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A B S T R A C T   

The escalating production of mine tailings (MT), a byproduct of the mining industry, constitutes significant 
environmental and health hazards, thereby requiring a cost-effective and sustainable solution for its disposal or 
reuse. This study proposes the use of MT as the primary ingredient (≥70%mass) in binders for construction ap-
plications, thereby ensuring their efficient upcycling as well as drastic reduction of environmental impacts 
associated with the use of ordinary Portland cement (OPC). The early-age hydration kinetics and compressive 
strength of MT-based binders are evaluated with an emphasis on elucidating the influence of alkali activation 
parameters and the amount of slag or cement that are used as minor constituents. This study reveals correlations 
between cumulative heat release and compressive strengths at different ages; these correlations can be leveraged 
to estimate the compressive strength based on hydration kinetics. Furthermore, this study presents a random 
forest (RF) model—in conjunction with fast Fourier and direct cosine transformation techniques to overcome the 
limitations associated with limited volume and diversity of the database—to enable high-fidelity predictions of 
time-dependent hydration kinetics and compressive strength of MT-based binders in relation to mixture design. 
Overall, this study demonstrates a sustainable approach to upcycle mine tailings as the primary component in 
low-carbon construction binders; and presents both analytical and machine learning-based approaches for ac-
curate a priori predictions of hydration kinetics and compressive strength of these binders.   

1. Introduction 

Mine tailings (MT) are the waste residues generated after valuable 
components or metals are extracted from the minerals and ores through 
mining operations [1]. The mineralogy of MT strongly depends on the 
type of ore, the mineral processing technology, and the degree of 
weathering during storage in tailings ponds [2]. The high ratio (~100:1) 
of tailings to valuable metal/components results in the mining industry 
producing enormous volumes of MT, making their sustainable disposal a 
critical environmental concern [3], [4]. The lack of systematic waste 
disposal strategies has led to most MT being disposed of in tailings ponds 
or mine waste landfills [5–8]. The immense size and hazardous 
composition of materials in tailings dams pose immense risk to both 
aquatic and human life for potentially hundreds of kilometers 

downstream [9], [10]. Failure of these dams has led to the contamina-
tion of floodplains by metal and metalloid elements, which are highly 
toxic to humans and the environment [11], [12]. Furthermore, the 
accumulation of tailings could also lead to the release of heavy metals, 
radioactive elements, and other toxic components, thereby contami-
nating soils, biota, water, and air [13–16]. To address these environ-
mental concerns, sustainable disposal methods and systematic waste 
management (e.g., reuse and upcycling) strategies are needed to miti-
gate the risks associated with MT and safeguard ecosystems and com-
munities from their detrimental effects. 

Most MT are composed of oxides of silicon, aluminum, and cal-
cium—oxides that are also present in ordinary Portland cement (OPC) 
and conventional supplementary cementitious materials (SCMs: e.g., fly 
ash, slag, and calcined clay) [1], [17], [18]. In light of this congruence in 
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chemical composition, MT have been considered to be a concrete 
ingredient [3], [19], [20], [21], [22], potentially capable of imparting 
twin benefits: reduction of carbon footprint of OPC and beneficial dis-
posal/immobilization of a hazardous waste material. However, the 
relatively low reactivity and highly heterogeneous composition of MT 
limit their use as SCM. Even when MT is used as a sole precursor to 
alkali-activated binders, such binders demonstrate slow setting and low 
strength [23], [24]. The use of MT in combination with more reactive 
Ca-containing additives such as slag and OPC has been shown to alle-
viate these issues [25–28] through the formation of additional hydration 
products. Considering the high demand for traditional precursor mate-
rials for alkali activation (slag, fly ash, etc. ([29–31]) for conventional 
concrete applications, alongside their increasing scarcity, this study 
examines the use of large volumes of MT (≥70%mass of the source ma-
terials) in combination with small amounts of OPC or slag as “reaction 
enhancers” in the production of alkali-activated binders. The aim is to 
produce binders with performance comparable to traditional OPC con-
cretes or slag-only alkali-activated concretes for several application 
scenarios such as grouts, repair materials, and coatings. Furthermore, 
the stable reaction products of these systems, such as alkali (or alkaline 
earth) aluminosilicates, are more likely to permanently immobilize 
harmful ingredients and prevent them from leaching out into the envi-
ronment [32–34] – a fact also confirmed through our experiments on the 
MT-based binders reported here. To develop sustainable MT-based 
binders, it is important to study and explain the effects of varying 
Na2O-to-total powder ratios (n), SiO2-to-Na2O ratios (Ms), and slag or 
OPC contents on early-age hydration kinetics and compressive strength 
development. Furthermore, it is essential to carefully optimize the ma-
terial design (e.g., additive and activator type and composition, acti-
vator parameters and content, etc.) since they exert significant influence 
on the fresh and hardened properties of the resultant mixture [35–38]. 
Such an optimization exercise requires a large amount of experimental 
data, primarily due to the considerable spread of chemical composition 
of precursors and activator characteristics which essentially dictate the 
development of all key properties. It is because of this aforesaid 
spread—and the degrees of freedom that arise from it—that several past 
attempts to develop direct correlations between chemical compositions 
of the precursors and compressive strength of alkali-activated binders 
[39–42] have met with limited success. 

In this study, we employ machine learning (ML) methods to predict 
the performance of MT-based alkali-activated binders. ML techniques 
have been extensively utilized for predicting properties in traditional 
concrete, but their applications in developing prediction models for 
alkali-activated binders are limited [43–45]. Some studies have 
employed ML models to predict the compressive strength of 
alkali-activated concrete based on various inputs [44], [46]; but very 
few have focused on MT-based alkali-activated binders [47–49]. A large 
number of ML studies on traditional and special-purpose binders rely on 
predicting the mechanical properties from easy-to-obtain attributes of 
the mixture (e.g., cement and water contents, source material compo-
sitions, etc.). These purely data-driven predictions obviate the need for 
understanding the underlying mechanisms such as the influence of hy-
dration kinetics on the properties. While a large enough database allows 
ML algorithms to more efficiently learn inputs-output (i.e., cause-effect) 
correlations and reasonably predict the performance without uncover-
ing the underlying mechanisms, this approach is fraught with danger 
when the size of the database is small, as is the case with unique binder 
systems such as the one under consideration here. It is, thus, important 
to reduce the degrees of freedom within the database through curated 
data transformation techniques. Herein, we use fast Fourier transform 
(FFT) and discrete cosine transform (DCT) methods, alongside a 
Random Forest (RF) model, to predict both the heat flow rate and the 
compressive strength of MT-based binders from a limited database. 

2. Experimental program 

2.1. Materials 

MT from a copper mine was used as the primary source material (≥
70% mass), with OPC or slag comprising the remaining (≤30%mass). The 
tailings, which were obtained in a slurry form from Freeport McMoRan 
Inc. (FMI), were dewatered, oven dried at 80 ◦C for 24 h, and crushed to 
a fine powder before using it in the paste and mortar mixtures. Ground 
granulated blast furnace slag (hereinafter referred to as slag) conforming 
to ASTM C 989 and Type I/II OPC conforming to ASTM C 150 were used 
to replace 10%, 20%, and 30% by mass of MT in the binder system. MT, 
slag, and OPC have median particle sizes (d50) of 38.63 μm, 12.33 μm, 
and 15.23 μm, respectively, as shown in Fig. 1. The chemical composi-
tions of the binder constituents obtained using X-ray fluorescence (XRF) 
are summarized in Table 1. MT has a combined (SiO2 + Al2O3 + Fe2O3) 
> 85%, meeting the chemical requirements of fly ash as per ASTM C 
618. The specific gravities of MT, slag, and OPC were determined to be 
2.76, 2.92, and 3.20, respectively, using a gas pycnometer. Sodium sil-
icate solution (waterglass), with a SiO2–to-Na2O mass ratio (referred to 
as Ms) of 1.59 was used as the activation agent. NaOH solution was 
added to the activator to reduce its Ms values to desired levels. Ms values 
of 1.0 and 1.5 were chosen in this study as they have been shown to 
enable efficient activation in our previous works on alkali-activated 
binders [50], [51]. 

2.2. Mixture proportions 

Slag (S) and cement (C) were used to replace 10%, 20%, and 30% by 
mass of MT to develop MT-S and MT-C binders respectively. The acti-
vation solution comprised sodium silicate, sodium hydroxide (NaOH), 
and water. The activation solution was proportioned to obtain SiO2-to- 
Na2O ratios (Ms) of 1.0 and 1.5, and Na2O-to-total powder ratio (n) 
varying from 0.025 to 0.1 in increments of 0.025. All MT-S binders were 
prepared using a liquid-to-binder (l/b) ratio of 0.35, and the MT-C 
binders comprising 10%, 20%, and 30% cement content mass were 
prepared using l/b ratios of 0.40, 0.45, and 0.55, respectively. The l/b 
ratios were varied in this case to ensure that the mixtures remained 
workable (for details, readers are referred to [52]) for at least 15 min as 
rapid coagulation is reported to result in quick setting of alkali activated 
mixtures [53]. Companion rheological experiments indicated that the 
yield stress and plastic viscosity of the MT-S blends varied between 2 and 
5 Pa and 1–6 Pa.s respectively, while those of the MT-C blends varied 
between 10 and 50 Pa and 0.05–0.3 Pa.s respectively. 

Initially, the NaOH solution was prepared and allowed to cool down 
to ambient temperature. Liquid sodium silicate with an Ms value of 1.59 
was added to arrive at the desired Ms values for the mixtures, which 

Fig. 1. Particle size distribution curves for MT, slag, and cement.  
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were 1.0 and 1.5, as mentioned earlier. The activator solution was then 
mixed with the binder ingredients. The sequential procedure to deter-
mine the quantities of the activator solution is elaborated in detail in our 
previous work [36], [37]. The mortar mixtures prepared for compres-
sive strength tests comprised 50% river sand by total mortar volume. 

2.3. Test methods 

Isothermal calorimetry experiments were carried out following 
ASTM C 1679. The pastes were mixed externally and loaded into the 
isothermal calorimeter. The time elapsed between the instant the acti-
vation solution was added to the powder and the paste loaded into the 
calorimeter was around 1 min. The tests were run for 48 h with the 
calorimeter set at a constant temperature of 25◦C. The compressive 
strengths of the selected binders were determined on alkali-activated 
MT-S or MT-C mortar cubes in accordance with ASTM C 109. 50 mm 
cubes were moist cured in a chamber at 23± ◦C and >98% RH, and 

tested at the selected four different ages (3, 7, 14, and 28 days). At least 
three specimens from each mixture were tested for strength. 

3. Models and data transformation methods 

3.1. Random forest model 

Random Forest (RF) model is chosen as the baseline ML model to 
predict hydration kinetics and compressive strength of MT-based 
binders, based on authors’ past experience with such predictions 
[54–57]. Please refer to Appendix A for more details on RF models. To 
achieve optimal performance with the RF model, a 10-fold 
cross-validation (CV) method [58], [59] and grid-search method [60], 
[61] are employed to ascertain the optimal hyperparameters (i.e., 
number of trees and number of splits at each node). The 10-fold CV 
method involves splitting the dataset into ten subsets, training the model 
on nine subsets and testing it on the remaining one, repeated ten times 

Table 1 
Chemical composition of the binder ingredients.  

Binder ingredients Chemical composition 
Mine tailings (MT) SiO2 (%) Al2O3 (%) SO3 (%) Fe2O3 (%) Sn (%) Mn (%) Ti (%) Sb (%) P (%) 

64.2 19.95 1.94 8.26 1.35 0.81 0.48 2.49 0.15  
SiO2 (%) Al2O3 (%) SO3 (%) Fe2O3 (%) MgO (%) Na2O (%) K2O (%) CaO (%) LOI* (%) 

GGBFS (S) 39.4 8.49 2.83 0.37 12.05 0.27 0.80 35.53 1.31 
OPC (C) 21.3 3.78 2.88 3.75 1.77 0.25 0.17 63.83 1.34  
* Loss on Ignition 

Fig. 2. (a) Original; (b) FFT-transformed (solid and dashed lines show real and imaginary components of the amplitudes, respectively); and (c) DCT-transformed heat 
flow rate profiles of two different MT-based binders. 
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for each unique combination. Simultaneously, the grid-search method 
systematically works through multiple combinations of potentially 
optimal hyperparameters, cross-validating as it goes to determine which 
combination produces the most accurate predictions. Our previous 
studies [55], [60], [62] have shown that the hydration kinetics of 
cementitious materials is too complex for a standalone ML model to 
produce reliable predictions. Therefore, a transformation technique is 
required to reduce the degrees of freedom of the hydration kinetic 
profiles so that the ML models can easily learn global input-output 
correlations instead of getting trapped at a local minimum. Our previ-
ous study [55] has demonstrated that data-transformation techniques 
can reduce the degrees of freedom and complexity (e.g., reduced num-
ber of inflection points in the time-dependent hydration profiles) of the 
training set, thereby improving prediction performance of the models. 
Appendix A provides detailed information on both the transformation 
techniques used in this study. 

3.2. Fast fourier and discrete cosine transformations 

Figs. 2(a) and 2(b) show the original heat flow rate profiles of MT- 
based binders obtained from isothermal calorimetry and their trans-
formed counterparts obtained by fast Fourier Transform (FFT). The 
transformed profiles contain both real and imaginary components, 
which are demonstrated here. It is evident that the transformed profiles 
are much simpler structures (i.e., fewer inflection points and reduced 
peak intensities) as compared to their original counterparts. Further-
more, the inherent symmetry in the transformed profiles allows for the 
representation of the encoded information using significantly few-
er—nearly 50% of—data points. Such data reduction is of great signif-
icance as it considerably minimizes the time and computational 
resources required to train the FFT-RF model. 

Fig. 2(c) shows the Discrete Cosine Transform (DCT) profiles of 
selected MT-based binders. The transformed profiles in this case consist 
exclusively of real numbers. In addition to simplifying the structure of 
the profile, DCT substantially reduces the number of inflection points 
(that represent non-differentiable points) thereby making it much easier 
for the RF model to capture input-output correlations from the trans-
formed profiles. 

In this study, the RF model is trained using the FFT- and DCT- 
transformed profiles. Once trained, the model is used to predict the 
transformed profiles (i.e., amplitude vs. frequency) of new systems from 
the testing dataset (see Section 3.3) based on their inputs. Next, inverse 
data-transformation algorithms are used to convert the predicted 
transformed profiles to conventional ones (i.e., time vs. heat flow rate). 
The prediction performance of RF when combined with the two trans-
formation techniques is compared. The compressive strengths of the MT- 
based binders are predicted by the standalone RF model. 

3.3. Database 

The heat flow profiles of 48 MT-based binders were obtained from 
isothermal calorimetry. The training dataset consists of 42 randomly 
selected binders, and the testing dataset includes the remaining; while 
ensuring no overlaps between the two datasets. For both datasets, the 
input variables are: MT content (%mass); slag content (%mass); cement 
content (%mass); l/b ratio (unitless); Ms (unitless); n (unitless); and time 
(h). Heat flow rate (mW/g water) from 0-to-48 h with a 0.2-h step size is 
the output. Statistical parameters summarizing the domain of the 
training and testing datasets are shown in Table 2. The compressive 
strengths of 48 MT-based binders were measured at 3, 7, 14, and 28 
days. Statistical parameters interpreting the compressive strength 
datasets are shown in Table 3. The training dataset includes 75% of the 
randomly selected data records from the parent database, and the 
remaining data records are consolidated in the testing dataset. The input 
variables are the same as described earlier, except that the time (h) in 
the calorimetry dataset is replaced by age (day). The compressive 

strengths (MPa) of the binders are the output. The prediction perfor-
mance of each method is evaluated by coefficient of determination (R2); 
mean absolute percentage error (MAPE); Pearson correlation coefficient 
(R); mean absolute error (MAE); and root mean squared error (RMSE). 

4. Results and discussions 

4.1. Isothermal calorimetry 

The heat flow curves for MT-S and MT-C binders are presented in  
Figs. 3 and 4, respectively, and succinct discussions are provided here.  
Table 4 shows the cumulative heat released (in mW/g water) at the end 
of 48 h for all MT-S and MT-C binders. The choice to express this as a 
function of unit mass of water, rather than that of the binder, was 
motivated by the latter’s inability to account for variations in the l/b 
ratio. Note that the water includes water from the activation solution 
and the externally added water to achieve the desired l/b ratio. An in-
crease in the slag or cement content leads to higher peak heat release 
rates and cumulative heat released, attributed to the enhanced forma-
tion of early hydration products through the combination of calcium 
ions (from slag/cement) and silicate ions (from sodium silicate) [63], 
[64]. As expected, the increase in heat release at early ages is more 
prominent for the MT-C binders; the heat release rate increasing in 
proportion to the cement content in the binder. However, after 48 h, the 
cumulative heat released is higher for MT-S binders except for the one 
prepared with a low activator alkalinity (n value of 0.025). This obser-
vation aligns with the compressive strengths of MT-S and MT-C binders 
as will be shown later. The binder prepared with an n value of 0.025 was 
observed not to set even after 12 h, indicating that the alkalinity is 
insufficient to dissolve the water-impermeable layer on the surface of 
slag particles [65]. A narrow peak within the first few hours of mixing 
that corresponds to the wetting and dissolution of Ca-bearing com-
pounds, followed by a dormant period and succeeded by a smaller ac-
celeration peak, generally attributed to the formation of reaction 
products such as C-S-H and C-A-S-H gels, is generally noted for the MT-S 
blends [36], [37], [64], [66]. For a higher Ms value (higher silicate 
content in the solution), the acceleration peak happens within the first 

Table 2 
Statistical parameters related to the training and testing dataset of heat flow rate 
with 8 attributes for both (7 inputs and 1 outputs).  

Attribute Unit Min. Max. Mean Std. Dev. 
MT content %mass  70  90  80  8.16 
Slag content %mass  0  30  10  11.55 
Cement content %mass  0  30  10  11.55 
l/b ratio unitless  0.35  0.55  0.39  0.07 
Ms unitless  1.0  1.5  1.25  0.25 
n unitless  0.025  0.1  0.05  0.03 
Time h  0.2  48  24.10  13.86 
Output for training dataset. The database consists of 10080 unique data-records 
Heat Flow Rate mW/g water  0.05  45.55  0.81  1.84 
Output for testing dataset. The database consists of 1440 unique data-records 
Heat Flow Rate mW/g water  0.15  16.96  0.65  1.26  

Table 3 
Statistical parameters related to the compressive strength dataset with 8 attri-
butes (7 inputs and 1 outputs). The database consists of 148 unique data-records.  

Attribute Unit Min. Max. Mean Std. Dev. 
MT content %mass  70  90  81.08  8.31 
Slag content %mass  0  30  11.62  11.51 
Cement content %mass  0  30  7.30  10.31 
l/b ratio unitless  0.35  0.55  0.39  0.06 
Ms unitless  1  1.5  1.26  0.25 
n unitless  0.025  0.1  0.06  0.03 
Age day  3  28  13.00  9.51 
Compressive strength MPa  0.4  40.17  9.91  8.57  

S. Surehali et al.                                                                                                                                                                                                                                



Construction and Building Materials 419 (2024) 135523

5

hour, as shown in the figures in the inset in Fig. 3. The duration between 
wetting/dissolution and early product formation peaks is approximately 
35 min for all the MT-S binders prepared with a Ms value of 1.5, likely 
due to the presence of more soluble silicates in systems with higher Ms 
[64]. When the alkalinity is higher (n value of 0.10), or at a lower Ms 
value, only a single large peak is noticed, since both these peaks merge 
into one. For very low alkalinity mixtures (n value of 0.025 and 0.05), a 
further small peak is noticed after 9–15 h, attributed to limited reaction 
of otherwise unreacted particles or the onset of diffusion-controlled 
processes. 

The calorimetric response curves for MT-C binders shown in Fig. 4 
exhibit patterns similar to those of the MT-S binders except for varia-
tions in the magnitudes of peak heat release rates and their temporal 
occurrence. Secondary peaks are observed for binders prepared with 
lower n values (0.025–0.05), likely corresponding to the acceleration 
peaks associated with cement hydration. The peak heat release rate in-
creases for all MT-C binders as the alkalinity is increased (i.e., with 
higher n values at the same Ms and cement content), as more Ca2+ ions 
are introduced into the system, aiding in the formation of additional C-S- 

H and C-A-S-H gels. Generally, the heat release curves of the MT-C 
binders resemble those of dilute cement systems but exhibit early ac-
celeration due to the influence of alkaline activators. A direct compar-
ison among MT-C binders with different cement contents cannot be 
made since the l/b ratios were varied based on the cement content in the 
mix due to the aforementioned reasons; another reason why the heat 
release rates and cumulative heats are indicated in terms of unit mass of 
water. 

4.2. Compressive strengths 

The compressive strength test results for MT-S and MT-C binders are 
shown in Figs. 5 and 6, respectively. Binders with an initial setting time 
of less than 30 min or a final setting time greater than 12 h were not 
tested in compression. It is seen that the compressive strengths of both 
MT-S and MT-C binders are dependent on the activator parameters, as 
reported elsewhere [36], [37], and the slag or cement content in the 
system. The strength gain at lower alkalinity levels, i.e., n values of 
0.025 and 0.05, is relatively minimal from 3 to 28 days. However, at 

Fig. 3. Heat release rate curves for MT-S binders: Ms value of 1.0 and slag contents of: (a) 10%, (b) 20%, (c) 30%; Ms value of 1.5 and slag contents of (d) 10%, (e) 
20%, (f) 30%. 
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Fig. 4. Heat release rate curves for MT-C binders: Ms value of 1.0 and cement contents of: (a) 10%, (b) 20%, (c) 30%; Ms value of 1.5 and cement contents of (d) 10%, 
(e) 20%, (f) 30%. 

Table 4 
Cumulative heat released (J/g water) at the end of 48 h for MT-S and MT-C binders.  

Binder system  Mass percentage of slag/cement in respective binders 
10% 20% 30% 

Activation parameters (n, Ms) Ms 

1.0 1.5 1.0 1.5 1.0 1.5 
n Cumulative heat (J/g water) 

Mine tailings (MT) – slag (S)  0.025  29.66  36.46  39.31  48.57  36.06  48.31  
0.050  112.57  110.83  152.60  138.06  193.17  165.26  
0.075  123.40  123.89  188.26  168.49  225.17  176.14  
0.100  131.91  131.43  184.20  177.54  244.31  176.71 

Mine tailings (MT) -cement (C)  0.025  97.60  101.63  139.73  138.47  120.15  106.22  
0.050  104.90  79.33  141.36  161.60  144.11  142.69  
0.075  94.33  92.43  157.44  132.96  148.35  175.98  
0.100  131.33  117.15  151.69  141.76  157.98  163.60  
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higher n values of 0.075 and 0.10, a substantial increase in strength at 14 
and 28 days is observed. 

Compressive strengths of MT-S binders increase significantly with 
increased slag contents in the mix, which is attributed to the increased 
formation of C-S-H and/or C-A-S-H gels. It is shown that MT-S binders 
comprising appropriate slag contents (~20–30%) with high volumes of 
MT can attain 28-day strengths of up to 40 MPa, which is sufficient for 
more than 90% of structural concrete applications. It is shown here that 
MT-S binders represents a promising approach to effectively use a large 
volume of MT towards achieving sustainable concretes. The 28-day 
compressive strengths of MT-C binders are relatively low due to the 
higher l/b ratios (0.40, 0.45, and 0.55) used to ensure workability and 
flowability. 

Compressive strengths of both MT-S and MT-C binders increases with 
an increase in n value of the activator solution, because of the higher 
alkalinity that aids in the formation of more reaction products. The 
higher compressive strength at a higher n value can also be attributed to 
the formation of more silica-containing gel due to a higher concentration 
of sodium silicate in the activator solution, and the resultant lower Ca/Si 

ratio of the reaction products [51]. For MT-S binders, compressive 
strengths are generally found to decrease at an n and Ms combination of 
0.10 and 1.5, respectively. This can be attributed to (i) the suppression 
of Ca2+ ion dissolution and/or accelerated dissolution of silica and 
alumina, hindering the polycondensation process (i.e., chemical 
condensation for producing a polymer by linking single or multiple 
kinds of monomers to form long chains releasing water or similar sub-
stances [67]) for hydration product formation [68], [69], and (ii) 
reduction in the solubility of Ca at higher alkalinity, leading to the 
precipitation of calcium hydroxide (CH). Similar behavior is seen for 
MT-C binders with 10% cement content. In such cases, where Ca2+ ions 
precipitate as CH, the strength gain is inhibited. MT-C binders with a 
cement content of 20% and 30% prepared with an activator solution of 
higher n values (0.075 and 0.1) showed a flash setting behavior due to 
higher NaOH concentration, as reported in another study as well, 
consequentially making the mix unworkable [70]. The results described 
here show that selecting appropriate activation parameters based on the 
slag or cement contents is critical to attaining desired mechanical 
properties. 

Fig. 5. Compressive strengths of MT-S binders with slag contents of: (a) 10%, (b) 20%, and (c) 30% prepared with different activator parameters (n and Ms values).  
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The foregoing sections demonstrate the influence of slag and cement 
addition on the hydration kinetics and compressive strength of MT- 
based binders. Previous studies [71–73] have linearly related the 
compressive strength and the cumulative hydration heat release of hy-
draulic cementitious systems, such as plain and binary OPC binders. 
However, such relationships for alkali-activated materials have not been 
reported. Fig. 7 shows the relationship between cumulative heat 
released at 48 h (in J/g water) and the compressive strengths of MT-S 
and MT-C mortars at 3, 7, 14, and 28 days; a linear relationship as re-
ported for traditional cementitious materials is observed here as well. 
The cumulative heat release provides a cursory estimation of 
solid-to-solid connectivity within the mixture while also accounting for 
the inherent porosity. Since the water content is a decisive parameter 
influencing the porosity, the use of heat release per unit mass of the 
binder is further justified. Only the cumulative heat released within the 
initial 48 h is considered here because the hydration is most intense 
during this timeframe. While hydration continues beyond this period, it 
gradually produces solid phases (i.e., hydrates) and the heat release 

tends to stabilize, making further heat measurements less informative. 
Linear relationships between the 48 h heat release and strengths at 3, 7, 
14, and 28 days serve as simple, closed-form relationships enabling 
reasonably-accurate predictions of compressive strength from 
short-duration, easy-to-conduct experiments. These relation-
ships—albeit empirical and derived from a small number of observa-
bles—are very useful and strongly suggest that fundamental correlations 
that have long been used for OPC-based systems (e.g., heat vs. strength) 
are also applicable to highly-heterogenous binders such as MT-based 
alkali-activated binders. In the following section, we present direct ev-
idence of compressive strength and hydration kinetics prediction using 
ML models aided by data transformation methods, based on mixture 
design inputs. 

4.3. Heat Flow and Strength Predictions from RF Models 

The FFT-RF and DCT-RF models were used to predict the heat flow 
rate profiles of MT-based binders, leveraging the input-output 

Fig. 6. Compressive strengths of MT-C binders with cement contents of: (a) 10%, (b) 20%, and (c) 30% prepared with different activator parameters (n and 
Ms values). 
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correlations learned from the training dataset. The predictions of heat 
flow profiles for the samples in the testing dataset obtained from FFT-RF 
and DCT-RF models are shown in Fig. 8. To ensure a clear and concise 
evaluation, logarithmic scales are employed (while the actual scale is 
depicted in the insets). The statistical parameters that quantify the 
performance of each model’s prediction are shown in Table 5. It is 
important to emphasize that the hyperparameters within the RF 
component have been meticulously optimized using a combination of 
the 10-fold cross-validation (CV) method [58], [59] and the grid-search 
method [60], [61]. This approach, adopted from our previous studies, 
simultaneously minimizes variance (under-fitting) and bias (over--
fitting), thereby enhancing the reliability of the results. 

4.3.1. Heat flow rate predictions 
The results presented in Table 5 and Fig. 8 demonstrate the consid-

erable accuracy of FFT-RF and DCT-RF models in predicting the heat 
flow rate profiles. The findings indicate that both the DCT and FFT 
methods effectively reduce the degree of freedom within the database. 
This reduction allows the RF model to capture the intricate input-output 
correlations even with a relatively small dataset. However, it is worth 
noting that the DCT method outperforms the FFT method in terms of 
prediction accuracy. The superiority of the DCT method can be attrib-
uted to several reasons. The FFT method decomposes complex profiles 
into simpler real and imaginary number profiles, enabling the analysis of 
signal amplitudes and phases [74]. Consequently, the ML models are 
required to learn and ultimately predict both real and imaginary 
numbers, and the cumulative errors from predictions can further 
diminish the accuracy of the final output. Furthermore, the FFT method 

is designed to retain all the original signal details, which may result in a 
limited reduction in the degree of freedom for heat flow profiles of 
MT-based binders. The DCT method is specifically designed to compress 
complex signals by condensing them into a low-frequency profile rep-
resented by real numbers alone [75], [76]. Though this compression is 
not entirely lossless and could potentially result in the loss of pertinent 
information (e.g., minor shoulder peak in the calorimetry profiles), the 
transformed profiles thus obtained are simpler in structure compared to 
those obtained through FFT. This simplicity enables the RF model to 
readily capture the general trend within the data and yield reliable 
predictions. Due to solely containing real numbers, DCT method elimi-
nates the cumulative errors associated with predicting both real and 
imaginary numbers. In comparison to our previous studies [54], [55], 
which employed techniques that reduced the complexity of the database 
to predict hydration kinetics of cementitious materials, the models uti-
lized in this study shows slightly lower performance based on the R 
value. However, it is important to note that the previous studies were 
based on a much larger database consisting of hundreds of unique 
mixture designs, whereas the current study had a smaller database of 
only 48 mixture designs. Despite the limited database size, where ML 
models typically show poor performance, the predictions reported in 
this study show reasonable accuracy. Another point of importance is that 
the heat flow rates of MT-S binders are predicted more reliably by the 
models than the MT-C binders. This could be attributed to the fact that 
the cement hydration profile, especially at early ages, is more complex 
than that of slag activation. To further enhance the prediction perfor-
mance, it is necessary to supplement a larger and more diverse training 
dataset. 

Fig. 7. Linear correlations between cumulative heat release at 48 h and compressive strengths at (a) 3 days, (b) 7 days, (c) 14 days, and (d) 28 days for MT-S and MT- 
C binders. 
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After investigating prediction performance, permutation importance 
method [77] is applied to reveal the influence of input variables on 
hydration kinetics. Based on our analyses, the top two important input 
variables are cement content and time. These outcomes are in agreement 
with hydration profiles shown in Figs. 3 and 4. Time can significantly 

affect the kinetics of hydration, and thus the magnitude of heat flow 
rate. Likewise, cement content is an important variable, considering that 
cement is more reactive at early ages compared to slag. Therefore, 
additional cement content can substantially increase the heat release. 

4.3.2. Strength predictions 
Based on the aforementioned findings, it is clear that the RF model, 

when combined with robust data reduction techniques, yields reliable 
predictions for heat flow rate profiles of MT-based binders. Encouraged 
by these results, the RF model is employed to predict the compressive 
strength of MT-based binders. The compressive strength database is split 
into two subsets: a training set (comprising 75% of the original data-
base) and a testing set (comprising the remaining 25% of the original 
database) as mentioned earlier. Fig. 9 illustrates the predictions of the 
RF model for the compressive strength of MT-based binders against the 

Fig. 8. Heat flow rate profile predictions of six MT-based binders as produced by FFT-RF and DCT-RF models compared against experimental measurements. The 
figures are plotted in logarithmic scale (with those in the insets plotted in linear scale). Mean absolute errors (MAE) of predictions are shown in legends. 

Table 5 
Five statistical parameters (average for all data records in the testing dataset) 
evaluating the prediction performance of FFT-RF and DCT-RF on the hydration 
kinetics of MT binders.  

ML Model R 
(Unitless) 

R2 

(Unitless) 
MAE 
(mW/g water) 

MAPE 
(%) 

RMSE 
(mW/g water) 

FFT-RF  0.9075  0.8235  0.7682  125.1  2.175 
DCT-RF  0.9184  0.8436  0.2167  30.63  0.6375  
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measurements obtained from the testing dataset. Table 6 presents the 
five statistical parameters used to evaluate the prediction performance. 

From the results shown in Fig. 9 and Table 6, it can be concluded that 
the RF model can produce reliable predictions of compressive strength 
of MT-based binders. The R2 and RMSE values indicate a close match 
between the predicted and measured values, with an R2 value of 0.96 
and an RMSE of 1.46 MPa. It is worth noting that the general error in 
compressive strength measurements is reported to be around 5 MPa 
[78], and the prediction error is lower than the experimental error. The 
accurate compressive strength prediction can be attributed to the RF 
model’s unique structure, particularly the ensemble and growth 
methods of decision-trees. With hundreds of uncorrelated trees in the 
forest, each tree generates a distinct output unaffected by other trees, 
effectively minimizing variance errors. Moreover, the two-stage 
randomization approach [79], [80] and the unpruned and unsmooth-
ing protocols enable trees to grow with customized structures, further 
eliminating biases in the predictions. 

Using the permutation importance method, it was found that slag 
and MT content exert the most influence on the compressive strength. 
The reactivity of MT is low, and hence its contribution to strength 
development also is low. Previous studies [81], [82] have shown that the 
compressive strength of cementitious materials monotonically decreases 
when the inert filler content increases. While it has been shown that MT 
is not just an inert filler under alkaline activation conditions [32], it is 
obviously not as efficient as aluminosilicates such as slag. This is also 
seen in Fig. 5; here, as the slag content increases from 10% to 30%, the 
compressive strength increases three or four fold, while a corresponding 
increase in cement content does not substantially alter the strength. 

5. Conclusions 

This study focuses on description of early-age hydration kinetics and 
compressive strength development of alkali-activated mine tailings 
(MT)-based binders. MT was used as the primary source material 
(≥70%mass of total binder) in conjunction with slag (S) or cement (C) to 
develop MT-S or MT-C binders, respectively. The effects of varying 
Na2O-to-total powder ratio (n), SiO2-to-Na2O ratios (Ms), and slag or 
cement contents on the rates of reaction and strength development were 
explored in detail. Isothermal calorimetry test results showed significant 
dependence on the activator parameters (n and Ms values) and the ad-
ditive type (slag or cement) and content. Although the peak heat release 
is higher for MT-C binders compared to their respective MT-S counter-
parts at the same activator parameters and MT content, the cumulative 
heat released at the end of 48 h was generally higher for MT-S binders. 
In general, a single prominent heat release peak, corresponding to the 
combination of slag or cement particle wetting, dissolution, and early 
reaction product formation, was observed for MT-S binders prepared 
with a highly alkaline activator solution. In other cases, the first narrow 
peak within the first few hours of mixing was followed by a dormant 
period and succeeded by a smaller acceleration peak attributed to the 
formation of reaction products such as C-S-H and C-A-S-H gels. MT-S 
binders attained significantly higher compressive strengths than the 
MT-C binders. Compressive strengths of about 24 MPa and 40 MPa were 
attained for MT-S binders with 20% and 30% slag contents, respectively, 
with n and Ms values of 0.10 and 1.0, while the highest compressive 
strength achieved among the castable MT-C binders was approximately 
11 MPa, for a mixture with 20% cement content. The cumulative heat 
released (per unit mass of water) at the end of 48 h was reasonably 
correlated with compressive strengths at different ages. This work 
demonstrated that carefully optimizing activator parameters and using 
slag as to supplement MT allows the development of MT-based binders 
suitable for various applications. 

A random forest (RF) model was used as a ML technique to predict 
the heat flow rate and compressive strengths of the studied binders. Due 
to the complexity of hydration kinetics of binders, data-transformation 
techniques, namely fast Fourier transform (FFT) and discrete cosine 
transform (DCT), were applied to the raw heat evolution profiles to 
reduce the degrees of freedom of the hydration profiles. This reduction 
allowed the RF model to capture the input-output correlations and 
produce high-fidelity predictions, even with a small database. The DCT 
method was found to be superior to the FFT method in terms of pre-
diction performance. The standalone RF model was used to predict the 
compressive strength of MT-based binders at 3, 7, 14, and 28 days. The 
outcomes of this work indicated that ML models coupled with data 
transformation techniques are a promising tool for a priori predictions of 
hydration kinetics and compressive strength of MT-based binders even 
when a smaller dataset is only available. 
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Table 6 
Five statistical parameters evaluating prediction performance of RF and RF 
hydration on the compressive strength of MT-based binders.  

ML Model R 
(Unitless) 

R2 

(Unitless) 
MAE 
(MPa) 

MAPE 
(%) 

RMSE 
(MPa) 
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Appendix A 

Random Forests 

The RF model is an advanced ML model with an evolution of the Classification and Regression Trees (CARTs) structure, fortified by the inclusion of 
the bagging technique [79], [83]—a method that subsamples the parent dataset without sacrificing the dataset volume. As part of the training process, 
the RF model simultaneously constructs hundreds of standalone CARTs based on bootstraps. Each tree in the forest grows by implementing binary 
splits in a recursive fashion, continually dividing until the terminal nodes reach a near-homogenous state. This process is performed without any 
pruning or smoothing, thereby allowing all trees to grow to their maximum size unrestrictedly. When the RF model is tasked with producing pre-
dictions on the new data domain, it averages predictions from all trees to produce the final output. The two-stage randomization [79], [80] is 
distinguished the RF from the traditional CARTs. The first stage of randomization pertains to the bootstrapping technique, where each tree is con-
structed from a randomly selected subset of the parent dataset. The second stage of randomization involves randomly choosing a subset of variables for 
each split. The two-stage randomization method is key in ensuring the trees within the forest are decorrelated from one another [84], [85]. This 
decorrelation leads to a significant reduction in variance and bias errors, enhancing the model’s robustness and predictive accuracy. 

Fourier Transform 

The Fast Fourier Transform (FFT) is a computationally efficient method of implementing the Discrete Fourier Transform (DFT), a mathematical 
technique used to convert a complex signal profile from its time domain into a representation in the frequency domain, and vice versa [86], [87], [88]. 
This algorithm simplifies the calculation of the DFT from a complexity of N2 to N log2N, making it significantly faster for large data sets. The FFT takes 
an input in the form of a profile existing in the time domain. The algorithm then meticulously disassembles this profile into its individual sinusoidal 
components. Each component resonates at a unique frequency, allowing the FFT to decode the complexity of the original signal. Meanwhile, these 
components embody sine and cosine waves, reflecting the symmetrical nature of the frequency domain representation. Intriguingly, these separated 
sine and cosine waves retain the capacity to be recovered back into the original profile. The output of FFT consists of an array of complex numbers. 
Each number in this array embodies a specific frequency component of the original signal. These complex numbers encode two pieces of crucial 
information: amplitude and phase. The amplitude indicates the intensity of a frequency component, while the phase indicates the shift in time for that 
frequency component. More details about the FFT can be found in our previous study [55]. 

Discrete Cosine Transform 

The Discrete Cosine Transform (DCT), developed by Ahmed et al. [89], is a mathematical function to process signal and image data by packing by 
compacting high-frequency coefficients to low-frequency coefficients. The DCT begins by representing data in a temporal domain, which is then 
transformed into the frequency domain by utilizing a series of cosine waves (which differ in frequency). The sum of those cosine waves approximates 
the original data. Here, the frequency corresponds to how fast the cosine wave oscillates, and the amplitude corresponds to the strength or height of the 
wave. In the transformed data, amplitude represents the coefficients in the cosine wave. Each coefficient captures the contribution of its corresponding 
cosine wave to the original signal. A high value of a coefficient means that its corresponding cosine wave contributes significantly to the original signal 
[90], [91]. There are several DCT functions. In this study, DCT-2 function (shown in Eq. 1) is employed to convert heat evolution profiles into 
low-frequency domain. δk1 is the Kronecker delta; x(n) is the original signal; and k represents the order of each DCT coefficient. 

y(k) =
̅̅̅̅

2

N

√

∑

N

n=1

x(n) 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + δk1

√ cos
( π

2N
(2N − 1)(k− 1)

)
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Álvarez, V.B. Ascuña Rivera, Specimen size effects on the mechanical behaviors 
and failure patterns of the mine tailings-based geopolymer under uniaxial 
compression, Constr. Build. Mater. 281 (2021) 122525, https://doi.org/10.1016/j. 
conbuildmat.2021.122525. 

[21] A. Barzegar Ghazi, A. Jamshidi-Zanjani, H. Nejati, Utilization of copper mine 
tailings as a partial substitute for cement in concrete construction, Constr. Build. 
Mater. 317 (2022) 125921, https://doi.org/10.1016/j.conbuildmat.2021.125921. 

[22] A.M.T. Bagger, W. Kunther, N.M. Sigvardsen, P.E. Jensen, Screening for key 
material parameters affecting early-age and mechanical properties of blended 
cementitious binders with mine tailings, Case Stud. Constr. Mater. 15 (2021) 
e00608, https://doi.org/10.1016/j.cscm.2021.e00608. 

[23] R.S. Krishna, F. Shaikh, J. Mishra, G. Lazorenko, A. Kasprzhitskii, Mine tailings- 
based geopolymers: Properties, applications and industrial prospects, Ceram. Int. 
47 (13) (2021) 17826–17843, https://doi.org/10.1016/j.ceramint.2021.03.180. 

[24] Z. Xiaolong, Z. Shiyu, L. Hui, Z. Yingliang, Disposal of mine tailings via 
geopolymerization, J. Clean. Prod. 284 (2021) 124756, https://doi.org/10.1016/j. 
jclepro.2020.124756. 

[25] A. Saedi, A. Jamshidi-Zanjani, A.K. Darban, M. Mohseni, H. Nejati, Utilization of 
lead–zinc mine tailings as cement substitutes in concrete construction: Effect of 
sulfide content, J. Build. Eng. 57 (2022) 104865, https://doi.org/10.1016/j. 
jobe.2022.104865. 

[26] Y. Zhu, Z. Wang, Z. Li, H. Yu, Experimental research on the utilization of gold mine 
tailings in magnesium potassium phosphate cement, J. Build. Eng. 45 (2022) 
103313, https://doi.org/10.1016/j.jobe.2021.103313. 

[27] L. Reig, L. Soriano, M.M. Tashima, M.V. Borrachero, J. Monzó, J. Payá, Influence of 
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