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Abstract—Potentially, cooperative control of functional elec-
trical stimulation (FES) and electric motors in a hybrid ex-
oskeleton can perform stair ascent while adapting to a user’s
locomotion. Towards this goal, it would be essential to deter-
mine the time varying impedance model parameters of each
user while ensuring the stability of the closed loop system.
While some previous studies address the stability problem
when estimating time varying impedance model parameters,
constraints on the parameters to their physiological values are
not guaranteed. In this paper, we develop a model predictive
control (MPC) based approach to prescribe physiologically
constrained time varying stiffness and damping parameters for
an impedance model. A terminal cost and controller for the
stiffness and damping are designed to ensure the MPC problem
is recursively feasible, satisfy physiological constraints, and is
asymptotically stable. Another MPC-based cooperative control
approach is then used to ensure that the knee joint follows
the knee trajectory generated via the impedance model with
optimized parameters. Simulations results show foot, knee joint,
and impedance model tracking while allocating inputs between
FES and motors during stair ascent and adequate foot clearance
and placement.

I. INTRODUCTION

Spinal cord injuries (SCI) are debilitating and frequently
cause a loss of essential lower limb functions, inhibiting
activities such as walking, running, sitting-to-standing, etc.
Function electrical stimulation (FES) can be incorporated into
closed-loop control algorithms [1] to assist persons with SCI
in performing activities such as walking or standing. FES
applies artificial electrical currents to activate motor neurons
and generate muscle contractions that produce a desired
motion. However, its artificial nature makes it prone to
muscle fatigue. The onset of fatigue causes a sharp decay in
torque output thus limiting its effectiveness when performing
long-term periodic motions.

In recent years, hybrid exoskeletons have been proposed
[2]–[4], which allows the joint torque to be distributed
between FES and motors instead of only relying on FES, thus
reducing the potential impact of muscle fatigue while main-
taining the therapeutic benefit of stimulation. In our previous
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studies a Model Predictive Control (MPC) approach was used
to allocate optimal motor and FES inputs based on a person-
specific fatigue model when performing knee extension and
sitting to standing tasks [5], [6]. This cooperative approach
enables the user to perform activities that require high power
while simultaneously maintaining the therapeutic benefit of
FES.

While hybrid exoskeletons can effectively perform sit-to-
stand and walking [7], [8], the stair ascent problem remains
unsolved and would potentially enable versatility in or out-
side homes. In comparison to level-ground walking, the two
main challenges in performing stair ascent are 1) detecting
each stair and designing prescribed joint angle trajectories
to ensure foot clearance [9], [10] and 2) generating desired
torque at the knee joint [11]. While, the stair detection prob-
lem has been explored in previous studies using methods such
as deep learning [12] and dynamic mode primitives [13]–[15],
there is a further need to investigate control methods which
adapt to human locomotion during stair climbing. It is noted
in [16] that the knee joint stiffness varies during each gait
cycle phase during stair ascent and descent based on a Force-
Length curve. Thus, there is a desire to develop a control
approach using a hybrid exoskeleton for stair ascent which
not only has the knee joint follow a desired trajectory but also
estimates individualized time-varying impedance parameters
based on which the controller adapts.

Recent studies investigated control methods with varying
impedance model parameters, including system identification
by learning from demonstration (LFD) [17]–[19], optimiza-
tion and optimal control approaches [20], [21], and artificial
intelligence [22], [23]. These methods often require offline
data, are computationally expensive and do not guarantee
closed-loop stability [24], which is especially necessary
when considering user safety during exoskeleton use. Studies
such as [24]–[27] considered the stability of time varying
impedance parameters. [25] proposed a virtual tank-based
approach to modify time-varying stiffness and damping.
Constraints were placed on the virtual tank to limit the
energy for impedance modifications while ensuring safety.
However, this method relies on the energy state of the system
and the constraints on the virtual tank. [26] developed a
state-independent stability condition that relates the variable
stiffness and damping to their rates of change. [24] designed
online adaptation laws for damping and stiffness parameters
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Figure 1. Overall two-loop control design to adapt to varying human
stiffness and damping parameters during swing phase

to account for modeling uncertainties in the human-robot
interaction dynamics while ensuring closed-loop stability
without the requirement of direct interaction forces between
the human and robot. While the stability analysis shows that
the tracking error and the error between the estimated and
true impedance parameters are uniformly ultimately bounded
(U.U.B), it is not guaranteed that the impedance parameters
are within constraints on their actual physiological values.

In this paper, a new MPC scheme is proposed to obtain
optimal time-varying stiffness and damping subject to physi-
ological constraints of the knee joint. A terminal control was
designed on each time horizon for the stiffness and damping
parameters to ensure recursive feasibility and asymptotic
stability. The optimal stiffness and damping are then used
with an admittance control strategy to allocate effort between
motors and FES while ensuring the knee joint follows the
impedance model angle. Simulations were performed to show
the knee joint’s impedance parameter estimation and tracking
performance during the stair ascent task.

II. CONTROL DESIGN

The proposed control system consists of two control loops.
The first loop is an inner control loop that uses MPC to
determine motor and FES inputs such that the exoskeleton
trajectory matches a desired impedance model. The second
loop is an outer loop that determines optimal stiffness and
damping parameters of the impedance model using MPC
while also ensuring the impedance model follows a desired
stair ascent knee trajectory. A control diagram of the pro-
posed control scheme is shown in Fig. 1.

A. MPC to Determine Time-Varying Impedance Model Pa-
rameters

The impedance model of the knee joint is given as

Mq̈m +B(t)q̇m +K(t)qm + τs(t) = τh (1)

where qm ∈ R is the impedance model angle, M ∈ R+ is
the constant inertia of the knee joint, B(t),K(t) ∈ R+ are
time varying damping and stiffness parameters, τs(t) ∈ R
is a stabilizing torque and τh ∈ R is a measured interaction

torque between the user and the exoskeleton. The goal of
the outer control loop is to determine the parameters optimal
stiffness, damping, and stabilizing torque while ensuring that
qm follows a desired angle, qd ∈ R. The impedance model
in (1) can be written in a linearly parameterized form as

Mq̈m+
[
q̇m qm 1

]  B(t)
K(t)
τs

 = Mq̈m+Y (t)θ(t) = τh

(2)
where Y ∈ R1×3 is a known regressor vector and θ ∈ R3×1

is the impedance parameter vector along with the stabilizing
torque. To facilitate the goal of determining the optimal
stiffness and damping while simultaneously tracking the
desired joint angle, the following error terms are defined

e1 = qm − qd (3)

e2 = ė1 + α1e1 (4)

where α1 ∈ R+ is a positive gain. The optimal stiffness and
damping are determined using an MPC scheme that solves
the following optimization problem on the prediction horizon
[tk, tk + T ] where T is the prediction horizon length

min
θ

J(ztk , θtk) =

∫ tk+T

tk

l(z(τ), θ(τ))dτ + V (ztk+T ) (5)

subject to:

Mq̈m(tk) + Y (tk)θ(tk) = τh(tk)

θ(tk) ≤ θ
ztk+T ∈ ΩT

(6)

where z ∈ R2×1 is an error vector defined as z =[
e1 e2

]T
, θ ∈ R is a physiological constraint on the

impedance model parameters, ΩT is a terminal region defined
as

||ztk+T || ≤ δ (7)

where δ ∈ R+ is a bound designed later to ensure recursive
feasibility, l(z) and V (ztk+T ) are defined as

l(z) = zTQz + θTRθ, (8)

V (ztk+T ) =
1

2
e2

1 +
1

2
Me2

2 (9)

respectively, where Q ∈ R2×2 and R ∈ R3×3 are positive
definite symmetric matrices. The optimal control problem can
be solved on each time horizon [tk, tk + T ] using a gradient
projection approach [28] to obtain optimal impedance model
parameters and stabilizing force while satisfying their phys-
ical constraints.

1) Recursive Feasibility of MPC Scheme:

Theorem 1. If the terminal stiffness and damping are chosen
as

θ = Ỹ T (Ỹ Ỹ T + ε)−1(Mα1ė1 + k1e2)

where k1 ∈ R+ is a positive gain, Ỹ ∈ R1×3 is a regressor
error vector, ε ∈ R+is is a positive constant designed such
that (Ỹ Ỹ T + ε)−1 is not zero (e.g. by choosing ε as the
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spectral radius of Ỹ Ỹ T ), and γ3 ∈ R+ is a positive gain
that which satisfies

γ3 >
ερ2(

√
γ2
γ1
||z(t0)||)

2k2
+ β

where γ1, γ2 ∈ R+ are bounds on V (ztk+T ), k2 ∈ R+is a
positive gain, ρ(||z||) ∈ R+ is a positive monotonic bounded
function and α1, k2, k1 are chosen such that α1 >

1
2 , k1 −

εk2
2 > 1

2 , and β is a defined constant, the terminal state is
invariant and the MPC is recursively feasible. Further, the
terminal region in (7) should be designed as

δ ≤ Φ1

where Φ1 is defined as Φ1 = θ
Υ(Mα1+Mα2

1+k1)
where Υ

bounds (Ỹ Ỹ T + ε)−1 as ||Ỹ T (Ỹ Ỹ T + ε)−1|| ≤ Υ.

Proof: The proof to Theorem 1 is available upon request.

B. Inner Loop Cooperative Control of the Hybrid Exoskele-
ton

Once the optimal stiffness and damping parameters for the
impedance model are determined using MPC, the inner con-
trol loop will determine the motor torque and FES stimulation
input required to ensure that the actual knee joint follows the
impedance model angle.

1) Knee Extension Dynamic Model: The knee dynamics
during the swing phase with motor and FES inputs [6] is
given as

Jq̈ + τp +G(q) = u1 + ρ(q, q̇)ϕa, (10)

where q, q̇, q̈ ∈ R represent angular position, velocity, and
acceleration of a limb joint respectively, u1 is the motor
input, J ∈ R+ is the moment of inertia of the leg, G(q) =
mglsin(q) is the the gravitational torque where m ∈ R+

is the mass of leg, g ∈ R+ is the gravitational acceleration
constant, l ∈ R+ is the distance from the knee joint to the
center of mass and τp is a passive torque defined as

τp = d1(−q) + d2φ̇+ d3e
d4φ − d5e

d6φ (11)

where φ ∈ R is defined as φ = π
2 − q and d1...d6 ∈ R+ are

person specific parameters. The torque contribution from FES
is given by the ρ(q, q̇)ϕa term where ρ(q, q̇) is a force-length
and force velocity relationship defined as

ρ(q, q̇) = (c2φ
2 + c1φ+ c0)(1 + c3φ̇)a (12)

and a ∈ [0, 1] is the quadriceps muscle activation which
evolves based on the solution to the following differential
equation

ȧ =
u2 − a
Ta

(13)

where u2 ∈ [0, 1] is the normalized FES current or pulse
width input and Ta ∈ R+ is the activation time constant.
Additionally, ϕ is the FES-induced muscle fatigue modeled
as

ϕ̇ = wf (ϕmin − ϕ)a+ wr(1− ϕ)(1− a), (14)

where wf , wr ∈ R+ are time constants for fatigue and
recovery of the muscle and ϕmin is the minimum fatigue
value for each person. Since a is bounded as a ∈ [0, 1], the
solution for (14) at the bounds uf = 0 and uf = 1 result in
ϕ being bounded as ϕ ∈ [ϕmin, 1] where a fatigue value of 1
means the muscle is fully rested and a fatigue value of ϕmin
means the muscle is completely fatigued.

2) MPC to Allocate FES and Motor Inputs: A MPC
approach is used to determine the appropriate FES and motor
inputs to apply to the user and exoskeleton in order to
have the knee joint angle track follow the impedance model.
To track the impedance model, the following error terms
em, r ∈ R are defined as

em = qm − q (15)

r = ėm + α2em (16)

where α2 ∈ R+ is a positive constant. A backstepping error
ex ∈ R is defined as

ex = a− ad (17)

where ad is a virtual control input defined as ad =
ϕ−1(Mmp(q̈m + α2em) + Lp) where Mmp, Lp are defined
in [29]. As seen in [29], the closed loop error system then
becomes

Mmρṙ = −ϕex −
u1

ρ
(18)

where ρ is defined in (12) and u1 is the motor input. Further
taking the derivative of (17) gives

ėx = − a

Ta
+

1

Ta
u2 − ȧd (19)

where u2 is the normalized FES input. Designing u2 as u2 =
Ta(v + ȧd + a

Ta
+ ϕr) gives

ėx = v + ϕr (20)

where v ∈ R is the unknown FES input to be optimized by
the MPC. By defining a nominal state x ∈ R3×1 as x =[
em r ex

]T
and control input u ∈ R2×1 defined as

u =
[
u1 v

]T
the system in (10) can be converted to an

error system written in state space form as ėm
ṙ
ėx

 =

 r − α2em
1

Mmρ
(−ϕex − u1

ρ )

v + ϕr

 = f(x, u) (21)

The problem formulation for the nominal MPC is given as

min
utk

J(xtk , utk) =

∫ tk+T

tk

l2dt+ V (x(tk + T )) (22)

subject to:
ẋ = f(x, u)
u ∈ U

xtk+T ∈ ΩT

(23)

where U is a set of control inputs that bounds u. l2 and the
terminal cost V (x(tk + T )) are given as

l2(x, u) = xTQx+ uTRu
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Figure 2. Exoskeleton model defined in the x-y plane where the origin is
the foot of the users stance leg along with the desired foot position to ensure
that the user’s foot clears the stairs.

V (x(tk + T )) =
1

2
e2
m +

1

2
Mmρr

2 +
1

2
e2
x

where Q ∈ R4×4 and R ∈ R2×2 are positive definite,
symmetric matrices. The MPC approach in [29] additionally
derives a feedback controller to guarantee robustness to
modeling uncertainties along with a terminal controller and
state region which guarantees recursive feasibility and that
the control inputs stay within their bounds.

III. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed MPC
framework in (5) to obtain optimal damping and stiffness
during stair ascent, simulations were performed using the
knee flexion/extension dynamics in (10). The desired trajec-
tory for the knee joint was computed using inverse kinematics
of a two link model with orientation shown in Fig. 2. The
desired trajectory ensured that the users swing foot clears
the stair with constant height of .13 meters and width of .30
meters. Fig. 3 shows the desired foot placement trajectory
in both the horizontal and vertical directions along with
the corresponding knee and hip joint trajectories. In this
simulation, it is assumed that the hip angle can be controlled
to follow its desired trajectory using a stabilizing controller.
During the swing phase, the desired foot trajectory in vertical
and horizontal directions is designed using a third order
polynomial to ensure foot clearance while also impacting the
stair at its midpoint. Once the foot is planted, the stance
phase hip and knee trajectories are designed to drive the hip
and knee angles to their zero position in preparation for the
subsequent step. The human interaction torque between the
users shank and the exoskeleton was designed as a periodic
signal based on the desired knee joint trajectory with an
additional gaussian white noise. Overall, the simulation was
performed for 96 seconds during which the user climbed
a total of 12 steps. Fig. 4 shows tracking performance of

Figure 3. Desired foot position trajectories during the swing phase along
with the corresponding hip and knee joint angles during both the swing and
stance phase.
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Figure 4. Desired knee joint trajectory along with the impedance model
angle and the actual knee joint trajectory. The RMSE between the desired
trajectory and impedance model angle is 1.48 degrees while the RMSE
between the impedance model and actual knee joint angle is 1.82 degrees.
Overall RMSE between the desired and actual trajectory is 3.13 degrees.

both the control loops. The root mean squared error (RMSE)
between the desired knee trajectory and the impedance model
angle is 1.48 degrees and the RMSE between the impedance
model and the actual knee joint angle is 1.82 degrees The
overall RMSE between the actual knee joint angle and
desired trajectory is 3.13 degrees. Fig. 5 shows the average
damping and stiffness parameters of the impedance model
computed by the MPC scheme during each step along with
its constrained value marked by the horizontal line. It is
seen that the damping and stiffness parameters satisfy the
prescribed constraints. Fig. 6 shows the motor and normalized
FES inputs computed by the allocation MPC framework
in (22) along with the respective FES torque computed
using (12). Fig. 7 shows the actual foot placement for each
step calculated using forward kinematics from the actual
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Figure 5. Average impedance model parameters computed by the MPC with
shaded standard deviation during each of the 12 steps. The horizontal line
represents the physiological stiffness and damping constraints, which are
satisfied by the MPC.
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Figure 6. Motor and FES inputs to perform tracking of the desired
impedance angle. The FES torques are calculated using the Force-Length
and Force-Velocity relationships described in (12).

knee joint angle and the hip angle obtained from inverse
kinematics. The average difference in location from where
the foot impacts the stair to the desired impact location is
.036 meters. Thus, the developed control method for stair
ascent is effective in modulating time varying stiffness and
damping to perform a stair ascent task.

Figure 7. Foot placement of the user in the x-y plane for all 12 steps
computed using forward kinematics of the actual knee joint angle.

IV. CONCLUSION

In this paper, an MPC approach is developed to determine
optimal damping and stiffness parameters during stair ascent.
The MPC incorporated a terminal impedance estimate to
ensure recursive feasibility and exponential stability of the
closed loop system. The optimal stiffness and damping were
then incorporated into an admittance control framework to
ensure that the knee joint angle tracks the impedance model
while allocating inputs between motors and FES. Preliminary
simulation results show that the proposed approach can be
used to effectively perform a stair ascent task. In the future,
the proposed control architecture can be incorporated with
stair detection technology to perform stair ascent on stairs
with variable width and heights. Additionally, different FES
stimulation approaches such as distributed stimulation can be
incorporated into the control to generate more power from
FES to perform the tasks while relying less on the motor
torque.
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[2] A. J. Del-Ama, Á. Gil-Agudo, J. L. Pons, and J. C. Moreno, “Hy-
brid fes-robot cooperative control of ambulatory gait rehabilitation
exoskeleton,” Journal of neuroengineering and rehabilitation, vol. 11,
no. 1, pp. 1–15, 2014.

[3] K. H. Ha, S. A. Murray, and M. Goldfarb, “An approach for the
cooperative control of fes with a powered exoskeleton during level
walking for persons with paraplegia,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 24, no. 4, pp. 455–466,
2015.

[4] R. Kobetic, C. S. To, J. R. Schnellenberger, M. L. Audu, T. C. Bulea,
R. Gaudio, G. Pinault, S. Tashman, and R. J. Triolo, “Development
of hybrid orthosis for standing, walking, and stair climbing after
spinal cord injury.” Journal of Rehabilitation Research & Development,
vol. 46, no. 3, 2009.

[5] X. Bao, V. Molazadeh, A. Dodson, B. E. Dicianno, and N. Sharma,
“Using person-specific muscle fatigue characteristics to optimally
allocate control in a hybrid exoskeletonâpreliminary results,” IEEE
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