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temperatum), F. commune in the FNSC, and the five
FOSC strains, where production up to 80.1 pg/mL was
observed in MRC 2199 FOSC ST-51. Bikaverin was
detected in 31/36 FFSC, 2/2 ENSC, and 5/5 FOSC
strains tested and in 11/12 species, but not in MRC
2627 F. subglutinans. Over 100 pug/mL bikaverin was
produced by 7/11 species in the FFSC and all five FOSC
strains; moreover, the following three strains produced
over 200 pg/mL bikaverin: MRC 2199 FOSC ST-51,
2066 FOSC ST-30, and 2677 F. proliferatum. None of
the FFSC, FNSC, and FOSC strains tested produced
detectable levels of trichothecenes, and when these
strains were tested for enniatin B, it was only detected
in maize kernel cultures of MRC 2066 FOSC ST-30
(SUPPLEMENTARY TABLE 3).

Phylogenetic diversity and mycotoxin potential of
MRC strains within the FTSC and FSSC.—A two-locus
data set that included portions of TEFI (671 bp
alignment, 54 PICs) and RPB2 (1738 bp alignment, 127
PICs), to which 18 NRRL reference strains were added,
was constructed to identify five MRC strains nested in
the FTSC. ML and MP bootstrapping yielded a nearly
fully resolved phylogeny, except that the relationship
between F. avenaceum and a putatively novel species
represented by MRC 2532 F. sp. nov.-9 from Japanese
soybean was unresolved (FIG. 5). The molecular
phylogenetic results support the identification of MRC
strains 1413, 1888, and 2195 as F. avenaceum and MRC
1895 as F. tricinctum. Moniliformin + enniatin B, or
moniliformin, were the only mycotoxins detected in
culture extracts of the five FTSC strains. Moniliformin
at 21.0 ug/mL was detected in cracked maize cultures of
six species within the FTSC, ranging from 1.5 pg/mL in
MRC 2532 F. sp. nov.-9 to moderately high levels in the
three strains of F. avenaceum (22.9-58.6 pg/mL).
Enniatin B was produced by the latter three strains and
F. tricinctum, with the highest levels observed in MRC
1413 F. avenaceum (49.8 pg/mL) and reference strains
NRRL 45994 Fusarium sp. FISC-2 (77.2 pg/mL) and
NRRL 52727 Fusarium sp. FTSC-5 (58.1 ug/mL)
(SUPPLEMENTARY TABLE 3). Of the strains
included in the present study, enniatin B was only
detected in members of the FTSC.

A multilocus typing scheme that employed portions
of TEF1 (693 bp alignment, 9 PICs), RPB2 (1664 bp
alignment, 46 PICs), and ITS+LSU rDNA (1013 bp
alignment, 24 PICs) was used to determine species
identity of six MRC strain nested in the FSSC
(SUPPLEMENTARY FIG. 1). When sequences of
these six strains were added to a more inclusive data
set (O’Donnell et al. 2008) and analyzed with Collapse
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Figure 3. Molecular phylogeny of 28 Fusarium Incarnatum-Equiseti clade (FIESC) strains, including eight reference isolates from the
ARS Culture Collection (NRRL) used to identify MRC strains to species. The phylogeny represents one of three most-parsimonious
phylograms inferred from portions of three loci used to determine species haplotypes within this species complex (O'Donnell et al.
2009b). Sequences of two MRC strains representing the putatively novel species FCSC 5 within the F. chlamydosporum species
complex were used to root the phylogram. Maximum likelihood (ML) bootstrap values are indicated above nodes based on 1000
pseudoreplicates of the data. Maximum parsimony (MP) bootstrap values are only indicated if they differed by >5% from the ML
bootstrap value (ML/MP). Thickened internodes are used to identify a basal split between members of the Equiseti and Incarnatum
clades. Phylogenetic metrics include Cl, consistency index; MPTs, most-parsimonious trees; PIC, parsimony-informative character; and
RI, retention index. DAS or 4,15-diNIV were detected in 20 of FIESC strains analyzed by GC-MS. The primary toxins produced include
BEA, beauvericin; BUT, butenolide; DAS, diacetoxyscirpenol; FA, fusaric acid; MBO, 8-O-methylbostrycoidin; MON, moniliformin; T-2,
T-2 toxin; ZEA, zearalenone; and 4,15-diNIV, 4,15-diacetylnivalenol. NA, not tested; —, none detected.



1.2 (Posada 2006), four of the FSSC strains were iden-
tified as F. solani (FSSC 5 haplotypes g and pp), MRC
2803 from corn in India was typed as F. falciforme
FSSC 3+4-iii, and MRC 2198 from potato grown in
Germany was identified as an unnamed phylospecies
designated F. sp. FSSC 21-c. Of the five FSSC strains
tested, beauvericin was the only mycotoxin detected,
but only in a culture extract of MRC 2805 F. solani
FSSC 5-g (SUPPLEMENTARY TABLE 3).

DISCUSSION

Multilocus molecular systematic studies over the past
two decades collectively indicate that Fusarium com-
prises at least an order of magnitude more species than
included in the Nelson et al. (1983) taxonomic treat-
ment of the genus (Aoki et al. 2014). Given that this
taxonomy was adopted in the companion compendium
Toxigenic Fusarium Species (Marasas et al. 1984), the
present study was initiated to reassess species identity
and toxin potential of strains included in this compila-
tion. Although published over three decades ago in a
premolecular era, where species identity was based
entirely on morphological species recognition, this trea-
tise remains a standard reference for mycotoxigenic
fusaria today. The present study highlights the impor-
tance of archiving key strains in publically accessible
microbial culture collections such as the MRC, FRC, or
NRRL (Kang et al. 2006). Access to these invaluable
genetic resources allowed us to critically evaluate the
wealth of knowledge within this compendium, thereby
advancing our understanding of mycotoxigenic fusaria
and their toxin potential.

Herein, species identity of 158 MRC strains was
determined via genealogical concordance phylogenetic
species recognition employing multilocus DNA
sequence data (GCPSR; Taylor et al. 2000). Tentative
identification of the strains and species complex mem-
bership was inferred phylogenetically from partial
RPB2 sequence data, which resolves at or near the
species level, and they have the added advantage that
they can be easily aligned across the breadth of the
genus (O’Donnell et al. 2013). Once species complex
membership was determined, published clade-specific
multilocus typing schemes were employed to identify
species/haplotypes within the FIESC and FCSC
(O’Donnell et al. 2009b), FSSC (O’Donnell et al.
2008), and STs within the FOSC (O’Donnell et al.
2009a). GCPSR-based analyses of partial TEFI +
RPB2 sequence data, as previously demonstrated
(O’Donnell et al. 2012), reliably resolved species iden-
tity of the 158 MRC strains employing current mole-
cular techniques.

MYCOLOGIA 1071

Important findings regarding the phylogenetic
diversity of the MRC fusaria we typed include the
following: (i) the 17 morphospecies received from
MRC were determined to comprise 46 phylospecies,
including 10 putatively novel taxa distributed among
five species complexes (FIG. 1, TABLE 1); (ii) 12 of
the 17 morphospecies harbored two or more cryptic
species, with MRC strains received as F. equiseti, F.
moniliforme, F. graminearum, and F. solani compris-
ing 9, 7, 4, and 3 phylospecies, respectively; (iii) 138/
158 (87.3%) of the strains were nested within the
FSAMSC, FESC, or FIESC; and (iv) half of the strains
(79/158 = 50%) were identified as trichothecene
toxin—producing members of the FSAMSC. Taking
advantage of the discovery that agmatine is a strong
inducer of TRI5 expression and trichothecene bio-
synthesis in F. graminearum and other fusaria
(Gardiner et al. 2009; Pasquali et al. 2016), we
demonstrated experimentally that the majority of
the FSAMSC and FIESC strains could produce tri-
chothecenes in broth containing this amine, includ-
ing strains that have been in culture for over five
decades (Aoki and O’Donnell 1998). We also ran a
validated SNP-based genotyping assay (Ward et al.
2008) to predict trichothecene toxin potential of six
strains within FSAMSC-1 that failed to produce tri-
chothecenes in agmatine broth and rice kernal cul-
tures. Our results, together with those of Gardiner
et al. (2009), suggest that nutrient profiling offers
considerable promise for discovering strong inducers
of other mycotoxin biosynthetic pathways within
Fusarium. Amylopectin, for example, was reported
to be a strong inducer of fumonisins (Bluhm and
Woloshuk 2005). Thus, experiments are needed to
determine whether this carbon source is a strong
inducer of expression of the fumonisin gene FUMI
and fumonisin biosynthesis in F. verticillioides and
related fusaria that possess a functional fumonisin
gene cluster (Proctor et al. 2013).

Mycotoxin production profiles reported here are
consistent with published genomic data. For example,
trichothecene production was only detected in mem-
bers of FSAMSC and FIESC, and published genome
sequences of members of these two complexes have
the trichothecene biosynthetic gene cluster, but
sequences of members of other species complexes do
not have the cluster (Gardiner et al. 2012; Ma et al.
2013; Moolhuijzen et al. 2013; King et al. 2015, 2018;
Urban et al. 2016; Vanheule et al. 2016). As noted in
the present study, the presence of a mycotoxin biosyn-
thetic gene cluster does not guarantee that a strain will
produce the corresponding mycotoxin under laboratory
conditions (Niehaus et al. 2017).



1072 . O’'DONNELL ET AL.: TOXIGENIC FUSARIUM

MRC # Toxin Species
A 137 BIK, FB
TEF1 + RPB2 2079 BIK, FB
2546 bp 2316 FB
337 PIC 2317 BIK, FB
AGMPT 2326 BIK, FB
steps
Cl=0.74 [l FB
RI = 0.94 2091 -
\ J 2632 BIK, FB
10 548 BIK, FB, MBO
steps 929 BIK F. verticillioides
100 L 2228 FB
i 2629 BIK, FB, MBO
2630 —
1439 BIK, FB
99/93 42 FB, MBO
930 BIK, FB
- 826 BIK, FB
100 L 602 BIK, FB, MBO
AF 2628 BIK, MBO, MON F. sp. nov.-7
1412 BIK, MON
100 69 BIK, MON F. pseudonygami
| 515 BIK, MBO, MON
99 115 BIK, MON F. sp. nov.-8
100 2627 - F. subglutinans
100 — 134 _
,1A0|3| — L s BEA, BIK, MON F. temperatum
ﬂ|:941 BIK, MON F. anthophilum
940 MBO F. bulbicola
99 2390 BEA
fujikuroi 2322 BIK
2387 BEA, BIK, MON F tyikuroi
100 2388 BIK
1784 BEA, BIK, FB, MON
2386 BIK, FB
100 100 2535 NA
AS 2677 BEA, BIK .
100 2633 BEA, BIK, FB, MBO, MON |- Profiferatum
2324 BIK, FB
1411 BIK, MON F. thapsinum
100 | 2566 BEA, BIK, MON
nisikadoi | 2564 BEA, BIK F. commune
2199 (ST51) BEA, BIK
2536 (ST257) BEA, BIK
2066 (ST30) BEA, BIK, ENB F. oxysporum
oxysporum 2325 (ST219) BEA, BIK, MON
(outgroup) ~ —— 1694 (ST1) BEA, BIK, MON

Figure 4. Single most-parsimonious phylogram inferred from aligned partial TEF7 + RPB2 sequences of toxigenic fusaria representing
the Fusarium fujikuroi (FFSC), F. nisikadoi (FNSC), and F. oxysporum (FOSC) species complexes. Thickened internodes identify these
three clades. The species-rich FFSC is represented by 39 MRC strains comprising 11 phylogenetic species, including two that appear
to be novel (i.e., F. sp. nov.-7 and -8). Sequences were rooted on five FOSC MRC strains based on the analysis presented in FIG. 1.
Maximum likelihood (ML) bootstrap values are indicated above nodes based on 1000 pseudoreplicates of the data. Maximum
parsimony (MP) bootstrap values are only indicated if they differed by >5% from the ML bootstrap value (ML/MP). A two-locus
typing scheme employing partial TEFT and complete IGS rDNA sequence data (O’'Donnell et al. 2009a) was used to determine
sequence type (ST) within the FOSC. Subclades of the FFSC: AF, African; AM, American; As, Asian. Phylogenetic metrics include Cl,
consistency index; MPT, most-parsimonious tree; PIC, parsimony-informative character; and Rl, retention index. The primary toxins
produced include BEA, beauvericin; BIK, bikaverin; BUT, butenolide; ENB, enniatin B; FB, fumonisins FB; + FB, + FB3; MBO, 8-O-
methylbostrycoidin; and MON, moniliformin. NA, not tested; —, none detected.



Phylogenetic diversity and mycotoxin potential of
MRC strains within the FSAMSC, FIESC, and FCSC.—
Although the evolutionary history of a number of genes
within the trichothecene gene cluster does not track
with  the species phylogeny inferred from
housekeeping genes (Proctor et al. 2009, 2013), results
of the present study and others (Ward et al. 2002;
Kristensen et al. 2005; O’Donnell et al. 2013;
Watanabe et al. 2013) demonstrate that subclades
within the FSAMSC generally correlate with
trichothecene type. The MRC strains included
representatives of 4/5 subclades reported in O’Donnell
et al. (2013). MRC 2568 F. sp. nov.-2 and 2468 F. sp.
nov.-10 were the sole members of a type A clade in the
aforementioned study that included NRRL 13829 F. cf.
compactum. The fifth FSAMSC subclade, the type B F.
longipes clade, was not represented among the MRC
strains. Further study is required to determine whether
MRC 2560 F. sp. nov.-1, which was received as T-2
toxin—producing F. sambucinum from Japanese
corn, represents a novel type A subclade within the
FSAMSC.

Eighteen of the 26 phylospecies represented by the
MRC strains in the FIESC + FSAMSC were discovered
after Marasas et al. (1984) was published, but only 5 of
these have been described formally. Fusarium kyush-
uense (Aoki and O’Donnell 1998), the species from
which nivalenol, diANIV, and fusarenon-X were first
isolated and characterized (reviewed in Ueno et al.
1997), was received from MRC as atypical F. sporotri-
chioides. The Quorn mycoprotein-producing species
(O’Donnell et al. 1998a), originally reported as F. gra-
minearum (Trinci 1994), was segregated from F. sam-
bucinum as F. venenatum (Nirenberg 1995; Thrane and
Hansen 1995). Of the 16 phylospecies discovered
within F. graminearum sensu lato, 15 have been
described formally (Sarver et al. 2011), including F.
boothii and F. asiaticum (O’Donnell et al. 2004), and
F. acuminatum subsp. armeniacum was elevated to
species status based on molecular data that indicated
that it and subsp. acuminatum were distantly related
(Burgess and Summerell 2000). The conflation of the
latter two species has contributed to erroneous reports
that F. acuminatum produces trichothecenes (Marasas
et al. 1984; Desjardins 2006). However, there are no
authentic reports to date that F. acuminatum and other
species within the FTSC produce trichothecenes

Most of the authentic MRC strains of F. grami-
nearum produced the type B trichothecene 15ADON,
the predominant chemotype in North America (Ward
et al. 2008; Kelly et al. 2015), Europe (T6th et al. 2005),
Asia (Zhang et al. 2012), South Africa (Boutigny et al.
2011), and South America (Castafiares et al. 2016). Two
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strains of 4,15-diANIV-producing F. asiaticum from
Japan, two of 15ADON F. boothii from Africa, and a
novel T-2 toxin-producing species represented by
MRC 2560 Fusarium sp. nov.-1 from Japanese corn
were received as F. graminearum. Although a small
population of F. graminearum that produces the type
A trichothecene NX-2 was recently discovered and
characterized in North America (Liang et al. 2014;
Kelly et al. 2016), the report in Marasas et al. (1984)
that MRC 2580 produces T-2 and DAS appears to be
erroneous given that the results of the SNP-based assay
predicts that it might produce 3ADON (TABLE 1).
Global surveys have revealed that F. graminearum and
F. asiaticum are segregating for 15ADON, 3ADON,
and NIV worldwide (Ward et al. 2002; Yang et al.
2008; Boutigny et al. 2011), whereas the 15ADON che-
motype appears to be fixed in F. boothii (Ward et al.
2002; Boutigny et al. 2011). As reported in a global
population genetic analysis of F. culmorum (Laraba
et al. 2017), MRC strains of this pathogen were segre-
gating for 3ADON and NIV, but 3ADON appears to
represent the predominant chemotype worldwide.

The FIESC phylogeny that resolved the 20 MRC
strains as 12 phylospecies revealed that the Marasas
et al. (1984) morphological concepts of F. semitectum
and F. equiseti were overly broad. Interestingly, the
three phylospecies within the Incarnatum clade were
received as F. semitectum and the nine species within
the Equiseti clade as F. equiseti, presumably because
Nelson et al. (1983) distinguished these two broadly
defined morphospecies by the production of polyphia-
lides in the former and only monophialides in the
latter. These species were classified in the morphologi-
cally defined sections Arthrosporiella and Gibbosum,
respectively, by Nelson et al. (1983), but both sections
are nonmonophyletic (O’Donnell et al. 2013).
Multilocus molecular phylogenetic surveys of medically
important fusaria (O’Donnell et al. 2009b), Sardinian
soils (Balmas et al. 2010), insecticolous fusaria
(O’Donnell et al. 2012), cereals from Italy (Villani
et al. 2016), and the MRC strain collection have
revealed that the FIESC is one of the most species-
rich lineages within Fusarium. Currently, Latin bino-
mials can be applied with confidence to only 3/36
phylospecies, and these are F. equiseti FIESC 14, F.
lacertarum FIESC 4, and F. sciripi FIESC 9. The former
two species were represented among the 20 FIESC
strains from MRC, but an ad hoc nomenclature for
species and multilocus haplotypes (O’Donnell et al.
2009b) was used to accurately report on the 10
unnamed phylospecies received from MRC. We deter-
mined the identity and mycotoxin potential of several
of the phylospecies implicated in mycotoxicoses of
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Figure 5. One of 12 most-parsimonious phylograms inferred from aligned partial TEFT + RPB2 sequences from 23 strains (18 NRRL
reference and 5 MRC strains) representing eight species within the Fusarium tricinctum species complex (FTSC). Each species is
designated with FTSC followed by a unique Arabic number because Latin binomials could not be applied to four of the phylospecies.
The MRC strains were identified as F. avenaceum (FTSC 4), F. tricinctum (FTSC 3), and a putatively novel species (F. sp. nov.-9 = FTSC
11) represented by MRC 2532 received identified as F. avenaceum. Sequences of F. torulosum were used to root the phylogeny based
on more inclusive analyses (O'Donnell unpubl.). Maximum likelihood (ML) bootstrap values are indicated above nodes based on 1000
pseudoreplicates of the data. Phylogenetic metrics include Cl, consistency index; MPT, most-parsimonious tree; PIC, parsimony-
informative character; and Rl, retention index. The primary toxins produced include ENB, enniatin B; and MON, moniliformin. NA, not

tested; —, none detected.
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animals that Marasas et al. (1984) reported as F. equiseti
or F. semitectum. Fusarium lacertarum FIESC 4 and
FIESC 25 were isolated from toxic rice straw linked to
Degnala disease of cattle and buffaloes in India, FIESC
29 was isolated from moldy corn thought to be respon-
sible for the death of dairy cattle in Minnesota, and
FIESC 35 was associated with bean hulls poisoning of
horses in Japan. Type A (DAS) or type B (4,15-
diANIV) trichothecenes may have been responsible
for the toxicoses, which were produced in agmatine
broth by these species. We observed, as did Villani
et al. (2016), that trichothecene profiles were variable
in several FIESC phylospecies where type A or B or
both types were produced. Strains of F. equiseti FIESC
14 and FIESC 1, for example, produced 4,15-diANIV or
4,15-diANIV + DAS. Although not reported in Marasas
et al. (1984), we discovered that MRC 2609 F. lacer-
tarum FIESC 4-d produced the estrogenic toxin zear-
alenone and MRC 2636 FIESC 36-a produced
butelonide. Given the huge gulf that currently exists
between morphological and phylogenetic species recog-
nition in the FIESC, and the likelihood that many novel
phylospecies will be discovered in future plant patho-
gen and mycotoxin surveys, multilocus sequence typing
has become an essential tool for accurately reporting on
the FIESC and their mycotoxin potential.

Although a preliminary study revealed that the mor-
phospecies Fusarium chlamydosporum comprised four
medically and agriculturally important phylospecies
(O’Donnell et al. 2009b), more extensive investigations
are needed to elucidate FCSC species diversity and their
mycotoxin potential. Of the MRC strains included in
Marasas et al. (1984) as F. chlamydosporum, only MRC
2486 (= NRRL 6358) from peanuts from Georgia was
reported to produce the trichothecene neosoloniol
monoacetate (Lansden et al. 1978). However, MRC
2486 appears to represent the undescribed species F.
sp. nov.-10 in the FSAMSC, which is closely related to
MRC 2568 F. sp. nov.-2 from river sediment in Japan.
As reported in Marasas et al. (1984), we found that
MRC 117 (F. sp. nov.-6 = FSCS 5) can produce mon-
iliformin, and we extended their results by discovering
that MRC 117 and MRC 35 produce butenolide and
beauvericin, respectively. The present study appears to
represent the first report of butenolide production by
FCSC 5, F. boothii, F. asiaticum, F. kyushuense, and
FIESC 36.

Phylogenetic diversity and mycotoxin potential of
MRC strains within the FFSC, FNSC, and FOSC.—
With over 50 phylospecies distributed among three
biogeographically structured clades, the FFSC is one
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of the most species-rich and taxonomically
challenging groups within Fusarium (O’Donnell et al.
2015). The perceived limitations of morphological
species recognition within this clade was reflected by
our discovery that only 2/39 MRC strains were received
using names in current use. This discrepancy is due in
part to the overly broad morphological concepts of the
four FFSC species recognized by Marasas et al. (1984)
and subsequent abandonment of the name F
moniliforme because it was being applied to an
indeterminate number of species within the FFSC
(Seifert et al. 2003). In addition to F. verticillioides,
with which it is sometimes mistakenly thought to be
equivalent, we determined that Marasas et al. (1984)
applied this name to six other phylospecies, including
F. fujikuroi, F. proliferatum, F. subglutinans, and MRC
2628 Fusarium sp. nov.-7 from Iowa corn together with
two species described after Marasas et al. (1984) was
published, F. thapsinum (Klittich et al. 1997) and F.
pseudonygamai (Nirenberg and O’Donnell 1998). In
addition to the plethora of economically important
plant diseases that members of the FFSC cause, the
carcinogenic  foodborne fumonisins were first
discovered and characterized in F. verticillioides by
South African scientists in 1988 (reviewed in Marasas
2001; Rheeder et al. 2002). Subsequently, fumonisins
were demonstrated experimentally to cause equine
leukoencephalomalacia (Marasas et al. 1988a) and
they have been linked epidemiologically to high levels
of human esophageal cancer in the Transkei region of
South Africa (Rheeder et al. 1992).

Our results match those of prior studies (Rheeder
et al. 2002; Proctor et al. 2004) that showed that fumo-
nisin B analogs were produced by F. verticillioides, F.
proliferatum, and F. fujikuroi, but not by the eight other
FFSC species received from MRC. Two strains of F.
oxysporum from Korea have been shown to produce FC
fumonisin analogs (Seo et al. 1996), but they were not
detected in cracked maize extracts of the five MRC
strains of this species. We observed, as noted by
Munkvold (2017), that moniliformin was produced by
some of the FOSC strains and most of the FFSC, but
not by F. verticillioides and F. subglutinans. Two strains
of F. pseudonygamai produced the most moniliformin
on cracked maize cultures, including MRC 1412, which
was initially reported as F. moniliforme (Marasas et al.
1984) and subsequently reidentified incorrectly as F.
nygamai (Marasas et al. 1988b). The two strains of F.
commune (Skovgaard et al. 2003) that were reported as
F. oxysporum in Marasas et al. (1984) were not tested
for mycotoxins by them; however, our analyses estab-
lished that this FNSC species can produce monilifor-
min, bikaverin, and beauvericin. Marasas et al. (1984)
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did not analyze strains for the latter two toxins, but F.
subglutinans MRC 2627 was the only species among the
FFSC, FNSC, and FOSC strains we tested that failed to
produce the cytotoxic red pigment bikaverin
(Wiemann et al. 2009). Our results match reports that
the nonribosomal cyclic hexadepsipeptide beauvericin
is produced by members of the FFSC and FOSC
(Logrieco et al. 1998), but this toxin was only detected
in some of the strains of F. oxysporum, F. temperatum,
F. fujikuroi, and F. proliferatum. Although beauvericin
and enniatin are structurally related (Logrieco et al.
2002; Zhang et al. 2013), MRC 2066 F. oxysporum was
the only strain among the FOSC, FFSC, and FNSC
tested that produced enniatin B. With the recent devel-
opment of a HPLC-MS method for detecting 8-O-
methylbostrycoidin (Busman 2017), we detected this
toxic pigment in F. verticillioides, the species in which
it was first reported (Steyn et al. 1979), together with F.
bulbicola, F. proliferatum, F. pseudonygamai, and F. sp.
nov.-7 in the FFSC, and MRC 2231 FIESC 10-b.

Phylogenetic diversity and mycotoxin potential of
MRC strains within the FTSC and FSSC.—Nelson
et al. (1983) classified F. avenaceum and F. tricinctum
within  sections  Roseum and  Sporotrichiella,
respectively, but because these subgeneric groups are
artificial, we prefer to refer to the clade in which these
species are nested as the FTSC. The three phylospecies
within the FTSC and FSSC were represented by five
and six MRC strains, respectively. Mycotoxin profiles
of the three FTSC species from MRC matched those
reported for F. avenaceum (Logrieco et al. 2002; Lysoe
et al. 2014) in that moniliformin was detected in
cracked maize cultures of all three and enniatin B in
F. avenaceum and F. sp. nov.-9 FTSC 11. In contrast to
the FTSC, where species diversity is poorly understood,
numerous studies of medically and agronomically
important strains indicate that the FSSC comprises
over 50 phylospecies distributed among three clades
(O’Donnell 2000; O’Donnell et al. 2008; Nalim et al.
2011; Aoki et al. 2014). These species are typically
reported incorrectly as F. solani, but this name should
only be applied to phylospecies FSSC 5 (Schroers et al.
2016). Based on published reports, Marasas et al. (1984)
indicated that the six FSSC strains from MRC produced
metabolites that were toxic to animals, but none of
these were characterized. We tested these strains and
the only toxin detected was beauvericin in MRC 2805
from wheat in India.

Concluding remarks.—Our current understanding of
Fusarium species diversity and mycotoxin chemistry

has seen significant advances since the publication of
Marasas et al. (1984), including the discovery of many
toxigenic and phytopathogenic fusaria via multilocus
molecular phylogenetics, development of more
sensitive GS-MS and HPLC-MS techniques for
detecting and characterizing mycotoxins (Jestoi 2008;
McCormick et al. 2011; Busman et al. 2012; Busman
2017), nutrient profiling to identify compounds that
stimulate toxin production (Gardiner et al. 2009), and
comparative phylogenomics of fusaria to predict their
mycotoxin potential from secondary metabolite gene
clusters (Edwards et al. 2016; Kim et al. 2017). To
illustrate the impact of molecular systematics, only 13
fusaria were described in as many years (ie.,
1985-1997) following the publication of Marasas et al.
(1984), whereas 127 species, or 6.35/y on average, were
described during the molecular systematic era (1998-
present), which spans the past two decades.

Results of the present study have important implica-
tions for advancing our understanding of mycotoxi-
genic fusaria. First, most fusaria can only be
accurately identified using multilocus DNA sequence
data. To illustrate this point, our results revealed that
the 17 morphospecies of Marasas et al. (1984) com-
prised 46 phylogenetically distinct species, including
many that are morphologically cryptic (Aoki et al.
2014). By extension, reports of mycotoxin production
generally should be viewed as unconfirmed unless the
strains were identified molecularly. Secondly, as evi-
denced by the survey of the strain set presented here,
key strains should be archived in publically accessible
culture collections (e.g., CBS-KNAW, FRC, NRRL) so
that the results can be verified and extended (Kang
et al. 2006). Also, the DNA sequence data generated
herein were deposited in NCBI GenBank and Fusarium
MLST (http://www.westerdijkinstitute.nl/Fusarium/) to
facilitate strain identification via the Internet
(O’Donnell et al. 2015). In that regard, because evolu-
tionary relationships and species limits are not fully
resolved in most clades, including the important
toxin-producing FSAMSC and FFSC lineages, the gen-
omes of phylogenetically diverse fusaria will be mined
to identify additional phylogenetically informative mar-
ker loci. Lastly, ongoing research among our research
groups is actively employing a three-prong approach
that includes GCPSR-based research to discover novel
toxigenic and phytopathogenic fusaria, mining the gen-
omes of these novel species to predict mycotoxin
potential from intact gene clusters, and then testing
them experimentally for toxin production in vitro
and/or in vivo via GC-MS and\or HPLC-MS. The over-
arching goal of this research is to develop a knowledge
base directed at minimizing the threat that fusaria and


http://www.westerdijkinstitute.nl/Fusarium/

their toxins pose to plant, human, and animal health,
and food safety.
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