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Synopsis Many biological systems across scales of size and complexity exhibit a time-varying complex network structure
that emerges and self-organizes as a result of interactions with the environment. Network interactions optimize some
intrinsic cost functions that are unknown and involve for example energy efficiency, robustness, resilience, and frailty. A
wide range of networks exist in biology, from gene regulatory networks important for organismal development, protein
interaction networks that govern physiology and metabolism, and neural networks that store and convey information to
networks of microbes that form microbiomes within hosts, animal contact networks that underlie social systems, and
networks of populations on the landscape connected by migration. Increasing availability of extensive (big) data is
amplifying our ability to quantify biological networks. Similarly, theoretical methods that describe network structure and
dynamics are being developed. Beyond static networks representing snapshots of biological systems, collections of lon-
gitudinal data series can help either at defining and characterizing network dynamics over time or analyzing the
dynamics constrained to networked architectures. Moreover, due to interactions with the environment and other bio-
logical systems, a biological network may not be fully observable. Also, subnetworks may emerge and disappear as a
result of the need for the biological system to cope with for example invaders or new information flows. The confluence
of these developments renders tractable the question of how the structure of biological networks predicts and controls
network dynamics. In particular, there may be structural features that result in homeostatic networks with specific
higher-order statistics (e.g., multifractal spectrum), which maintain stability over time through robustness and/or resil-
ience to perturbation. Alternative, plastic networks may respond to perturbation by (adaptive to catastrophic) shifts in
structure. Here, we explore the opportunity for discovering universal laws connecting the structure of biological net-
works with their function, positioning them on the spectrum of time-evolving network structure, that is, dynamics of
networks, from highly stable to exquisitely sensitive to perturbation. If such general laws exist, they could transform our
ability to predict the response of biological systems to perturbations—an increasingly urgent priority in the face of
anthropogenic changes to the environment that affect life across the gamut of organizational scales.
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Introduction

Nature presents us with an overwhelming plenitude
of structures, the functions of which are so diverse as
to suggest descriptive rules pertaining to structural—
functional relationships are highly specialized.
Exclusive to one or another specific domain of bio-
logical science, structure manifests in genes and de-
velopment, neural circuits and integration, metabolic
pathways and trophic interactions, to mention just a
few. Here we attempt to address an overarching
question: whether multifarious descriptions of inter-
actions within defined biological domains find pre-
cision and unification using a language that
identifies commonality of organization across all bi-
ological domains and scales. In terms of its overall
structure and dynamics might each domain present
an underlying organization that suggests a universal
principle of interactive connectivity across its com-
ponents such that, for example, structural and dy-
namic interactions of elements within a defined
ecology can be described using the same mathemat-
ical rules as those that describe structural and dy-
namic interactions of, for example, a defined part of
the brain, or the genomic organization of tissue
differentiation.

Biological systems can be decomposed into
parts—components that combine with other compo-
nents to make up a whole (Simon 1962). When parts
interact with other parts of the system their interac-
tions are constrained by space, time, information
flows (including processing, transfer, and storage),
and/or function, all of which are influenced by the
external environment. Interactions are usually mod-
eled with graphs, mathematical constructs that con-
nect points known as vertices with lines (Barabasi
and Oltvai 2004). Figure IA describes the anatomy
of a network. Vertices represent parts of a system
and lines represent pairwise interactions between
them. For example, a graph describing the combina-
tion of structural domains in multidomain proteins
will connect vertices describing structural domains
with lines describing the presence of domains in
proteins (Aziz and Caetano-Anollés 2021). When
connections of vertices are undirected, lines fail to
point in any direction; each connection involves an
unordered pair of (end) vertices. These lines are
called edges. When connections are directed, lines
point in one direction; each connection involves an
ordered pair of vertices (an initial vertex and a ter-
minal vertex). These lines are called arcs. Graphs
become networks whenever value functions (proper-
ties or weights) are mapped onto the vertices and
lines of the graphs. For consistency, we will call the
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vertices of the network nodes and the lines that con-
nect the vertices the links of the networks.

Some network properties help visualize and study
network structure and makeup (Wasserman and
Faust 1994; Newman 2003). A network can be rep-
resented with an adjacency matrix, a square matrix
used to describe a finite graph, a property that is
useful for spectral graph theoretical applications
(Fig. 1B). The matrix becomes asymmetric when
links are directed. Networks can be studied with
measures of network centrality, by detecting commu-
nity structure, or by dissecting their makeup.
Measures of network centrality estimate how a node
or link influences the connectivity or information
flow of the network (Fig. 1C). Detecting community
structure allows to establish groups of nodes that are
more connected with themselves than with the rest.
We will refer to these communities as “modules.” A
number of hierarchical clustering algorithms can ef-
ficiently detect these network modules, including the
popular Girvan—Newman algorithm (Girvan and
Newman 2002). Other useful algorithms include
those that maximize modularity functions, extract
information through random walks (e.g., infomap
algorithm), use recursive percolation methods, or
analyze fractal geometric (Xue and Bogdan 2017)
and differential geometric (Sia et al. 2019) character-
istics of complex networks. Finally, compositional
patterns such as network motifs or network cliques
can highlight elemental units of network makeup,
which can become useful when studying the evolu-
tion of function in network structure. However,
given the intrinsic stochasticity, nonergodicity, and
continuous interaction with the environment, the
network motifs can vary over space and time scales,
yet they can explain how biological systems self-
program and self-optimize to achieve the collective
goal (e.g., adaptation for maximizing survival, energy
efficiency, and persistence).

As expected from complex systems, network
abstractions in biology are often difficult to under-
stand: (i) Complexity: Networks can be structurally
complex when their wiring diagrams become tangles
(e.g., multiple rules govern network responses to en-
vironmental perturbations); (ii) Connectivity: Links
between nodes can have different weights, directions,
and signs and can describe different kinds of inter-
actions (e.g., link communities describing different
classes of biological functions); (iii) Diversity:
Nodes and links can be diverse (e.g., biochemical
networks that control cell division consist of a vari-
ety of substrates and enzymes); (iv) Evolution: The
structure and dynamics of networks change when
they grow and their wiring diagrams unfold in
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Fig. 1. A network view of biological systems. (A) An anatomical analysis shows that a network N is a combination of four sets, a set V
of vertices (nodes), a set L of lines (links), and sets of vertex and line value functions that are mapped onto the V and L sets,
respectively. Each line is associated with a pair of vertices (lines are two-element subsets of V) representing edges or arcs if lines are
undirected or directed, respectively. Loops are lines with identical endpoints. The illustrated network is a “mixed network” because it
contains both arcs and edges. (B) A network can be represented with an adjacency matrix. The example network is undirected (it does
not contain arcs). Consequently, its adjacency matrix is symmetric. (C) Network centralities offer different views of the influence of
nodes in a network. Degree centrality estimates how well a node is connected to other nodes. The degree of a node (its connections)
provides a local view of network connectivity. Closeness centrality estimates how easy is for a node to reach other nodes. Finally,
betweenness centrality estimates how important is a node in terms of its capacity to connect to other nodes. It offers a global view of
connectivity. Other centralities (not shown) offer views of prestige, how important is a node in terms of the importance of its

neighbors. Diagram modified from Caetano-Anollés et al. (2021).

time (e.g., effects of canalization on network dynam-
ics); and (v) Dynamics: Nodes and links can them-
selves portray non-linear and long-range memory/
multifractal dynamic behaviors. The state of each
node or link can vary in time in complicated ways
in order to ensure a common collective goal unfolds
in a decentralized way.

While complex, diverse, and evolving networks
can effectively describe how parts are connected to
each other in natural systems, the correct definition
of a biological part becomes central to the network
modeling exercise. For example, structural domains
are considered “units” of protein structure that
are useful for the taxonomical classification of the
world of proteins (Caetano-Anollés et al. 2009).
Domains represent arrangements of elements of sec-
ondary structure that fold into well-packed and
compact structural units of the polypeptide chain.
Domains are also functional modules. They fold
and function largely independently, contribute to
overall protein stability by establishing a multiplicity

of intramolecular interactions, and generally host
specific molecular functions. More importantly,
domains are also evolutionary units. They have
been shown to be evolutionarily conserved and pre-
sent in different molecular and functional contexts
throughout the protein world. However, defining
domains in proteins is not a trivial endeavor.
Advanced machine learning methodologies of struc-
tural recognition, such as hidden Markov models
(HMMs) (Eddy 2004), have been effectively used
to catalog domains with automatic and manual cura-
tion approaches. However, not all domains fold into
discrete structural entities within the space of possi-
ble folds (Harrison et al. 2002). Some popular
domains overlap within a continuum. This
“gregariousness” makes it difficult to classify the
folds of certain domain structures, demanding in-
stead the use of super-secondary structural motifs
(e.g., p-hairpins) as lower-level classification tools.
These kinds of difficulties make constructing net-
works difficult when “units” cannot be consistently
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defined or when they “skip” levels of structural or-
ganization. Luckily, artificial intelligence (AI) algo-
rithms are becoming more powerful and are
facilitating the classification task. Al systems learn
from data and can enhance themselves by learning
new heuristics or re-write supporting algorithms.
These emerging strategies include ensemble learning
methods such as Bayesian network approaches (e.g.,
model averaging and optimal classifiers), bagging
classifiers (e.g., random decision forests), and stacked
generalization methods that build predictive models
by iterative integration (Rokash 2011). The challenge
however is to bring an evolutionary rationale to
computational advances, especially because units
must be evolutionary for them to make sense in bi-
ology. In addition, there is real “fuzziness” in natural
systems, which goes beyond the experimenter defini-
tion of nodes and links. This difficulty needs to be
appropriately addressed and represents a significant
barrier to integrating structure and function at dif-
ferent scales. Finally, fuzziness in node definitions
may be inherent to the biological scale of observa-
tion and perhaps can be perturbed and measured.
This could bring a measure of rationality to the
“biological parts as units” problem of constructing
networks.

Network dynamics is also difficult to explore.
Network dynamics is made explicit when matter, en-
ergy, information and time flow through the net-
work structure. These flows can be expressed in
different ways, including cost, Shannon entropy,
time directionality, and higher-order network statis-
tics (Xue and Bogdan 2017). These “flow networks”
pose important conceptual and computational chal-
lenges. For example, directed networks, which induce
directed connections (arcs), also induce input and
output connectivity and the formation of internally
connected subnetworks (cycles) that bias hierarchical
structure. Moreover, the directed flows in these net-
works are not only time varying, but also possess
multifractal characteristics. For example, the dynam-
ics between sets of genes and linked transcription
factors in gene regulatory networks exhibit fractal
and long-range cross-correlated characteristics
(Ghorbani et al. 2018). This implies that when a
biological network is analyzed at two different time
scales, its corresponding directed flow network can
dramatically differ because the system is trying to
concurrently process information and achieve multi-
ple (rich) functionalities with a potentially reduced/
compressed set or rules. These cross-correlation
exponents characterizing for example the interaction
between a gene (or more genes) and a transcription
factor (or more transcription factors) in gene
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regulatory networks are not unique and could ex-
plain the functionality achieved by a network motif
or subnetwork. Also, the distribution of the cross-
correlation exponents of gene regulatory networks
for several types of cells can be interpreted as a mea-
sure of the complexity of their functional behavior.
Consequently, one can wonder how information
processing, transfer, and storage triggers the emer-
gence of rules that govern the evolution of a time
varying network by addition, rewiring, and deletion
of nodes and links. Within this network dynamics
paradigm, when aiming to understand and explain
biological systems, one also requires mathematical
tools to reconstruct the network structure while
overcoming partial observability and “perturbation”
influences from other biological systems and envi-
ronments. Since the interplay of network structure
and levels of organization in biology is a crucial en-
deavor, studying these flow networks can uncover
important regularities and principles for designing
self-programming and self-optimizing synthetic bio-
logical systems.

Grand challenge

Time varying complex network abstractions provide
a comprehensive graph theoretical framework with
which to describe biological systems across spatio-
temporal scales and levels of organization
(Caetano-Anollés et al. 2019, 2021). One important
goal is to develop and rely on mathematical models
and rigorous algorithmic tools to decipher time
varying complex networks from heterogeneous bio-
logical measurements while overcoming challenges
related to partial observability and “perturbation”
influences (Bogdan 2019; Gupta et al. 2019).
Another important goal is to mine the spatiotempo-
ral geometry and the higher-order network statistics
of time varying complex networks in order to find
patterns, rules, processes, and models of computa-
tion (i.e., specific concurrent interplay among rules
and processes) embedded in the network structure
and dynamics that would help identify common or-
ganizing principles (Koorehdavoudi and Bogdan
2016; Mahmoodi et al. 2017; Balaban et al. 2018;
Kim et al. 2019). Experimental and retrodictive ex-
ploration can then test theoretical frameworks and
predictions. Advances in comparative and evolution-
ary genomics, physiology, and systems and synthetic
biology can help address a number of important
questions and provide potential solutions to the plu-
ralistic and multiscale complexity of biological sys-
tems. For example, phylogenomic analyses can help
uncover how evolution tailors the structure and
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function of biological networks during billions of
years of natural history (Aziz et al. 2016; Caetano-
Anollés et al. 2019; Mughal and Caetano-Anollés
2019; Aziz and Caetano-Anollés 2021).

Objectives

The following objectives illustrate the broad scope of
inquiry of our framework:

Finding commonalities in network structure
across levels of organization: Simulated and real net-
works at different levels of organization could be
compared in search for commonalities in their struc-
tural makeup and dynamics that could uncover or-
ganizing principles. As one example, directed
networks such as the World Wide Web (WWW)
and metabolism show a bow—tie structure, in which
inputs into a highly connected component result in a
number of outputs (Fig. 2). Depending on the net-
works, there will be also shunts of connectivity and
disconnected components that add complexity to the
makeup of these networks. Are these properties uni-
versal? Can they be studied at different levels of
organization?

Quantifying characteristics of dynamics on the
networks to find commonalities or diversities across
different types or scale of networks: To find organiz-
ing principles governing different types of networks
across different scales, commonalities in structural
and dynamic characteristics of the networks should
be studied. One of the most distinct dynamical char-
acteristics of biological systems is criticality. When a
system is perturbed by external inputs, the perturba-
tion may be amplified and percolated to the entire
system or can have local influence, may manifest
over some specific scales, or may vanish after some
time. A system for the former and the latter is con-
sidered in chaotic and stable regime, respectively.
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Many biological systems lie between these two
regimes, that is, near critical point (Daniels et al.
2018). In other words, local perturbation or signal
in the biological networks is preserved in the net-
works. Is it possible that the dynamics of evolving
networks may share commonalities or can be char-
acterized into different classes?

Integrating the network system with external in-
formation: Systems are not isolated but depend on a
superseding environment and other systems. This ex-
ternal integration needs to be resolved and analyzed.
One way to assess integration space is to bind net-
works with external information such as physical or
functional constraints and ask how hierarchy, mod-
ularity, and other structural or dynamic properties
unfold under those conditions. One interesting line
of exploration that highlights integration space is the
study of Rentian scaling of networks (Bassett et al.
2010; Ho and Navlakha 2018). In the 1960s, IBM
scientist E.F. Rent discovered a peculiar scaling rela-
tionship between the number of logic gates (internal
components acting as network nodes) in a logical
block of a computer circuit (a piece of circuit resem-
bling a network module) and the number of circuit
connections between circuit blocks (Landman and
Russo 1971). This empirical relationship followed a
power law with an exponent that generally ranged
0.5< P<0.8, the Rent’s exponent. Circuits with
larger logical capacity have higher exponents.
Rentian scaling relationships are robust for very
large-scale integrated circuits and a number of bio-
logical networks, including neural networks. Are
these scaling relationships present in networks that
are spatially bound to lower degrees such as metab-
olism or protein—protein interactions networks?
Since biological systems are not isolated, are we to
expect that the effects of integration space be

Metabolism
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Fig. 2. The bow-tie hierarchical structure of directed networks. These networks have a giant strongly connected component (Gg),

giant “in” component (G;,), giant “out” component (Go.), tendrils and tubes (T), and disconnected components (D). The number of

nodes that are present in these subgraphs are listed (in blue) as millions of web resources for the WWW (Broder et al. 2000) and as
connected enzymes in the metabolic networks of Escherichia coli (Ma and Zeng 2003). Note that metabolism lacks tendrils and tubes.
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pervasive? This poses the additional challenge of an-
alyzing the structure and dynamics of the integration
space that wires network systems to each other.

Modes of network structure and dynamics:
Morphospaces can help dissect network structure
and dynamics. Morphospaces are phenotypic spaces
defined by a limited number of properties that ac-
count for the most salient features of a system
(Niklas et al. 1994; Shoval et al. 2012). However,
there is likely a multidimensional space of significant
drivers of network structure and dynamics that must
be uncovered. Novel deep-learning classification
tools should be used to find relevant summary
descriptors that are meaningful across systems.
Networks do exhibit different densities, connectivity
patterns, modularity levels, hierarchical organization,
and granularity, all of which could provide charac-
teristics that may be unique to individual levels of
organization in biology.

Deciphering and unfolding networks in time:
Changes of network structure and dynamics can be
studied along different timeframes and biological
scales in a number of fundamental steps. The first
step concerns the definition of entities (nodes) and
connectivities (links), as well as rigorous computa-
tional and mathematical techniques for identifying
them for each biological system while considering
technological and physics-based limitations (e.g.,
causal influence detection, measuring signaling, and
Heisenberg uncertainty principle). Once nodes and
links are defined, the second step consists of carefully
analyzing the scarce biological sampling in order to
construct a history (trajectory) of various interde-
pendent biological networks (e.g., involving the de-
velopment, physiology, metabolite dynamics, and
structural dynamics) that unfold over multiple time
scales (i.e., including manageable timeframes from
years to minutes to nanoseconds). For example,
such time varying networks include those that de-
scribe gene expression patterns, signaling networks,
developmental networks, the photosynthetic light
harvesting complexes, food webs, and neural net-
works. Moving at higher scales of the hierarchical
organization, we need to rigorously sample the
niches and populations in order to define and pre-
dict the history of ecological networks, as well as
study and control their dynamics. Consequently,
we need to develop new mathematical and algorith-
mic techniques capable to using and mining phylo-
genetic, phylogenomic, or stratigraphic information
in order to reconstruct the history of biological net-
works that describe evolving molecular machinery
(e.g., proteome, metabolome, functionomes, signal-
ing networks, protein—protein interactions, and
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domain organization) or genes that encode this ma-
chinery. Most of these networks hold very deep evo-
lutionary history and could provide new models of
computation that biology could have discovered
through evolution and inspire new trends in Al
computations. A crucial step toward understanding
the intelligence and the nature of optimization tak-
ing place in biology requires the investigation of the
structure of evolving networks, elucidating the sour-
ces, means, and goals of specific network properties
(including scale-freeness, randomicity, modularity,
hierarchy, centralities, generalized fractal dimension,
multifractal connectivities, and network curvature).
Within this effort, the modeling of network growth
and dynamics must be done according to different
criteria. For example, one can use a “morphospace”
of networks where modularity, hierarchy, and dy-
namics are made explicit (see below) to study sim-
ulated and real networks. Moreover, in order to
overcome the inherent variability and stochasticity
of biological systems, one can rely on characterizing
the multifractal properties for establishing rigorous
connections between various time varying network
motifs and specific rules of life. Another important
step toward characterizing the phase transitions of
biological systems and predicting their future inter-
dependent dynamics requires an accurate tracing of
their dynamics along evolving networks by defining
(biologically relevant) events along a timeline or
mapping dynamic behavior directly on the evolving
networks. For example, an evolving metabolic net-
work that unfolds enzymatic activities on a timescale
of billions of years was studied using a database that
traces evolutionary information onto metabolic net-
work structures (https://manet.illinois.edu) and bi-
partite network approaches that connect different
levels of molecular organization (Mughal and
Caetano-Anollés 2019). To illustrate, the enzymes
of metabolic pathways can be grouped into
“subnetworks” and “mesonetworks” following levels
of the KEGG database classification (Kanehisa et al.
2004). Subnetworks encompass functionally related
enzymatic pathways, while mesonetworks pool sub-
networks with similar functional capabilities. For ex-
ample, enzymatic pathways of nucleotide
interconversion, biosynthesis, catabolism, and salvage
of the subnetworks of “purine metabolism” and
“pyrimidine metabolism” are grouped into the
“purine metabolism” mesonetwork. Figure 3 shows
a time series of networks describing how enzymes are
shared by “mesonetworks.” These evolving networks
can be used to study the recruitment of enzymatic
activities in metabolic pathways. Similarly, an evolv-
ing network that links protein domains to functional
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Fig. 3. The sharing of enzymes among mesonetworks at different stages of metabolic evolution. Nodes represent mesonetworks: AAC,
amino acid metabolism; SEC, biosynthesis of other secondary metabolites; CAR, carbohydrate metabolism; NRG, energy metabolism;
GLY, glycan biosynthesis and metabolism; LIP, lipid metabolism; COF, metabolism of cofactors and vitamins; POL, metabolism of
terpenoids and polyketides; NUC, nucleotide metabolism; AA2, metabolism of other amino acids; and XEN, xenobiotics biodegra-
dation and metabolism. Links represent sharing of enzymes, with weights proportional to their numbers. Time of networks is given in
billions of years ago (Gya) and was inferred from a molecular clock of protein folds (Wang et al. 2011). Note how all mesonetworks
(except GLY) are already sharing enzymes 3.3 Gya, especially AAC. Redrawn from Mughal and Caetano-Anollés (2019).

loops and defines an “elementary functionome” of
protein structure was unfolded on a timescale of
billions of years (Aziz et al. 2016). This allowed
tracking the emergence of function in protein do-
main organization. At completely different time-
scales, physiological processes that are triggered by
stress can also be dissected with networks. For ex-
ample, metabolomic networks that describe the con-
nectivity of metabolites on a timescale of hours
reveal patterns of bacterial metabolic rewiring (Aziz
et al. 2012). In all of these examples, hierarchical
modularity, multifractal, and network curvature ap-
pear as emergent properties of biological network
structures. Why? Is hierarchy, multifractal character-
istics, and specific network curvatures a necessary
consequence of the rise of modules in biology and
how are those related to the functionality and rules
of life? Is hierarchy associated with the rise of levels
of organization?

Unknown unknowns: Tracing networks in time is
not a trivial task since in reality not all biological
variables can be measured. Due to emerging evolu-
tionary behavior, not all biological variables are
known from the beginning (but rather discovered
as the biological evolution unfolds) or the environ-
mental perturbations grow in number, magnitude,
and complexity (e.g., as a function of disappearance
of biological species, variations in temperature, hu-
midity, pressure)—these are called “unknown
unknowns” governing the observed biological dy-
namics. Consequently, to decipher and characterize
biological networks over time, we need new mathe-
matical and algorithmic tools that would reconstruct
networks from partial observations, from various

types of biological data sources and overcoming
interventions. Examples include the use of time se-
ries data analysis on average sensitivity values of the
networks, spike/event time sequences of biological
activity (excitatory or inhibitory), and time sequen-
ces of partially observable subnetworks of an un-
known time evolving biological network (Xue and
Bogdan 2019). Moreover, specific critical nodes
(e.g., neurons, cells, and bacteria) may exhibit
long-range memory and multi-fractal dynamic char-
acteristics in order to cope with external perturba-
tion and enforce a cue or rule toward a collective
goal. From a mathematical perspective, we require
not only more accurate causal inference techniques
to identify the multiscale interactions across biolog-
ical components, but also algorithms capable of es-
timating the number of unknown unknowns and
determining which variables exhibit either a non-
Markovian dynamics (i.e., which can be modeled
through a combination of fractional order deriva-
tives) or a Markovian one (i.e., which can be
encoded through integer order derivatives) (Bogdan
2019; Gupta et al. 2019).

Developing the framework

We propose a series of activities to develop our

framework:

(1) Define entities (nodes) and connectivities (links,
arcs) that are appropriate to each biological sys-
tem (see case studies below), while carefully
considering drawbacks from the “units in biol-
ogy” problem we discussed above.
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(2) Use biological sampling to define the history of
biological networks (e.g., development, physiol-
ogy, metabolite dynamics, and structural dynam-
ics) that unfold at manageable timeframes (years
to minutes to nanoseconds). Example networks
include networks that describe gene expression
patterns, signaling networks, developmental net-
works, food webs, and neural networks.

(3) Sample niches and populations to define the his-
tory of ecological networks and study their
dynamics.

(4) Use phylogenomic or stratigraphic information
to reconstruct the history of biological networks
that describe evolving molecular machinery
(e.g., proteome, metabolism, functionomes, sig-
naling networks, protein—protein interactions,
and domain organization) or genes that encode
this machinery. Most of these networks hold
very deep evolutionary history.

(5) Study the structure of evolving networks (scale-
freeness, randomicity, modularity, hierarchy,
centralities, generalized fractal dimension, mul-
tifractal connectivities, and network curvature).

(6) Model network growth and dynamics according
to different criteria. For example, use a
“morphospace” of networks where modularity,
hierarchy, and dynamics are made explicit (see
below) to study simulated and real networks.

(7) Trace dynamics along evolving networks by defin-
ing events along a timeline or mapping dynamic
behavior directly on the evolving networks.

(8) Study the mathematical characteristics of the
evolving networks (e.g., using time series data
analysis on average sensitivity values of the net-
works, spike/event time sequences of biological
activity (excitatory or inhibitory), time sequen-
ces of partially observable subnetworks of an
unknown time evolving biological network
(Xue and Bogdan 2019)). For instance, specific
critical nodes may exhibit long-range memory
and multi-fractal dynamic characteristics to
cope with external perturbation and enforce a
cue or rule toward a collective goal.

(9) Explore how networks integrate across levels of
biological integration. Determine what informa-
tion is lost or gained as networks incorporate
information from molecular, cellular, organ, or-
ganism, population, community, and ecosystem
levels of biological organization.

How can hierarchy and other forms of network
complexity be linked to functionality and the rules of
life? A useful approach is to define a morphospace of
network structure and a morphospace of network
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hierarchy (Fig. 4) and compare how model networks
generated by simulation (satisfying specific proper-
ties in terms of multifractality and curvature/hyper-
bolicity) and real networks distribute in structural
space. Corominas-Murtra et al. (2013) for example
have shown that networks across scales exhibit a
bow-tie structure that is typical of that found
when studying the WWW (Broder et al. 2000)
or metabolic networks (Ma and Zeng 2003; Kim
et al. 2019). Is this indeed a generic structure that
manifests across scales? To determine when a hierar-
chical network was accurately identified and charac-
terized, we require mathematical and algorithmic
techniques to investigate the nonconvex free energy
landscape associated with the morphospace of net-
work hierarchy and determine the model networks
that minimize the network free-energy candidates.
Furthermore, being able to estimate or investigate
the scale-dependent free-energy landscape from bio-
logical data could also help us determine how ge-
neric structures and the rules by which are generated
manifest across spatiotemporal scales. From this per-
spective, the deciphering and understanding of bio-
logical systems contributes to the birth of a new
branch of mathematics at the intersection of multi-
fractal network geometry, statistical physics and op-
timization, and potentially lead to new data science,
machine learning, and AI algorithms.

Drivers of network structure and
dynamics at different levels of
organization

A multidimensional landscape of drivers or causal
relationships are likely responsible for the structure
and dynamics of biological networks. These drivers
can be of different types and most likely themselves
form a wire diagram of causality. Major categories of
drivers include: (1) Evolutionary (e.g., life history,
adaptation, canalization, and recruitment); (2)
matter-energy (e.g., dissipation and budget); (3) in-
formation (e.g., entropic flow and modes); (4) struc-
tural (e.g., energy potentials and binding sites); (5)
spatiotemporal (e.g., molecular and structural spaces,
temporal flow); (6) trade-off solutions (e.g., econ-
omy, flexibility, robustness, and plasticity); (7) per-
turbation (stress)-homeostasis (some networks just
developed to evaluate stress only); (8) ontogeny;
(9) growth and development; (10) ecology; (11) lev-
els of biological organization; (12) behavior; and
(13) ontology (e.g., the Gene Ontology directed acy-
clic graph).

The following are examples of systems, from lower
to higher levels of organization. They illustrate major
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Fig. 4. Morphospaces of network structure (A) and hierarchy (B) showing the placement of toy examples of typical graphs describing
archetypes of the phenotypic landscapes and real networks (metabolic, neuronal, and food web networks highlighted with colors). In
one morphospace (A), Erdés—Rényi (ER) random graphs transform into regular graphs by decreasing randomness or into modular ER
graphs by increasing modularity. Hierarchical modular structure requires both increasing modularity and heterogeneity and decreasing
randomness. In another morphospace (B), treeness defines the unification or diversification of hierarchical signal in the network,
whereas orderability defines the centrality of cycles in network structure. Figures redrawn from Solé and Valverde (2004) and

Corominas-Murtra et al. (2013).

drivers of network structure and dynamics (in pa-
rentheses). These networks are familiar to one or
more of the authors and involve biological domains
immediately suited for analysis using the approaches
discussed above.

(i) Protein—protein interaction networks (PPINs)
(structural drivers). PPINs, with individual pro-
teins as nodes and physical interaction as links,
are classic subjects of systems biology. PPINs
have been identified for protein families, whole
proteomes, and even inter-species relationships.
Historically, this has been enabled by high-
throughput technologies for data collection for
both nodes (transcriptomics and proteomics to
rapidly define all protein nodes) and links (affin-
ity pulldown—mass spectrometry, yeast two-
hybrid, and other heterologous screens for mea-
suring interaction strength). Modularity emerging
from PPINs often correspond with specific func-
tions, including transcription, nucleosome assem-
bly, and hormone signal transduction
(Arabidopsis Interactome Mapping Consortium
2011). Within functional modules, certain nodes
form hubs with high degrees of connectivity. In
addition, articulation points that connect across

modules were apparent. For example, in a recently
measured cell surface Interactome for plant
leucine-rich repeat ectodomains, high degree and
articulation nodes are apparent and correspond
with known co-receptors shared in many different
immune receptor complexes (Smakowska-Luzan
et al. 2018). Functional validation of these nodes
using genetic knockouts has demonstrated that
hubs and articulation points have widespread im-
mune phenotypes that affect multiple pathways
(Fig. 5A), in contrast to peripheral nodes only
required for specific recognition functions. For
example, well-studied somatic embryogenesis re-
ceptor kinase (SERK) co-receptors have been
shown to form the highest connectivity in the
PPIN of extracellular leucine-rich repeat recep-
tors. Inter-species PPINs with factors required
for pathogen virulence feature links that predom-
inantly connect to host hubs (Mukhtar et al.
2011).

(if) Cell cycle network (transition-development driv-

ers). The yeast cell cycle represents a well-
studied and important biological system. The
network of protein factors that allow the cell
to progress from one phase to the next is par-
ticularly important (Dorsey et al. 2018). The
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Fig. 5. Example systems visualized with network representations. (A) A highly connected PPIN showing significant interactions be-
tween plant leucine-rich repeat receptor ectodomains (Smakowska-Luzan et al. 2018). Subnetworks and nodes with strong and varied
connectivity are apparent from network analysis. Edges indicate significant interaction between two ectodomains. Edges are thick and
red colored in proportion to reported interaction strength. Extracted, yellow-colored nodes highlight highly connected SERK proteins
known to be genetically required for many plant environmental responses. (B) A subnetwork describing the G1-phase node. The
transcription factors, SBF and MBF, which control the G1/S cell cycle transition in yeast, increase in copy number throughout G1,
eventually saturating the G1/S target promoters. A feedback phosphorylation loop inactivates Whi5, a repressor if SBF via a cyclin
dependent kinase ensures a sharp transition (plot in the right). From Dorsey et al. (2018). (C) Network representation of metabolic
disorders mediated by hepatic steatosis. The network was built to predict events that lead to hepatic steatosis from high throughput
assays. The network topology converged into four key events (i.e., lipogenesis, and fatty acid uptake, efflux, and oxidation) that were
viewed as critical paths leading to steatosis. Assays measuring these points of convergence integrate the complex interplay of upstream
events and translate them into measures that are more directly related to the adverse outcome. FA, fatty acid; TAG, triacylglycerol;
PI3K, phosphatidylinositol-3-kinase; AKT, protein kinase B; PPAR, peroxisome proliferator-activated receptor; LXR, liver X receptor;
CAR, constitutive androstane receptor; PXR, pregnane X receptor; FXR, farnesoid X receptor; RXR, retinoid X receptor. From
Knapen et al. (2018). (D) Gene transcriptional networks change as rainbow darter testis undergoes development to maturation
(Bahamonde et al. 2016). (E) The Mojave (MOKA), Death Valley (DEVA), and Peninsular (PENI) networks vary in network metrics.
Nodes in the network represent populations: node size and color are proportional to eigenvector centrality. Edge weight is pro-
portional to levels of gene flow (Nm). (F) The entire sensory surround of the organism is represented in the brain’s “central complex”
diagrammed here. Projections of columnar neurons originating from the (upper modules W, X, Y, and Z provide sub-modules to the
left [L, L8-L1] and right [R, R1-R8] of the midline that provides connections to successive computational layers EB). Computations
within the PB, FB, and EB are relayed to decussating axons extending into the lateral centers (LAL), where they gate the activity of
premotor neurons (DN). The proposition here is that one module represents 1/16th of the sensory envelope.

data used to make the network are the physical 100% probability over time as the interactions
properties of the protein factors. Parameters of within the module change. Once the transition
localization, concentration, dynamics, and inter- occurs they revert back to zero. Reverse transi-
actions are a function of cell size. Nodes are cell tions are not allowed. (2) The stochastic inter-
cycle phases (G1, S, G2, M, and cytokinesis) and actions within each module and the changes in
the links are the events that allow transitions protein factor copy number with time determine
from one phase to the next. Fach node encom- the dynamics of the network. There is biological
passes a sub-network. Figure 5B describes the noise due to the stochasticity of the interactions.
subnetwork composing the Gl-phase node. The (3) The outputs are the cell size at which each
changes in this subnetwork with time allow for of the transitions occurs. (4) Changes in envi-
progression from Gl to S phase. Note that: (1) ronment or mutations perturb the network.
The links are the transitions from one phase to Extension to mammalian cells and cancer de-

the next. Their thickness changes from 0 to mand developing tools for making required
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(iii)

(iv)

measurements in less genetically modifiable sys-
tems than yeast.

Organ-level network (perturbation drivers). A
perturbation network (stressor—beyond homeo-
stasis) describes pathways that converge to stea-
tosis—lipogenesis, and fatty acid uptake, efflux,
and oxidation (Angrish et al. 2016; Knapen et
al. 2018; Villeneuve et al. 2018). The hepatic
steatosis adverse outcome pathway (AOP) net-
work represents a network that spans scales,
and includes molecular, cellular, organ-level,
and organismal level responses (Fig. 5C). The
output of the network is to predict hepatic stea-
tosis. The network is structured to represent the
receptors within the liver and how activation of
these receptors intersects and direct processes
that when off balance could induce fatty liver
disease. The modularity of the network is repre-
sented by what can be measured in terms of
physiological parameters (e.g., binding to recep-
tors, and measurements of lipids). The nodes in
the network are called key events and are largely
physiologically derived. The links are down-
stream effects after activation or relationships
between key events (metabolome). The strength
of association of each node is estimated through
Bayesian network analyses and this is a feed for-
ward network. If sufficient perturbation of this
network occurs within a specified amount of
time, hepatic steatosis will occur. The network
exhibits plasticity to a point of departure (at
each key event), and then proceeds to the next
outcome. There will be individual variability
(each person is different) that could be explained
by population identifiers. The network is
intended to accurately represent and predict
how a system will respond to perturbation,
even if that involves some degree of abstraction,
simplification, or implicit embedding of more
detailed underlying systems understanding
(Villeneuve et al. 2018).

Developmental networks (growth and develop-
mental drivers). Gonadal growth of male rain-
bow darter during periods designated as develop-
ing, pre-spawning, spawning, post-spawning and
recrudescence, and the transcriptional network
that corresponds with each stage, changes, and
is dependent on structure and function (Fig.
5D). These data suggest that there are distinct
transcriptomic fingerprints for testis stages, and
this study provides novel mechanistic insight into
molecular signaling cascades underlying sperm
maturation in fish (Bahamonde et al. 2016). A
gene expression network based on microarray
data describing how the gonad develops demon-
strates how the network changes as structure and
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function changes. This particular network is
based on one level of organization (the transcrip-
tome) but is classified according to the organ
level changes. The genes cluster differently at
each stage of gonadal development. Since this is
microarray data, and not RNA-seq data, some
aspects of the network could be missed
(Bahamonde et al. 2016; Basili et al. 2018).

(v) Microbiome networks (perturbation drivers). A

microbiome is a community of microbes (which
can include bacterial, protozoal, and viral taxa—
“virome”) that inhabit a particular organ/tissue
of a host (typically an animal or plant) (Berg et
al. 2020). Gut microbiomes for example are well
studied in humans and some animal species, usu-
ally focusing on bacterial taxa. Next generation
sequencing (NGS) technologies enable quantita-
tive descriptions of such communities in great
detail, including phylogenetic distinctions below
the species level (in any case, the species concept
is rather fraught for microbes), delivering relative
abundances of thousands of operational taxo-
nomic units (OTUs). These microbial communi-
ties influence host health and behavior pro-
foundly. This influence takes advantage of a
range of different mechanisms, which are only
beginning to be understood, the ontogeny of
microbiomes within their hosts, and their dy-
namics throughout the host’s lifetime. The
responses of microbiome communities to pertur-
bations, such as antimicrobial agents, infections,
or changes in host diet are of particular relevance
to understanding their impact to host health, and
harnessing this knowledge for therapeutic use.
Microbiome communities are well represented
as networks of species, characterized by co-
occurrence, though typically interactions of
OTUs are not explicitly measured. Nonetheless,
exploring associations between microbiome
structure and for example robustness versus plas-
ticity over time and under different regimes of
disturbance/perturbation could be a powerful ap-
proach to understand patterns of health and dis-
ease, across different host species and disease
phenotypes, as driven by variation in
microbiomes.

(vi) Networks of populations (ecology drivers): Natural

populations often occur as fragmented metapo-
pulations—networks of populations linked by
dispersal and migration. Fragmented population
structure may occur naturally, due to patchy dis-
tribution of suitable habitat, such as mountain-
tops, ponds, or in the case of humans and their
animals, cities, and farms. In addition, anthropo-
genic transformation can alter the structure of
population networks, increasing or decreasing
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the movement of organisms among patches
(connectivity). For example, human traffic can
connect populations by translocating organisms,
while habitat loss can isolate populations in pro-
tected areas or climatic refugia. Understanding
how changes in population network topology af-
fect the resilience/robustness of the component
populations to environmental change (also: dis-
ease spread) is an increasingly urgent priority, as
we continue to launch inadvertent experiments
manipulating landscape connectivity.

Desert bighorn (DBH) sheep present a compel-
ling model system (Buchalski et al. 2016). DBH
inhabit mountain ranges where higher precipita-
tion and lower temperatures provide higher for-
age quality, and where steep, open terrain allows
them to visually locate and avoid predators. DBH
are thus segregated into relatively independent
populations by the naturally fragmented distribu-
tion of mountainous terrain, creating a
metapopulation-like structure in which local
population sizes range from tens to a few hun-
dred individuals and genetic drift is strong but
variable (Bleich et al. 1990). Population extinc-
tion and recolonization have been observed, and
extinction varies with elevation, precipitation,
and access to water (Epps et al. 2004).

DBH networks defined by observed levels of gene
flow (Nm) vary in topology, and populations
within networks vary in centrality (Fig. 5E). The
Mojave (MOJA) and Death Valley (DEVA) net-
works are similar in size, but populations in the
Mojave are more connected than in Death Valley.
Centrality in the DEVA system is far more polar-
ized, with just two very strongly connected pop-
ulations contrasting 11 fairly isolated ranges;
whereas in the Mojave, the gradient in population
centrality is much smoother. The Peninsular
Range (PENI) network is smaller, and has an in-
termediate number of strongly connected popula-
tions compared with the MOJA and DEVA net-
works, with slightly weaker connectivity overall
compared with the other two networks. Which
networks are more resilient to environmental per-
turbations of different types—from climatic vari-
ation to invasion of infectious agents?

(vii) Saltmarsh (ecology and perturbation drivers).

Ecosystems are complex networks of interacting
species with various environmental inputs of
varying importance and with stabilizing feed-
backs. For example, salt marsh ecosystems have
existed for millennia more or less in equilibrium
with sea level, and this has been possible because
of negative feedback between the higher plants
and flooding (Morris et al. 2002). However, the
feedback can be positive and destabilizing if the
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rate of sea-level rise is too rapid. Focusing on
the negative feedback, we know that the plants
respond positively with greater net primary pro-
duction (NPP) when sea level rises, provided the
relative elevation of the marsh is high. When
NPP rises, biogenic soil volume and sediment
trapping increase, which raises the elevation of
the marsh, maintaining equilibrium. The result
of these feedbacks is a stable (within bounds)
system that has been remarkably resilient in
the face of rising sea level.

(viii) Networks of the brain (behavior drivers). Simple

hierarchical systems of neurons provide various
levels of network complexity. It is no accident
that artificial computational networks are re-
ferred to as “neural nets.” They resemble con-
nections of nerve cells. However, few neuronal
connectivities have been reverse-engineered to
predictive computational networks. An excep-
tion is Donald Hebb’s introduction of associa-
tive learning networks based on synaptic
(nodal) strengthening (Herz et al. 1988), which
was derived from a simplistic but relevant view
(in 1949) of hippocampal organization. Hebb
postulated that a neuron’s propensity to relay
information (efficacy) depends on its persistent
stimulation by a presynaptic drive: when two
neurons converge on the neuron and provide
coincident inputs these can be sufficient to per-
manently change the efficacy of the postsynap-
tic cell’s synapse. In other words, synaptic
strength results from presynaptic association.
Hebb’s work immediately attracted researchers
working on the cortex and hippocampus, both
mediating in short and long-term memory
(e.g., Frolov and Murav'ev 1993).

We know from descriptions of chordate and
invertebrate brains that every functional do-
main is defined by its characteristic network
arrangement-patterned synaptic connections
among its constituent neurons, and its connec-
tions from and to other domains. Some func-
tional domains show close genetic, structural,
pathological, and functional similarities, which
taken together imply genealogical correspon-
dence: hence phenotypic and genotypic homol-
ogy implying an origin in deep time before the
divergence of lineages leading to vertebrates
and invertebrates. Currently, the most interest-
ing “real” neural networks are in the most an-
terior region of the brain: the vertebrate basal
ganglia and hippocampus; in panarthropods the
“central complex” and mushroom bodies
(Wolff and Strausfeld 2016). Basal ganglia and
central complexes in common (Strausfeld and
Hirth 2013) coordinate motor actions by
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editing outputs by orchestrating systems of in-
hibitory connections that selectively gate out-
puts relevant to a required behavior permitting
information to reach circuits controlling motor
neurons to muscle. Genetic deletions, or inter-
ventions of dopaminergic modulators in the
network lead to Parkinson’s-like pathologies
in both mouse and fruit fly. Insect mushroom
bodies and vertebrate hippocampus form long
term associations relating to the memory of
place, experience, and sentience.

The “central complex” comprises discrete com-
putational modules supplied by high-level sen-
sory inputs (Fig. 5F). Modules assess the bilat-
eral weighting of sensory percepts to provide
appropriate signals to controllers—the inhibitor
neurons that gate motor actions. Precision of
connections across the modules reflects dexter-
ity: invariant precision of a praying mantis, but
noisy connectivity in a species with moderate
dexterity, such as a cockroach. In Drosophila,
optogenetics and electrophysiology document-
ing the central body’s role in working memory
and motor control (Seelig and Jayaraman 2013;
Wolff and Rubin 2018) demonstrate that this
center is a paradigmatic neural network ready
for deeper study using mathematical network
analysis. Prediction of network activity under
precise parameters can be compared with ex-
perimental data.

Barriers and challenges

The “networks across scales” grand challenge
attempts to find common network structures and/
or common network dynamic behaviors that unify
biological systems across levels of organization. But
how can we find organizing principles that are com-
mon across biology when systems range from inter-
actions of genes or metabolites to descriptions of
entire ecosystems? Such a grand objective of finding
common organizing principles that span molecular
makeup to planetary macrostructure is limited by a
multitude of barriers that must be overcome. For
example, network diversity, structure, complexity,
metacomplexity, causality, completeness, and univer-
sality complicate knowledge integration.

Diversity: An important barrier is the actual di-
versity of the nodes and links of networks. This di-
versity must be defined when studying, comparing,
and/or integrating systems. For example, the PPINs
of Fig. 5A have protein nodes connected by links
describing the existence of interactions between cell
surface proteins. The network of protein factors of
the cell cycle of Fig. 5B describes the interaction of
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transcription factors and a cycle dependent kinase
with promoters of crucial genes of the G1 binding
and phosphorylation modules. The networks of DBH
sheep populations of Fig. 5E describe how popula-
tion nodes are connected in different landscapes.
Connecting interactions of cell surface proteins, cell
cycle regulation, and spread of genes in sheep pop-
ulations showcases the complexity of trying to inte-
grate three distinct biological systems. These
interactions could be visualized with a tripartite
graph, which is a special case of k-partite graphs.
This general class of graphs has nodes that can be
divided (partitioned or colored) into k disjoint sets
(partitions or colors) and connections (links) that
always connect nodes belonging to different sets.
Closed k-partite graphs do not impose restrictions
of the k-partite structure of connected nodes (all
sets can connect to each other). Open k-partite
graphs do not allow a tightly connected structure
(circular in the case of tripartite graphs). The use
of k-partite structures in network biology has been
limited. For example, Koc et al. (2018) devised a
tripartite network of gene-metabolite-pathway con-
nectivity that linked transcriptomes to metabolism
using a metabolite-centric reporter pathway analysis.
However, one benefit of k-partite structures is that
they can be decomposed into simple graphs; open
tripartite graphs can be decomposed into one-
mode and two-mode (bipartite) graph projections
to improve visualization.

Structure: Biological systems are structured. The
behavior, interactions, and goals of subsets of parts
may differ from the rest of the system. One kind of
structure that is common is the “module.” Modules
are sets of integrated parts that cooperate to perform
a task and interact more extensively with each other
than with other parts or modules of the system
(Hartwell et al. 1999). Modules are generally defined
within structural, functional, and historic contexts.
Since many networks study how modules organize
into systems, the contextual definition of a module
poses a problem for constructing biological net-
works. Modules are also at the heart of our under-
standing of robustness, the capacity of a biological
entity to persist under the uncertainties of change.
Can we generate a general theoretical framework for
biological modules across spatial, functional, and
temporal scales? Since modularity appears linked to
hierarchy in biological systems (reviewed in Caetano-
Anollés et al. 2019, 2021), what are the evolutionary
drivers of hierarchical modularity in network
structure?

One example at the molecular structure level is
the structural domain module of a multi-domain
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protein. The organization of domain modules in
proteins, which massively unfolded in a “big bang”
of domain combination during the rise of multicel-
lularity and the eukaryotic superkingdom, has been
modeled with a time series of evolving networks
(Aziz and Caetano-Anollés 2021). These networks
unfold both hierarchy and modularity in evolution.
They show significant network structure.

Structural modules also exist in cellular organiza-
tion. Together with the “central complex” of the
brain (Fig. 5F), the “paired mushroom” bodies are
examples of networks comprising discrete modules
and interactive nodes. Homologs across phyla repre-
sent divergences from a “ground pattern” network,
originating about 600 million years ago according to
“trace” fossils that recorded behaviors of the earliest
bilateral animals. Mushroom bodies, like the hippo-
campus, comprise orthogonal arrangements of inter-
secting neurons that comprise a Hebbian-like
network. Work on learning and memory in the fruit-
fly Drosophila (Heisenberg 2003) provides the most
accessible system for investigating whether Hebbian-
type associations apply to real-world biological learn-
ing networks. Structural studies show the mushroom
body’s neurons consisting of orthogonal arrange-
ments of local interneurons intersected by converg-
ing inputs encoding various types of unimodal
sensory data organized as would be a massive
Hebbian network. Output neurons that encode mul-
tisensory associations allow the experimenter to
“read” functional properties of the biological
network.

Figure 6 schematizes such multisensory associa-
tions. Different modalities (e.g., visual from the vi-
sual centers [ME, LO] or olfactory from the antennal
center [AL]) encode high level sensory data that can
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contribute to sensory associations mediated by
Hebbian type circuits (panel B) provided by thou-
sands of parallel fibers (panel C) that intersect these
sensory inputs (Huerta et al. 2004). Short term syn-
aptic plasticity is achieved by converging sensory
inputs inducing a strengthening (positive—GO) or
weakening (negative—NOGO) modification of syn-
aptic sites that signal to output neurons. Permanent
reinforcement (long term memory) may be estab-
lished by repetitive convergent inputs to the net-
works leading to suppression or facilitation of
circuits contributing to the release or suppression
of downstream motor actions. A mushroom body
comprises hundreds of such networks, many of
which are clustered together in discrete domains,
suggesting hub-like organizations of learning mod-
ules. While much is known about the physiology
of discrete subsets of neurons in these centers,
what is not known are the rules underlying how
these subsets interact such that memories interact,
achieve contextual valences, and form post hoc mem-
ory modifications: all functions expected in sentient
organisms that obtain an understanding of dynamic
ecologies. What is recognized from behavioral stud-
ies across species is that memories are infinitely plas-
tic, even manipulable. Current studies on mushroom
bodies are focused on “connectomics”: the total re-
construction of neural network using serial section
reconstruction of every one of the approximately
2000 parallel fibers and all their synaptic interactions
with incoming and outgoing neurons (Eichler et al.
2017). The many terabytes of data representing
hypercomplex network organization present interest-
ing challenges in interpretation and understanding
these memory systems in terms of reconstructing
functional “real world” representations that can
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Fig. 6. Models of the mushroom bodies. (A) Neuroanatomy: MB Mushroom Bodies; AL Antennal Lobe glomeruli (circles); ME & LO
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explain and indeed imitate sensory associations and
memory acquisition.

Complexity: Since systems are structured into
highly integrated subsystems (Simon 1962), there
will be need to integrate networks both across and
within scales. For that purpose, we can take advan-
tage of Simon’s “near-decomposability” of systems
(Simon 1997), which allows for “long-term behavior
to be studied on an aggregative basis without con-
cern for internal details of the parts, and allows the
short-term behavior of each part to be studied inde-
pendently of the behavior of the other parts.” In
some cases, it may be straightforward to dissect com-
plexity scales because each part of the nearly-
decomposable system will have strong internal links
among its subparts (see Fig. 5B). In other cases,
there could be significant difficulties because hierar-
chy and modularity could be loosely linked in the
systems.

Barriers to describing very complex networks (e.g.,
ecosystems) can be overcome by analyzing the prop-
erties of random networks generated in silico and
using what we learn to understand real networks.
Figure 7A shows an example of a feasible food web
generated by populating a transfer matrix with trans-
fer coefficients and solving for the equilibrium solu-
tion. A network is feasible if the solutions are all
positive. The methodology is illustrated in Fig. 7B.
After the matrix dimensions are set, the random
inputs (f) and transfer coefficients (A) are generated,
and the solution to dx/dt=0 is determined. The
foodweb is a feasible one if the solution (xs) is pos-
itive. We can ask questions about connectivity and
total system throughput (TST), stability, ascendency
(Ulanowicz 1980), fractal dimension, and size.

The hope is that we can arrive at generalities
about real networks by analyzing the properties

A AN EXAMPLE:
detritivores °3 consumers °2 consumers

/ primary
e e producers

y
& °1 consumers
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of artificial networks. From a universe of >5000
random food webs composed of as many as 2200
taxa, it was demonstrated that the probability of
generating a feasible network declined rapidly as
the number of taxa exceeded 400. Flow diversity
increased asymptotically, that is, flows became
more uniform (Morris et al. 2005). Ulanowicz
(2002) used an information-theoretic homolog of
the May—Wigner stability criterion to hypothesize
a maximal connection per taxon of about 3. From
the computer-generated networks, the average num-
ber of major flows per taxon (flows greater than 5%
of the total input flows) was 2.1, similar to those of
real food webs and not so different from that pre-
dicted by the May-Wigner criterion. The explana-
tion may be the limit imposed by gross primary
production on energy flow, like the limits that re-
source space places on the distribution of species
(MacArthur 1957). These examples suggest there
are fundamental relationships between network
structure and function.

Meta-complexity: Another barrier is the meta-
complexity of the systems that must be modeled.
For example, nodes can represent a variety of enti-
ties: objects, agents, relationships, scaffolding, events,
dynamics, and aggregations. To illustrate, proteins in
PPINs can be considered objects but also agents.
Molecular functions in the direct acyclic graphs of
Gene Ontology can be considered events. Similarly,
links can become structured, revealing complexity in
biological networks (Ahn et al. 2010). Link commu-
nities thus express additional meta-complexity. Can
all these entities be scale invariant? Would it be pos-
sible to develop a common vernacular? If so, would
there be a way to classify specific node or link iden-
tifiers? It is here where epistemology and ontology
must interface.
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Fig. 7. Generating artificial food webs by in silico modeling. (A) Foodweb generated by populating a transfer matrix with transfer
coefficients and solving for the equilibrium solution. (B) Methodology used to generate modeled food webs (described in the text).
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Meta-complexity also manifests in the diversity of
the functions (e.g., differential equations) that are
mapped onto nodes and links. Mapping functions
to links often define the non-linear dynamic behav-
iors of matter-energy and/or information traveling
between nodes through a vector of state variables.
A diversity of dynamics can therefore unfold in
link communities. For example, link communities
of metabolism could define reversible and irrevers-
ible metabolic reactions and transport processes.
These processes can be dissected with sets of non-
linear equations, which cannot be solved analytically
but can be visualized in an abstract n-dimensional
state space with a “velocity” vector field. The chal-
lenge is therefore to mine steady states of the multi-
dimensional space (e.g., fixed-point attractors,
chaotic aperiodic motions, and close loop attractors)
to understand the landscape of dynamic behaviors of
biological systems.

Causality: Because life requires explaining contin-
uous change and a multitude of overlapping pro-
cesses, a framework of causal explanations has the
potential to uncover life’s multilayered complexity.
We could call these processes “activities” and the
temporal ordering of dependencies between com-
plexity layers “causation.” Within this philosophical
framework, nodes can represent the structure and
dynamics of immanent entities (events) that span
the spatiotemporal confine or transcendent entities
that are abstract in nature. We can call these nodes
“causal relata” and the directed links that connect
them “causal relations.” Beginning with David
Lewis, causal networks have been modeled by incor-
porating  probabilistic or  Bayesian  network
approaches and causal and counterfactual inference
(Pearl 2000). These kinds of approaches are power-
ful. They are currently impacting the emerging Al
field. However, effective integration approaches
must be sought, perhaps using experiments, predic-
tive computational methods, theoretical and mathe-
matical approaches, and the exploration of functions
and constraints with philosophical approaches. One
example is modeling causal interdependent non-
linear dynamics with multivariate discrete dynamical
systems (automata networks). In particular, Boolean
networks are canonical models that have been ap-
plied to a number of complex systems very success-
fully. To capture redundancies in system dynamics of
biochemical regulatory and signaling interactions, a
mathematical framework called the “effective graph”
for example was capable of synthesizing both net-
work structure and dynamics in a weighted graph
representation of discrete multivariate systems
(Gates et al. 2021).

P. Bogdan et al.

Completeness: The development of case studies
that explore and look for common threads in the
structure and dynamics of networks could be prom-
ising. Commonalities that are predictive for example
along economy, robustness, flexibility, or plasticity
axes or within morphospaces could be identified
and then extended to the study of a broader range
of systems. However, the methodological problem of
“gappy”’ or incomplete data sets and the issue of
“snapshots” complicate any endeavor. Following
the genomic revolution, biology has been able to
define entire repertoires of biological entities (e.g.,
genes, metabolites, fold structures, and molecular
functions). While certain explorations have been
comprehensive many others are lagging behind. For
example, the universe of proteins can be described
with a finite set of folds and fold superfamilies sum-
marizing the overall three-dimensional atomic design
of structural domains. The SCOP (Murzin et al.
1995) and CATH (Orengo et al. 1997) databases,
the gold standards of protein classification, show
that protein folds group into 2705 SCOP (http://
scop.mrc-lmb.cam.ac.uk) and 5481 CATH (https://
www.cathdb.info) well-curated superfamilies (as of
April 29, 2021). These numbers are reaching a pla-
teau, strongly suggesting that most structural designs
have been sampled through structural genomic
efforts. In sharp contrast, the world of species and
our understanding of the Tree of Life is far from
complete (Hug et al. 2016). Considerable “dark
matter” exists at both the level of cellular organisms
and viruses. These uncertainties raise a number of
important questions. Are networks biased by the ex-
perimental knowledge or focus on individual com-
ponents and are there situations where key nodes are
not represented because nobody has really studied
them? Are there methods that can identify gaps or
normalize over emphasized nodes? Another method-
ological problem is the issue of “snapshots.”
Numerous experimental approaches provide single
measures within a continuum of change. For exam-
ple, the crystallographic acquisition of three-
dimensional atomic structures has been stored in
the RCSB Protein Data Bank (PDB) repository
(https://www.rcsb.org). Currently, there are 177,219
biological macromolecular structures available in the
database, which has been growing at a significant
pace (>10,000 PDB entries per year). Despite these
significant accomplishments, PDB entries represent
conformational “snapshots” that give little justice
to the conformational molecular landscape of pro-
teins and nucleic acids. There is now hope that cryo-
genic electron microscopy (Cryo-EM) may pave the
way to wide-encompassing conformational views.
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Biological networks across scales

This example highlights the problems of acquisition
of longitudinal data that can describe the dynamics
of numerous biological processes at different time-
scales. Consequently, there will be a need for analyt-
ical tools that can manage “big data,” including
longitudinal datasets, and can make use of different
data flows in a unified methodological framework.

Universality: Finally, there is the problem that not
all data types can be modeled with networks. This
difficulty challenges the concept of networks across
biological scales. Simplification must occur if infor-
mation from multiple levels of biological integration
are incorporated into a network (e.g., hepatic stea-
tosis), or if the network changes over time because of
development or evolution, and a rigorous evaluation
of the assumptions and rules underlying network
simplification is required.

Broader impacts

Studying biological networks across scales is by def-
inition broad impact in terms of the immediate
knowledge that it generates from a large-scale study.
The practicalities of constraining this to a tractable
approach include developing new algorithmic tech-
niques to link information, determining the influ-
ence of different levels of noise on the knowledge
produced from that information, and evaluating
the reliability of that knowledge. While leading to a
set of rules, it allows those rules to be defined in
their applicability and rigor. The approach uses
Nature as the data set to define how a system works.
Where theoretical modeling does not agree with ex-
periment, it helps find signal in noise and defines
areas where new knowledge is awaiting discovery.

Nature has had a long time to conduct its own
system experiments. By studying the nature of how
those systems develop and interact across different
scales, our approach allows a more concrete under-
standing of the impact of perturbations on those
systems, whether it be a large-scale shift in environ-
ment (e.g., ocean pH and average temperature
shifts), advance of an invasive species, or small scale
such as the extinction of a rare species, or the mu-
tation of an amino acid. This in turn sets guidelines
to prioritize the response to these changes so that
resources can be devoted to mitigate influences
that cause the maximum impact.

The nature of the study extends beyond biology.
Nature can be seen as the ultimate laboratory setting
to test network and systems performance with the
experiment having the ultimate metric of success—
life or extinction. The results and rules established
can be extended to non-biological systems, for
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example, redundancy in  automation, = self-
organization for transport within a city, response
to perturbation in a system, and transient
approaches that activate. It is not too strong to say
that this could lead to a totally new approach to
network and systems science in both the physical
world, but also in the computational arena.

Reintegrating biology

To effectively study a network across scales, a net-
work of experts in each of those scales (and individ-
ual research areas) needs to be created. A common
language is needed to link those experts and a back-
bone organization established to ensure that the ef-
fort is focused on the questions and not the
administration. This mirrors the concept of collective
impact where a common agenda, shared measure-
ment systems, mutually reinforcing activities, contin-
uous communication, and a backbone organization,
maximize limited resources to produce maximal out-
put (Kania and Kramer 2011). By design, formula-
tion around a collective impact model reintegrates
separate disciplines and expertise into a common
goal.

The common agenda is to establish collaboratives
that provide:

o Longitudinal empirical network data across a
broad range of biological systems and scales, ide-
ally including observational, experimental, compu-
tational, and theoretical approaches.

o Analytical expertise to analyze these datasets ask-
ing common questions and using common tools.

e Modeling expertise to construct parallel sets of
general network dynamic models, putting into
context and providing generality to the set of em-
pirical studies.

e Space-time for empirical and theoretical project
leaders to come together to synthesize findings,
identifying commonalities and differences across
systems.

e Measurable outcomes to test, improve, and verify
the approach.

A shared measurement system necessarily requires a
shared language across different disciplines. There
are ontology approaches to this that help under-
standing of the results but guiding the experimental
and analysis approach is more difficult. As a scien-
tific endeavor we are more used to constructing hy-
potheses and testing those hypotheses—the scientific
method. We must ask ourselves which aspects of
information need to be retained to link biological
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scales. For example, if we are trying to understand
the dynamics of a microbiome community, and/or
its outputs that affect the host: Is it taxonomic com-
position that is the most informative, or is it tran-
script or protein products of the microbial
community? This could potentially be addressed by
constructing competing hypotheses (or different net-
works) that essentially represent the same commu-
nity but using different data flows, and then asking
which of the networks presents predictable dynamics
or best predicts outputs.

Mutually reinforcing activities are critical. With
multiple disciplines involved in a common goal
those disciplines must communicate to interact.
This requires physical interaction (scientific meet-
ings), educational interaction (common training),
and knowledge interaction (summaries of the knowl-
edge produced as it is produced). The resources of
the effort must be understandable by all, at least at
the most basic level of being able to know what they
are, how to use them, and what to look for in the
output.

Continuous communication is linked to mutually
reinforcing activities. For maximum efficiency in un-
derstanding a network of disparate information
across scales and times, communication is critical.
That includes the free flow of information, the es-
tablishment of mutual respect and trust between dif-
ferent research thrusts, and transparent output that
the interested public can follow to understand prog-
ress that is being made.

Finally, the most important part is backbone sup-
port. This includes a strategic leadership that sets the
goals and guides the direction, monitoring of prog-
ress in meeting goals, provision of resources that can
help achieve goals, and maintaining the common
direction, language, communication, and legacy in-
volved in producing and preserving the knowledge
produced. Reintegrating biology is a necessity to
study biological networks across scales.
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