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Abstract

Aeromonas species (spp.) are well-known fish pathogens, several of which have been recognized as emerging human patho-
gens. The organism is capable of causing a wide spectrum of diseases in humans, ranging from gastroenteritis, wound
infections, and septicemia to devastating necrotizing fasciitis. The systemic form of infection is often fatal, particularly in
patients with underlying chronic diseases. Indeed, recent trends demonstrate rising numbers of hospital-acquired Aeromonas
infections, especially in immuno-compromised individuals. Additionally, Aeromonas-associated antibiotic resistance is an
increasing challenge in combating both fish and human infections. The acquisition of antibiotic resistance is related to Aero-
monas’ innate transformative properties including its ability to share plasmids and integron-related gene cassettes between
species and with the environment. As a result, alternatives to antibiotic treatments are desperately needed. In that vein,
many treatments have been proposed and studied extensively in the fish-farming industry, including treatments that target
Aeromonas quorum sensing. In this review, we discuss current strategies targeting quorum sensing inhibition and propose
that such studies empower the development of novel chemotherapeutic approaches to combat drug-resistant Aeromonas spp.
infections in humans.

Key points

o Aeromonas notoriously acquires and maintains antimicrobial resistance, making treatment options limited.

o Quorum sensing is an essential virulence mechanism in Aeromonas infections.

e [nhibiting quorum sensing can be an effective strategy in combating Aeromonas infections in animals and humans.

Keywords Aeromonas - Quorum sensing - Quorum sensing inhibition - Antimicrobial resistance - Horizontal gene transfer

Introduction

Aeromonas species (spp.) are ubiquitous in nature predomi-
nately found in freshwater habitats and estuarine ecosys-
tems. The organism commonly infects fish, amphibians,
and reptiles, wreaking havoc on the fish-farming industry.
The first documented case of a human Aeromonas infection
was recorded in 1951 when the organism was cultured from
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cerebral spinal fluid during a patient’s autopsy in Jamaica
(Caselitz 1996). Since this landmark case, 36 spp. have been
added to the genus, and at least 19 of them have been clas-
sified as emerging human pathogens (Fernandez-Bravo and
Figueras 2020). Unlike many other human pathogens, Aero-
monas spp. are unique in their ability to inhabit an enormous
range of hosts. In addition to humans, they have been iso-
lated from leeches, insects, mollusks, birds, livestock, fresh
produce, preserved food, domestic animals, drinking water,
and wastewater sludge (Didugu et al. 2015; Govender et al.
2021; Janda and Abbott 2010; McMahon and Wilson 2001;
Wang et al. 2011; Wu et al. 2019). The organism’s ability to
grow at refrigeration temperatures is an added concern in the
food industry (Hoel et al. 2019). Alarmingly, human Aero-
monas infections are not associated with just one predictable
tissue type or set of symptoms but rather have been impli-
cated in an impressive array of clinical syndromes includ-
ing wound/soft tissue infections, septicemia/bacteremia,
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gastroenteritis, colitis, intraabdominal infections/peritoni-
tis, urinary tract infections, pneumonia, and even dreaded
necrotizing fasciitis (Janda and Abbott 2010). Historically,
symptomatic infections have mostly been associated with
immuno-compromised patients, and a number of comorbidi-
ties are commonly correlated with severe infection, mostly
liver disease (Clark and Chenoweth 2003; Valcarcel et al.
2021; Xu et al. 2022). While the majority of Aeromonas
research is focused on aquaculture and relieving the eco-
nomic burden of fish disease, there is a pressing need to
understand this pathogen in a human-disease context and to
innovate and develop novel, clinically relevant treatments
as antimicrobial resistance (AMR) continues to spread in
this pathogen.

Overuse/misuse of antibiotics, both clinically and com-
mercially, has accelerated AMR development world-wide
in a large number of human bacterial pathogens. This has
resulted in bacterial infections that are increasingly difficult
to treat, leading to higher mortality rates and longer hospital
stays (Orosz et al. 2022; Wagenlehner and Dittmar 2022).
The seemingly unchecked emergence of AMR pathogens
poses a significant global threat to public health, prompting
the need for a better understanding of the molecular mecha-
nisms of resistance and the development of novel counter-
measures. Aeromonas spp. are no exception to this emerging
trend and have demonstrated their ability to rapidly acquire
and share new AMR genes. Identifying/developing solutions
to this problem requires a multifaceted approach including
achieving a better understanding of Aeromonas spp. acqui-
sition and retention of AMR genes, as well as identifying
and characterizing virulence factors/mechanisms as potential
drug targets. One promising antibiotic-alternative drug tar-
get is quorum sensing (QS), an essential virulence mecha-
nism for Aeromonas spp. during human infections.

Antibiotic resistance in Aeromonas:
an ongoing problem

Considering Aeromonas’ pervasiveness in both ecological
and clinical environments, promiscuity, and ability to cope
with (and endure) environmental stressors, it should not be
overlooked as a potentially significant source and/or reser-
voir of clinically relevant AMR genes. AMR mechanisms,
particularly the presence of 3-lactams, including carbapen-
emases (Hayes et al. 1994, 1996), have been well charac-
terized in Aeromonas spp. over the years. Chromosomally
encoded B-lactams were among the first to be detected and
genetically characterized in Aeromonas (Iaconis and Sanders
1990; Ko et al. 1998; Walsh et al. 1997). Today, AMR genes
that encode penicillinases, cephalosporinases, and metallo-
B-lactamases are of common occurrence in many Aeromonas
spp. (Nwaiwu and Aduba 2020; Pourmohsen et al. 2023;
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Hilt et al. 2020). AMR genes do not observably accumulate
in one species of Aeromonas more than another (Bertran
et al. 2021). This is, in part, due to the fact that accurate
identification of Aeromonas on a species level is historically
problematic due to standard diagnostic techniques that are
not tailored to Aeromonas spp. and shifting taxonomic defi-
nitions (Zhang et al. 2023; Fernandez-Bravo and Figueras
2020). For example, A. dhakensis is being reevaluated in
recent years for clinical significance, especially as a culprit
in monomicrobial, systemic infections because of frequent
misidentification as A. hydrophila (Wu et al. 2015, Puah
et al. 2022). These factors combine to make studying spe-
cies-specific AMR trends difficult.

Importantly, clinical AMR Aeromonas strains have been
isolated across the globe; 3rd-generation cephalosporin-
resistant Aeromonas has been isolated in Southern India
(Bhaskar et al. 2015), and 3rd-generation cephalosporin
and carbapenem-resistant isolates have been found in
Croatia (Drk et al. 2023). Two broad-spectrum carbap-
enemase KPC-24-producing A. veronii strains were iso-
lated recently from hospital sewage in China (Yang et al.
2022). Indeed, AMR profiles have been characterized in
Aeromonas spp. isolated from India (Indra et al. 2015),
including North Bengal (Dey Bhowmick and Bhattacha-
rjee 2017), Tunisia (Bargui et al. 2023), Egypt (El-Hos-
sary et al. 2023), Thailand (Hatrongjit et al. 2020), Euro-
pean countries, and Brazil, just to name a few (Table 1).
Sequence analysis of nine independent A. veronii isolates
from fish, humans, and Brazilian environments found all
isolates to be remarkably similar to the uploaded Aero-
monas genomes found in NCBI, demonstrating that wide-
spread distribution of AMR genes in Aeromonas can origi-
nate from vastly different sources and geographic locations
(Maia et al. 2023). Environmental isolates unassociated
with human/clinical disease also demonstrate an alarm-
ingly high rate of AMR. This suggests a possible ecologi-
cal reservoir of AMR genes with the potential to be trans-
ferred to human-associated strains (Canellas et al. 2023;
Goii-Urriza et al. 2000; Igbinosa et al. 2015). It is clear
that Aeromonas spp. are formidable enemies capable of
horizontally spreading AMR genes, and it is important to
understand how and why such propensity for AMR acqui-
sition and retention exists.

Sources and selective pressures for AMR
acquisition

As alluded to earlier, one commonly studied mechanism of
AMR acquisition in Aeromonas is horizontal gene transfer
from other bacteria. A. caviae, for example, has been shown
to be naturally competent and readily acquires DNA from
its environment (Sayeed et al. 1996). In one study, 73% of
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environmental Aeromonas isolates were able to serve as
recipients of donor DNA, while 100% of tested isolates
were able to act as donors to at least some other aeromon-
ads under optimal laboratory conditions (Tris buffer with
magnesium or calcium, pH 5-8, and a saturating concen-
tration of 0.5 pg of DNA per assay, at 30 °C; sodium was
also required) (Huddleston et al. 2013). On account of this
naturally transformative state, it is no surprise that so many
AMR genes have been found in Aeromonas spp. that are
derived from other common but unrelated pathogens. For
example, a Verona integron-encoded family metallo-p-
lactamase (VIM) producing A. hydrophila strain carrying
a VIM-4 gene was described in a case report from Budapest
in 2008. Sequencing showed an identical match to a previ-
ously characterized integron in Pseudomonas aeruginosa
from southern Hungary, suggesting DNA transfer between
the two (Libisch et al. 2008). Temoniera-24 (TEM-24), a
prominent extended-spectrum p-lactamase gene variant,
was observed in a clinical isolate of Aeromonas for the first
time in 2003. TEM-24 is typically isolated across Western
Europe from Enterobacter spp. and Pseudomonas spp., and
since this particular Aeromonas spp. was isolated alongside
Enterobacter aerogenes, this also suggests cross-species
horizontal AMR gene acquisition (Marchandin et al. 2003).

Another mechanism that could be promoting the alarm-
ing rate of AMR acquisition is the presence of AMR
genes in the context of mobile genetic elements (MGE)
such as plasmids and integrons. Aeromonas spp. are
known to possess a collection of plasmids constituting its
plasmidome. The Aeromonas plasmidome is of particular
interest in the context of AMR genes and other virulence
factors (Vincent et al. 2021). Virulence-related plasmids
released by bacterial cells have been shown to persist in
harsh environments such as treated wastewater and can
readily be acquired by nearby pathogens (Drk et al. 2023).
Additionally, integrons, small sections of chromosome
that can capture gene cassettes from the environment and
incorporate them into the genome via integrase genes and
site-specific recombination, have been found to play an
important role in the acquisition and spread of antibiotic
resistance genes (Fluit and Schmitz 1999). Such integrons
have been found within multiple species of the Aeromonas
genus. Characterization of 133 Aeromonas spp. isolates
(50 A. caviae, 45 A. hydrophila, 31 A. sobria, 6 A. enche-
leia, and 1 A. veronii) revealed the presence of several
different class I integrons, including 10 different gene
cassettes, encoding resistance to a variety of antibiotics
including trimethoprim, aminoglycosides, B-lactams, and
phenicol. As to be expected, antibiotic resistance rates
were different between integron-positive and integron-
negative strains. Specifically, resistance to trimethoprim
and trimethoprim—sulphamethoxazole was more com-
monly associated with integron-positive isolates, and all

Wu et al. (2023)

Reference

Location
China

In vitro susceptibility (microdilu-
tion) and WGS analysis

Method of resistance detection

fenicol, chloramphenicol, tetracy-

cline, trimethoprim-sulfamethox-

azole, gentamicin, colistin
blagpc.,, blaypyy. ;s blayy,.; mer-3,

Ampicillin, ciprofloxacin, flor-
tmexCD-toprJ

Detected resistance

Method of spp. identification

Vitek-2 and MALDI-TOF*
Included are studies describing emerging AMR genes or trends in Aeromonas (both clinical or environmental) which were unique for the given year or geographical region during the time of

publication. AMR can be studied and tracked in several ways including phenotypic susceptibility testing, AMR gene identification, and antibiotic class resistance detection. Therefore, the table

includes spp. identified in the study (if an attempt was made to do so), the spp. identification method, the resistance that was characterized in the study, the methodology it was characterized

with, and the global location.
*MALDI-TOF, Matrix-assisted laser desorption/ionization — time-of-flight; WGS, whole-genome sequencing

Table 1 (continued)

Aeromonas spp
Aeromonas spp.

@ Springer
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integron-positive isolates were resistant to more than 3
antibiotics. In fact, resistance to as many as 10 antimicro-
bial chemotherapeutics was observed in some integron-
positive strains (Chang et al. 2007). Additionally, a global
study of 38 A. salmonicida isolates revealed that 21/38
isolates contained a class I integron with all gene cas-
settes described in the study being associated with human
bacterial infections (L'Abée-Lund and Sgrum 2001).

Non-pathogenic, environmental/aquatic Aeromonas
spp. have also proven to be significant sources/reservoirs
of AMR gene acquisition of clinically relevant strains. In
one such example, the transfer of oxytetracycline-resistant
plasmids between Aeromonas spp. found in fish hatcher-
ies and Aeromonas spp. recovered from hospital effluent
was observed in A. hydrophila (8 isolates), A. sobria (6
isolates), and A. caviae (1 isolate) (Rhodes et al. 2000).
Additionally, A. veronii isolated from catfish ponds in
the South-Eastern USA was found to harbor tetracycline
resistance gene on a MGE, similar to ones found in Vibrio
parahaemolyticus and other Aeromonas spp. isolated from
human stool (Dubey et al. 2023). When 66 Aeromonas
isolates [A. caviae (58%), A. hydrophila (17%), A. media
(11%), and A. veronii (11%)] from both untreated hospi-
tal wastewater and treated municipal water were exam-
ined, almost all of them (65/66) demonstrated multidrug-
resistant phenotypes. Prevalent carbapenem genes found
among the isolates included blagpc.,, blay;y, o, blapys us
and bla;,p 3, with the latter three being described for the
first time in Aeromonas. This same study demonstrated
the ability of some of these Aeromonas isolates to trans-
fer these resistance phenotypes to susceptible recipients
(Escherichia coli), suggesting conventionally treated
municipal and untreated hospital wastewater may be a
reservoir for AMR, and that Aeromonas spp. could be
mediating the spread of AMR to other pathogens in that
environment (Drk et al. 2023). By demonstrating overlap
between aquatic and clinical Aeromonas spp., these find-
ings warn of the perils of compartmentalizing human and
agricultural/environmental niches and conversely suggest
that they should be considered as one combined environ-
ment since the transfer of genetic information can occur
between them (Jones et al. 2023). Roh and Kannimuthu
(2023) in a recent genomic analysis of the resistomes
of 400 Aeromonas aquaculture strains found resistance
against carbapenem, fluoroquinolone, cephalosporin,
elfamycin, aminoglycoside, and tetracycline was “more or
less evenly distributed across all species, while resistance
against the other classes varied between species” (Roh and
Kannimuthu 2023). This distribution highlights the genetic
promiscuity displayed by Aeromonas across species and
underscores its potentially global relevance as an indica-
tor organism of the spread of antibiotic resistance (Usui
et al. 2016).

@ Springer

Mechanisms of Aeromonas-associated drug
resistance

Aeromonas employs a multivariate platform of strategies
that confer antimicrobial resistance. One such strategy
is through the exploitation of escape mutations in genes
encoding the protein targets of the antibiotics. For exam-
ple, quinolone resistance observed in an A. caviae human
isolate was a result of an accumulation of point muta-
tions in the type II topoisomerase genes gyrA and parC
allowing for the continued function of the enzymes while
reducing antibiotic binding affinity (Sinha et al. 2004).
Another AMR mechanism employed by Aeromonas is the
use of substrate-specific antibiotic degrading enzymes
such as 3-lactamases (Majiduddin et al. 2002; Rasmussen
and Bush 1997). For example, MOX-9, a class C enzyme
belonging to a novel sub-lineage of MOX B-lactamases,
was found to be encoded by a chromosomal transposon
in A. media. Biochemical characterization of this MOX-
9 gene revealed a strong binding preference for cephalo-
sporins and cephamycins. By comparing MOX-9 binding
affinity and its hydrolysis activity to other more common
MOX-type enzymes, this study not only demonstrated the
variations that exist within this family of resistance genes
but also provided a genetic context by which resistance
genes can be easily mobilized onto transmissible plasmids
and horizontally shared among other organisms (Piccirilli
et al. 2022).

A third strategy is the use of broad-spectrum, non-
specific AMR techniques such as drug uptake resistance,
efflux pumps, and/or enhanced biofilm production. In one
demonstration, when the ompR gene encoding an outer
membrane protein (OMP) was deleted in an A. veronii
isolate, increased sensitivity of the mutant culture to
both ceftriaxone and neomycin, two different classes of
drugs, was observed. Interestingly, the AompR mutant was
shown to exhibit reduced biofilm production as well. It
was speculated that this increased antibiotic susceptibility
may be due, in part, to the reduction in biofilm formation
since biofilm typically impedes an antibiotic’s access to
the bacteria (Wang et al. 2023b). Indeed, when 29 OMP
knockout strains were created in A. hydrophila, 22 gene
deletions affected susceptibility levels to at least one of
the 20 antibiotics tested. That being said, no OMP mutant
exhibited consistent responses to all the tested antibiot-
ics, eluding to more complicated downstream signaling/
regulatory mechanisms underlying OMP-related drug
uptake (Li et al. 2019). Additionally, when the porin
protein Ahal was mutated in A. hydrophila at its lysine-
acetylation sites, increased resistance to tetracyclines and
B-lactams was observed, presumably due to decreased
drug uptake (Zhang et al. 2022d). Recently, in China, a
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resistance-nodulation-division (RND)-type efflux pump
gene cluster named tmexCD1-toprJ1636 was discovered
in a related Gram-negative enteric pathogen Klebsiella
pnuemoniae which confers resistance to different classes
of antibiotics including tetracyclines, cephalosporins,
aminoglycosides, phenicol, quinolones, and the last-resort
antibiotic tigecycline (Lv et al. 2020). Such an efflux pump
has since been shown to play a role in Aeromonas spp.
drug resistance as well; in an environmental study, 36 of
the 636 Aeromonas spp. isolated from livestock, meat,
water, and humans [A. caviae (22), A. hydrophila (5), A.
salmonicida (1), and A. veronii (8)] were positive for the
multidrug-resistant gene cluster mentioned above, either
encoded chromosomally or on a plasmid. Importantly, the
characterized tmexCD-toprJ genes were associated with
different Aeromonas spp., phylogenetic lineages, environ-
ments, and genetic locations and were surrounded by vary-
ing MGEs, demonstrating alarming diversity (Wu et al.
2023).

In reality, AMR in Aeromonas likely results from many
different complicated factors, all playing simultaneous and
even interactive roles. Employing a proteomic approach, a
quinolone, norfloxacin (NOR), stress response study in A.
hydrophila revealed 186 downregulated proteins and 220
upregulated proteins following exposure. Interestingly, many
of the differentially expressed proteins were involved in sul-
fur metabolism and homologous recombination. Seven of
these differentially expressed proteins were chosen as tar-
gets for site-directed mutagenesis in their encoding genes.
Some mutants exhibited increased sensitivity to NOR such
as AAHA_0904 (an uncharacterized protein) and AcirA
(colicin I receptor), whereas the AhlyD (in the secretion fam-
ily) mutant significantly increased NOR resistance. Other
mutants, AAHA_4275 (a ferrichrome receptor), Aicd (isoci-
trate dehydrogenase [NADP]), AcheV (chemotaxis coupling
protein), and AppsA (phosphoenolpyruvate synthase) dis-
played no differences compared to the parental A. hydrophila
strain (Liu et al. 2023). This suggests that genes with no
apparent ties to AMR can play an important role in an organ-
ism’s resistance/susceptibility to antibiotic stress.

Transcriptional regulators have also been shown to influ-
ence Aeromonas spp. drug resistance. More specifically, the
transcriptional regulator AhslyA was shown to play a role
in fluoroquinolone resistance. In an A. hydrophila AahslyA
mutant, increased fluoroquinolone Enoxacin (ENX) sen-
sitivity was observed. Proteomic analysis revealed differ-
entially produced proteins involved in DNA metabolism,
the SOS response, and cell communication following ENX
treatment. Site-specific mutations were then engineered
in several targets’ encoding genes, three genes related to
decreasing protein abundance (AHA_0655, AHA_1195,
and AHA_3721), and three genes related to increasing pro-
tein abundance (AHA_1239, AHA_2114, and narQ). The

AAHA_2114 and AnarQ mutants had slightly decreased
resistance to ENX at 0.01 pg/mL, and mutants AAHA_1239
and AAHA_3721 demonstrated an increase in resistance to
ENX at 0.01 pg/mL. This further demonstrates the genetic
diversity of expression/regulation involved in conferring
drug resistance (Li et al. 2021). Collectively, these studies
underscore the complex network of overlapping known path-
ways and mechanisms involved in AMR. When considering
the potential contributions of yet unknown pathways, the
network becomes even more complex.

Quorum sensing

Quorum sensing (QS), broadly, is a sophisticated mecha-
nism of communication utilized by bacteria to coordinate
behavior in a population. There are three major types of
quorum sensing systems in Aeromonas known as autoin-
ducers 1, 2, and 3. Autoinducer 1 (AI-1) QS is a system
found exclusively in Gram-negative bacteria and is thought
to detect and respond to the population density of members
of the same species in an environment (Vanetti et al. 2020).
Autoinducer 2 (AI-2) QS is a mechanism thought to medi-
ate cross-species communication, given the machinery for
this system is found in both Gram-positive and Gram-neg-
ative bacteria (Zhao et al. 2018). Autoinducer 3 (AI-3) QS
is a two-component response system found in bacteria that
responds to signals produced by members of the eukaryotic
kingdom, demonstrating its use as an inter-kingdom mode
of communication (Fan et al. 2022) (Fig. 1).

In many pathogenic bacteria, including Aeromonas spp.,
QS has been shown to globally regulate virulence gene
expression and/or disease-causing mechanisms. Some of
these virulence factors/mechanisms, utilized by Aeromonas
and regulated by QS, include biofilm formation, motility,
and effector protein secretion through various (e.g., types 2,
3, and 6) secretion systems (Table 2).

Autoinducer 1 quorum sensing: AhyRI

A QS system homologous to the LuxRI system in V. fis-
cheri (Kempner and Hanson 1968) was first described in
Aeromonas in 1997 (Swift et al. 1997). The system produces
acyl-homoserine lactones (AHLs), molecular signals col-
lectively known as Al-1, which are synthesized by the AHL
synthase Ahyl. A corresponding response regulator, AhyR,
is then modulated by this signal (Chu et al. 2013; Swift
et al. 1999; Van Houdt et al. 2007) to alter downstream gene
expression. By far the most studied of the 3 Aeromonas-
associated QS systems, AI-1 QS is ubiquitous across Aer-
omonas spp. (Jangid et al. 2007) and has been shown to
influence the development of biofilm (Lynch et al. 2002),
exo-proteases production (Khajanchi et al. 2009; Swift
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Fig.1 A schematic demonstrating the basic mechanisms that gov-
ern the three QS systems: Al-1 QS (far left) is only found in Gram-
negative bacteria and is thought to be the mode of intra-species com-
munication. Bacteria in a community simultaneously produce Al-1
signal via an Al-1 synthase (Ahyl) where the signal is then sensed
and responded to via the response regulator AhyR. AI-2 QS (center)
is found in both Gram-positive and Gram-negative bacteria and is
thought to be the mechanism of communication between differ-
ent bacterial species. Al-2 signal is produced by all members of the

et al. 1999), outer membrane protein profiles, S (surface)-
layer thickness (Bi et al. 2007), and type 6 secretion system
(T6SS) effector secretion (Khajanchi et al. 2009) (Table 2).
It has also been shown that mutations in this QS system
result in decreased virulence potential of Aeromonas. More
specifically, the virulence of a AahyRAahyl double mutant
was reduced by 50% when compared to its parental strain A.
hydrophila SSU [since re-classified as A. dhakensis (Grim
et al. 2014)] in a murine model of infection (Khajanchi et al.
2009). In a fish infection model using a challenge dose of 10°
colony forming units (CFU)/ml, A. hydrophila J-1 mutant
AahyR was rendered avirulent, as evidenced by the 100%
survival of challenged fish. In contrast, 100% fish mortal-
ity was observed when challenged with the parental strain
at the same dose (Bi et al. 2007). To better understand the
Al-1 QS pathway, an AHL lactonase was used to block Al-1
signaling. Further evaluation of the data revealed differential
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bacterial community via LuxS. LuxR is responsible for sensing and
responding to AI-2 signals. AI-3 QS (far right) is a two-component
phosphorylative response system thought to be a mode of communi-
cation between prokaryotes and eukaryotes (inter-kingdom). Signals
produced by a eukaryotic host collectively known as AI-3 cause a
conformational change in membrane-bound sensor kinase (QseC),
allowing for phosphorylation of the cytoplasmic response regulator
(QseB), which activates it. (Image produced in BioRender)

expression of genes, post AHL lactonase treatment, that
were involved in a myriad of metabolic pathways includ-
ing metabolite transport, amino acid metabolism, central
metabolism, and respiration, suggesting universal metabolic
regulation by AI-1 QS (Gui et al. 2017).

While it is well established that AI-1 QS plays a cru-
cial role in the virulence of Aeromonas (Bi et al. 2007,
Khajanchi et al. 2009), little is known about the specifics
of AHL synthesis or substrate specificity. It was historically
thought Aeromonas only had the ability to synthesize two
AHLs, N-butanoyl-L-homoserine lactone (C4-HSL) and
N-hexanoyl-L-homoserine lactone (C6-HSL) (Kirke et al.
2004; Swift et al. 1997, 1999). To expand that knowledge,
one study successfully purified 6 unique AHLs from A.
hydrophila, although C4-HSL and C6-HSL continued to be
the most abundant signals. The mechanism by which Ahyl
is able to catalyze the formation of the various AHLs was
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Table 2 (continued)

Reference

Function

Description

Virulence factor

Matys et al. (2020); Wang et al. (2023a)

Various functions depending on the specific

Secreted T6SS effector proteins

evpP/T6SS-associated effectors

effector; de-ubiquitinase activity, carries a

payload of toxic proteins/enzymes that disrupt

cell function, degrades cell components,

and modifies the environment to be more

favorable

proposed to likely employ small molecules S-adenosyl-L-
methionine (SAM) and butyryl-acyl carrier protein (ACP)
as facilitators. If indeed SAM and ACP are involved in AHL
synthesis, then AHL synthesis utilizes an acyl-ACP-derived
fatty-acyl substrate and not acyl-CoA, as previously thought
(Jin et al. 2020).

Autoinducer 2 quorum sensing: LuxS

The LuxS universal QS system mediated by AI-2 has also
been described in the Aeromonas genus as early as 2008
(Kozlova et al. 2008). Unlike AI-1, this QS system is found
in both Gram-positive and Gram-negative bacteria and is
thought to be the means of cross-species communication
(Xavier and Bassler 2003). Since its discovery, other pub-
lications have corroborated the existence of AI-2 systems
in Aeromonas (Zhao et al. 2015); however, less research
has focused on this QS system in Aeromonas spp. com-
pared with AI-1 QS. The phenomenon generally observed
has been an overall increase in virulence when AI-2 (luxS
gene) is deleted. This is in sharp contrast to the deletion
of the AI-1 system components. More specifically, an A.
dhakensis SSU AluxS mutant exhibited decreased motility,
increased virulence (as observed by increased lethality in a
murine model), and altered biofilm structure. Surprisingly,
the increased virulence in a septic mouse model of infection
was not due to alterations/enhancements in hemolytic activ-
ity, AexU (a type 3 section system effector) translocation, or
T6SS effector translocation (Kozlova et al. 2008) (Table 2).
Furthermore, LuxS deficiency negatively affected expression
levels of the A-layer gene encoding VapA, potentially reduc-
ing survivability in host macrophages (Meng et al. 2017).
In an effort to uncover the mechanism(s) for these pheno-
types, the DNA adenine-methyltransferase (Dam) encoding
gene was overexpressed in both the parental and the AluxS
mutant. The overexpression of dam caused the AluxS mutant
to become hyper-motile and demonstrated increased hemo-
lytic activity as compared to the isogenic dam-overexpress-
ing parental strain. However, the overexpression of dam did
not alter the virulence potential of the AluxS mutant in vivo.
Taken together, these results suggest that the methylation
of LuxS may play a role in the regulation of the AI-2 QS
system (Kozlova et al. 2008) and needs further investigation.

To gain more insight into the signaling pathway down-
stream of AI-2 QS, the LuxS-regulated gene B protein
(LsrB) was investigated in A. veronii. This protein belongs
to the high-affinity substrate-binding protein family and is
one of the two D-type receptors (LuxP and LsrB) of the AI-2
molecule in the AI-2 QS system. The major role of LsrB is to
internalize extracellular AI-2 (Reading and Sperandio 2006).
When this receptor was deleted in A. veronii, there was no
apparent impact on growth, hemolytic activity, or antibi-
otic sensitivity. Motility was slightly decreased, likely on
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account of reduced flagellar gene expression, and a signifi-
cant reduction in biofilm formation was also observed. Inter-
estingly, the subsequent interruption of the AI-2 signaling
pathway following LsrB deletion resulted in an unexpected
decrease in virulence in a zebrafish model (as measured
by an increased LDs,) (Gao et al. 2023) contradicting the
previous murine study (Kozlova et al. 2008). Additionally,
AI-2 QS signaling seems to be affected by post-translation
modifications (PTMs). By mapping out lysine-acetylation
and lysine-succinylation sites in A. hydrophila, the sites
were found to be largely overlapping. One such overlap was
in the amino acid K165 in the [uxS gene. Acetylated LuxS
was found to negatively regulate LuxS enzymatic activity in
A. hydrophila, while conversely, succinylated LuxS (at the
same residue) positively regulated enzymatic activity. Inter-
estingly, two distinct PTMs of LuxS on a specific residue
oppositely influenced bacterial AI-2 QS activity (Sun et al.
2019), suggesting that the role LuxS plays in Aeromonas’
biological functions may be partially dependent on PTM sta-
tus. This aspect may potentially contribute to the difference
in phenotypic virulence in murine versus Zebra fish models
and requires further investigation.

Autoinducer 3 quorum sensing: QseB/QseC

A third QS system mediated by two-component regulatory
proteins QseB and QseC, which respond to AI-3 molecules,
was identified in A. dhakensis SSU in 2012 (Khajanchi
et al. 2012). Since then, 15 environmental Aeromonas iso-
lates from China have been found to possess gseBC genes,
demonstrating the widespread nature of this system within
the genus (Sarkodie et al. 2019). Of the three QS systems
identified in Aeromonas spp., the QseB/QseC system is the
most poorly understood. Upon discovery, a AgseB mutant
was constructed in A. dhakensis SSU, and the mutant exhib-
ited diminished swarming and swimming motility, increased
biofilm density, reduced protease production, and a slightly
decreased virulence with 30% lower mortality over a test
period of 16 days in an in vivo murine model of septicemic
infection compared to the parental strain (Khajanchi et al.
2012). In contradiction to this study, a recent 2023 study
reported that AI-3 QS component deletions in A. hydrophila
did not affect motility, decreased biofilm production, and
promoted increased virulence in an in vivo fish model (Qin
et al. 2023a). Given the contrary nature of these two reports
in different animal models, clearly, more studies are needed
to better understand this complicated QS system.

One interesting finding in a fish model of infection study
(Qin et al. 2023a) was its use of the host-derived stress hor-
mone norepinephrine (NE). QseBC has previously been
shown to enable many entero-bacteria to sense and inter-
act with the host-derived environment (Lustri et al. 2017;
Moreira and Sperandio 2016). This may also be true for

@ Springer

Aeromonas spp. since the addition of NE to the medium
of A. hydrophila increased its growth rate and dramatically
increased biofilm production. However, AgseB and AgseC
mutants did not display the aforementioned NE-mediated
responses, suggesting that host signaling molecules are,
in some way, associated with Aeromonas behavior, likely
through the AI-3 QS (Qin et al. 2023a).

Interactions between QS systems

To complicate matters further, the three QS systems
described above could possibly interact with one another,
creating a complicated network of QS pathways replete
with crosstalk and overlap. In an attempt to elucidate the
ambiguity, one study systematically compared QS-related
gene expression in mutants of all three QS systems. It was
found that individual component deletions resulted in altered
expression levels of the other QS system genes. In the
AahyRI mutant, gseB, gseC, and [uxS genes were all upreg-
ulated. In the AgseB mutant, ahyR and ahyl gene expres-
sion levels were downregulated; however, no changes were
observed in [uxS expression. Finally, in the AluxS mutant, no
changes were observed in gseB and gseC expression levels.
Taken together, these findings demonstrate that crosstalk
and/or compensatory interactions between/among the vari-
ous Aeromonas spp. QS systems occur (Kozlova et al. 2012).

Role of C-di-GMP in QS system interactions

C-di-GMP is a small signaling molecule that plays a crucial
role in the regulation of bacterial behavior and physiology
including all three Aeromonas spp. QS systems. An initial
report demonstrated a link between c-di-GMP and AI-1 QS
in A. sobria (Rahman et al. 2007). C-di-GMP overexpression
in A. hydrophila was shown to enhance biofilm formation
and reduce motility in the AluxS mutant and its parental
strain. In contrast, the AahyRI mutant only showed a mar-
ginal increase in biofilm formation with no effect on motility
when c-di-GMP was overexpressed (Kozlova et al. 2011).
Overexpression of c-di-GMP reduced protease activity in
the AgseB mutant when compared to the isogenic parental
strain, and no changes in protease activity in the AahyRI
mutant were observed. Furthermore, increased c-di-GMP
expression in parental A. dhakensis SSU produced denser
biofilms while increased c-di-GMP in the AgseB mutant
decreased biofilm density (Kozlova et al. 2012). Collec-
tively, the varying regulations each QS system exerts on one
another, either positively or negatively, may be mediated
by this small signaling molecule that has the demonstrable
ability to communicate with all three.

Investigating the role of c-di-GMP in QS regulation led
to the discovery that both AI-1 and AI-2 QS systems in
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Aeromonas affect expression levels of the transcriptional
regulator LitR (Kozlova et al. 2011). The LitR homolog,
HapR, has been shown to universally regulate virulence fac-
tors in V. cholerae (Kovacikova and Skorupski 2002). LitR
has since been shown to bind to the promoter regions of
the hemolysin and serine protease genes, as well as T6SS
effector protein VrgG in A. hydrophila. LitR was also found
to positively regulate hemolytic and extracellular protease
activities (Zhao et al. 2023). This establishes LitR as a mas-
ter transcriptional regulator used to control the expression of
many essential virulence factors, and the expression level of
LitR is regulated by both AI-1 and AI-2 QS systems, further
demonstrating the overlap between the systems.

QS inhibition: an alternative therapeutic
to antibiotics

Understanding the Aeromonas spp. QS systems and their
crosstalk could enable exploitations that may result in prom-
ising alternative therapeutics for Aeromonas infections and
beyond. The need for alternative therapeutics is especially
apparent in Aeromonas spp. on account of their being both
the cause of severe infections in humans and reservoirs of
AMR genes. In that vein, the first use of a QS inhibitor in
Aeromonas appears in 2009 when Truchado et al. (2009)
found culturing A. hydrophila with chestnut honey resulted
in the degradation of AHLs and decreased biofilm produc-
tion. Since then, many natural and synthetic compounds
have been shown to decrease QS-mediated virulence fac-
tors including biofilm, motility, protease production, and
hemolysis to great effect via QS inhibition in Aeromonas
(Table 3). AI-1 QS inhibitor cinnamaldehyde was shown to
significantly decrease virulence phenotypes of A. hydrophila
(Li et al. 2023). The plant-derived citrus flavonoid, hesperi-
din methyl chalcone (HMC), was found to not only down-
regulate the QS gene ahyR but also reduce the overall viru-
lence potential of A. hydrophila in an in vivo fish model
(Roshni et al. 2023). Tannic acid has been proven to be an
effective QS inhibitor in A. hydrophila with demonstrably
lower expression levels of ahyl and ahyR post-treatment
and reduced hemolysis, motility, and biofilm formation.
Tannic acid treatment also resulted in decreased virulence
potential in an in vivo fish model (Patel et al. 2017). Gen-
istein caused the downregulation of ahyRI expression lev-
els, decreased virulence factors like biofilm and aerolysin
production, and increased survival in an in vivo fish model
(Dong et al. 2021). Another compound, carvacrol, a natu-
rally derived monoterpenoid present in many herbs, was
found to decrease the virulence potential of A. hydrophila
by inducing decreased biofilm formation, protease produc-
tion, hemolytic activity, and AHL production. The transcrip-
tional analysis uncovered the downregulation of ahyR with

carvacrol treatment in two separate studies, suggesting the
involvement of AI-1 QS inhibition (Wang et al. 2022; Lu
et al. 2023).

High-throughput screening for QS inhibitory molecules is
becoming increasingly common to discover novel QS inhibi-
tors (Zhang et al. 2022c). In silico methodologies can be
used to do this via predicted 3-dimensional structures of the
proteins involved. In that vein, the protein structure of Ahyl
was predicted and functionally characterized. Following
that, the AI-1 synthase inhibitor N-cis-octadec-9Z-enoyl-L-
homoserine lactone was then identified using high-through-
put virtual screening. When tested, this molecule was found
to effectively inhibit AI-1 activity at a concentration of
40 mM (Ali et al. 2022). Work has also been carried out
to uncover novel AI-2 QS inhibiting compounds. In silico
modeling of the AI-2 QS LuxS protein structure facilitated
the prediction of putative binders and inhibitors of LuxS.
From those predictions, a compound named (—)-dimethyl
2,3-O-isopropylidene-1-tartrate was chosen for downstream
testing, and it was shown to be an effective AI-2 QS inhibitor
also at a concentration of 40 pM. Furthermore, A. hydroph-
ila growth was significantly reduced when AI-2 QS inhibitor
was added in conjunction with 1 mg/ml of oxytetracycline
treatment (Ali et al. 2018). The use of in silico predictive
models can more efficiently inform the discovery/design of
novel drug candidates, especially when used synergistically
with sub-lethal concentrations of bonafide antibiotics.

Alternatively, some research efforts have focused on
exploring the role of commensal bacteria in pathogenic QS
degradation. For example, one study reported that co-cultur-
ing A. hydrophila with three separate fish-gut-derived pro-
biotic bacteria decreased AHL production by A. hydrophila
and increased survival in an in vivo tilapia model when chal-
lenged (Omar et al. 2023). Similar results are found when
a Streptomyces commensal (Liang et al. 2022) and a Bacil-
lus commensal (Chen et al. 2020) were used in a zebrafish
model and challenged with A. hydrophila. Because these
studies have all focused on aquaculture and fish models, the
efficacy of this technique in a mammalian model and the use
of human commensals remain unexplored.

The emerging body of literature strongly suggests that
blocking QS can be an effective way to reduce Aeromonas-
related disease burden in aquaculture. Unfortunately, its
potential in humans is left almost entirely unexplored. Given
that all in vivo QS inhibition studies to date have been per-
formed in a fish model of infection, a more clinically relevant
understanding of many of these QS inhibitors needs to be
established. Toward that end, some QS inhibitors have been
tested in mammalian cell lines. Resveratrol, while effective
in fish, demonstrated cytotoxicity in the murine macrophage
cell line J774A.1 at higher concentrations (Qin et al. 2023b).
One group observed that the plant extract, sanguinarine, was
successful at reducing QS-regulated virulence factors like
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Table 3 (continued)

Reference

Outcome

Infection model

Pathogen

Inhibitor

Li et al. (2023)

Downregulated ahyRI expression. Decreased AHL produc-

A. hydrophila In vitro — A549; in vivo — Fish

Cinnamaldehyde

tion. Decreased biofilm, motility, hemolysis, and protease

production. Reduced cytotoxicity in vitro. Increased

survival in vivo

Roshni et al. (2023)

Downregulated ahyR expression, decreased biofilm,

A. hydrophila Fish

Hesperidin methyl chalcone (HMC)

motility, hemolysis, and protease production. Decreased

bacterial loads in vivo

Qin et al. (2023b)

Decreased biofilm and hemolysis. Downregulated QS-

A. hydrophila Fish

Resveratrol

related gene expression

Lu et al. (2023)

Decreased AHL production and downregulated ahyRI

A. hydrophila NA

Carvacrol

expression

biofilm production and hemolysis at concentrations of 4 mg/
ml. Sanguinarine was found to provide significant protection
to human A549 cells from aerolysin-induced cell injury at
this same concentration (Zhang et al. 2022b). In fact, thy-
mol, genistein, and cinnamaldehyde have all demonstrated
anti-QS activity and reduced cytotoxicity in human A549
cells (Dong et al. 2020a, b; Dong et al. 2021; Li et al. 2023).
So, what little evidence we do have of these inhibitors in
mammalian cell lines is, at best, varied. To further compli-
cate the situation in a mammalian model, it has been shown
that pre-treating mice with QS Al-1 signaling molecule AHL
before challenging with A. dhakensis prevents clinical seque-
lae and produces increased survival in a septicemic model
of infection (Khajanchi et al. 2011). While QS inhibition is
a demonstrably effective way to reduce pathogenicity in a
fish model, more research needs to be performed to ascertain
its effectiveness in humans. Furthermore, the vast major-
ity of QS inhibitory studies have been conducted using A.
hydrophila as the model pathogen. Studies on this topic need
to shift from the discovery of new compounds with anti-QS
activity to fully characterizing the known compounds in dif-
ferent Aeromonas spp. and infection models.

Conclusion

Aeromonas spp. are well-established aquatic fish and emerg-
ing human pathogens (Fernandez-Bravo and Figueras 2020;
Hayatgheib et al. 2020). Control of these aquatic pathogens
is critical to both protecting aquaculture and its associated
economy, as well as to prevent potential human disease.
When considering treatment, antibiotic resistance is a major
global threat in all bacterial pathogens, and Aeromonas
infections are no exception. In fact, antibiotic resistance of
various types has been globally documented in Aeromonas
spp. (Bargui et al. 2023; Bhaskar et al. 2015; Hayes et al.
1994). Unfortunately, Aeromonas spp. have been shown to
acquire resistance from other pathogens as well as readily
share resistance with other species/strains (Canellas et al.
2023; Goiii-Urriza et al. 2000; Igbinosa et al. 2015). On
account of this, Aeromonas, being aquatic by nature, has
rendered aquatic environments including treated waters, sig-
nificant reservoirs for AMR acquisition and retention (Drk
et al. 2023; Rhodes et al. 2000). This is particularly chal-
lenging given the potential economic impact of disrupting
the aquaculture industry. Furthermore, in serving as poten-
tial reservoirs for AMR, these hardy aquatic pathogens can
not only cause drug-resistant human diseases but also facili-
tate the spread of AMR to other unrelated bacterial patho-
gens. Viewed in this light, AMR Aeromonas could become a
major contributor to the problem, setting the stage for night-
marish scenarios associated with the post-antibiotic era.
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When facing antimicrobial challenges, Aeromonas spp.
employ numerous AMR strategies of evasion including muta-
tions of the drug targets themselves and, in some cases, expres-
sion of specific antibiotic degrading enzymes (if their encoding
genes are present) (Piccirilli et al. 2022; Rasmussen and Bush
1997; Sinha et al. 2004). Aeromonas spp. also employ a num-
ber of highly effective broad-spectrum AMR strategies such
as efflux pumps and drug uptake inhibition (Wu et al. 2023;
Zhang et al. 2022d). When attempting to acquire a clear pic-
ture of AMR pathways involved in antimicrobial evasion, some
ambiguity is found on account of pathway crosstalk, synergy,
and even, at times, antagonism. Indeed, proteomic analysis
reveals the truly complicated nature of Aeromonas’ pheno-
typic resistance to antibiotic-associated stress which further
complicates the issue (Li et al. 2021; Liu et al. 2023). Because
there are so many different strategies employed to this effect, a
complete understanding of antibiotic resistance in Aeromonas
spp. cannot be reached by examining each strategy/pathway
independently. As a result, this remains a fruitful area of study.

Aeromonas spp. have also been shown to harbor AI-1, AI-2,
and AI-3 QS systems (Khajanchi et al. 2012; Kozlova et al.
2008; Swift et al. 1997). All three systems are essential for
the regulation of each other and overall virulence potential
(Talagrand-Reboul et al. 2017). Without them, infection can-
not be established (Natrah et al. 2012). Because of its essential
and ubiquitous nature, QS may be a point of vulnerability to
be exploited from a therapeutic perspective. In that vein, many
pharmaceutical/natural alternatives to conventional antibiot-
ics/antimicrobials therapies have been proposed specifically
targeting the QS systems in Aeromonas spp. to great effect
(Li et al. 2023; Patel et al. 2017; Qin et al. 2023b; Roshni
et al. 2023; Tan et al. 2019; Wang et al. 2022). The limitation
of these therapeutic studies has been their primary focus on
aquaculture and fish health. In large part, these studies have
employed in vivo fish models with the ecological and eco-
nomic health of fish culturing in mind, thereby limiting data
available on efficacy for use in a human context. Unfortunately,
Aeromonas spp. infections continue to pose a challenge to
human health, and when considering multiple-drug-resistant
Aeromonas spp. infections, treatment alternatives become crit-
ical. In fact, the post-antibiotic era has created a pressing need
for the development of alternative therapeutics for bacterial
infections extending well beyond those caused by Aeromonas
spp. alone. Ultimately, additional investigations on the use of
these alternative therapeutics in a clinically relevant context
are warranted for Aeromonas spp. infections and beyond.
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