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Abstract
How tropical plants cope with water availability has important implications for forest resilience, as severe drought events 
are expected to  increase with climate change. Tree size has emerged as a major axis of drought vulnerability. To understand 
how Amazon tree species are distributed along size-linked gradients of water and light availability, we tested the niche 
acclimation hypothesis that there is a developmental gradient in ontogenetic shift in embolism resistance and tree water-use 
efficiency among tree species that occurs along the understory-overstory gradient. We evaluated ontogenetic differences 
in the intrinsic water-use efficiency (iWUE) and xylem hydraulic traits of abundant species in a seasonal tropical forest in 
Brazil. We found that saplings of dominant overstory species start with a high degree of embolism resistance to survive in a 
dense understory environment where competition for water and light among smaller trees can be intense during the prolonged 
dry season. Vulnerability to embolism consistently changed with ontogeny and varied with tree species' stature (maximum 
height): mature individuals of larger species displayed increased vulnerability, whereas smaller species displayed unchang-
ing or even increased resistance at the mature stage. The ability to change drought-resistance strategies (vulnerability to 
embolism) through ontogeny was positively correlated with ontogenetic increase in iWUE. Ecologically, overstory trees 
appear to shift from being hydraulically drought resilient to persisting under dry soil surface layer conditions to being more 
likely physiological drought avoiders as adults when their roots reach wetter and deeper soil layers.

Keywords  Embolism resistance · δ13C · Stable isotope · Hydrological niche segregation · Ontogenetic shift · Phenotypic 
plasticity · Amazon rainforest · Water-use efficiency
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Introduction

Plants face intermittent water stress, which affects species 
distribution and carbon (C)-allocation strategies in tropical 
forests (Engelbrecht et al. 2007; Esquivel-Muelbert et al. 
2016, 2020; Signori-Müller et al. 2021). In the Amazon 
forest, trees have evolved various hydraulic strategies criti-
cal for determining drought responses and resilience to 
intermittent water stress (Cosme et al. 2017; Barros et al. 
2019; Fontes et al. 2020; Garcia et al. 2021). Large trees 
may be affected disproportionately by drought (Nepstad 
et al. 2007; Rowland et al. 2015; McDowell et al. 2018), 
but other studies suggest that tall Amazon forests are less 
sensitive to precipitation variability (Giardina et al. 2018), 
and larger trees have greater access to deeper soil water 
(Brum et al. 2019). However, insufficient knowledge exists 
regarding hydraulic strategies and C-allocation constraints 
across tree sizes, including adult stature and ontogenetic 
variation (Rowland et al. 2015; Bittencourt et al. 2020).

Environmental filters differentially shape both patterns 
of tree physiological performance and carbon allocation 
across ontogenetic stages (Lasky et  al. 2015; Brienen 
et  al. 2017; Dayrell et  al. 2018; Henn and Damschen 
2021). These developmental patterns are often associated 
with ontogenetic shifts in traits—which are the result of 
plasticity mechanisms that confer to a genotype the abil-
ity to produce different phenotypes depending upon the 
growing environment—and can be observed among any 
of the traits affecting the coordination of whole-plant 
physiological function and performance (Weiner 2004; 
Lasky et al. 2015; Power et al. 2019). Vertical forest pro-
files impose contrasting gradients in light, vapor pressure 
deficit (VPD), and CO2 concentration, potentially driving 
ontogenetic shifts within a tree’s lifespan, which might be 
described as strategies to respond to the changing condi-
tions experienced as the tree becomes larger (Thomas & 
Bazzaz 1999; Sterck et al. 2013; Stark et al. 2012; Tang 
& Dubayah 2017). In the seasonal Amazon forest, pho-
tosynthetic traits and leaf area distribution are integrally 
connected to tree size distribution (Domingues et al. 2005; 
Stark et al. 2012; Smith et al. 2019), and the aboveground 
vertical structure is related to the effective rooting depth at 
which tree water uptake occurs (Markewitz et al. 2010). If 
this above-belowground integration drives the drought tol-
erance-avoidance spectrum within the community (Brum 
et al. 2019), young trees of dominant overstory species 
are expected to be shallow rooted because of constraints 
in biomass allocation due to light interception (Thomas & 
Bazzaz 1999; Santos et al. 2018). During this stage, trees 
may require a high degree of drought tolerance to survive 
in a dense understory environment, where competition for 
space, light, and shallow soil water among smaller trees 

can be intense during the prolonged dry season (Rice et al. 
2004; Stark et al. 2012; Brum et al. 2019).

Trees that face repeated droughts may need to adjust 
their hydraulic system and maintain coordination between 
water loss and C-metabolism (Brodribb et al. 2002; Oliveira 
et al. 2021). Xylem embolism resistance, estimated by P50 
and P88, is crucial for determining drought resistance in 
response to water stress (Sperry et al. 2002; Meinzer et al. 
2009; Meinzer and McCulloh 2013) as it influences the 
safety range of the water potential for water transport with-
out embolism failure (Choat et al. 2012; Anderegg et al. 
2016). Regulation of stomatal conductance can prevent 
embolism formation by maintaining the water potential 
within a safe hydraulic range (Brodribb et al. 2002; Sperry 
et al. 2002). The degree of hydraulic conservatism that 
depending on stomatal regulation—have different long-
term impacts on intrinsic water-use efficiency (iWUE), the 
ratio of photosynthesis to water loss (Farquhar and Lloyd 
1993; Cernusak et al. 2001; McCaroll and Loader 2004). 
Alignment of iWUE with stomatal regulation and drought-
resistance traits in tropical Amazon forests remains rela-
tively unknown (Garcia et al. 2021). One way to estimate 
iWUE is to analyze the stable carbon isotope ratio (δ13C; 
‰) of leaf tissue, with heavier 13C being discriminated by 
RuBisCO when stomata are less controlled, as indicated by 
low iWUE (McCaroll and Loader 2004). However, the esti-
mation of iWUE from δ13C is affected by ontogenetic shifts 
over differences in tree height, which impacts drought and 
hydraulic patch resistance, and the CO2 concentration and 
δ13C signature across the vertical forest profile (Vadebon-
coeur et al. 2020; McDowell et al. 2011; Brienen et al. 2017; 
Mathias & Thomas 2021).

Our study aimed to investigate how Amazon tree spe-
cies at different heights cope with the hydrological and light 
niche axes across their ontogeny in the vertical forest pro-
file. We tested the niche acclimation hypothesis that there 
is a gradient in ontogenetic shifts in embolism resistance 
and iWUE, with greater differences occurring in overstory 
species (Fig. 1). Overstory species would exhibit higher 
ontogenetic shifts in their tolerance to xylem embolism, with 
saplings displaying more drought-resistant traits than mature 
individuals. In contrast, understory species would exhibit 
fewer ontogenetic shifts in their tolerance to xylem embo-
lism. Both mature and sapling understory species have 
higher tolerance to xylem embolism. Similarly, tree saplings 
have higher iWUE than their mature conspecifics, with this 
ontogenetic shift in iWUE being more pronounced in over-
story species than in understory species, likely because of 
changes in the water and light environment.
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Methods

Site description

Our study was conducted at km67 (the LBA-ECO/Ameriflux 
tower site) in Tapajós National Forest, Brazil (54° 96′ W 
and 2° 86′ S). The forest is Forest is predominantly ever-
green, with a mean height of ~ 40–45 m in the overstory 
layer and a dense understory (Smith et al. 2019). The area 
is located in the Barreiras Formation, characterized by a 
deep, well-drained Dystrophic Yellow Latosol soil with a 
high clay fraction (Oliveira-Junior & Correa 2001). Mean 
annual temperature is 25 °C and annual precipitation of 
2037 mm between 1998 and 2019. The climate exhibits 
strong seasonality, during which the monthly precipitation 
drops below 100 mm (Restrepo-Coupe et al. 2016), and shal-
low soil water presents a significant decrease from August 
to November (Ivanov et al. 2016).

Species selection

Our study included eight dominant species categorized by 
their distribution in the forest based on stems with a diameter 
at breast height (DBH) of ≥ 10 cm, as identified in previ-
ous forest inventories (Pyle et al. 2009, updated by Longo 

2013; see Table 1). We added two small understory spe-
cies (mostly with stems < 10 cm DBH), which were not 
originally included in the inventory (Table 1). Based on the 
maximum height achieved locally (Hmax, calculated as the 
95th percentile height), we classified the species as overstory 
(Hmax > 35 m), midstory (Hmax > 15-35 m), or understory 
(Hmax < 10 m) (Smith et al. 2019).

In 2019, we evaluated iWUE and xylem hydraulic traits 
of trees by tagging and sampling them in the field. To ensure 
accurate sampling of small saplings and adult trees, a tax-
onomist and parataxonomist from the Brazilian Agricul-
tural Research Corporation (EMBRAPA-Belém) identified 
all sampled individuals. We defined saplings as individual 
trees < 1 cm DBH of each target species, and only sampled 
those located in the deep-shaded understory, excluding for-
est clearings. We measured the diameter (30 cm from the 
ground) and height of saplings. The data and samples of 
mature individual trees (> 10 cm DBH) were obtained from 
previous work published in Brum et al. (2019). The sam-
ple sizes and ontogenetic category are listed in Table S1. 
Branch samples were obtained using climbing, ladders, or 
pole pruners, depending on accessibility (Table 1). Owing 
to the challenge of accessing the top layer, most samples 
from mature individuals were obtained from the lower and 
intermediary overstory layers. Upon arrival at the base camp 

Fig. 1   The niche acclimation hypothesis under investigation in 
this study. We explored the gradient in ontogenetic shifts in embo-
lism resistance (P50, P88) and intrinsic water-use efficiency (iWUE) 
across species and forest strata. We expected that overstory species 
exhibit greater ontogenetic differences in their tolerance to xylem 
embolism, with saplings displaying more drought-resistant traits 
than mature individuals. In contrast, understory species exhibit fewer 

ontogenetic shifts in their tolerance to xylem embolism, with both 
mature and sapling individuals displaying higher tolerance levels. We 
also expected a higher iWUE in tree saplings than in mature conspe-
cifics, with overstory species showing a more pronounced ontogenetic 
shift in iWUE compared to understory species, possibly due to differ-
ences in water and light availability
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(~ 20 km from the sampling site), three to five leaves per 
tree individual were refrigerated, dried at 65 °C for 36 h, 
and frozen until transported to the University of Campinas, 
São Paulo, Brazil.

Tolerance to xylem embolism

To evaluate the drought-resistance strategies between the 
two ontogenetic categories, we measured the vulnerabil-
ity of xylem embolism to obtain the P50 and P88 (MPa) 
in sapling and in conspecific mature species. We used the 
pneumatic method to measure the xylem embolism resist-
ance for each branch (Pereira et al. 2016; 2020). The loss of 
hydraulic conductivity is estimated based on the increase in 
air volume inside the wood caused by embolism formation, 
as the branch loses water according to the bench method 
(Sperry et al. 1988). Here, the air volume was estimated 
from the air discharge from the cut end of the branch into 
a vacuum reservoir of known volume during 2.5 min. To 
equilibrate the leaf and wood xylem water potential, we 
bagged the branches for 1 h before each air discharge meas-
urement. Immediately after the air discharge was measured, 
we detached a leaf sample from the branch and measured the 
leaf water potential using a pressure chamber (PMS 1000; 
PMS Instruments Co). For every leaf removed from the 

branch, we used a wood glue to close the branch point and 
avoid leakage of air within the branch for the next air dis-
charge measurement (Bittencourt et al. 2018). The drought 
embolism resistance was given by the increase in air dis-
charge (PAD—percentage of air discharge) with the reduc-
tion in xylem water potential for each branch segment. Here, 
we include the data for each branch including replicates from 
the same species and ontogenetic class and fitted a sigmoid 
curve to measurements, where P50 and slope (b) are the 
fitted parameters (Pammenter and Vander Willigen 1998) is 
predicted from the fitted model as follows:

where PAD is the percentage of air discharged (%), a is 
the fitted slope, and Ψ is xylem water potential when PAD 
is equal to 50% (MPa).

Determining the intrinsic water‑use efficiency 
(iWUE)

We used δ13C (‰) in the leaf bulk to calculate iWUE. The 
δ13C discrimination is related to the ratio of mesophyll (ci; 
ppm) to atmospheric CO2 concentrations (ca; ppm) and 

(1)PAD =
100

(1 + exp(a.(Ψ − P50))
,

Table 1   Biological and structural attributes of the species studied at the Tapajós Forest km 67 LBA study area, Brazil

Values for basal area and abundance represent average across a 4-ha survey area of all trees larger than 10 cm in diameter at breast height. Two 
understory species (A. longifolia and R. pubiflora) were recorded in five 0.05-ha plots. Species in the table are listed in the order that has the 
deepest rooted species at the top, and the shallowest rooted species at the bottom, as determined in Brum et al. (2019). The maximum height 
attained (Hmax, m) per species was calculated as the 95th percentile of the distribution of tree heights**. For the understory species, Hmax was 
calculated from direct height measurements
*Species names updated since Brum et al. (2019)
**Individual tree height (H) was estimated by applying a site-derived allometric model using H and dbh as predictors; a total of 7724 individual 
trees had their dbh (cm) and height (m) measured in the field using clinometers were employed to build the model:
H = 96.52 [1 − exp(− 0.02636 DBH^0.6682)], as described in Longo et al. (2016)
1 Identified in Km 67 species inventory as Manilkara huberi, but updated after a new floristic inventory (Herbario IAN, EMBRAPA Belem) as 
accepted name Manilkara elata
2 Identified in Km 67 species inventory as Chamaecrista xinguensis but updated after a new floristic inventory (Herbario IAN, EMBRAPA 
Belem) as accepted name Chamaecrista scleroxylon
3 Identified in Km 67 species inventory as Coussarea albescens but updated after a new floristic inventory (Herbario IAN, EMBRAPA Belem) as 
accepted name Coussarea paniculata

Species* Family Hmax (m) Canopy position Basal area 
(m2/ha)

Abun-
dance 
(ind/ha)

Manilkara elata (Allemão ex Miq.) Monach.1 Sapotaceae 41.8 Overstory 2.19 10.5
Erisma uncinatum Warm Vochysiaceae 48.8 Overstory 3.64 11.0
Chamaecrista scleroxylon (Ducke) H.S.Irwin and Barneby2 Leguminosae 35.2 Overstory 2.01 15.5
Protium apiculatum Swart Burseraceae 25.8 Midstory 0.65 24.3
Coussarea paniculata (Vahl) Standl.3 Rubiaceae 17.1 Midstory 1.48 92.5
Miconia sp. Melastomataceae 17.2 Midstory 0.08 2.5
Amphirrhox longifolia (A.St.-Hil.) Spreng Violaceae 5.5 Understory 0.35 908
Rinorea pubiflora (Benth.) Sprague and Sandwith Violaceae 4.3 Understory 2.45 3104
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reflects the transpiration-photosynthesis balance (Farquhar 
et al. 1982). A higher ci/ca ratio leads to less controlled sto-
matal conductance, causing RuBisCO to strongly discrimi-
nate against δ13C, decreasing iWUE. In contrast, a low ci:ca 
ratio leads to higher stomatal control and a drop in internal 
ci, resulting in less RuBisCO discrimination against 13C, 
increasing iWUE (McCarrol & Loader 2004). To obtain 
leaf δ13C, we ground dried leaves into a fine powder using 
the Geno/Grinder® SPEX SamplePrep. Samples were then 
aluminum encapsulated, weighed in a micro-analytical 
(1–2 mg) balance, and sent to the Laboratory of Isotope 
Ecology, University of São Paulo. Additional information 
regarding the determination of δ13C is available in the sup-
plementary material.

To account for the potential effects of tree height and soil 
respiration on water-use efficiency, using the 13C:12C ratio 
(Medina & Minchin 1980; Sternberg et al. 1989; Brienen 
et al. 2017; Vadeboncoeur et al. 2020), we estimated the 
expected δ13Ca amplitude in the aboveground vertical forest 
profile (62, 50, 39, 29, 20, 10, 3, and 1 m above the sur-
face) (Figures S1 and S2). We used long-term measurements 
of atmospheric CO2 concentrations across a height profile 
at the LBA km67 flux tower (Restrepo-Coupe et al. 2013; 
2016), and calculated the average daily cycle of all available 
hourly measurements from 2001 to 2020 to obtain the over-
all vertical CO2 concentration gradient at the site (Figure 
S2-A and C). We estimated the δ13C of air samples using an 
equation based on the ‘Keeling plot’ and a model previously 
fitted to a primary forest in our study site (δ13C = 6821.8 * 
1/CO2 − 26.96; r2 = 0.97; Figure S3; Ometto et al. 2002). 
We derived a nonlinear model between the daytime average 
ca and estimated δ13C as a function of tower height (Figure 
S2B–D), allowing us to predict atmospheric δ13C (r2 = 0.97; 
p < 0.001; RMSD = 0.09‰) and ca (r2 = 0.97; p < 0.001; 
RMSD = 18 ppm) (eqS3 and eqS4; Figure S4).

We estimated the height of the trees sampled in the field 
using height-diameter allometry derived for trees at our 
research site (Longo et al. 2016; Table S1). We measured 
the individual sapling heights in the field using measurement 
tapping. We predicted the average atmospheric δ13C and ca 
using equations S3 and S4, based on the specific vertical for-
est atmosphere where the leaves grew. We calculated iWUE 
as follows:

where ca is the CO2 atmospheric concentration, δ13Ca is 
the C isotope ratio of the atmosphere, δ13Cp is the measured 
isotope ratio of the leaf tissue, x is the diffusive fractiona-
tion coefficient against 13CO2 (4.4‰), b is the carboxylation 
fractionation coefficient of 13CO2 by RuBisCO (27‰), and 
1.6 is the ratio of diffusion rates of water vapor to CO2. A 

(2)iWUE =
ca(b + δ13Cp − δ13Ca)

1.6(b − x)
,

correction term was applied for the bulk of δ13Cp, as it was 
slightly depleted relative to the δ13C from the sugar substrate 
in which leaf compounds were produced, with an average of 
5.1‰ added to each value of δ13Cp before calculating the 
iWUE. This correction was needed because a non-corrected 
δ13Cp derived a negative iWUE (Figure S5).

Data analysis

We compared the P50, P88, and slope from the vulnerability 
curves of saplings and mature trees, independent of species, 
using a one-way fixed effect to test for statistical differences. 
Differences in the homogeneity of variances between the 
groups were calculated using Levene’s test to measure trait 
variation. We used a two-way fixed effect to test for differ-
ences in iWUE between saplings and mature trees as well as 
their interaction with forest strata where the species grows 
in the mature stage. Another two-way fixed effect was used 
to test for species-specific differences in iWUE between 
the saplings and mature trees. R software was used for all 
tests (R Core Team 2017), with the generalized least square 
model (GLS) function utilized from nlme package (Pinheiro 
et al. 2018), which allows for correlated errors and unequal 
variance in the fixed terms. We compared the models using 
the ANOVA function from the car package, which reports 
the likelihood-ratio Chi Square (X2) and gives the effect size 
and p value for the fitted models (Fox and Weisberg 2011). 
We conducted a post hoc test using the emmeans package 
to estimate the mean contrast for specific factors or factor 
combinations (Lenth 2019). Pairwise comparisons were 
used to identify specific mean differences, and p values were 
adjusted using the Tukey method.

Two indices of phenotypic plasticity were used to 
describe the ontogenetic shift between saplings and mature 
conspecific species for P50, P88, and iWUE. The first index, 
the coefficient of variation (CV = SD/mean), examines the 
relative variability of traits within species, including sap-
ling and mature data (Power et al. 2019). The second index, 
the ontogenetic difference (OD), determined the absolute 
difference in P50 and P88 between saplings and mature 
trees. Positive OD indicated increased drought resistance 
to xylem embolism in the mature stage, whereas negative 
values indicated higher iWUE in saplings. We used CV 
and OD for P50, P88, and iWUE as functions of maximum 
tree height estimated from DBH measurements, which is a 
proxy for species life history related to height and rooting 
depth across the understory–overstory gradient in the mature 
stage (Brum et al. 2019). Finally, we calculated Pearson cor-
relations between the indices of phenotypic plasticity and 
variables. We also used a multiple generalized linear model 
(GLM) to evaluate the effects of interaction between height 
and P50 on the average iWUE. P88 was not used to avoid 
multicollinearity with the P50. Standardized coefficients (β) 
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were compared to assess the relative influence of independ-
ent variables on iWUE.

Results

Drought‑resistance strategies in the vertical 
eco‑hydro‑light environment

The P50, P88, and shape of the vulnerability curves var-
ied according to tree ontogeny for some species, but not for 
others (Fig. 2). However, when all plants were included, 
the average P50, P88, and slope of the vulnerability curve 
did not vary between the saplings and mature trees (GLS; 
p > 0.05). Although the mature individuals exhibited higher 
variance in P50 compared to saplings (Levene test, p < 0.05), 
the variance in P88 and slope were similar between the two 

stages (Levene test, p > 0.05; Fig. 3). On average, for sap-
lings, P50, P88, and the slope were −2.94 MPa (± 0.36), 
−4.86 MPa (± 0.80), and 1.12% MPa−1 (± 0.30), respec-
tively (± standard deviation). Mature trees exhibited an 
average P50 of − 3.18 MPa (± 1.13), P88 of − 4.79 MPa 
(± 1.43), and slope of 1.52%.MPa−1 (± 0.82). 

The overstory species E. uncinatum and M. elata exhib-
ited higher embolism resistance in the sapling stage, with 
a negative OD, implying an increase in P50 and P88 from 
the sapling to the mature stages. Conversely, midstory C. 
paniculata and Miconia sp. showed more negative P50 and 
P88 in the mature stage, whereas other understory species, 
including P. apiculatum, had similar P50 and P88 in both 
the mature and sapling stages (Fig. 4). The coefficient of 
variation for P50 and P88 was positively correlated with the 
estimated maximum height (Hmax) at maturity, with 46% 
(p = 0.06) and 52% (p = 0.03), respectively. But there was 

Fig. 2   Hydraulic vulnerability curves (PAD—percentage of air dis-
charge vs. stem water potential) for different species and ontogeny 
class from seasonal Amazon in Tapajós Forest, Belterra-PA, Bra-
zil. The thicker lines denote the sigmoid curve to the data, and the 
shadow area shows the standard error of the coefficient estimates 

given by the nonlinear model function (nls function in R). The red 
color represents the data from saplings and blue the mature individu-
als. From top to bottom panels, species are sorted by their position in 
the canopy: over to mid to understory
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no correlation between Hmax and the CV slope (R = 0.17; 
p = 0.54). The absolute difference in P50 and P88 between 
saplings and mature trees was negatively correlated with 
Hmax, with a 66% and 69% decrease, respectively (Pearson 
correlation, p < 0.05); however, Hmax was not related to the 
ontogenetic difference in slope from the vulnerability curve 
(R = 0.16; p = 0.54).

Intrinsic water‑use efficiency (iWUE)

Mature trees had a higher iWUE than saplings, with an aver-
age of 99 ± 39 μmol/mol, which was 17.2 μmol/mol higher 
(GLS, F = 9.12; p < 0.01). The ontogenetic stage and forest 
strata did not significantly explain the variance in leaf iWUE 
(GLS, F = 0.54; p = 0.58), and there were no differences in 
iWUE between mature and sapling trees in the overstory, 
midstory, and understory (Post-HocTukey; p > 0.05). Four 
species showed a positive change in iWUE from sapling 
to mature stage, namely E. uncinatum and M. elata in the 
overstory, C. paniculata in the midstory, and R. pubiflora 
in the understory. Only A. longifolia showed a significant 
increase in iWUE in the sapling stage compared to mature 
individuals, among the three species that had a higher iWUE 
in saplings than in mature individuals (Fig. 5).

Tree height had a significant positive effect on rates of 
the mean leaf iWUE (GLM; X2 = 18.30; p < 0.001), regard-
less of the ontogenetic stage. However, the P50 and vulner-
ability slope were not significantly correlated with iWUE 
(p < 0.05). The interaction between P50 and tree height had 
a significant effect on leaf iWUE rates (GLM; X2 = 7.40; 
p < 0.05). The predicted iWUE rates had an intercept of 
− 43.64 (std error ± 47.54; p = 0.37) and a strong positive 
effect of tree height (slope = 7.13 ± 2.04; p = 0.004), while 
P50 had a negative effect (slope = -41.96 ± 16.13; p = 0.02), 
and the interaction between P50 and tree height had a posi-
tive effect (slope = 2.18 ± 0.80; p = 0.01). The iWUE pattern 
varied with tree size at different P50 values (Fig. 6). The 
absolute ontogenetic difference in iWUE between mature 

and sapling trees was positively correlated with the coeffi-
cient of variation of P50 (R = 0.86; p < 0.05; Fig. 7) but not 
with the absolute ontogenetic difference in P50 (R = − 0.11; 
p = 0.68; not shown).

Discussion

As expected, we observed changes in drought-resistance 
strategies (P50 and P88) from the sapling to mature stages 
in the two largest overstory species (M. elata and E. unci-
natum); these species were less vulnerable to xylem cavita-
tion in the sapling stage. Our findings generally supported 
our hypothesis; for instance, the understory species (A. 
longifolia and R. pubiflora) had less hydraulic variability 
during the ontogenetic stages. Species with canopy niches 
falling between these extremes showed greater variability, 
and there were no differences between saplings and mature 
conspecifics in the overstory C. scleroxylon and midstory P. 
apiculatum. In contrast, two midstory species (C. panicu-
lata and Miconia sp.) displayed a much higher resistance to 
xylem embolism in the mature stage. These patterns indicate 
that the variations in drought-resistance strategies between 
mature trees and seedlings are strongly influenced by the 
intrinsic characteristics of the species, while for some geno-
types, the mechanisms of phenotypic plasticity exist, and for 
others they do not (Fig. 4).

Contrary to our hypothesis, we did not find higher iWUE 
in saplings than in conspecific mature individuals, nor was 
this effect more pronounced in understory species. Instead, 
we observed that for four species, mature individuals had 
significantly higher iWUE than saplings, regardless of the 
forest stratum. Instead of higher water-use efficiency in 
the understory, we found that iWUE was related to xylem 
embolism resistance and tree height, with these factors lead-
ing to contrasting iWUE patterns in mature and small sap-
ling trees (Fig. 6). Our GLM model suggests that iWUE 
increases with stature for individuals with low embolism 

Fig. 3   Box plot of the water potential (MPa) where plant loss 50% (P50) and 88% (P88) for sapling and mature individuals. Each line connects 
the P50 and P88 value between conspecific sapling and mature individuals
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resilience, whereas iWUE decreases with stature among 
individuals with high embolism resilience. Correspondingly, 
the direction of ontogenetic shifts in iWUE was related to 
the species' ability to shift drought-resistance strategies (CV 

P50; Fig. 7) throughout its life, suggesting that ontogenetic 
changes in drought resistance may result in the maximiza-
tion of mature-stage iWUE (described in the next section). 
Our findings support the hydrological niche acclimation 

Fig. 4   Correlation between coefficient of variation (CV; a, c, e) or 
ontogenetic difference (OD; b, d, f) of the sapling and mature P50 
and P88 and the maximum height that mature tree species reach in 

our samples. Symbols represent a single individual in the sample, 
same as shown in Fig. 2
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hypothesis, demonstrating the need for ontogenetic adjust-
ments in plant hydraulic systems to maintain coordination 
with carbon metabolism in tree species exposed to repeated 
drought events across hydrological niches in the seasonal 
Amazon forests.

Acclimation of xylem hydraulic vulnerability

Variations in below- and aboveground water availability and 
spatial light distribution (Domingues et al. 2005; Ivanov 
et al. 2012; Stark et al. 2012; Brum et al. 2019) induced 
local hydrological niche acclimation and ontogenetic shifts 
in tree traits in a seasonal Amazon forest. Our study found 
that maximum tree height (Hmax) can predict variability in 
embolism resistance (P50 and P88), but absolute ontogenetic 
differences vary among species (Fig. 3, 4), which is consist-
ent with other studies in the Easter Amazon forest (Rowland 
et al. 2015; Bittencourt et al. 2020). We discovered that the 
dominant overstory species in the seasonal forest exhib-
ited local physiological plasticity as saplings with shallow 
roots. These change patterns require high embolism resist-
ance for survival in a water-limited understory (Rice et al. 
2004; Fonti et al. 2010; Brum et al. 2019) and emphasized 
the importance of root development in deeper soil to buffer 
shallow soil drought effects (Silvertown et al. 2015; Nar-
dini et al. 2016), suggesting that juvenile and small-statured 
trees converge on traits common to understory regeneration 
niches but not on traits important for mature stages (Thomas 
& Bazzaz 1999; Reich 2000). Thus, ontogenetic shifts in 
hydraulic strategies may respond to ontogeny-dependent fil-
ters (Dayrell et al. 2018), indicating that tree hydraulic trait 

Fig. 5   The mean (column) and standard deviation (bar) of the bulk 
estimated intrinsic water-use efficiency (iWUE) calculated by the 
δ13C method. Each black point represents that the mean difference 
was significant from mature to sapling stages (PostHoc test, p < 0.05). 
Species are sorted from top to bottom by the position in the canopy 
from overstory (E.uncinatum, M. elata, C. scleroxylon), to midstory 
(P. apiculatum, M. lepidota, C. paniculata) to understory species (A. 
longifolia, R. pubiflora)

Fig. 6   a The mean intrinsic water-use efficiency (iWUE) as a func-
tion of the height (H) of sampled trees including average mature 
(blue) and average sapling (red) for each species (symbols described 
in Fig.  2). The lines represent the fitted iWUE values derived from 
the generalized linear model (GLM; iWUE ~ H + P50 + H:P50), the 

continuous line represents the fitted values when the P50 is − 2 MPa, 
and the dashed line represent the model when the P50 is − 5 MPa. b 
Standardized coefficients (β) and confidence intervals resulting from 
the GLM analysis. Number of standard deviations (SDs) an iWUE 
will change per SD increase in either tree height or P50
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evolution is the result of natural selection pressures arrayed 
across all stages of tree life history, shifting from drought 
tolerance in the early regeneration niche to drought avoid-
ance in the later persistence of larger overstory trees in the 
seasonal Amazon forest.

With the roots of overstory trees growing into deeper soil 
strata with low variation in soil moisture across the season, 
trees may be expected to maximize water transport to greater 
heights with higher hydraulic conductivity (Liu et al. 2019; 
Olson et al. 2018; Bittencourt et al. 2020; Kotowska et al. 
2021). This pattern may be expected even if taller trees are 
more exposed to higher radiation loads and drier atmos-
pheric conditions (higher vapor pressure deficit, VPD) in 
the overstory layer, and are physiologically more vulner-
able to water stress (Mencuccini 2003; McDowell & Allen 
2015; Liu et al. 2019). Interestingly, understory and mid-
story species with predominantly shallow roots in the mature 
stage did not display ontogenetic shifts in P50 and P88 or 
a higher tolerance to xylem embolism in the mature stage. 
These species do not reach the overstory stage as mature 
individuals and, thus, may be buffered from extreme VPD 
conditions by occurring in a more humid understory. In addi-
tion to supporting survival in the absence of ontogenetic 
trait shifts, these species tolerate strong decreases in leaf 
water potential driven by seasonal reductions in shallow soil 
water availability in the Tapajós forest, in addition to hav-
ing a high xylem embolism tolerance (Brum et al. 2019). 
Our results point to an important mechanism related to the 
drought resistance–avoidance axis: increase in access to 
soil moisture deeper in the soil as trees grow taller is an 
important driver of ontogenetic shifts of xylem embolism 

resistance in a seasonal tropical forest. A tree’s life history 
strategy also plays an important role, that is, smaller-stature 
species follow ‘understory’ strategies across ontogenetic 
stages (Fernández‐de‐Uña et al. 2023). As the decrease 
in embolism resistance with tree size is highly depend-
ent on the combination of genera analyzed in the Amazon 
forest (Rowland et al. 2015; Bittencourt et al. 2020), and 
we suggest that this pattern may co-vary with ontogenetic 
changes in the root water uptake. Here, we hypothesized 
that drought-tolerant taxa that are disproportionately wide-
spread across precipitation gradients in the Amazon forest 
(Esquivel-Muelbert et al. 2016, 2020; Tavares et al. 2023) 
might have more ontogenetic hydrological acclimation abili-
ties than wet-affiliated species, with a typically restricted 
distribution to wetter places across the basin. We also noted 
that the role of changing soil moisture access in ontoge-
netic shifts may be critically affected by soil hydrology, 
with differences associated with the average depth of soil 
water tables (e.g., very shallow vs. deep) and their fluctua-
tions, a major environmental gradient in the Amazon across 
regional differences in rainfall (Oliveira et al. 2019; Costa 
et al. 2023).

Acclimation in iWUE

Our study aimed to examine the associations between tree 
height, rooting depth, and iWUE (Vadeboncoeur et  al. 
2020). Unexpectedly, iWUE was positively and strongly 
correlated with tree height (70%). Some evidence suggests 
that larger tree species with greater access to deeper water 
sources (in this study, tall trees) may exhibit higher iWUE 
due to a higher degree of stomatal regulation, that is, more 
isohydric behavior (Ding et al. 2021). We also found that 
small trees with higher resistance to xylem embolism had 
higher iWUE, whereas vulnerable species had lower iWUE 
(Fig. 6; compare the dashed high tolerance and solid low tol-
erance lines). Interestingly, changes in iWUE co-varied with 
changes in tree xylem resistance to drought, which are asso-
ciated with an ontogenetic shift in tree physiological per-
formance related to water availability (Briennen et al. 2017) 
and with light gradients over canopy strata (Vadeboncoeur 
et al. 2020). Moreover, the direction of the ontogenetic shift 
in iWUE was strongly linked to the ability of the species to 
alter drought-resistance strategies (CV P50 covariation with 
Hmax) (Fig. 7). This suggests that changes in drought resist-
ance and avoidance shifts were associated with the maximi-
zation of iWUE in the mature stage of overstory trees.

At Tapajos, larger overstory trees have greater control 
over the minimal water potential during water stress, despite 
having greater access to deep water sources (Brum et al. 
2019). Small trees and species with a higher tolerance to 
xylem embolism also had higher iWUE. Previous studies 
have shown that height affects leaf isotope discrimination 

Fig. 7   Correlation between the mean absolute difference between the 
intrinsic water-use efficiency (iWUE) of leaves of mature and sapling 
stages and the coefficient of variation (CV) of the sapling and mature 
P50 (CV P50; %) individuals. Symbols represent the species included 
in this study as identified in Fig. 2
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in Tapajos (Ometto et al. 2002; Domingues et al. 2005), 
and we propose that this pattern can be attributed to (1) an 
increase in light availability in the overstory layer, leading to 
a higher maximum photosynthetic rate (Thomas and Bazzaz 
1999; Rijkers et al. 2000; Domingues et al. 2005), which 
results in increased carbon assimilation in the overstory layer 
and (2) an increase in stomatal control to avoid decreases in 
leaf water potential and minimize xylem cavitation in larger 
overstory trees with less negative P50 in the mature stage 
(Fig. 4; Santos et al. 2018; Garcia et al. 2021; Ding et al. 
2021). These physiological performance factors have con-
trasting net effects on iWUE in larger and smaller trees by 
increasing assimilation more than stomatal conductance in 
sunlight-exposed leaves, which predominantly occurs in the 
canopy (Zhang et al. 2009).

The contribution of soil respired carbon to the 
iWUE–height relationship (Fig. 6) could influence δ13C 
assimilation (Figure S1); this is the result of CO2 originat-
ing from soil respiration being depleted in δ13C. In this case, 
organic matter produced by the lower forest should have 
lower δ13C due to an additive effect (Medina and Minchin 
1980; Sternberg et al. 1989). However, our study corrected 
the iWUE values to consider this using the expected δ13Ca 
based on CO2 concentrations measured by a flux tower (Fig-
ure S2) (Pataki et al. 2003; Ometto et al. 2002). Leaf δ13C 
was positively correlated with δ13Ca (Figure S1), but the 
variation in leaf δ13C along the vertical forest gradient was 
7.5, which was greater than the variation in δ13Ca along the 
vertical forest profile (Figure S1). The iWUE estimates can 
be corrected by accounting for the vertical δ13Ca gradient, as 
seen in the contrasting iWUE pattern observed in (1) sapling 
and mature iWUE of understory trees (i.e., R. publiflora and 
A. longifolia); (2) sapling and mature individuals growing 
in the same depleted δ13Ca atmosphere (Figure S2-d); (3) 
considering the overstory C. scleroxylon, which tends to 
present a higher iWUE in the sapling stage (Fig. 7); and (4) 
considering the higher variability found in small understory 
species. Soil respiration explains no more than 20% of the 
iWUE trend, and changes in iWUE are primarily related 
to plant physiological differentiation in response to envi-
ronmental changes, such as hydraulic strategies and crown 
illumination (Brienen et al. 2017).

Conclusion

Hydrological acclimation during  tree ontogeny is an impor-
tant mechanism that allows species to change their drought 
tolerance strategies and the associated iWUE to survive in 
a seasonal tropical forest. The ontogenetic shift in iWUE 
is linked to variations in the vulnerability to xylem embo-
lism. We propose that an ontogenetic change in embolism 
resistance is coupled with the maximization of iWUE in 

the mature stages of overstory trees. Thus, these functional 
physiological trait shifts can account for species-specific dif-
ferences in isotopic discrimination over the growth stages 
and height strata occupied by a tree throughout its lifetime. 
This is highly relevant for interpreting changes in iWUE over 
time related to climate and other factors utilizing isotopic 
trends in tree rings in dendrochronological studies (Brienen 
et al. 2017; Vadeboncoeur et al. 2020). This functional eco-
logical capacity for ontogenetic shifts can be understood as 
an overstory tropical tree species displaying higher drought 
tolerance during the early ontogenetic phase, similar to 
understory tree species (regeneration niche—drought-tol-
erant, low water-use efficiency), and drought avoidance in 
the mature stage (persistence niche, drought avoidance, and 
high water-use efficiency).

The significance of our research rests on a pivotal dis-
covery: the potential for tree species in a tropical forest to 
display responses to climate change that are structured by 
species' capacities for ontogenetic shifts in water use strate-
gies. These shifts may occur naturally in response to chang-
ing growing conditions in height structured canopies but 
could now offer acclimation capacity in response to shifting 
average climate conditions in the understory. This important 
insight, which may be lacking in current vegetation dynam-
ics models (DVMs) (Franklin et al. 2020), raises the question 
of whether new representations and characterizations of tree 
ontogenetic stages are imperative. For instance, an investiga-
tion into changes in the coefficient of trait variation across 
environmental gradients and the ontogenetic shifts associ-
ated with these changes could enhance the performance of 
vegetation dynamics models (Westerband et al. 2021). In 
this regard, it calls for future studies to consider whether tree 
species that are disproportionately distributed across precipi-
tation gradients in the Amazon Forest (Esquivel-Muelbert 
et al. in 2016, 2020, Barros et al., 2019; Tavares et al. in 
2023), may possess heightened ontogenetic hydrological 
acclimation capabilities compared to species primarily found 
in wetter regions within the basin. Integrating this ecological 
capacity with hydrological niche acclimation along the tree 
ontogeny in diverse tropical forests into model development 
and parameterization can improve the prediction of species 
distribution and ecosystem vegetation responses to drought 
and climate change (Saleska et al. 2003; Mencuccini et al. 
2019; Oliveira et al. 2021; Draper et al. 2021). Ultimately, 
our results show that synergistic plant physiology, environ-
ment, and community dynamics play a role in determining 
these responses. Finally, the coexistence of these functional 
strategies may also contribute to the overall and hydrological 
resilience of tropical seasonal forests owing to hydrological 
niche complementarity (Silvertown et al. 2015).
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