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Abstract

Sensory processing is hard because the variables of interest are encoded in spike trains in a
relatively complex way. A major goal in studies of sensory processing is to understand how
the brain extracts those variables. Here we revisit a common encoding model in which vari-
ables are encoded linearly. Although there are typically more variables than neurons, this
problem is still solvable because only a small number of variables appear at any one time
(sparse prior). However, previous solutions require all-to-all connectivity, inconsistent with
the sparse connectivity seen in the brain. Here we propose an algorithm that provably
reaches the MAP (maximum a posteriori) inference solution, but does so using sparse con-
nectivity. Our algorithm is inspired by the circuit of the mouse olfactory bulb, but our
approach is general enough to apply to other modalities. In addition, it should be possible to
extend it to nonlinear encoding models.

Author summary

Sensory systems must infer latent variables from noisy and ambiguous input. MAP infer-
ence—choosing the most likely value for the latent variables given the sensory input—is
one of the simplest methods for doing that, but its neural implementation often requires
all-to-all connectivity between the neurons involved. In common sensory contexts this
can require a single neuron to connect to hundreds of thousands of others, which is bio-
logically implausible. In this work we take inspiration from the ‘sister’ mitral cells of the
olfactory system—groups of neurons associated with the same input channel—to derive a
method for performing MAP inference using sparse connectivity. We do so by assigning
sister cells to random subsets of the latent variables and using additional cells to ensure
that sisters correctly share information. We then derive the circuitry and dynamics
required for the sister cells to compute the original MAP inference solution. Our work
yields a biologically plausible circuit that provably solves the MAP inference problem and
provides experimentally testable predictions. While inspired by the olfactory system, our
method is quite general, and is likely to apply to other sensory modalities.
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1 Introduction

A common view of sensory systems is that they invert generative models of the environment
to infer the causes underlying sensory input. Sensory input is typically ambiguous, so a given
input can be explained by multiple causes. Consequently, correct inference requires adequately
accounting for interactions among causes. For example, increased evidence for one cause
often reduces the probability of, or “explains away”, competing causes (if you think the object
you’re smelling is an orange, that makes it less likely to be a lemon). Any neural circuit per-
forming inference must therefore implement mechanisms for inter-causal interaction. This
typically results in dense—and in many cases all-to-all—connectivity between neurons repre-
senting causes. The myriad causes potentially responsible for a given sensory input often
require a neuron representing a cause to connect to hundreds of thousands of others. Such
dense connectivity is biologically implausible.

This problem is easy to demonstrate in linear models of sensory input. (Although linear
may seem overly restrictive, in fact such models have been successful in explaining basic fea-
tures of the visual [1], olfactory [2], and auditory [3] systems). Consider noisy receptors y; (e.g.
retinal ganglion cells, olfactory glomeruli) linearly excited by causes x; (e.g. edges, odours)

according to a matrix A;;. Under this model, the excitation of the i™ receptor is given by

N
y, = ZAijxj -+ noise. (1)

J=1

The causes responsible for the observations, y;, can be estimated by minimizing, for example,
the squared error between the actual observations and the expected observations. A population
of neurons whose individual firing rates represent the x; can do this by gradient descent [4],

dx

‘ o N 2 M N [ M
d_tj X = 8_xz <)’i - ZAikxk> x ZAijyi - Z (ZAszik> X (2)
joi=1 k=1 i=1 k i=1

=1

These dynamics can be interpreted as balancing the evidence for the cause x; due to the recep-
tor inputs y; (the first term) while accounting for the explanatory power of the other causes
(the second term). In particular, ¥; Aj; Aj reflects the contribution of cause x; to the evidence
for cause x;. Importantly, even if the elements A;; are sparse, X; A;; A; will be non-zero for
most j and k, implying nearly all-all connectivity in a circuit implementing Eq (2). In common
sensory settings there may be hundreds of thousands of causes that explain a given input. This
means that x; must connect to hundreds of thousands of other neurons.

Below we show how the problem of all-to-all connectivity can be solved so that inference
can be performed with realistically sparse connectivity. We begin by recapitulating the MAP
inference problem, focusing on the olfactory setting for concreteness. This is basically sparse
coding applied to olfaction, and suffers from all-to-all connectivity. We then derive a solution
inspired by the anatomy of the vertebrate olfactory bulb, namely the presence of dozens of ‘sis-
ter cells’ that receive input from the same glomerulus. That solution leads to MAP inference,
but using sparser connectivity. While we focus here on the olfactory system, our method is
applicable to other modalities.

2 Results
2.1 Olfaction as MAP inference

Animals observe odours indirectly via the excitation of olfactory receptor neurons that project
their axons to spherical bundles of neuropil called glomeruli. Each receptor neuron is thought
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to express a single receptor gene from a large repertoire [5], and neurons expressing the same
gene almost always converge onto one of two glomeruli, on either side of the olfactory bulb
[6]. Thus each glomerulus represents the pooled activity of the receptor neurons expressing a
single type of olfactory receptor. We represent this vector of glomerular activations by y = {y;,
Y2 - - - Yarh Where y; is the activation of the ith glomerulus, and M is the number of glomeruli
per lobe of the olfactory bulb, or equivalently, the number of olfactory receptor genes
expressed by the animal. This number is ~ 50 for flies [7], ~300 for humans [8], and ~ 1000
for mice [9].

The task of the animal is to infer the odour, x* (which consists of N components,
{x},%;,...,x5}), from the receptor activations, y (see Fig 1A). There are two main interpreta-
tions for the x. One is that x; is the concentration of the ™ molecule in the odour, and so N is

the number of distinct molecular species that the animal may encounter in its environment.
The other is that x] represents a complete olfactory object (e.g., coffee, bacon, marmalade)

rather than a molecular species; in this case, N is the number of learned odours. To estimate N
for the first interpretation, we note that the study of an estimated 0.25% of all flowering plants
has yielded 1700 floral scent compounds [10], suggesting an upper estimate for N on the order
of 1700/0.0025, or roughly 700,000 (though the actual number could far fewer if existing mole-
cules appear in as-yet-undiscovered floral scents), on the same order as the 400,000 estimated
in the literature [11]. For the second interpretation (odours are complex olfactory objects), N
is difficult to approximate, but estimates for the number of distinguishable odour objects range
from 10,000 [12] to 1 trillion [13]. Here we simply assume that in both cases N is large. In

A B
5 odour xX*
true receptor inferred S
odour  responses odour g
— B .
x* y olfactory - = Xk
»—— system 3 I
: : c
8 1 molecule N
C

Fig 1. Olfaction as MAP inference. (A) Animals observe odours x* indirectly via receptor activations. We assume the function
of the olfactory system is to report the odour x most likely to have caused the observed receptor activations y. (B) Schematic
representation of an odour, whose defining feature is that it’s sparse (meaning very few components are active). (C) A basic
circuit for performing MAP inference on odours: Receptor i projects directly to each readout unit x; with weight A; determined
by the affinity of receptor i for molecule j; the readout unit x; reciprocally inhibits unit x; with weight ¥; A;; Ay. The latter term is
likely be non-zero even if Aj; is sparse (since that requires only one term in the sum over i to be nonzero), resulting in each
readout unit inhibiting and being inhibited by potentially ~ 100,000 other units. (D) An alternate circuit that performs the same
inference. Mitral cells now mediate between glomeruli and the readout units. Each mitral cell A; excites each readout unit x; with
weight A;; and is in turn inhibited by the same amount. No inhibition is needed between readout units, but a mitral cell must
still excite and be inhibited by each of potentially ~ 100,000 readout units.

https://doi.org/10.1371/journal.pchi.1009808.9001
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either case, odours are very sparse—either because only a few molecular species are present
[14], or only a few odours are present.

From the point of view of learning and inference, there are advantages to both interpreta-
tions. If odours are represented as molecular concentration vectors, then information about
how each molecule excites each receptor is determined only by the physical parameters of the
molecule and receptor. It can, therefore, be learned on evolutionary timescales and hard-wired
into the circuit, at least in principle, and it provides a simple substrate for the animal to gener-
alize between chemically similar odours. It is disadvantageous in that the animal requires
higher-order circuitry to infer learned olfactory objects (coffee, bacon, marmalade), which
consist of many types of odour molecules. If odours are represented as complex objects, then
those objects have to be learned within the lifetime of the animal. However, once learned, fur-
ther higher order circuitry is not needed. Although these important representational issues are
beyond the scope of this work, we mention them in passing as examples of the non-trivial
assumptions required before a complete theory of olfactory circuit function can be developed.

We assume a very simple model of the transduction of odours into neural activations:
odour components contribute linearly to the input current of a receptor, which is then con-
verted into a firing rate by a static, invertible, pointwise nonlinearity. That is, the excitation of
glomerulus i is described as

=f<zN:Aijx; + Z,.> . z,~N(0,0% (3)

where x] is the concentration of the 7™ molecule, Ajjis the affinity of the i™ receptor for the j’th

molecule, f converts input current to firing rate, and z; is additive noise with variance o*. Non-
linearities like f can be inverted without changing the nature of the inference problem, so,
without loss of generality, we take fto be the identity. Thus, our likelihood is

Pl ~ (ZAU Xy 0 ) : (4)

Because the number of glomeruli, M, is likely to be much smaller than the number of molecu-
lar species, N, a whole manifold of odours can be consistent with any particular pattern of glomer-
ular activation. We resolve this ambiguity by selecting the candidate odour that is most consistent
with our prior information about odours. The prior p(x) encodes the animal’s background knowl-
edge about the presence of odours in the environment. We assume that the animal makes the
simplifying assumptions that molecules appear independently of each other (but see [15, 16]),
and that the marginal probability distribution for each molecule, p(x;), has the same form.

For the prior we use an elastic net distribution (a combination of #; and ¢, penalties) [17,
18]. The ¢, penalty promotes sparsity as is observed [14] (see Fig 1B); the ¢, penalty discour-
ages very large concentrations. In addition, we include a term enforcing the non-negativity of
concentrations, yielding

p(®) =] px) o<exp< Zaﬁ ) (5)
where
#(x,) = Blx| + = x2+]I(x >0). (6)

The parameter §§ determines the degree of sparsity, y penalizes excessively large
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concentrations, and the indicator function, defined as I(x; > 0) = 0 when x; > 0 and oo other-
wise, enforces the non-negativity of concentrations.

The optimization problem is to determine the odour x most likely to have caused glomeru-
lar activations y, taking into account both the likelihood and prior. The resulting MAP esti-
mate is given by
N 1 M N 2
Xyap = Argmin Z¢(x;> + ﬁz Vi — ZAijxj . (7)
j=1 i=1 =1

xeRN

Because the objective function being minimized is strictly convex it has a unique minimum.
At this minimum the partial derivative of the objective with respect to each x; (ignoring for the
moment the potential non-differentiabilities introduced in Eq (6)) is zero, yielding

0p 1
8—xj o2 i Ay <yi - ;Aikxk> . (8)

A common approach for solving this equation is to perform gradient descent on the objec-
tive function (the right hand side of Eq (7)) [1], for which the resulting dynamics is

dx

j do 1
- = — — . o ) .
T, at E)xj + pe ZAU (yl Ek A;k"k) (9)

(Note that we recover Eq (2) if we set fand y to zero and ¢” to 1, and drop the non-negativity
constraint in Eq (6)). These dynamics have a natural interpretation: there’s a leak term due to
the gradient of the prior (the first term on the right hand side), feed-forward excitation of the
readout unit x; by the glomeruli (the second term), and recurrent inhibition among the read-
out units (the third term); see Fig 1C.

As discussed above, the problem with this approach is that unless the affinity matrix A;
has sparse structure, the term %; A;; Ay leads to dense connectivity. To remedy that, we can
factor out the term in parentheses in Eq (9) and implement it with a new variable, A;,
giving us

da, 1 =
L =t (y,. - ;A,jxj> (10a)

dx, 0¢p M
Ry Ox; + ZH v (10)

Although this describes a different neural system than that in Eq (9), it clearly has the same
fixed point.

The circuitry implied by Eq (10) is broadly consistent with that of the olfactory system (see
Fig 1D). There is one ; for each glomerular input y;, making it natural to identify A; with the
activation of a mitral or tufted cell. Mitral and tufted cells likely play different roles in olfactory
processing [19], but our theory can be applied to both populations, so, for simplicity, we will
refer to them collectively as mitral cells.

Eq (10a) requires each mitral cell to be directly excited by its corresponding glomerulus (y;)
and to be inhibited by the readout units (x;). Eq (10b) requires the readout units to be directly
excited by the mitral cells. This pattern of interaction between the mitral cells and the readout
units implies an identification of the readout units x; with olfactory bulb granule cells, whose
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main source of excitation is the mitral cells, which they in turn inhibit. Note that in our model

the mitral cell/granule connections are symmetric. Since granule cells lack axons, the results of
the computation must be read out from the mitral cell activations. This can be done by mirror-
ing the integration of mitral cell input by granule cells as described in Methods Sec. 4.5, ‘Corti-
cal readout’.

2.2 Incorporating sister mitral cells

Eq (10a) indicates that each mitral cell 2; is inhibited by each granule cell x;, of which there are
hundreds of thousands in the mouse [20]. Thus, although the dynamics yield correct inference
at convergence, if A;; is dense we are again faced with implausibly high connectivity. We take
inspiration from the olfactory system to show how this problem can be addressed while still
performing MAP inference.

So far we have assumed that each glomerulus provides input to one mitral cell (left panel
of Fig 2), but in reality, each vertebrate mitral cell has several dozen ‘sister’ cells (mitral and
tufted cells) that all receive input from the same glomerulus [21], (right panel of Fig 2), and all
receive inhibitory feedback from granule cells. This suggests a way to reduce the number of
mitral cell/granule cell connections: let each sister mitral cell connect to a different, non-over-
lapping, set of granule cells. Given that there are approximately 25-50 sister cells per glomeru-
lus [22, 23], that would reduce connectivity by a factor of 25-50, yielding biologically plausible
levels.

To derive circuitry that can implement this scheme, we start by assuming that the sister
cells obey dynamics similar to Eq (10a),

e

N 1 S
G = -\ +? (y, - Szj:W,.jxj> (11)

where )’ is the s™ sister cell for glomerulus i and § is the number of sister cells. Below we will
choose W} to be zero for all but one s, which greatly reduces the number of granule cells that

connects to each mitral cell, but for now we leave it arbitrary.

B i
) T L2 9" "¢
A

N NN NN
J J J

Y;

—_—

£
\
<
|

Fig 2. Sister cells. In the vertebrate olfactory bulb, each glomerulus, y, is sampled by not one (left panel) but
approximately 25-50 ‘sister’ mitral and tufted cells, A [22, 23] (right panel, with only three sisters to reduce clutter).

https://doi.org/10.1371/journal.pcbi.1009808.9002
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To see how sister mitral cells can perform correct MAP inference, note that the average sis-
ter cell activity,

= 1 s

evolves according to
v, - 1 .
T)‘E: —7\.l+g yi—ZZWﬁxj . (13)
j s

Letting the weights, W}, obey
S
A4,= W, (19
s=1
the average sister cell activity evolves according to
v, - 1
N 1 zj:Aij : (15)

This is identical to Eq (10a), the time evolution equation for A;, implying that if A, = A, at t = 0,
then A, = X, for all time. Consequently, rather than computing A; from Eq (10a), we can com-
pute it by simply averaging over the sister mitral cells,

Iy s
A= EZL. (16)

We can, therefore, replace A; in Eq (10b) with the right hand side of Eq (16), and, so long as the
sister mitral cells evolve according to Eq (11), our model will implement MAP inference.

Eq (14) tells us only that the weights of the sister mitral cells add up to A;;, but besides that
we have complete freedom in choosing them. A trivial choice is W; = A, /S (illustrated in Fig

3B). However, this doesn’t help, as each sister mitral cell still receives N inputs—one from each
granule cell. What we want to do instead is make the connections sparse so that, as mentioned

Fig 3. Sparsifying connectivity with sister cells. Each panel shows a schematic of the connectivity between mitral cells (triangles) and granule
cells (circles). All connections are reciprocal. (A) Original scenario—no sister mitral cells. Connectivity is all-to-all, and the weights are A;;. (B) A
densely connected configuration where every granule cell connects to all sisters on each glomerulus, with weight W = A;/S. The sister mitral cells
receive the same number of connections as in panel A, but the granule cells receive twice as many as in panel A (S times as as many in general). All-
to-all connectivity is thus exacerbated. (C) Blocks of granule cells, indicated by the shades of green, connect to the same sister from each
glomerulus, leading to maximally sparse connectivity. In this example, the first three granule cells connect to the first sister on each glomerulus,
and the second three granule cells connect to the second sister; see Eq (17). Sister mitral cells now interact with a factor of 2 fewer granule cells (S
fewer in general), sparsifying mitral cell connectivity. (D) A more realistic maximally sparse connectivity pattern. Each granule cell connects to a
single, randomly selected sister cell from each glomerulus; see Eq (18). Sister mitral cells connect to a factor of S fewer granule cells on average,
though individual mitral cells may connect to more (like the first green mitral cell) or fewer (like the second).

https://doi.org/10.1371/journal.pcbi.1009808.9003
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above, each sister cell receives input from a different, non-overlapping set of granule cells. If
the sets are equal in size, this means each sister cell receives input from N/S granule cells, an S-
fold sparsification (Fig 3C and 3D).

There are many ways to make connectivity sparse. One is to divide granule cells into blocks,
and then have the granule cells in each block project to one of the sister cells corresponding to
each glomerulus,

s~ U({1L,...,8}) (17a)
A; ifs=s,
w; = (17b)
0 otherwise.

This scheme is shown in Fig 3C (with the blocks arranged sequentially). More realistic is for
each granule cell to connect to a randomly selected sister cell from each glomerulus, so that s;
also depends on glomerulus i,

s; ~U({1,...,8}) (18a)
4; ifs=sy,
Wi = (18b)
0 otherwise.

This scheme is shown in Fig 3D. In either case, each sister mitral cell now receives input from
a factor of S fewer granule cells. The granule cells still make M connections (recall that M is the
number of glomeruli), but, at least in the olfactory system, M is relatively small, on the order of
10%-10°.

At this point we have demonstrated that the dynamics in Eqs (10b) and (11) will lead to
MAP inference if A; is set to the average of the sister mitral cell activity; that is, if Eq (16) is sat-
isfied. However, no known cell performs the averaging required in Eq (16) and then projects
to the granule cells, as required in Eq (10b). We therefore take an alternative strategy: we aug-
ment the dynamics to ensure that all the sister mitral cells converge to the average. To do that,
we introduce a new cell type (which we will ultimately identify as periglomerular cells) that
evolves according to

d;

T, 0 =L —X

(19)

This achieves the desired result: at equilibrium, when du/dt = 0, all sister mitral cells asso-
ciated with glomerulus i have the same value—the average sister mitral cell activity. To ensure
that u converges to an equilibrium, rather than increasing or decreasing linearly with time, we
need p; to couple to the sister mitral cells. A reasonable coupling is linear negative feedback,
transforming Eq (10a) to

d); 1 =
=Mt |y SZijxj -8 |. (20)
dt o =

This certainly has the right flavor: positive p tends to decrease A, and vice versa, suggesting
that all the sister mitral cells will eventually have the same value. But will they have the right
value—the value implied by Eq (10a)? To answer that, we combine Eq (14) with Eq (20) to
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write
dx T 1 al .
Txa i = i+§ yi_Z:Aijxj_Z:ui . (21)
j= s

Except for the last term in parentheses, Eq (21) is exactly the same as the equation for A;, Eq
(10a). Note, however, that

d _
Ty D =S80 =) =0. (22)

s

Hence, if we initialize i so that > i is zero, it will remain zero for all time. In that case, the
equation for the sister cell average, Eq (21), is identical to Eq (10a). Consequently, each of the
sister cells converge to the correct mean, and so we can replace Eq (10b) with

dx; O s
Pl —a—%+;wﬁki. (23)
Thus, under the dynamics given in Egs (19), (20) and (23), with W}, obeying Eq (14), the net-
work performs MAP inference.

The variables 4 in Eq (19) are driven by a weighted average of sister cell activations. The
observed backpropagation of mitral cell action potentials to the glomeruli [24, 25] and the elec-
trical coupling of sisters at the glomeruli [26] might contribute to the neural implementation
of just such an average. Thus we have provisionally identified the y variables with olfactory
bulb periglomerular cells because they inhibit the mitral cells and are in turn excited by them
[27, 28], and do not receive direct receptor input themselves. Periglomerular interneurons
constitute a diverse group of cells [28, 29] and there is currently limited insight into their
detailed wiring diagram [28, 30]. Nevertheless, the type of cell described above (reciprocal con-
nections with mitral/tufted cells without direct receptor input) is reminiscent of the Type II
periglomerular cells of Kosaka and Kosaka [29, 31] (see also [32]).

To summarize, the introduction of sister cells allows exact MAP inference to be performed
while reducing, by a factor of S, the number of granule cells each mitral cell must connect to. It
is in this sense that sister cells allow MAP inference to be performed with sparse connectivity.

2.3 Leaky periglomerular cells

The dynamics in Eq (19) implies that the periglomerular cells, j{, do not leak; i.e., they are perfect
integrators. This is at odds with biology, since we imagine that integration is performed by neu-
ronal membranes, and neuronal membranes are leaky [33]—though periglomerular cells may be
less leaky than most other neurons [28, 34]. We can introduce a leak term into the dynamics,

Periglomerular cell activity dus

— e+ kT, (24)

relative to baseline, with leak : * dt
where € sets the magnitude of the leak. One advantage of introducing this leak is that we no lon-
ger have to worry about initializing the y so that their mean is zero, since with a leak term the
mean periglomerular activation decays to zero,

T Lidﬁti = —€efi, + h =k, = —€Ti;. (25)

The price we pay is that the system no longer computes the MAP solution exactly. As we show in
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Methods, Sec. 4.1, when there is leak the system of equations minimizes the wrong objective,
N
“u [Sot 535 (T

j=1

2 (26)
RN SEEES 5 s (RO v |
where
S
© =57 e0? (27)

In the limit of no leak (¢ — 0, so that g. — 1), we recover the correct objective (compare to Eq
(7)). For non-zero leak, the objective differs from the MAP objective, so solutions will differ from
the MAP solution. However, as we show numerically in Sec. 2.5.2, for biologically relevant values
of € these deviations are small.

Note that as the number of sister mitral cells S increases, g. approaches 1. Naively, this sug-
gests that we should recover the true objective in the large S limit. However, this naive expecta-
tion ignores the fact that there is a factor of S in the second term in Eq (26); in the large S limit,
this cancels the 1/S dependence in (1 - g..). Consequently, it is not immediately clear how
inference depends on S when there is nonzero leak. We addressed this numerically, and found
that the error relative to the MAP solution increases monotonically with the number of sisters;
see Sec. 2.5.2.

2.4 Implementation in neural circuitry

The mitral and periglomerular cell dynamics (Eqs (20) and (19), respectively) are in a form
suitable for implementation by neural circuitry. However, the granule cell dynamics in Eq (23)
cannot be implemented directly because of the presence of not-everywhere-differentiable
terms in the prior, ¢ (see Eq (6)). We thus implement related, neurally plausible, dynamics
that has the same fixed point. Specifically, we note that at the fixed point of Eq (23), x; satisfies

% (Zw;xj - yx) € (x| +1(x; > 0)) (28)

where 0 is the subgradient operator [35]. If at the solution x; > 0, then the subgradient opera-
tor reduces to the ordinary gradient and yields the value 1, and we have

(Z Wik — ) (29)

On the other hand, when x; = 0 the subgradient is the set (—o0, 1], so we have

Wik; € (=00, 1], (30)

ijtvi

which we can write as an inequality,

2 Wi < h (31)
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Thus, x; = 0 whenever Eq (30) is satisfied; combining that with Eq (29) (which is valid when x;
> 0), we have

1 e +
5=2 lgwﬁxi /3] (32)

where [-]" is the threshold-linear operator. A neural implementation of this function would
have x; responding instantaneously to changes in the mitral cell activations A}, which is
implausible. Instead we employ a membrane voltage variable v; which integrates the mitral cell
input and interpret x; as the resulting firing rate. The full set of equations describing the model
is, therefore,

dr; 1
MC activity : T, d_tz =N+ =3 (y,. - SZijxj - S,u?) (33a)
j
dau _
PGC activity : 7, ;t’ = —ei + X — X, (33b)
dv,
. J s S
GC voltage : L =Y + ;Wijki (33¢)
1
GC firing rate : X, = " [v, — B]" (33d)

where the weights w; satisfy Eq (14). Eqs (33a) and (33b) correspond to Eqgs (20) and (19),
respectively, and Eqs (33¢) and (33d) implement Eq (32). The sparsity parameters fand y
from the prior, Eq (6) appear as the threshold and inverse gain of the granule cell firing rate,
Eq (33d). Because these parameters reflect the statistics of the environment, we assume that
they can be set appropriately on evolutionary time scales as the species adapts to its environ-
ment. But they can also be adjusted on faster time scales by, for example, using cortical feed-
back to add a background voltage to the bracketed term in Eq (33d), modifying the threshold
of the granule cell firing rate, and so altering the sparsity prior. We leave the investigation of
such possibilities to future work.

A circuit that implements these equations is shown schematically in Fig 4. As promised,
each mitral cell interacts with only a subset of the granule cells, as in Fig 3D. This reduces
mitral-granule connectivity by a factor of S (though the total number of mitral-granule syn-
apses stays the same due to the introduction S sister mitral cells per glomerulus). The infor-
mation from the other granule cells is delivered indirectly to each mitral cell via the
influences of the glomerular average of the sister cell activations and periglomerular
inhibition.

2.5 Simulations and linear analysis

To investigate the behaviour of the system, we performed a series of simulations using the
model summarized in Eq (33). The three questions that guided our choice of simulations,
along with brief answers, are:

1. What do the dynamics of sister cells look like? Our analysis so far shows only that if the
dynamics converges, it yields the MAP solution. However, we have not shown that the
dynamics necessarily converges, or said anything about transient behaviour. Thus the first
goal of our simulations is to check convergence empirically, and to qualitatively assess the
transient dynamics and its biological plausibility.
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Fig 4. Sparsely connected inference circuit, with readout in piriform cortex. Arrows and filled circles indicate excitatory and inhibitory connections, respectively.
Each sister cell A receives input y, from a glomerulus and interacts with a subset of the granule cells x;, reducing connectivity by a factor of S (S = 3 in this example).
Information is shared between granule cells through the periglomerular cells i (only ones with § = 3 are shown, for clarity). Those cells receive excitatory input from
the mitral cells and inhibitory input corresponding to the average sister cell activity (as required by Eq (33b)). The inhibitory input comes from back-propagating
action potentials, which travel along mitral cell apical dendrites and are available at the glomeruli [24, 25]. The result of the inference is simultaneously available in
granule cells and neurons in piriform cortex (see Methods, Sec. 4.5, ‘Cortical readout’).

https://doi.org/10.1371/journal.pchi.1009808.9004

Answer: we show numerically that the dynamics does indeed converge, and show analyti-
cally that solutions are stable for the parameter regime of interest.

2. What is the effect of non-zero periglomerular leak (¢ > 0)? The dynamics in Eq (33) yields
the MAP solution at convergence only when the periglomerular cells have zero leak, yet any
biological implementation of these dynamics will have non-zero leak. It is important to
determine the extent to which realistic values of the leak affect the dynamics and the infer-
ence solutions.

Answer: for realistic values of the leak, the effect on MAP inference is small.

3. Finally, how do the various parameters affect the transient dynamics, and which parameters
are most important? In particular, does the dynamics become qualitatively unrealistic when
some parameters are changed within biologically reasonable ranges?

Answer: the transient dynamics is extremely robust to parameters, and exhibits very little
change over a broad range.

Below we expand on these answers.

2.5.1 System dynamics with sister cells. In our simulations we used the base parameters
given in Table 1; departures from those parameters will be flagged. Sister cell connectivity was
set according to Eq (18); see Methods Sec. 4.4 for further details.

Fig 5 shows typical activity patterns for mitral, periglomerular, and granule cells. Panel A
shows the response of all four sister mitral cells from a representative glomerulus, and panel B
shows the response of the corresponding periglomerular cells. Although there is some initial
variability in the responses—in particular decaying oscillations—the sister cells converge to
the same value, as expected. Panel C shows granule cell activity, and demonstrates that the
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Table 1. Base parameters used in the simulations.

Parameter Description Base Value

M Number of glomeruli 50

N Number of granule cells 1200

S Number of sister cells per glomerulus 4

n Number of components present in the true odour 3

o Receptor variance 1072

B ¢, penalty 3

¥ ¢, penalty 1

T, Granule cell membrane time constant 35 ms
T Mitral cell membrane time constant 50 ms

T Periglomerular cell membrane time constant 35 ms

£ Periglomerular cell leak 0
Ay Elements of the affinity matrix N(0,1/M)

https://doi.org/10.1371/journal.pcbi.1009808.t001

readout converges to the MAP solution within a few hundred milliseconds. This is reflected in
the root mean square (RMS) error between the granule cell responses and the MAP estimate,
which decays exponentially (panel D).

In Fig 6 we show typical dynamics when there are § = 1, 8 and 25 mitral cells per glomeru-
lus. In all cases, the granule cells converge to the MAP solution within a few hundred millisec-
onds. The main difference between the three values of S is that when S = 1, convergence to the
MAP solution is slightly faster than when S > 1, as indicated by the slightly steeper RMS error
curves in the bottom left panel. Otherwise, the dynamics in all three cases is qualitatively
similar.

Linear analysis. Given that our network was designed to perform MAP inference, the
asymptotic behavior shown in Figs 5 and 6 is relatively unsurprising. However, our analysis so
far says nothing about the transient behavior, which, as can be seen in Figs 5 and 6, is charac-
terized by large oscillations. To understand this behavior—in particular how stability and
oscillation frequency depend on the parameters, including the number of sister mitral cells—
we need to analyze the dynamics.

Because of the rectifying nonlinearity, that is hard to do exactly. However, our simulations
so far (in particular the granule cell activity in Figs 5 and 6) suggest that the composition of the
‘active’ set of granule cells stabilizes before the dynamics terminates. Once this active set has
stabilized, so that the rectifications remain within the linear regime, the granule cell activations
x; can be replaced by their corresponding voltage variables v;, and the system becomes linear.
We thus performed linear analysis of Eq (33) around a solution with # active granule cells, and
used the results to both explain the transient behavior we have seen so far, and guide further
investigation of the system.

The linearized dynamics relative to their input-dependent fixed-point for # active granule
cells is given by (Methods, Sec. 4.2)

don; .S Z“ . S su
T)‘T = —5)\,’ — W 2 leévj — g(s,u, (343)
dé,uf s 1 S s

s=1

dov, o
T, =0+ SN wron; (34c)

i=1 s=1
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Fig 5. Example dynamics for a network with base parameters (Table 1). (A) All four sister mitral cells from a
representative glomerulus. Although the sister cells start off with identical activations, their activities quickly diverge
due to their differing connectivities to the granule cells. Ultimately, however, they converge to the same value. (B)
Periglomerular cells from the glomerulus in panel A. (C) Granule cells. Red arrows indicate the MAP solution for the
three components present in the odour. Granule cells representing these components are shown in green, the others in
gray. After an initial period of activity, the system settles into the MAP solution. (D) Time course of the root-mean-
square error between the granule cell activations and the MAP solution normalized to its initial value, indicating
convergence to the MAP solution.

https://doi.org/10.1371/journal.pcbi.1009808.9005
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Fig 6. Typical dynamics as the number of mitral cells per glomerulus, S, is varied relative to the base model given in Table 1. (A) S=1, (B) S =8, and (C)
S =25 mitral cells per glomerulus, compared to S = 4 in Fig 5. Note the lack of periglomerular cell activity and slightly faster convergence for S = 1. Otherwise, the

dynamics is qualitatively similar for all values of S, including convergence to the MAP solution.

https://doi.org/10.1371/journal.pchi.1009808.9006

where the ¢ in front of each variable indicates a small deviation from the fixed point. Note that
we replaced the granule cell activations x; by their membrane voltages v;, as motivated above,

and that the indexing of the latter variables is over the active set of n granule cells.
To solve these equations, we let the dynamical variables have the time dependence e

&t

which results in an eigenvalue equation for £. That equation can’t be solved exactly (at least not
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Fig 7. Eigenvalues of the linearized system computed numerically (gray crosses) and analytically (coloured symbols). Eigenvalues labeled ‘decay,’, Eq (57),
‘decayy’, Eq (58) and ‘€™, Eq (59), are exact; those with the superscripts low” or ‘high’, Eq (76), are approximate. (A) n = 20 active granule cells. (B) n = 55, so that n >
M. In both panels, blue eigenvalues are for modes involving only mitral and periglomerular cells, modes for orange and red eigenvalues also involve granule cells. The
time constant (x-axis) and frequency (y-axis) for each eigenvalue € are —1/Re(£) and Im(&)/27, respectively. We used large  to better show the spread of eigenvalues.
Parameters from Table 1, except S = 25 and £ = 1/2, and n depends on the panel. See Sec. 4.2 for additional details.

https://doi.org/10.1371/journal.pcbi.1009808.9007

for all eigenvalues), but the approximate eigenvalues, derived in Methods, Sec. 4.2, are reason-
ably close to the true ones, as shown in Fig 7. In that figure, eigenvalues near blue markers are
for modes involving only mitral and periglomerular cells (6v; = 0), while eigenvalues near
orange and red markers are for modes involving granule cells as well (6v; # 0).

Each gray cross in Fig 7 corresponds to a mode of the system, and near the equilibrium the
activity consists of a sum of these modes. However, because the modes cluster, the system
admits only a handful of behaviors, which we summarize as follows:

1. Low frequency oscillations, ‘€°*, whose frequency does not change with added sisters (see
Methods, Eq (80));
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2. Two high frequency oscillations, ‘£high’ (Methods, Eq (78)), which involves all cell types,
and ‘&P’ (Methods, Eq (59)), which involves only the mitral and periglomerular cells. The
frequency of these oscillations increases with added sisters;

3. Purely decaying modes (no oscillations), ‘decay,,’, (orange diamond in Fig 7; see Methods,
Eq (57)), which has a decay rate that is proportional to &, and ‘decay,” (Methods, Eq (58)),
which is present only when n < M (blue diamond in the top panel of Fig 7). The latter
involves the mitral and periglomerular cells, but not the granule cells.

Fig 7 shows the eigenvalue spectrum for only one set of parameters. What about other
choices? The time constants, 7, 7,/€ and 7,, set the time scale for decay. The other relevant
parameters are the number of sister mitral cells, S, and y and o”; the latter two appearing in
Eq (34a). As we show in Methods, Sec. 4.2, these have two main effects. First, the oscillation
frequencies &high and 7P scale as /S /%y (Eq (78)) and 1/S/a? Eq (59), respectively, as shown
in Fig 8A and 8B. The second effect is on the decay time constants, which are mainly indepen-
dent of S, except when § = 1; in that case there is no &™ mode, which can affect the decay rates
(see Fig 8C). For a detailed analysis of the effect of parameters on the transient behavior, see
Methods Sec. 4.2.

The linear analysis can also tell us whether the MAP equilibrium can be unstable. We show
in Methods, Sec. 4.2.2 that it is stable in the parameter regime of interest, which is 0 < 1; we
did not investigate stability when ¢” isn’t especially small.

2.5.2 The effect of periglomerular leak. As discussed in Sec. 2.3, our network performs
MAP inference only if the periglomerular leak, €, is zero. What happens in the realistic case,
when it’s not zero? Here we address that question through simulations. From Eq (33b), we see
that the effective time constant of the periglomerular cells is 7,/e = 35 ms/e (see Table 1), so
relevant values of € are near 1.

In Fig 9 we show typical dynamics for £ = 1 and & = 2. Non-zero values of the leak mean the
system no longer performs MAP inference; that’s reflected in the plateauing of RMS error
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Fig 8. Transient properties of inference dynamics. (A) Dependence of the high-frequency mode of the mitral cell responses on the number of sisters, S. (B)
Dependence on the standard deviation of the noise, 0. In both panels, the dashed lines are fits predicted by the linear analysis. (C) Dependence of the mitral cell decay
time constant on the number of sisters S. Going from S = 1 to S = 2 sisters per glomerulus decreases the decay time constant by a factor of about 2. A large change in
decay rate from S = 1 to 2, followed by a slower change for S > 2, is typical, although the details are parameter-dependent. Other parameters as in Table 1.

https://doi.org/10.1371/journal.pcbi.1009808.9008
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Fig 9. Effect of periglomerular leak £ on the dynamics. Parameters from Table 1, but with the number of sisters S fixed at 8 and the leak
at (A) £ = 1 and (B) £ = 2. Note that sister mitral cells no longer converge to the same value (top row). Increasing the leak results in higher

RMS error relative to the MAP estimate (red triangles).

https://doi.org/10.1371/journal.pcbi.1009808.g009

relative to the MAP solution. In both cases however, the effect on granule cell activity is small.
Non-zero leak also means that the periglomerular cells are no longer able to force sister cells to
the same value at convergence. This is increasingly visible as the leak increases (compare gran-
ule cell activity at convergence in panels A and B of Fig 9). Again, though, the effect is small.

As discussed in Sec. 2.3, the effect of the periglomerular leak depends on the number of sis-
ter mitral cells, S. In Fig 10A we plot the asymptotic RMS error versus £ as we vary S.
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Fig 10. Properties at convergence versus periglomerular leak £. (A) Mean RMS error at convergence, relative to its initial value, as a function of leak for different
numbers of sister cells per glomerulus. The RMS error increases with leak and with the number of sister cells, but never gets very large. Means are computed over 10
different odours and 5 different olfactory bulbs. (B) Median (dots) and inter-quartile range (lines) of the coefficient of variation (CV; standard deviation divided by the
mean) of the ratios of sister cell activity at convergence as a function of the leak parameter £. CVs are computed over the ratios of all unique pairs of 25 sisters in a
glomerulus, percentiles are computed over all glomeruli in response to 10 different odours across 5 different olfactory bulbs. Median CVs remain low even for high
values of leak. Parameters from Table 1, except for Sand €.

https://doi.org/10.1371/journal.pcbi.1009808.9g010

Increasing the number of sisters increases the steady state RMS error relative to the MAP solu-
tion, but past about S = 8 the number of sisters has very little effect on the error. In Fig 10B we
plot the spread in sister cell activity relative to the mean for S = 25, showing that it remains
small for large values of the leak.

2.5.3 Robustness. Finally, we examined how the parameters affect the dynamics in the
non-leaky setting. Because the system always arrives at the MAP solution, we focus on the
transient dynamics, and in particular on whether the system remains within a biologically
plausible range.

Number of odour components, n. Intuitively, we expect that as the number of odour com-
ponents, 1, increases, the inference problem will become harder. In Fig 11A we show an exam-
ple with 10 odour components present, and indeed we see that inference (blue lines) is not
great: although the odour components that are present are correctly inferred, many odour
components that are not present are inferred as well. Fig 11B corroborates this: the number of
recovered odour components exceeds the number of true ones, n, when # is sufficiently large.
Note, though, that as M increases, the system can accurately infer more odours. Moreover, as
can be seen in Fig 11C, for all values of n tested the dynamics converges to the MAP solution
at similar rates.

Number of cells. So far our simulations have used M = 50 glomeruli and N = 1200 granule
cells. However, most olfactory systems are much larger than this (we used smaller populations
solely to speed up simulations). For example, in the fly M ~ 50 and N ~ 2500, while in the
mouse, M ~ 1000 and N = 10°. In Fig 12 we show circuit dynamics for larger systems; up to
M =200 and N = 4800. Consistent with the fact that the linear analysis (Methods, Sec. 4.2)
doesn’t predict a strong dependence on size, the dynamics are qualitatively similar to our sim-
ulations with small M and N, and the MAP solution is achieved within a similar time frame.
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different numbers of glomeruli, M. An odour component was considered inferred when granule cell activation was greater than 1072, Dots are averages over 12 trials,
vertical lines are standard deviations (shown only for M = 50 for clarity). When using the default number of glomeruli, M = 50, extra odour components are inferred
when 7 is above about 3. Adding glomeruli, however, allows more odours to be correctly inferred. (C) Time course of the RMS error between the granule cell
activations and the MAP estimate, for 6 different trials at each n. Parameters from Table 1, except S = 8, and M = 50 unless indicated otherwise.

https://doi.org/10.1371/journal.pcbi.1009808.g011

2.6 Relative sister cell activity at convergence

Our proposed scheme makes a strong experimental prediction about the relative activity of sis-
ter mitral cells at convergence, but it takes some analysis to determine exactly what that predic-
tion is. According to Eq (33b), when there is no periglomerular leak (¢ = 0), all sister mitral
cells converge to the same value—the mean, A,, which depends only on which odours were
presented. However, exact equality relies on a particular choice of coordinates. Suppose, for

instance, that the experimentally recorded mitral cell firing rates, denoted Xf, were related to
those in our model, A;, by cell-specific invertible transformations f;,

M=), (35)

(Invertibility is required because there must be a one-one mapping between trajectories in the
transformed and non-transformed variables). Because our model predicts that at convergence

A, = L, independent of odour, it follows that at convergence,

FO)=F0). (36)

This prediction would be hard to verify experimentally, because it requires knowledge of the
transformations f* and f*. However, if we assume that the transformations are differentiable,

we can arrive at a more useful expression by differentiating both sides with respect to 71? and
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Fig 12. Dynamics for different numbers of glomeruli, M, and granule cells, N (specified at the top of each column), are qualitatively similar. (A) Mitral cells. The
activity of one mitral cell is highlighted with a dark trace; the remaining sisters are overlayed with a light trace. (B) Granule cells. Granule cells representing molecules
present in the true odour are coloured green and the 10 most active granule cells representing molecules not present in the true odour are coloured gray. Granule cell
dynamics are all qualitatively similar and converge to the MAP solution (red triangles). (C) RMS error between the granule cell activity and the MAP estimate for 5
random systems of the same size as in the previous rows (gray) and the average (green). All systems converge with similar dynamics to the MAP estimate. Remaining
parameters are from Table 1, except S = 25.

https://doi.org/10.1371/journal.pchi.1009808.g012

rearranging terms,

dh; _ Ooff /0N (37)
ars  of:/oks

Because f:(A:) and f (1) are invertible and differentiable, and thus monotonic, functions of
their arguments, the sign of the derivatives are independent of the value of either A* or &S

This means that the sign of the right hand side is fixed, independent of Xf or Xf/ Suppose, for
definiteness, that it’s positive. In that case, if Xj' is larger for odour A than it is for odour B (at

convergence), 71? will also be larger for odour A than for odour B. If, on the other hand, the
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right hand side is negative, we’ll see the opposite: 7~\,j will be smaller for odour A than for odour
B. Our model thus makes the prediction that if we plotted the values of two sisters cells at con-
vergence for a range of odours, that plot would be monotonic.

For this prediction to hold, Eq (36) must be satisfied, which is guaranteed only when the
periglomerular leak, &, is zero. When £ > 0 on the other hand, Eq (33b) tells us that at conver-
gence,

A=h e (38)

The ratio of sister mitral cell activations will thus acquire an odour dependence. But as we saw
in Fig 10B, that dependence is relatively weak. Consistent with this, when we tested for mono-
tonicity numerically, we found that it is largely maintained, as can be seen in Fig 13. We thus
arrive at our main prediction, which holds even when there is periglomerular leak: at conver-
gence, the activity of any mitral cell is an approximately monotonic function of the activity of
any of its sisters.

3 Discussion

Most neural implementations of probabilistic inference require dense or all-to-all connectivity
between elements, so that the explanatory power of all latent variables can be correctly
accounted for. In common sensory settings where inference over hundreds of thousands of
latent variables is not uncommon, such connectivity can require individual neurons to connect
to hundreds of thousands of others, which is biologically implausible. In this work we have
taken inspiration from the vertebrate olfactory system to show how such inference problems
can be solved using sparse connectivity.

Naive olfactory inference would require each mitral cell to connect to hundreds of thou-
sands of granule cells. However, in mice there are approximately 25-50 sister cells per glomer-
ulus [22, 23], and we showed that the sisters can share the connectivity, resulting in a
substantial reduction in the required number of synapses per mitral cell. However, this sharing
of connectivity comes at a cost: it requires coordination by a neural population. We have iden-
tified that population as periglomerular cells, based on their pattern of connectivity.

Our approach is not limited to the particular inference setting presented here. It can be
applied to the more complex generative model in [2], and a large class of nonlinear models
(see Methods, Sec. 4.6). As another example, our approach can be readily applied to the ‘sparse
incomplete representations’ of [36], whose Egs. (5) and (6) are directly analogous to our Eq
(10), and thus can be modified analogously to employ sparse connectivity.

3.1 Coordinating connectivity

One of the key requirements of our work is that sister cell connectivity matrices W} sum
according to Eq (14). This condition implies that the weights connecting a given granule cell x;
to the sisters A; in glomerulus i sum to A;;. In the sparsest connectivity setting this requires that
each granule cell connect to exactly one sister cell from each glomerulus. This may seem diffi-
cult to implement, but given the similarity in the temporal responses of sister cells, such sparse
connectivity may be achievable through lateral inhibition among granule cell spines, as two
spines each contacting sisters from the same glomerulus would receive very similar inputs,
motivating the elimination of one to reduce redundancy. Nevertheless, although sparsifying
connectivity was the motivation for our model, the model does not require it, as long as the
condition in Eq (14) is met.
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Fig 13. Sister cell odour responses at convergence are approximately monotonically related, even when there is
periglomerular leak. (A) Full (bottom) and zoomed (top) distributions of Spearman’s rank correlation, p, comparing responses
at convergence for pairs of sister cells (colours) and non-sisters (gray) in a single model olfactory bulb. The olfactory bulb was
stimulated with 100 random odours; data is from all 50 glomeruli. Bars indicate the median, red lines indicate the interquartile
range, red dots indicate the minimum correlation observed. Olfactory bulb parameters were as in Table 1 except S = 25, and
leak as indicated. (B) Responses at convergence of a pair of sister cells with the median Spearman’s rank correlation in the
highest leak setting, (¢ = 2, top of right-most bar of panel A) to the 100 odours tested. (C) Responses from panel (B) after
transformation through cell-specific monotonic nonlinearities (inset) modeling the transformation from model variables A; to
experimentally recorded values Xf Because the transformations are monotonic, the Spearman’s rank correlations in panels B
and C are identical.

https://doi.org/10.1371/journal.pcbi.1009808.g013

Perhaps a more fundamental issue is that we have assumed throughout that the correct con-
nectivity—the affinity matrix A;;—is known. The key question is then how such ‘correct con-
nectivity’ patterns can be learned, particularly in a setting where connectivity has to be
coordinated across sister cells according to conditions like Eq (14). Previous work [37] and
current investigations [38] have examined this issue. However, neither of those studies used
sister mitral cells to sparsify connectivity, and how such circuitry could be learned remains an
open question.

3.2 Cortical readout

Although our work deals mainly with olfactory computation in the bulb, communicating the
results of this computation to the cortex is obviously required. In Methods, Sec. 4.5, we outline

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009808 January 31, 2022 23/40


https://doi.org/10.1371/journal.pcbi.1009808.g013
https://doi.org/10.1371/journal.pcbi.1009808

PLOS COMPUTATIONAL BIOLOGY Sparse connectivity for MAP inference in linear models using sister mitral cells

one scheme by which this could be done, in which cortical neurons effectively mirror the com-
putation of olfactory bulb granule cells. If the projections from the mitral cells to the piriform
cortex satisfy Eq (95), the cortical readout at convergence would be an exact copy of the gran-
ule cell activations in the bulb. Needless to say, the main problem with such a scheme is how to
satisfy this condition on the weights, and is likely made more difficult by the physical separa-
tion of the bulb and the cortex. One possibility is that the feedback connections from the cor-
tex to the bulb could be used to learn the right connectivity. Another possibility is that an exact
copy of the granule cell output is not required, and that random projections from the bulb to
the cortex would suffice [39]. We leave the resolution of such issues to future work.

3.3 Predictions

Our model makes a number of experimentally testable predictions. Perhaps the easiest to test
is the monotonicity condition in Eq (37), supported by the numerical results in Fig 13, stating
that the activity of a mitral cell at convergence is an approximately monotonic function of the
activity of any of its sisters. It is admittedly hard to define convergence in animals that are sub-
ject to periodic olfactory input due to the breathing cycle. Nevertheless, we can approximate it
by the activity at the end of each breathing cycle in an anesthetized animal presented with an
odour, after several breathing cycles have elapsed. Our model would then predict that for any
pair of sister cells, plotting their firing rates at convergence in response to a range of odours
would reveal an approximately monotonic function.

A key computation required by our model is the coordination of sister mitral cell activity to
arrive at the MAP solution, which we propose is performed by the periglomerular cells. There-
fore, we predict that deactivating the periglomerular cells should eliminate sister cell coordina-
tion and push the results of inference away from the MAP solution, and likely produce
widespread, low amplitude activation of granule cells (see Methods, Sec. 4.3).

Although maximum sparsity is not required of our model (see, e.g., Fig 3B), if, as we pro-
pose, the function of the sister mitral cells is to sparsify the mitral-granule cell connectivity
required for inference, then maximally sparse connectivity solutions would be expected, in
which granule cells contact at most one sister cell per glomerulus. Connectomics studies in the
olfactory bulb should be able to tell us how often granule cells receive input from two or more
sister mitral cells.

Finally, in our model we grouped all olfactory bulb projection neurons together and
referred to them as mitral cells. This was for simplicity only. In fact, though, olfactory bulb
projection neurons fall into two anatomically and physiologically distinct classes, mitral and
tufted cells, and it is likely that these classes play different roles in olfactory processing [19].
Because our model describes how a given computation can be distributed among sister cells, if
mitral and tufted cells perform different computations, then our predictions would apply inde-
pendently to sister mitral cells and to sister tufted cells. It would, therefore, be important to
establish that two sisters are of the same type before applying our prediction of sister cell
monotonicity.

3.4 Summary

In summary, taking inspiration from the sister mitral cells in the vertebrate olfactory bulb, we
showed how inference that typically requires dense connectivity can be performed using sparse
connectivity. This means computations that would normally require hundreds of thousands of
connections can be performed with a fraction of that. To the best of our knowledge our work
is the first to propose a computational role for the sister mitral cells, and it makes a number of
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experimentally testable predictions. Despite its olfactory origins, our approach is quite general,
and can be applied in other inference models.

4 Methods

Here we provide additional details about the analyses used in the Main Text. In Sec. 4.1 we
introduce a Lagrangian for the non-leaky (£ = 0) system, and modify it for the leaky case to
gain insight into the resulting dynamics. In Sec. 4.2 we perform linear analysis to determine
how the various parameters influence the transient response properties of the system. In Sec.
4.3 we examine the implications of eliminating the periglomerular cells. In Sec. 4.4 we provide
additional details about our simulations of the system dynamics. In Sec. 4.5 we propose a
method for reading out odour concentrations in cortex. Finally, in Sec. 4.6 we show that sister
mitral cells can be applied to other inference models.

4.1 Leaky periglomerular cells

To gain insight into the effect of pergilomerular leak, we start with a Lagrangian for the non-
leaky setting,

)=o) + Y 5

It is straightforward to show that

mxaxrrilin[ﬁ(x,p,?v)]:Z(ﬁ( x;) + 2022(}/, ZA,]x> . (40)

j=1

(y,—sz ) ”) ui(x:—x»]. (39)

Consequently, if we minimize the Lagrangian with respect to x and g and maximize it with
respect to A, we recover the MAP solution. The resulting equations are

dx; OL(x,u, \) ¢
_J _ =\ T N
i T ox o, T 2k (412)

d; OLxpd) o
dt o, S

-\ + <y, SZWSx —S(u ))] (41b)
dw; OL(x,u, )

i (41¢)

These equations correspond, up to scaling factors, to Eqs (23), (20) and (19), respectively,
except that the second equation above includes the additional term Sfi;,. That term is, in fact,
necessary to yield the correct dynamics. We dropped it because we can instead choose the ini-
tial conditions so that [, is zero, and under the periglomerular dynamics it will stay zero for-
ever. Thus the circuit dynamics can be viewed as finding the saddle point of the Lagrangian of
a constrained optimization problem derived from the original MAP objective.

To gain insight into the effect of the periglomerular leak we add a term proportional to

(1) to the Lagrangian in Eq (39),

) = Tots) + 3 w(” S ) P 0+ S| @
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As is not hard to show, this introduces a term —eg; to the right hand side of Eq (41c), which is
the same as the leak term in Eq (33b). To give us a Lagrangian that depends solely on x, we
eliminate the auxiliary variables yf and ;. We start by minimizing £, (x, A, ) with respect to
i, yielding

W= (k=T (43)

so that

L.(x0) =3 0x) +

s Vi s 0-2(}‘;')2 (7‘? B Xi)2
A <§ - ZW"fxf> BT . (44)
]

The final term couples the A; to their mean value computed over sisters. Extremizing with
respect to A yields

S 1 S
)\‘i = E (yi - quAijxj - (1 - qE)ZSWij'xj> (45)
j j

where

S

=— 46
S+ ea? (46)

9.

and we used, as usual, the constraint on the weights, Eq (14). We can now insert this into Eq
(44) to derive a Lagrangian that depends only on x. Doing that is straightforward, although
somewhat algebra-intensive, but it ultimately yields Eq (26).

4.2 Linear dynamics

In addition to the number of sister cells S, our model has several parameters that affect the
transient dynamics. To understand these effects, we performed linear analysis of the model in
Eq (33). Our aim is a qualitative understanding, so we frequently opt for approximations that
yield simple and tractable results over exact solutions.

We perform the linear analysis around the steady-state solutions to Eq (33). Because of the
threshold nonlinearity in Eq (33d) only a small number of granule cell activations x; will be
non-zero. We take the deviations around steady-state small enough so that the composition of
this active set does not change. Adopting notation where vectors are in sister cell space, we
write

A, =X, + O\,
My =y + Op,

X, = X, + 0x,

v, = v, + 0v,.

Here quantities with the subscript 0 are steady-state solutions to Eq (33); quantities with a § in
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front of them are infinitesimally small, and obey linear dynamics

T, % = —0k;, — Snzn:wijévj — ySnop, (48a)
=1
T, % = —edp, + O, — 119, (48b)
T, % = —ov; + ,ZM;é)ui W, (48¢)
where the s™ component of w;;is Wj and
1= (49)

Because these are linear equations, they (generically) have solutions whose temporal part
is given by €', Consequently, derivatives with respect to time can be replaced by &, leading

to
(nE+1)0h, = _S;/’Zwijévj — ynSop, (50a)
j=1
11 - OA,
(1,6 +&) op, = S, — S‘”“I (50b)
M
(T,E+1)6v, = > - w,. (50¢)

i=1

Our approach is to transform this set of equations to an eigenvalue equation in a single
variable. To that end we eliminate du; and ov;, leaving us, after a small amount of algebra,
with

M n

(t,&+&)(1, &+ 1) O, + yn(SSk, — 11 - 5&,) = —nS :f% ; (;w,jwkj> SO (51)
The S x S term in parentheses on the right hand side is the (3, k)™ block of an MS x MS matrix
of rank n, whereas the set of vectors SA; contain MS components (k runs from 1 to M and i,
is an S-dimensional vector). Consequently, so long as #n < MS (the regime we consider), that
rank » matrix has two different classes of eigenvectors: those with zero eigenvalue and those
with non-zero eigenvalue. We consider the former first.

For eigenvectors with zero eigenvalue, the left hand side of Eq (51) must be zero. For that to
happen there are, naively, two possibilities: Sk; 1, in which case & obeys

(.l+e)(ni+1) =0, (52)
and 6\, - 1 = 0, in which case £ obeys
(T,ué + 8)(‘516 + 1) + ’W/IS =0. (53)

Again naively, this should result in four eigenvalues so long as MS > n.

To make this rigorous—and to uncover exactly when the above eigenvalues apply (as the
naive conclusions are not quite correct)—we need a more involved analysis. Before proceeding
with the general case, however, we note that there’s a special case: Tﬂf + £ =0, since in that case
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the right hand side of Eq (51) is identically zero. Examining Eq (50b) we see that when this
holds, 6A; o 1, which then determines 6v; by Eq (50¢), and d; by Eq (50b). Thus there are M
modes, corresponding to the root of Eq (52); for these,

d=——. (54)

When T,,f + & # 0, there is an (MS — n)-dimensional space of vectors, denoted oA}, that
obey
)y
k=

1

(Zwijwk]) -OM =0. (55)
j=1

We need to choose a linear combination of these for which the left hand side of Eq (51) is zero;
that is, we need to choose a set of a,, such that (after rearranging terms slightly)

0=

A 1 MS—n
<”§+8¥“5+ )E:%1L5M

pn=1

MS—n (56)
+[(rﬂé +e)(né+1)+ qmS} ;aﬂ (I — I—SI> SO

Since this equation must be satisfied for all i, there are MS equations (i runs form 1 to M
and A} is an S-dimensional vector). But there are only MS — n adjustable parameters, so in
general the only solution has all the a, = 0. There are, though, two ways to find nontrivial solu-
tions. One is to set the first term in parentheses to zero (i.e., enforce Eq (52)). Then, because
(I—11/S) - oA spans S — 1 dimensions, Eq (56) corresponds to M(S — 1) equations. Because
there are MS — n adjustable parameters, there is a nontrivial solution if MS —n — M(S - 1) > 0;
that is, if M > n. Note that because we have already taken into account the solution with T#f +
£ =0, these solutions must have 7,& + 1 = 0. The other way to find nontrivial solutions is to set
the term in brackets in Eq (56) to zero (i.e., enforce Eq (53)). Then, because 11 - JA! spans one
dimension, Eq (56) corresponds to M equations, and so there is a nontrivial solution if MS — n
- M > 0; MS — n— M > 0; thatis, M(S—1) > n.

In summary, when the right hand side of Eq (51) is zero, we have the following eigenvalues,
all of which are exact: M modes with

e
é - = T_ﬂ ’ (57)
[M - n]" modes with
1
é——a, (58)
and [M(S — 1) — n]" modes with
2
?ﬁ¥i&iﬂﬁiiﬂﬁ—gljﬁl (59)
2t,7, T 407

where the superscript ‘mp’ indicates that this mode involves only mitral and periglomerular

cells (see next paragraph), and i = v/—1 (when it’s is not an index). Because ™ can take on
two values, there are 2[M(S — 1) — n]* modes of this type.
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Two comments are in order. First, when there is only one sister cell (S = 1), the mode in Eq
(59) does not exist, as that mode requires M(S — 1) > n. Second, for the modes given in Eqs
(57), (58) and (59), Ex Wi - Oy = 0; this in turn implies, via Eq (50c), that 6v; = 0. Thus, these
modes involve the periglomerular and mitral cells, but not the granule cells.

When the right hand side of Eq (51) is nonzero, analysis in 6); space is difficult. However,
we can instead work in 8v; space: eliminating 6A; and du; from Eq (50), we can write down an
eigenvalue equation for 6v;; after tedious but straightforward algebra, including application of
the Sherman-Morrison formula to invert the operator on the left-hand side of Eq (51), we
arrive at

nS(z, ¢ +¢)
(ne+e)(né+1)+ms

n M M
ny
E A A E W, | O,
g j=1 <(Tu€+€)(fxé+ 1); ki kj+ kzlwk’ wk1> Yi

(Tvé + 1)51/1- = -

(60)

where we used Eq (14) to write 1 - w;; = Ay,

Finding exact non-trivial solutions to Eq (60) requires finding the eigenvalues of the sum of
the two matrices on the right hand side of this equation. That’s difficult in general, so instead
we make an approximation: we replace the second matrix with the identity. We justify this by
arguing that its eigenvalues are narrowly distributed around 1. To show that, we start by writ-
ing

M S
DWW =D Y WL W (61)
k

k=1 s=1

For a given k and j, The elements of Wj; are nonzero for only one value of s and zero for the

rest (see Eq (18)). Consequently, they are not iid, which makes it difficult to compute the
eigenvalue spectrum. However, a reasonable approximation to Wj; is

A,; probability 1/S
Wy = (62)

0  probability 1 —1/S.
In that case, var(Wy;) = var(4,;)/S = 1/MS, implying that X wy; - wy; approximately follows a

Marcenko-Pastur distribution with parameters (1, n/MS) [40]. For this distribution, the eigen-
values lie in the range

(1 —/n/MS )* < eigenvalues < (1 4 /n/MS )*. (63)

When n < MS, the regime of interest, these eigenvalues are very narrowly distributed around
1. Thus, the matrix in Eq (61) is, to good approximation, the identity. This approximation
breaks down as # increases, but we’re mainly interested in small #, so that is not a problem.

With this approximation, the only nontrivial matrix left in Eq (60) is the one involving the
Ayj. The elements of A; are drawn iid from N (0, 1/M), so

M n
A.A.NMP(l,—) 4
; ki“ kj M (6 )

where MP denotes the Marchenko-Pastur distribution. Using v to denote an eigenvalue of this
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distribution, we see that Eq (60) can be approximated as

(tE+1)~— 18(r,¢ +€) (1 v alti ) . (65)

(r.é+e)(me+1) +ms (ne+e)(ni+1)

There are n eigenvalues, corresponding to the fact that j runs from 1 to n in Eq (60), so there
are n sets of solutions to this equation. (We say “sets of solutions”, rather than just one, because
Eq (65) is a polynomial in &, which has several roots). The positive eigenvalues lie in the range

(1—/n/M)* <v < (1++/n/M)*. (66)

If n < M, all of the eigenvalues lie in this range, while if n > M, only M eigenvalues lie in this
range; the other n — M are zero.
4.2.1 Approximate solutions. To solve to Eq (65), our first step is to write it is a polyno-
mial,
q(¢) = ‘Ei‘[“l’vf4 + (rirﬂ +27,7,7, + srirv)ég
+(ynSt, T, + nStt, + 211, + 1,7, + T + 2£rkrv)§2
+(V’7$I)~ + V”S‘Cv + ’75% + nsgrk + T}J. + 8Tv + zgrk)é
+vyn*S +ynS +enS+e.

(67)

We’re looking for values of £ that satisfy g(&) = 0. Note that q(£) depends on v, which means
solutions to g(&) = 0 will also depend on v; we drop that dependence to reduce clutter.

Because q(&) is quartic, an exact analytic expression for its roots is available, but it is too
complex to yield insight. Instead, we take a perturbative approach, which rests on the observa-
tion that 7 is large, on the order of 100 (see its definition, Eq (49) and Table 1). To take advan-
tage of this, we scale £ by a factor of /5. Choosing a scaling that gives us a dimensionless
quantity, we make the change of variables

o

E=Vis . (68)

IS

Then, defining the time constant ratios

P

K . (69a)

"

QA

I
A

=
1l
|

(69b)

Q

4

and working to first order in 1/1/7S we find, after straightforward algebra, that q(£), expressed
in terms of o (and denoted, in a slight abuse of notation, g(«)) is given approximately by

q(e) = B(2) + N (70)

where /& indicates approximate equality up to multiplicative constant and

B(a) = o' + (k, + K, )o* + VK#K% (71a)
b(a) =(2+k, + gic#)ot"‘ + (k, + VK, + (y+ S)K#KV)O(. (71b)
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In the large 1 limit, the roots of g(¢) are determined by those of B(¢x). Defining

—(k, + y;cﬂ) + \/(Kv + y;cu)2 — 4vyrcV;cH/S (72)

2
a:t 9 )

the corresponding four roots are *ia.. The argument of the square root is (k, — yx,)” + 4yK,
x,(1 = v/S), which is guaranteed to be positive if v < S. From Eq (66), this requires
n/MS < (1 —1//S)’. Well restrict ourselves to this regime, which ensures that both o* and
o? are negative, which in turn means all four of these roots are purely imaginary.

To compute the corrections to these roots, we let & = ¢y + or; where @ is any of the above
four roots. Then, performing a Taylor expansion of g(ar), Eq (70), around g, we have

b(e)

oy + o) &= B(o,) + + B'(a) 0, - 73
q(eny + o) = B(%) NS (o)or (73)
Setting this to zero and solving for a; gives

2~ 1 b(x) (74)

- \/T_SB,(“(J .

Using Eq (71) for B(a) and b(ay), setting o] to o, and using Eq (72) to simplify the resulting
expression, we arrive at

1 (2+4x, +ex,)od +x,+ 7K, + () + &Kk,
o = = . 75
AVEN j:\/(;cv + y;c“)2 —4vy K, /S (75)

We thus have (using Eq (68))

e _ f_’?—S [0, %iy/==] (762)

2
VS
o = T—r’ {fo +iy/—o? (76b)
2

with a; . given in Eq (68) and o given in Eq (72). The “high” and “low” superscripts refer to
the fact that |« | > |0 |, as is easy to see from Eq (72).

It is instructive to consider the large S limit, which greatly simplifies the roots. Focusing
first on the high frequency roots, in this limit we have

o2~ — (K, +7K,) (77a)
1 K, +yK, + K2+ yer?
o A — T T TV (77b)
' 24/nS K, + 7K,
so that, using Eq (68),
highz_l i+l+£_ rre + (78)
* 2\, © 1, y1,+7,

To approximate the low frequency roots, which correspond to o’ , we perform a Taylor
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expansion of the square root in Eq (72) around (x, + 7/7(#)2, yielding
‘ VYK, K
-1 79a
TS ) 79

1 x, +yK, + (y+ s);c“;cv

~— 79b
PN/ K, + 7K, (79b)
so that, using Eq (68),
1(1 1
ATl [T 0 VR S i (80)
2 TK VTV + Tu Tx VTV + Tﬂ

In summary, our goal was to find solutions to Eq (67) for each value of v, where v is drawn
from the Marchenko-Pastur distribution MP(1, n/M). This implies that there is a distribution
of solutions, &, which we can find by solving for £ at each v. We did that perturbatively, yielding
the high and low frequency solutions given in Eq (76) (with approximate expression for these
quantities given in Eqs (78) and (80)). Note that if v = 0 (which can happen when n > M),

o, =0 (see Eq (72)). When that happens, liw takes on only one value, not two (see Eq (76b)),
and so there are three possible solutions.

The number of modes when the right hand side of Eq (51) is nonzero, then, depends on n.
There are always 27 high frequency modes. When n < M (so that v is strictly positive), there
are also 2n low-frequency oscillatory modes. When #n > M, on the other hand, n — M of the
eigenvalues, v, are zero, and the rest are positive, resulting in # — M decaying modes and 2M
low-frequency oscillatory modes. We thus have 2n — [n — M]* decaying and low-frequency
oscillatory modes, for a total of

number of modes = 4n — [n — M]" (81)

for Eq (60).

All modes of the system are tabulated in Table 2. They are given exactly by Eqs (57), (58)
and (59), and approximately by (76). All of these modes have a decay associated with them,
and the latter three also have oscillation frequencies. For simplicity, we considered the large
S limit, so we used Eqs (78) and (80) for the approximate modes given in Eq (76). Assuming
M(S — 1) > n, the total number of modesis M + [M — n]" + 2(M(S - 1) —n) + 4n — [n — M]".
Adding these together gives 2MS + #, as it should.

4.2.2 Stability. The perturbative corrections in Eq (75) allow us to assess the stability of
the linearized dynamics. For stability, both o; , and o _ (which are real) must be negative.

Table 2. Linear analysis modes and their properties. The last two modes correspond to the large S limit of Eq (76).

|Re(&)|™": Decay time constant |Im(&)|: Oscillation frequency Number of modes Source
T 0 M Eq (57)
K,
T 0 (M- n]* Eq (58)
2 1 —1-nl*
T 1 /ymcuS 2[M(S-1) - n] Eq (59)
1+ex, T,
9 1 :
20y, + k)T, 1 /—H(VK“ s 2n Eq (78)
K2 + YK, + YK, + K, T
2(yx, +x,)7, 1 KK, 2n—[n-M]* Eq (80)
(y + &), + K, + K, T VUK, T K,

https://doi.org/10.1371/journal.pchi.1009808.t002
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Combining Eq (72) with Eq (75), we see that this gives us the two conditions,

2k, +yx, + (y +e)K, K,
—(r, +y,) + \/(KV—F'})KH)Z —4vyk K, /S + ( 2y+, - Yg;c J¥.x,) >0 (82a)
2 Q(Kv—i_yx +(')}+8) " v)
—(x, +7K,) — \/(Kv + “/KH)Z —4dvyk K, /S + S R— il <0, (82b)
v u

which can be simplified to just one,

2k, + 1, + (7 +€)K,K,)
\/(KV—I-”/K“) 4VW/KVK“/S > |k, + 9K, — 241‘Kv+8;€“ u
(83)
|KV_8K;4| | |
K, + &x, +2 TRl

As above (see comments following Eq (72)), in the regime of interest, n/MS < (1 — 1/+/S)%,

the left hand side of this equation is greater than |« — yx,|. The ratio on the right hand side is
less then 1, so the right hand side is less than |, — yx,,|. Consequently, this inequality is satis-

fied. Thus, at least in the large 7 limit, all roots are stable.

4.3 Inference without periglomerular cells

In our model of sister mitral cells, periglomerular cells are critical to the inference process.
This suggests a natural test of our model: remove them experimentally, see what happens to
inference, and compare to the predictions of our model. Here we delineate those predictions.

For simplicity we’ll assume only one odour is present, which, without loss of generality we
take to be odour 1. The input, y; is, therefore, given by y, = A, x;. Setting 1 to zero in Eq
(33a) and eliminating A} and v; in Eq (33), we see, after a small amount of algebra, that at equi-
librium x; obeys

.

1[1 )
xj:; ;Z Anx, — ZW Wix, — . (84)

i s,ik

We'll make the Ansatz that x, ~ x} and all the other x; are significantly smaller. This allows
us to solve for x; by considering only x; = x; on the right hand side of Eq (84). This still leaves
us with a matrix equation. However, given the discussion in Sec. 4.2, to lowest order we can
approximate the matrices in Eq (84) as the identity,

ZAZJ il ~ 5]'1 (853)

DWWy~ 6, (85b)

With these approximations, the equation for x; becomes

L sy gl (36)
xl"’? ;(x1_x1)_ﬁ )
which has the solution
x fﬁa
87
1 S + '))02 ( )

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009808 January 31, 2022 33/40


https://doi.org/10.1371/journal.pcbi.1009808

PLOS COMPUTATIONAL BIOLOGY Sparse connectivity for MAP inference in linear models using sister mitral cells

To recover the no leak case (€ = 0), we can set S = 1, because in that case Eq (84) corresponds
to the MAP solution. Thus, the first observation is that eliminating the periglomerular cells
reduces the inferred amplitude of the odour component present by a factor equal to the num-
ber of periglomerular cells (in the small noise—meaning small o> —limit).

We can also determine the effect on the incorrect odours. For j # 1, Eq (84) may be written

.
1(1 e Sx;
5~ [02 Z <AUAllx SZWU,Wﬂxl> - ﬁ] (88)

where it is assumed that j # 1. On average, W}, = A, /S. Consequently, when j # 1, on average

W;W;, = A;A,;/S". Using this, and also using Eq (87) for x,, this equation becomes

LR

Iy

+
1|(S+ye* — 1)xt + fo?
0_2(8_1_,))0_ ZAzj 11___ﬂ . (89)

Because the elements of A;; have variance 1/M, the sum over i is a random variable with vari-
ance 1/M. We thus have

O (CRS LA R LTI T
] R T R

g (90)
where ¢; ~ NV(0, 1). (Note that this underestimates the variance, because we are ignoring the
additional variability in the matrix W; W}, so we'll be underestimating the effect of eliminating
the periglomerular cells). This has the solution

+

(S+ya® —Dxj +pa* ¢  Po’
(S +ya2)* VM S+yo?

(o1)

The main observation is that in the small noise regime, the regime we consider here, there’s
a big difference between no leak (S = 1) and infinite leak: in the former case, x;/x} ~ ¢°/V/M;

in the latter it scales as 1/Sv/M. Because 0> < 1/8, this is a large effect.

This analysis suggests that eliminating periglomerular cells decreases the amplitude of the
correctly inferred odours and increases the amplitude of the incorrect inferred odours, justify-
ing our claim in the Discussion that eliminating periglomerular cells from the circuit would
result in low amplitude, distributed activity.

4.4 Simulations

The base values of all parameters used in simulations are listed in Table 1. Membrane time
constants for mitral and granule cells were set to be similar to the corresponding charging
time constants 7, in [41]. For simplicity the time constant for the periglomerular cells was set
to be the same as that of the granule cells, and is consistent with [28]. To model each granule
cell connecting to a single sister cell from each glomerulus, we selected for each glomerulus i
and granule cell j a random sister cell; see Eq (18). The non-zero concentrations of the pre-
sented odours were set to 1, except in Figs 5, 6, 9 and 12, where the true odour had the default
number # = 3 non-zero components but at concentrations of 0.8, 1, and 1.2, to aid visual
assessment of convergence to the MAP solution. All simulations were initialized with zero
activity in all cell populations.

To assess the variability of the various response characteristics we usually chose to present
the same odour to different random instances of the olfactory bulb, rather than picking
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different odours within the same olfactory bulb. Thus all references to trials are to the same
odour presented to different olfactory bulbs unless stated otherwise.

In Fig 7 the Marchenko-Pastur parameter v used to compute £"8" and £°¥ was set to max
(1, n/M) i.e. to 1 in panel A, and to 55/50 in panel B.

The quantities in Fig 8 were computed as follows. Amplitude spectra for panel A and panel
B were computed as the absolute value of the Fourier transform of the mitral cell responses in
the time interval t = 0.3 — 0.6 seconds, averaged over all mitral cells and 20 trials. The decay
time constants in panel C were computed from the slope of a linear fit to the log RMS error of
the mitral cell activations relative to their final value, for the interval t = 0.4 — 0.6 seconds fol-
lowing odour onset, averaged over 20 trials.

To produce Fig 13 we simulated the response of one olfactory bulb to 100 random odours.
Each glomerulus contained S = 25 sister cells; all other parameters were the same as in Table 1.
Simulations were run for 2.1 seconds to allow the bulb to converge.

To generate cell-specific nonlinearities to model transformations from our model variables,

X}, to those that might be experimentally recorded, if , we first discretized the interval [-6, 6],
spanning the range of X; values that we observed in our simulations, into 101 points x1, . . .x;0;.
We generated a covariance kernel X on these points according to ;; = exp(—(x; — xj)Z/ 8). We
then generated MS random samples (one for each of the S sisters from M glomeruli) from a
101-dimensional multivariate Gaussian with mean 0 and covariance %, yielding, for each sam-
ple, a function y of x with discrete domain. To render these functions monotonically increas-
ing, we first computed the minimum slope along each. When the minimum was negative, we
added a term linear in x whose positive slope was 1.02 times larger than the absolute value of
the minimum negative slope. This rendered the minimal slopes of the resulting discretized
functions positive and the functions themselves monotonically increasing. The functions were
then scaled to have the same y range as x range, and vertically offset so that their minimum y-
value was zero. We used linear interpolation to expand the domain of these functions from the
101 discretization points to the full [-6, 6] interval.

For all simulations we used the forward Euler method with a time step of 10~> ms. To con-
firm that our networks performed MAP inference, we compared solutions to those found by
the convex optimization package CVXPY [42] using the splitting conic solver (SCS), with eps
setto 5 x 107"%, applied to the MAP problem in Eq (7) expressed as the constrained optimiza-
tion

. IR
min Z¢(xj) + T‘zzri such that r,=y, — Zj:AiJ’xJ' (92)

j=1 i=1

The code used to run the simulations and produce the figures are available at https://github.
com/stootoon/sister-mcs-release.

4.5 Cortical readout

In our model, the concentrations of the odour components are stored in granule cells, which
don’t project outside of the olfactory bulb, and in fact lack axons entirely [43]. Thus, the gran-
ule cells can’t communicate any information to the rest of the brain. This can be remedied by
projecting mitral cell activity to cortical readouts x{ via projection weights U

ax  09(x)

TCE o Oox

¢
J

+) Uk (93)

In this circuit each cortical neuron x{ is excited by the sister cells in the same way as the granule
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cells in the bulb, but is not required to provide feedback to the bulb. When computation in the
bulb converges, we have A; = (y, — >_,A,x;)/0” (see Eq (33a) and recall that sister mitral cells

all converge to the same activity), so that
I9(x) 1
3xc =2 Z Vi~ ZAZ.].xj : (94)
j
Thus as long as the projection weights to the cortex satisfy
> Uy =4, (95)

(analogous to Eq (14)) then cortical neuron x; will have the same fixed point as granule cell x;.

This means the output of the computation in the bulb can be read out in the cortex via a 1-to-1
correspondence between granule cells and cortical neurons. Thus basic olfactory inference can
be performed entirely within the bulb, with the concomitant increase in computational speed,
and the results can be read out in the cortex. As cortical feedback to the bulb, in particular to
the granule cells, does in fact exist [43], its role may be to incorporate higher level cognitive
information and task contingencies into the inference. We leave the exploration of these ideas
to future work.

4.6 Application to other models

Our model used sister mitral cells to sparsify connectivity in a circuit performing inference
under a linear model of olfactory transduction with Gaussian noise. Our approach, however, is
quite general, and can be applied to more complex models. For example, in [2] the authors
also consider a linear model of olfactory transduction, but with Poisson noise and a spike-
and-slab prior on odour concentrations. Eqs (28) and (29) from their model translate, with
minor redefinitions to be consistent with our notation, and minor simplifications to reduce

clutter, to
dh,
G = -\ ZAlk x, (96a)
dx
T, dtk =—x + Z G ( (96b)
dx;,

o i gm
= —x, + AL\,

i

. (96¢)

dxt
er—t’ —x;+[>'j(oc0+1~“ Zﬁ ) (96d)

where the connectivity matrices A®, A} and Cj are related to A;; by

A= ZA’“gAg‘“ (97)

There are several differences between this model and ours. First, the input, which in our
model was y;, is now stochastic: r; is the number of spikes in a bin of size At generated from a
Poisson process with rate proportional to y;, and 7, is the expected number of spikes. Second,
the granule cells and mitral cells communicate via dendro-dendritic connections at “spines”,
denoted xi; this results in several connection matrices rather than just one. Third, the cortical
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readout, x{, feeds back to the olfactory bulb. Fourth, the nonlinearity, F(x/), which is defined
in terms of the digamma function, is very different from ours. And fifth, the equation for the
mitral cells has a term A on the right hand side.

What they have in common is that the connectivity matrices, A}® and A;*, are dense, and
so would require mitral cells to interact with nearly all granule cells. This results in the same
all-to-all connectivity problem that we highlighted in Eq (10). But it can again be fixed using
sister mitral cells and periglomerular cells,

d7\‘s 5\ * s mg,s j s

T dtl =—(X)" 4+ - 7*1'8% i X — Si; (98a)
dx1 i m,sA s

= W (98b)
R e W

e x S ES x (98¢)

dxt
g =N (ocu + E(xj)ZZ(Xj)ZW;) : (98d)

Because of Eq (98¢), at equilibrium all the sister mitral cells (all the A}) have the same
value. Then, assuming, as above, that at t = 0 the average periglomerular activity is zero,
it’s easy to see that the sister mitral cells have the same equilibrium values as they do in
Eq (96) if

D oWk = AR (99a)
D OWE = A (99b)

> owr =4, (99¢)

Thus, sister mitral cells can be used in more complicated models than the purely linear one we
considered here.
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