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Abstract—Many lower-limb hybrid neuroprostheses lack pow-
ered ankle assistance and thus cannot compensate for functional
electrical stimulation-induced muscle fatigue at the ankle joint.
The lack of a powered ankle joint poses a safety issue for
users with foot drop who cannot volitionally clear the ground
during walking. We propose zeroing control barrier functions
(ZCBFs) that guarantee safe foot clearance and fatigue mitiga-
tion, provided that the trajectory begins within the prescribed
safety region. We employ a backstepping-based model predictive
controller (MPC) to account for activation dynamics, and we
formulate a constraint to ensure the ZCBF is robust to modeling
uncertainty and disturbance. Simulations show the superior
performance of the proposed robust MPC-ZCBF scheme for
achieving foot clearance compared to traditional ZCBFs and
Euclidean safety constraints.

I. INTRODUCTION

Powered exoskeletons and functional electrical stimulation
(FES) are often prescribed as rehabilitative interventions for
neuromuscular conditions such as spinal cord injury [1], [2]
and stroke [3]. FES has been shown to reduce spasticity [1]
and improve mobility [2]; however, the artificial recruitment of
the muscles leads to rapid muscle fatigue [4]. This fatigue can
be reduced by using FES in conjunction with an exoskeleton
[5], [6]. Furthermore, the use of FES reduces the torque and
power required from the exoskeleton motors [5], [7]. Such
a device, termed a hybrid neuroprosthesis, is challenging to
control because the joints are often overactuated; they can be
controlled by both FES and exoskeleton motors. One means to
address the overactuation problem is model predictive control
(MPC), which has been successfully employed for hybrid
neuroprostheses [8]–[10]. MPC uses a model of the system
to calculate the optimal control inputs for some prediction
horizon comprised of N ≥ 1 time steps, but only the
solution for the first timestep is applied at each iteration.
Future prediction and cost minimization are considered when
making the immediate control decision. MPC also allows for
straightforward incorporation of state and control constraints.

Safety is another critical constraint highly relevant to sys-
tems using FES and powered exoskeletons for rehabilitation.
Various safety concerns, including delivering limited assis-
tance, ground reaction force, and human-robot interaction
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force, have arisen in FES and exoskeleton safety and feasi-
bility studies [11], [12]. To accurately determine human-robot
interaction forces, [13] created contact models using data from
sit-to-stand tasks with a multi-joint lower-limb exoskeleton,
and [12] developed soft sensors that measured the human-hip
exoskeleton interaction force online. An RGB-D camera was
used in [14] to identify ground features and inform exoskeleton
motion planning subject to allowed step lengths and obstacle
avoidance, while [15] analyzed lower-limb exoskeleton fall
strategies under various conditions. [16] developed a saturated
controller for an FES cycle that prevented overstimulation and
possible destabilization due to the delay between stimulation
onset and muscle contraction. Also, for FES cycling, [17]
applied motor assistance once FES reached the saturation level
to avoid overstimulation. A control barrier function (CBF) was
employed in [18] to keep the FES cycling cadence within a
safe range. CBFs have been combined with control Lyapunov
functions in quadratic programs to achieve performance objec-
tives while maintaining safety during bipedal robotic walking
[19]. CBFs have also been used in MPC [20], which often
offers more optimal solutions compared to quadratic programs
due to its consideration of future state behavior [21].

In an MPC scheme, a simple obstacle avoidance constraint
may be formulated as (x−x0)2+(y− y0)2−D2 ≥ 0, where
(x0, y0) ∈ R2 is the obstacle location, (x, y) ∈ R2 is the
location of the user’s foot, and D ∈ R+ is the minimum safe
distance. A limitation of such a safety constraint is that it
only affects the optimal control solution once the constraint
becomes active within the prediction horizon. In other words,
the safety constraint does not affect the solution until the robot
is already closing in on the obstacle [22]. Furthermore, MPC
cannot ensure that the constraints are respected beyond the
prediction horizon. An obvious solution to these problems is to
lengthen the time horizon, but this poses a substantial increase
in computational cost for high-dimensional, highly nonlinear
systems such as hybrid neuroprostheses [23].

CBFs, in contrast, ensure that if the safety parameters are
satisfied at some initial time t0, they remain satisfied for all
time [24]. Specifically, CBFs guarantee forward invariance
of the safe set by bounding the derivative of the safety
constraint. The two common formulations of CBFs are zeroing
CBFs (ZCBFs) and reciprocal CBFs. Of the two, ZCBFs are
preferable for real-time control. This is because a ZCBF’s
value vanishes at the boundary of the safe set, whereas a
reciprocal CBF’s value grows infinitely at the boundary. A
modified formulation of ZCBFs was proposed in [19] that
permits a greater number of admissible inputs while still
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guaranteeing safety, thus increasing the likelihood that the
ZCBF-MPC will be recursively feasible. Further modification
to the discrete-time formulation of ZCBF-MPC was presented
in [20], where the decay rate of the CBF was treated as a
decision variable. This further increases the probability that
the intersection of the safe and reachable sets is nonempty
and thus that the problem is feasible.

In this paper, we employ ZCBFs to address the issue of
foot drop in a walking task for a hybrid neuroprosthesis. Foot
drop refers to impaired dorsiflexion, common to many neu-
romuscular disorders. Most state-of-the-art lower-limb hybrid
neuroprostheses do not possess motors at the ankle joint, as
this would add to the system’s inertia. Instead, a rigid ankle-
foot orthosis is typically used to prevent the foot from scuffing
the ground due to insufficient dorsiflexion during walking.
However, this results in an unnatural gait since the ankle joint
is immobilized. In contrast, we wish to permit the ankle joint
to move with assistance from FES, which is commonly used
to treat foot drop and can also help reduce ankle muscle
spasticity [25], [26]. Without an ankle motor to provide
synergistic torque across limbs as needed, it is imperative that
the controller consider ankle muscle fatigue. Unlike the ankle,
the hip and knee joints possess motors and can compensate
for fatigue. If the dorsiflexors are too fatigued to achieve foot
clearance, the MPC with embedded CBF should respond by
increasing hip and knee flexion. Furthermore, the inclusion
of an obstacle clearance constraint obviates the need to replan
the desired time-varying trajectory. The optimal path is the one
that reaches the desired endpoint the fastest without violating
the safety constraints.

Our multi-joint MPC scheme for a hybrid neuroprosthesis
walking task incorporates a foot clearance ZCBF and fatigue
ZCBFs that constrain the FES-induced fatigue of the ankle
dorsiflexors and plantar flexors. We first develop a nonlinear
MPC for a control non-affine hybrid neuroprosthesis through
a backstepping-based method, followed by the derivation of
three ZCBFs. Utilizing the method for creating input-to-state
safe CBFs [27], we then formulate a condition to ensure that
the true system remains in the safe set despite disturbance and
modeling uncertainty.

II. PROBLEM FORMULATION

A. 3-Link Hybrid Neuroprosthesis Model

Consider a hybrid neuroprosthesis with thigh, shank, and
foot segments. The vector q ∈ R3 contains the limb segment
angles qi (i = 1, 2, 3). The neuroprosthesis possesses hip
and knee motors (represented by subscripts j = hm, km,
respectively), and FES is used to actuate the knee flexors,
knee extensors, ankle plantar flexors, and ankle dorsiflexors
(j = kf, ke, pf , and df , respectively). The model dynamics
are given as

M(q)q̈ + C(q, q̇)q̇ + F (q, q̇) +G(q) + d(t) = Γ(t), (1)

where M(q) ∈ R3×3 is the inertia matrix, C(q, q̇) ∈ R3×3 is
the Coriolis matrix, F (q, q̇) ∈ R3 is the passive muscle torque
as in [28], G(q) ∈ R3 is the gravitational torque, and d(t) is

an unmodeled disturbance. The active torque from FES and
motors, Γ(t) ∈ R3, is calculated as

Γ = b(q, q̇)µa(t),

where b(q, q̇) ∈ R3×6 is a mapping matrix, µ ∈ R6×6 is a
diagonal fatigue matrix, and a(t) ∈ R6 is the vector of FES
and motor activations. Mapping matrix b is given as

b(q, q̇) =

κh 0 0 0 0 0
0 ψkf −ψke κk 0 0
0 0 0 0 ψpf −ψdf

 ,
where κh, κk ∈ R+ are the hip and knee motor constants,
respectively, and ψj(qj , q̇j) ∈ R are the muscle torque-
length/torque-velocity equations from [28], [29]. The hip is not
actuated by FES due to the fact that the hip flexors/extensors
are difficult to actuate non-invasively. As mentioned in Section
I, there is no motor at the ankle joint. Fatigue matrix µ is
represented as

µ = diag([1, µkf , µke, 1, µpf , µdf ]),

where µj ∈ [µminj
, 1] and µminj

∈ (0, 1) are the fatigue state
and minimum fatigue value, respectively, for actuator j. The
fatigue dynamics is

µ̇ = T−1
f (µmin − µ)a+ T−1

r (I − µ)(1− a), (2)

where Tf , Tr ∈ R6×6 are diagonal matrices of fatigue
and recovery time constants Tfj , Trj ∈ R+, respectively,
and µmin = diag([1, µminkf

, µminke
, 1, µminpf

, µmindf
]) ∈

R6×6. The activation dynamics is

ȧ = T−1
act (u− a), (3)

where Tact ∈ R6×6 is the diagonal matrix of activation time
constants Tactj ∈ R+ and u(t) ∈ R6 is the normalized current
input. For FES, aj , uj ∈ [0, 1], whereas for motors aj , uj ∈
[−1, 1].

Assumption 1: Desired joint trajectories qd(t) ∈ R3, as
well as their first and second time derivatives, are bounded.

Assumption 2: Desired activation trajectories ad(t) ∈ R6

and their first derivatives are bounded.

B. Task-Space Dynamics

Because it is critical to achieve foot clearance during the
swing phase, we formulate the swing dynamics in a task-space,
also known as endpoint space. This can be done by invoking
the Jacobian of the endpoint, J(q) ∈ R2×3, which maps q̇ to
ż ∈ R2 as ż = J(q)q̇, where ż is the Cartesian velocity of the
endpoint in the sagittal and frontal planes. Letting z ∈ R2 be
the endpoint position, (1) when written in task-space is

Mz(z)z̈ + Cz(z, ż)ż + Fz(z, ż) +Gz(z) + dz(t) (4)
= bz(z, ż)µa(t),

where Mz = (JT )†MJ†, Cz = (JT )†(C − MJ†J̇)J† ∈
R2×2, Fz = (JT )†F, Gz = (JT )†G, dz = (JT )†d, and
bz = (JT )†b ∈ R2×6.
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C. Nominal Error Dynamics

Preliminary 1. Let v̄ represent the nominal counterpart of
a given value v. (Note that “nominal” here refers to the case
when d(t) in (1) is zero.)

Preliminary 2. A continuous function ρ : [0, a) → [0,∞) is
class K (ρ ∈ K[0,a)) if it is strictly increasing and ρ(0) = 0.

The control objective is to minimize trajectory error while
(a) preventing rapid ankle fatigue and (b) ensuring foot clear-
ance. To this end, we define nominal trajectory error e ∈ R2

as
e = zd − z̄, (5)

where zd ∈ R2 is the desired endpoint position. Furthermore,
an auxiliary error r ∈ R2 is given by

r = ė+ αe, (6)

where α ∈ R+ is a user-defined gain. The nominal error
dynamics may be written as

M̄z ṙ = M̄z(z̈d + αė) + C̄z ˙̄z + F̄z + Ḡz − b̄zµ̄ā. (7)

Next, auxiliary functions N,Nd ∈ R2 are defined as

Nd =Mz(zd)z̈d + Cz(zd, żd)żd + Fz(zd, żd) +Gz(zd)

N = M̄z(z̈d + αė) + C̄z(żd + αe) + F̄z + Ḡz + e.

Note that Nd may also be written as Nd = bz(zd, żd)µdad,
where diagonal matrix µd ∈ R6×6 contains the desired
constant muscle fatigue values µdj ∈ [µminj , 1]. Defining
Ñ ∈ R2 as Ñ = N − Nd, the terms Nd and b̄zµdad may
be added and subtracted so that (7) becomes

M̄z ṙ = Ñ − C̄zr − b̃µdad − b̄zµ̄ā+ b̄zµdad − e, (8)

where b̃ ∈ R2×6 is defined as b̃ = b̄z − bz(zd, żd).
1) Backstepping Error Dynamics: Because the system is

non-affine in the actuator input u, a backstepping error ex ∈
R6 is introduced. The backstepping error is given as ex =
ā−av for virtual input av(t) ∈ R6. By adding and subtracting
b̄zµ̄av , (8) simplifies as

M̄z ṙ = Ñ− C̄zr− b̃µdad− b̄zµ̄ex+ b̄zµdad− b̄zµ̄av−e. (9)

To stabilize the system, the virtual input is defined as av =
µ̄−1µdad + k1(b̄zµ̄)

†r, where k1 ∈ R+ is a user-defined gain.
(9) thus becomes

M̄z ṙ = Ñ − C̄zr − b̃µdad − b̄zµ̄ex − e− k1r. (10)

According to (3), the backstepping error dynamics is

ėx = T−1
act (u− ā)− ȧv. (11)

The input u is designed as

u = ā+ Tact(ȧv + ν), (12)

where ν(t) ∈ R6 is the variable optimized by the MPC.
Substituting (12) into (11), the backstepping error dynamics
simplifies to

ėx = ν. (13)

Finally, we introduce a fatigue error µ̃ = [µ̄pf − µdpf
, µ̄df −

µddf
]T ∈ R2, where µdi

∈ [µminj
, 1] is the desired value of

µj . The nominal error dynamics may be written in state space
as ˙̄x = f(x̄) + g(x̄)ν, where x̄ = [eT , rT , eTx , µ̃

T ]T ∈ X, with
X ⊂ R12 the compact set of allowable states. Recalling (2),
(6), (10), and (13), f(x) ∈ R12 and g(x) ∈ R12×6 are defined
as

f(x) =


r − αe

M̄−1
z (Ñ − C̄zr − b̃µdad − b̄zµ̄ex − e− k1r)

0
T−1
fa

(µmina
−∆µa)(exa

+ ava)+

T−1
ra (I −∆µa)(1− exa

− ava)

 ,
(14)

g(x) =

04×6

I6
02×6

 ,
where ∆µa = diag([µ̄pf , µ̄df ]) ∈ R2×2, and
Tfa , Tra , µmina ∈ R2×2, exa , ava ∈ R2 are the elements of
Tf , Tr, µmin, ex, and av corresponding to µ̃.

III. CONTROL BARRIER FUNCTION

A. Zeroing Control Barrier Functions

The closed set C ⊂ X pertaining to the continuously
differentiable function h(x) : X → R, is given by

C = {x̄ ∈ X : h(x̄) ≥ 0}, (15)
∂C = {x̄ ∈ X : h(x̄) = 0},

Int(C) = {x̄ ∈ X : h(x̄) > 0},

where X ⊆ Rn is the compact set of all allowable states. We
assume that C is nonempty and contains no isolated points.
C is forward invariant and “safe” if x̄(t0) ∈ C at some time
t0 guarantees that x̄(t) ∈ C, ∀t ≥ t0. The function h(x̄) is
a zeroing control barrier function (ZCBF) defined on D ⊃ C
where D ⊆ X if there exists γ ∈ K[0,a) such that

sup
ν∈U

[
Lfh(x) + Lgh(x)ν

]
≥ −γ

(
h(x̄)

)
, (16)

∀x̄ ∈ D. We introduce the constant b > 0, given by

b = − inf
x̄∈X

h(x̄), (17)

and define the domain of h as the open set

D = {x̄ ∈ X : h(x̄) + b > 0}. (18)

In the absence of modeling error or disturbance (i.e., x̄ = x),
(16) guarantees forward invariance of C because in the extreme
case where x ∈ ∂C, the constraint becomes ḣ(x) ≥ 0. Thus,
the state can never leave C. If modeling error is present, it is
necessary to modify (16) to account for discrepancy between
the true and nominal states. For this purpose, we assume
that the error term ω(t) is bounded by constant ω̄ ∈ R+ as
||ω∞|| ≤ ω̄. Define a new set C′ ⊇ C as

C′ = {x̄ ∈ X : h(x̄) + φ(||ω∞||) ≥ 0} (19)
∂C′ = {x̄ ∈ X : h(x̄) + φ(||ω∞||) = 0}

Int(C′) = {x̄ ∈ X : h(x̄) + φ(||ω∞||) > 0}

for φ ∈ K[0,a), where a > 0 satisfies limv→a φ(v) = b. Note
that the choice of a guarantees that C′ ⊂ D. As long as x ∈ C′,
x remains in C or within a small neighborhood around C.
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B. Robust Obstacle Clearance Barrier Function

The purpose of the first barrier function is to achieve foot
clearance. Here, we extend the problem to avoiding collision
with an obstacle of arbitrary shape. The obstacle is centered at
zc = [zc1 , zc2 ] ∈ R2, and a safety radius R ∈ R+ is established
around the object. The safety constraint h1 : X → R for the
nominal MPC is therefore

h1(x̄) = (z̄1 − zc1)
2 + (z̄2 − zc2)

2 −R2 ≥ 0, (20)

where X ⊂ R12. (20) may be written in terms of the error
states as

h1(x̄) = ||zd − e− zc||2 −R2 ≥ 0. (21)

Note that even if the nominal constraint is met, depending on
z̄ and the magnitude of the modeling error, the true system
may still lie outside C1. Define the error in position ϵ(t) ∈ R2

as
ϵ = z̄ − z, (22)

and define an auxiliary error δ(t) ∈ R2 as

δ = ϵ̇+ αϵ. (23)

To guarantee obstacle clearance, we must introduce a robus-
tifying term to the righthand side of (16) so that even in the
presence of the greatest possible ω(t), the foot does not strike
the obstacle.

Theorem 1. Consider the system with nominal error dynamics
(14), a set of controls ν ∈ U ⊆ R6, and the closed set C1 ⊂
D1 ⊆ X ⊆ R12 in (15), where D1 is given by (18) and the
continuously differentiable function h1(x̄) is defined in (20).
Let the error term ω(t) = [ϵT , δT , χT , εT ]T ∈ R14 be bounded
as ||ω∞|| ≤ ω̄. If ZCBF h1 satisfies

Lfh1(x̄) + Lgh1(x̄)ν ≥ −γ1h1(x̄) (24)

+2
(
||zc − zd + e||2 + ||r − αe||2

)
,

for γ1 ∈ R+, ∀x ∈ D1, then C′
1 as defined in (19) is forward

invariant.

Proof: The true h1 is given by

h1(x) = (z1 − zc1)
2 + (z2 − zc2)

2 −R2 ≥ 0. (25)

By (5) and (22), (25) can be reformulated as

h1(x) = h1(x̄)− 2(zd − e− zc)
T ϵ+ ||ϵ||2 ≥ 0. (26)

By (14), (20), and (23), the time derivative of (26) is

Lfh1(x) + Lgh1(x)ν = Lfh1(x̄) + Lgh1(x̄)ν+ (27)

2
(
ϵT (r − αe)− (zc − zd + e)T (δ − αϵ) + ϵT (δ − αϵ)

)
.

Using (24), (27) may be lower bounded as

Lfh1(x) + Lgh1(x)ν ≥ γ1h1(x̄)−
1

2
||δ||2 (28)

−(α+ 2)||δ||||ϵ|| − (
α2

2
+ 2α+

1

2
)||ϵ||2.

By Young’s Inequality, −||δ||||ϵ|| ≥ − 1
2 (||ϵ||

2+||δ||2). Hence,

Lfh1(x) + Lgh1(x)ν ≥ −γ1h1(x̄) (29)

−
(α+ 3

2

)
||δ||2 −

(α2 + 5α+ 3

2

)
||ϵ||2.

Defining ζ = α2+5α+3
2 , (29) may be bounded as

Lfh1(x) + Lgh1(x)ν ≥ −γ1h1(x̄)− ζ||ω̄||2. (30)

Note that (30) is of the form of Eq. (26) in [27]. It follows
that C′

1 is forward invariant as long as ||ω̄||2 < b2γ1/ζ.

C. Fatigue Barrier Functions

Two barrier functions are imposed to limit ankle muscle
fatigue. The fatigue constraints are given as

h2(x̄) = µ̄pf − µ0pf (31)
h3(x̄) = µ̄df − µ0df ,

where µ0j ∈ [µminj , µdj ] is the minimum value of µj . (31)
may be reformulated in terms of the states as

h2(x̄) = µ̃pf + µdpf
− µ0pf (32)

h3(x̄) = µ̃df + µddf
− µ0df .

For Theorem 2, we define χ ∈ R6, ε ∈ R4, respectively the
activation and fatigue components of the disturbance, as

ε = µ̄− µ, χ = ā− a. (33)

Theorem 2. Consider the system with nominal error dynamics
(14), a set of controls ν ∈ U ⊆ R6, and the closed set Ci ⊂
Di ⊆ X ⊆ R12 in (15), where Di is given by (18) and the
continuously differentiable function hi(x̄) is defined in (31).
Let the error term ω(t) = [ϵT , δT , χT , εT ]T be bounded as
||ω∞|| ≤ ω̄. If ZCBF hi satisfies

Lfhi(x̄) + Lghi(x̄)ν ≥ −γihi(x̄) (34)

+
(µmini − µ̄i)

2 + ā2i
Tfi

+
(āi − 1)2 + (µ̄i − 1)2

Tri
,

for γi ∈ R+, ∀x ∈ D, then C′
i as defined in (19) is forward

invariant for i = 2, 3.

Proof: By (33), hi(x) is given by

hi(x) = µi − µ0i = µ̄i − εi − µ0i (35)
= hi(x̄)− εi = hi(x̄)− µ̄i + µi.

Using (2), the time derivative of (35) is

Lfhi(x) + Lghi(x)ν = Lfhi(x̄) + Lghi(x̄)ν (36)

− 1

Tfi
(µmini

χi − µ̄iāi + µiai)

+
1

Tri
(εi + χi − µ̄iāi + µiai).

By adding and subtracting µiāi and µ̄iχi, (36) becomes

Lfhi(x) + Lghi(x)ν = Lfhi(x̄) + Lghi(x̄)ν (37)

− χi

Tfi
(µmini

− µ̄i) +
χi

Tri
(1− µ̄i) +

εiāi
Tfi

+
εi
Tri

(1− āi) +
( 1

Tri
− 1

Tfi

)
εiχi
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By (34), completing the square, and Young’s Inequality, (37)
may be lower bounded as

Lfhi(x) + Lghi(x)ν ≥ Lfhi(x̄) + Lghi(x̄)ν (38)

−1

4

( 1

Tfi
+

1

Tri
+ 2

∣∣∣ 1

Tri
− 1

Tfi

∣∣∣)||ω̄||2,
which is of the form of Eq. (26) in [27]. It follows that
C′
i is forward invariant for i = 2, 3 as long as ||ω̄||2 <

4γiµ0i/(
1

Tfi
+ 1

Tri
+ 2| 1

Tri
− 1

Tfi
|).

IV. MPC FORMULATION

The MPC scheme is formulated as

min
ν(t|tk)

J∗(x̄(t|tk), ν(t|tk)) =
∫ tk+T

tk

l dt+ V
(
x̄(tk + T |tk)

)
˙̄x(t|tk) = f

(
x̄(t|tk), ν(t|tk)

)
x̄(t|tk) ∈ X

x̄(tk+T |tk) ∈ ΩT

ν(t|tk) ∈ U
u(t|tk)j ∈ [uminj

, 1],∀j
ḣ1

(
x̄(t|tk), ν(t|tk)

)
≥ −γ1h1

(
x̄(t|tk)

)
+ ξ1

(
x̄(t|tk)

)
(39)

ḣi
(
x̄(t|tk), ν(t|tk)

)
≥ −γihi

(
x̄(t|tk)

)
+ ξi

(
x̄(t|tk)

)
, i = 2, 3

(40)

for t ∈ [tk, tk+T ], constant prediction horizon T , k = I+∪{0},
X ⊆ R12, U ⊆ R6, and terminal region ΩT ⊆ R12. Note
that ḣi

(
x̄(t|tk), ν(t|tk)

)
is used in place of Lfhi

(
x̄(t|tk)

)
+

Lghi
(
x̄(t|tk)

)
ν for simplicity, where, for a given variable v,

v(t|tk) refers the value of v at future time t as predicted
at time tk. Recall that uminj

= 0,−1 for FES and motors,
respectively. The running cost l and terminal cost V are given
by

l = x̄TQx̄+ νTRν

V =
1

2
eT e+

1

2
rT M̄zr +

1

2
eTx ex +

1

2
µ̃T µ̃

for positive definite, symmetric weight matrices Q ∈ R12×12,
R ∈ R6×6. The terms ξi ∈ R are defined as

ξ1(x̄) = 2
(
||zc − zd + e||2 + ||r − αe||2

)
,

ξi(x̄) =
(µmini

− µ̄i)
2 + ā2i

Tfi

+
(āi − 1)2 + (µ̄i − 1)2

Tri
, i = 2, 3.

V. RESULTS

Simulations were performed using a hybrid neuroprosthesis
3-link leg model with realistic musculoskeletal parameters
from [28], [29]. After each optimization step, a 2 Hz sinusoidal
disturbance of 48.3◦/s2 amplitude (15% of the maximum
expected angular acceleration magnitude) was added to ¨̄q, and
its time integral was added to ˙̄q. Additionally, a 2 Hz sinusoidal
disturbance of 0.025 amplitude was added to ˙̄a, and its time
integral was added to ˙̄µ. The stopping criterion for the MPC
was ||z̄−zd||2 ≤ 0.0001. Parameters were set as γi = 1500,∀i,
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Fig. 1. Comparison of the foot trajectory for ZCBF with robustifying
term, ZCBF without robustifying term, and with a simple Euclidean distance
constraint.

µ02 = µ03 = 0.698, and µ̄pf (t0) = µ̄df (t0) = 0.7. For our
case, because the simulation occurred over a single swing
phase, the minimum fatigue values µ0i were set very close
to µi(t0). In real-time application over the course of several
steps, such a high value for µ0i would not be required for the
fatigue ZCBF to affect control performance and safety.

Performance was compared with MPC using the ZCBFs
without the robustifying term and with MPC using the con-
straints hi(x̄) ≥ 0, i = 1, 2, 3, in place of (39), (40).
As evidenced by Fig. 1, the MPC with ZCBF was able to
successfully clear the obstacle despite disturbances, while both
the MPC with non-robust ZCBFs and MPC with a simple
Euclidean safety constraint failed.

The effect of the ankle fatigue trajectories with robust
ZCBFs can be seen in Fig. 2. When the robust fatigue ZCBFs
are employed, both fatigue states remain above µ0. When only
the robust obstacle clearance ZCBF is applied and fatigue is
unconstrained, both fatigue states fall below µ0. For a longer
time duration, such as the time required to complete several
steps, the fatigue ZCBFs would play a more dramatic role in
control input selection, yet their effectiveness is still evident
in this small-time scale example.

VI. CONCLUSION AND FUTURE WORK

We have designed an MPC for a three-link hybrid neu-
roprosthesis that contains activation and fatigue dynamics.
We constructed an obstacle clearance ZCBF so that the con-
trol does not require replanning of the time-varying desired
trajectory. We also designed robustifying terms to withstand
disturbances and modeling uncertainties, which are inevitable
for user-specific hybrid neuroprostheses. Additionally, because
ankle motors are not present in commercial powered exoskele-
tons, we formulated fatigue ZCBFs to constrain fatigue and
avoid overstimulating the ankle muscles.

While the MPC with robust ZCBFs was able to successfully
and quickly complete a step while remaining within the
desired trajectory, future work will focus on proving recursive
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Fig. 2. Ankle plantar flexor (µpf ) and dorsiflexor (µdf ) fatigue trajectories
with and without robust fatigue ZCBFs. Both versions employ the robust
obstacle clearance ZCBF.

feasibility and stability. Ellipsoidal barriers may prove useful
for completing steps of desired height and length without
replanning, and the MPC-ZCBF with obstacle avoidance holds
promise for addressing tasks such as stair climbing.
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