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Abstract—This paper presents a novel design method based
on machine learning (ML) for a spiral coil in a wireless power
transfer (WPT) system operating at high frequencies. While
a MHz frequency operation provides high power density for
battery-powered applications, optimizing the spiral coil design
becomes challenging due to the complex electromagnetic analysis,
such as skin and proximity effects. Even though a three-
dimensional (3D) electromagnetic simulator provides a practical
analysis of different coil structures, it cannot quickly optimize
the coil design due to its computing time. Therefore, an ML-
based method is first proposed to estimate the Q factor of a
spiral coil, a critical parameter to determine the efficiency of a
WPT system. Towards this end, a feed-forward neural network
is trained using around 20 · 103 data samples collected by using
a 3D quasi-static electromagnetic field simulator. It is shown that
this method is effective; that is, it ensures an accuracy of up to
96%. Then, a spiral coil design method leveraging the designed
ML-based Q factor estimation is proposed. This method offers
high performance (the intersection over union metric takes values
up to 70%) and significant computation time savings (at least five
orders of magnitude), compared to commonly adopted software
simulators. Finally, the effectiveness of the proposed method is
verified by the actual fabrication of several spiral coils.

Index Terms—Spiral Coil Design, Wireless Power Transfer,
Machine Learning.

I. INTRODUCTION

BATTERY-powered vehicles, such as drones, robots, and
automated guided vehicles, have attracted a lot of interest

in moving toward electrification [1]–[3]. Whenever the battery
power is sufficient, these vehicles act fast and widely, while
carrying a heavy load and working repeatedly and tirelessly
to perform a significant amount of labor. Therefore, these
vehicles require convenient and flexible charging ways due
to their scheduled and diligent workloads. A charging method
using wireless power transfer (WPT) systems has the potential
to increase productivity without any plug-in connections. In
WPT systems, the power transmits through magnetic couplings
between the charging stations and the batteries, without any
cables or wires [4], [5]. Among the system components, the
coupling coils are crucial to obtain a high efficiency in WPT
systems and hence, it is paramount to extract their electrical
characteristics. The lumped elements, such as the resistance
R and the inductance L, are used to model the electrical
properties of the coil. These elements also determine the
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quality Q factor, which is the ratio between the reactance and
the resistance in the circuit. A WPT system requires the coil to
have a high Q factor by generating a low resistance. However,
the mathematical model for R at MHz frequencies is complex
due to the proximity, skin effect, and other hidden losses.

In addition to the importance of R of the coils, in WPT
systems it is also necessary to consider the parasitic stray
capacitance Cp of the spiral coils at MHz frequencies [6], [7].
In reality, the stray capacitance and inductance form a parasitic
parallel resonance. When the operating frequency and the
parasitic resonance frequency are close to each other, this par-
asitic capacitance can significantly decrease the performance
of series resonant-based WPT systems at a high-frequency
of operation [8]. Ignoring the stray capacitance can therefore
cause unintended behavior in the coupling coefficient, or load
variance of a series resonant-based compensation network
(e.g. Series-Series, Series-Parallel, and LCC compensation
network) [9], [10]. Thus, it is important to consider the
parasitic stray capacitance and minimize its negative effects.
The stray capacitance of a spiral coil is determined by several
factors such as the diameter of each turn, the total number of
turns, the pitch size, and the conductor permittivity. However,
it is difficult to accurately calculate the self-capacitance due
to the nonlinear adjacent winding capacitance, which depends
on the structure of the coil [6]–[8].

In order to address the aforementioned issues, there are sev-
eral software simulators based on numerical analyses for op-
timizing a coil design. Three-dimensional (3D) finite element
method (FEM) solvers, such as Ansys-HFSS and COMSOL,
are the most representative simulators for calculating the elec-
trical characteristics. Also, a 3D quasi-static electromagnetic
field simulator, such as Ansys-Q3D, can be used to extract
directly the values of R, L, and Cp [11], [12]. However, these
conventional methods are time-consuming and cannot provide
insights into how to design and optimize the coil for a specific
application. To address this issue, it is necessary to have a
design method that is capable of quickly finding an optimal
design when some parameters are given.

In this paper, we propose a machine learning (ML) method
for high-frequency spiral coil design in WPT systems. High-
frequency WPT systems have the potential to provide a
compact and agile charging solution thanks to their reduced
size and weight of their components. The practical applications
of our research extend to battery-powered devices, including
drones, robots, and automated guided vehicles. While we
mainly focus on high-frequency (>1 MHz) coil designs in
this paper, our methodology is applicable to coil designs in
low-frequency operation. The contributions and the outline of
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the paper are as follows:

• In Section II, we formally define the design parameters
and electrical components of a spiral coil, as well as the
Q factor, which is a critical parameter to determine the
efficiency of a WPT system.

• In Section III, we propose an ML-based method to
estimate the Q factor of a spiral coil. Specifically, we first
build a dataset using the Ansys-Q3D simulator and then
leverage it to train a feed-forward neural network (FNN)
that outputs an estimate of the Q factor of the spiral coil
under consideration. Our numerical evaluations showcase
that the proposed ML-based Q factor estimation performs
well (the average error rate is below 10%) even when only
10% of the data samples are used for training.

• In Section IV, we propose a spiral coil design method that
leverages our ML-based Q factor estimation proposed
in Section III. In particular, given the values of some
spiral coil design parameters, namely the outer diameter
Do and the wire thickness wt, the method estimates the
remaining design parameters, namely the pitch size p, the
frequency of operation fs and the number of turns N ,
that result in the highest Q factor of the coil. We assess
the performance of the proposed method by using the
intersection over union (IoU) [13] as a metric. Our results
show the effectiveness of the proposed method both in
terms of performance (IoU of 70%) and computation time
(five orders of magnitude faster than Ansys-Q3D).

• In Section V, we present experimental results of the pro-
posed coil design method of Section IV. We fabricate and
test several spiral coils (which differ in their values of p,
fs, and N ) and verify the effectiveness and computation
efficiency of the proposed optimization method.

• In Section VI, we conclude the paper.

We build on our previous works [14] and [15]. However, this
paper has the following key distinctive features from [14]
and [15]:

• Searching parameters: In [14], the proposed method
required three input parameters (namely, Do, fs, and
wt) to generate two output parameters (namely, p and
N ). This paper extends this setting: the method operates
with just two input parameters (namely, Do and wt) and
produces three output parameters (namely, fs, p, and N ).
This extension of the method increases the dimension of
the search space from two parameters to three parameters,
showcasing that the proposed method is indeed versatile
to different coil design scenarios.

• Methodology for top-k% region: In [15], we used the
Clough-Tocher interpolation method to find the so-called
top-k% region (see Section IV). Differently, here we use
a machine learning approach. This not only simplifies the
computational process, but it also offers a more intuitive
(and potentially accurate) design.

• Experimental validation: This paper includes AC-to-
AC WPT experiments to validate the effectiveness of the
proposed method in terms of conversion efficiency. These
experimental results are additional contributions which
were not presented in [14] and [15].

(a) (b)

(c)

Fig. 1: Structure of a spiral coil: (a) design parameters; (b) lumped elements
model; and (c) WPT system structure.

II. SPIRAL COIL DESIGN

The geometry of a circular spiral coil consists of the outer
diameter Do, inner diameter Di, number of turns N , pitch
size p, and wire thickness wt of the coil, as illustrated in
Fig. 1a. These parameters are tied together by the following
relationship,

Do = Di + 2N(wt + p). (1)

The equivalent circuit of the spiral coil, shown in Fig. 1b,
consists of the lumped elements of the spiral coil, namely
the resistance R, the inductance L, and the capacitor Cp.
The geometry parameters of the spiral coil and the values of
R, L, Cp are approximately represented with the following
simplified equation [7], [16],

R = RDC
wt

4δ
, RDC =

l

σπ(wt/2)2
, δ =

1√
πfsσµo

, (2)

L =
39.37N2(Do −N(wt + p))2

16Do + 28N(wt + p)
[µH], (3)

Cp = 0.035Do + 0.06 [pF ], (4)

where RDC is the DC resistance, l is the wire length, δ is
the skin-depth, σ is the conductivity of the conductor, and µ0

is the permeability of the free space. Based on the equivalent
circuit, the input impedance Zin of a spiral coil between nodes
a and b (see Fig. 1b) is computed as,

Zin = Req + jwLeq =
1

jwCp
||(R+ jwL)

=
R

1− 2CpLw2 +R2C2
pw2 + L2C2

pw4

+ j
wL− wCpR

2 − CpL
2w3

1− 2CpLw2 +R2C2
pw2 + L2C2

pw4
,

(5)

where w is the angular frequency.
The Q factor is the ratio between the reactance Xeq and the

resistance Req of the input impedance, which also means that
the Q factor measures the ratio between the stored energy and
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Fig. 2: FNN with three hidden layers and ReLU activation function.

the dissipated energy in the coil [17]. It is calculated by using
the impedance of the spiral coil as follows,

Q =
wLeq

Req
=

Xeq

Req
=

w(L− CpR
2 − CpL

2w2)

R
. (6)

Then, the calculated Q factors of the coupling coils are used to
find the efficiency of the WPT system. Fig. 1c shows a two-
coil WPT system when the designed coils are used for the
transmitter and receiver. When we consider the series-series
compensation network, the maximum conversion efficiency of
the WPT system is denoted as ηmax and expressed as,

ηmax =
k2Q1Q2(

1 +
√
1 + k2Q1Q2

)2 , (7)

where Q1 and Q2 are the quality factors of L1 and L2,
respectively, and k is the coupling coefficient between the two
coils [18]. To guarantee high efficiency of the WPT system, it
is necessary to find a high Q factor among the various designs
of the spiral coils considering the application environments.

To estimate the Q factor, the lumped elements need to be
calculated either by leveraging approximating expressions (2)-
(4) or via simulations by 3D FEM solvers [11], [12]. Im-
portantly, the resistance R should reflect all of the losses in
the coil, and its value is complicated to estimate at MHz
frequencies due to the proximity and skin-depth effects. Also,
the parasitic stray capacitor must be considered since it induces
parasitic self-resonance in the coil. In this work, since the
approximating expressions cannot capture all of the parasitic
effects, we utilize the Ansys-Q3D simulator to extract the
values of R, L, and Cp. However, it took 2 ∼ 4 hours to
simulate for 50 designs (2 ∼ 5 minutes/design) using Ansys-
Q3D. The computation time for the simulation is influenced
by the coil structure and the frequency of the analysis.

III. QUALITY FACTOR CHARACTERIZATION USING
MACHINE LEARNING

A. Prediction Using Deep Learning

ML [19] methods are widely used for approximating a
large class of functions provided that there exists a dataset
that properly represents the input and output of the function.
Moreover, deep neural network (DNN) [20] models perform
unprecedented achievements for various tasks, such as com-
puter vision and natural language processing tasks. A basic

DNN consists of a number of layers, in which we distinguish
an input layer, an output layer, and hidden layers. Each hidden
layer has a number of neurons that perform a weighted sum on
their incoming values, which is then followed by a non-linear
activation function. Since the activation function is non-linear,
the capacity of a DNN model is large enough to approximate
any arbitrary function [21], [22].

In our setting, the estimation of the Q factor in (6) can
be considered as a regression problem since the Q factor is
a continuous value. A suitably designed DNN can then be
leveraged to estimate the Q factor by approximating the true
function between (Do, fs, N, p, wt) and Q using the available
dataset1. To this end, we adopt an FNN [19], in which only
fully-connected layers exist, i.e., all neurons in a layer are
connected to every neuron in the next layer. Fig. 2 illustrates
a simple FNN model designed with five input parameters, one
output parameter, and three hidden layers. Each neuron in the
hidden and output layers performs a weighted sum of all its
incoming values. Then, at every neuron, a non-linear activation
function is applied on the result of the sum and this is the
output of the neuron. This operation is iteratively performed
in every layer until the result arrives at the output layer.

With reference to Fig. 2, we denote by zℓ,i, ℓ ∈ {0, 1, 2, 3, 4}
the output of the ith neuron in the ℓth layer, and the operation
at every neuron is formally expressed as,

zℓ,i = σ
(〈

Θ
(ℓ)
i , uℓ

〉
+ b

(ℓ)
i

)
, (8)

where: (i) σ(·) is a non-linear activation function; (ii) ⟨·, ·⟩
denotes the inner product; (iii) Θ

(ℓ)
i is the weight vector for

the ith neuron in the ℓth layer, and Θ(ℓ) is obtained by stacking
together all the Θ

(ℓ)
i ’s; (iv) uℓ is the input vector of the ℓth

layer; and (v) b
(ℓ)
i is the bias term, which is a constant that

helps the model to best fit the given data. Here, the z0,i’s
(i.e., the input parameters) are the parameters of the problem
of interest, i.e., Do, fs, N, p, and wt. In particular, we set the
number of neurons in each hidden layer to 64, 128, and 32,
respectively, and we consider the rectified linear unit (ReLU)
activation function σ(x) =max{0, x}. By calculating zℓ,i for
all i’s, the output vector of the ℓth layer (i.e., zℓ) is obtained
by stacking together the zℓ,i’s and it can be used as the input
vector of the (ℓ+1)th layer if ℓ ∈ {1, 2, 3} (i.e., uℓ+1 = zℓ), or
as the output of the FNN if ℓ = 4. The estimated output value,
denoted as Q̂, can then be expressed as Q̂=

∑32
k=1 Θ

(4)
1,kz3,k+

b
(4)
1 , where Θ

(4)
1,k is the kth entry of Θ(4)

1 .
The number of neurons in each layer is an important hyper-

parameter that needs to be carefully chosen since it controls
the model ability to suitably approximate a function. Roughly
speaking, the more neurons a DNN model has, the more com-
plicated function can be approximated by the model. A similar
argument also holds for the number of hidden layers or data
samples. However, having too many parameters or neurons
in the model would lead to over-fitting [19]. This is the case
when the ML model memorizes its training dataset and yields
a prediction based on it, which results in a poor generalized

1Here, fs denotes the operation frequency, and the other parameters are
defined in Section II.



IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN INDUSTRIAL ELECTRONICS 4

Fig. 3: System architecture, including the data collection, FNN model training, and performance evaluation for the spiral coil design.

performance (i.e., test performance) if a new unseen data (e.g.,
test data) is different, in a distribution sense, from the training
data. To mitigate the over-fitting phenomenon, one usually
divides the dataset into three different datasets, namely the
training, validation, and test datasets. The training dataset is
used to train the ML model, and the validation dataset is used
to evaluate the model performance (i.e., validation loss) during
the training phase. The test performance is then evaluated
based on the test dataset that is unknown to the model during
the training phase.

We trained the FNN model by choosing the well-known
mean squared error (MSE) loss function defined as,

L(f(X),y) =
1

ND

ND∑
i=1

(f(xi; Θ)− yi)
2, (9)

where: (i) f(·; Θ) is the FNN model with parameter Θ; (ii)
(X,y) is the dataset; (iii) ND denotes the number of data
samples; and (iv) (xi, yi) is the ith data sample. In our
setting, we used xi = (Do, fs, N, p, wt) and yi = Q for
the ith data sample. During the training phase, the parameters
Θ’s were optimized by using the stochastic gradient descent
algorithm, where we made use of a batch size equal to 160
and a total number of epochs equal to 2, 000. Note that the
selected number of epochs ensures that our model is not
over-fitted to the training dataset. Once the FNN model is
trained based on the given dataset (X,y), it readily outputs
Q̂, i.e., the estimated value of the Q factor corresponding to
the coil design parameters. We trained the FNN model over
a spiral coil dataset, as shown in Fig. 3. This block diagram
shows the overall procedure of the training phase, including
data collection (see Section III-B), FNN model training (see
Section III-C), and Q factor evaluation (see Section III-D) of
our ML-based spiral coil design.

B. Data Collection

We used the Ansys-Q3D simulator to simulate various spiral
coil configurations and, for each of them, we extracted the re-
sulting values of R, L, and Cp (from which the corresponding
Q factor can be computed from (6)). The structure of the spiral
coil in Ansys-Q3D is shown in Fig. 4 and it is characterized
by the geometrical parameters Do, N , p, and wt. For each
configuration, the spiral coil was wound using the enameled
magnet wire, which contains a copper conductor wrapped in
80 µm polyester. The wire was further extended for the start
and finish nodes due to the lead connection. The Ansys-Q3D
simulator analyzes the quasi-static electromagnetic field and

Fig. 4: Spiral coil shape for data collection in the Ansys-Q3D.

extracts the capacitance C, the AC resistance RAC and the AC
inductance LAC. TABLE I shows the analysis setup for the
data collection. The simulation of each design took around
2 ∼ 5 minutes using standard desktop computer resources.

TABLE I: Analysis setup of the Ansys-Q3D for data collection.

Setting Parameters Value

Solution Selection C, RAC, LAC
Maximum # of Passes 10
Minimum # of Passes 1

Minimum Converged # of Passes 3
Percent Error 0.1%

Percent Refinement Per Pass 0.1%

The various spiral coil configurations simulated differ in
the values of Do, fs, N, p, and wt. In particular, these five
input parameters2 are chosen to be uniformly distributed in a
specific range with a particular resolution. The range of the
geometrical parameters Do, wt, N, p is determined based on
a general-sized drone (i.e., one of the typical battery-powered
applications), and the operating frequency fs is set above MHz
for high-power density. The parameters for data collection
have an arbitrary range for the verification of the proposed
methodology, which may be extended to a wider range de-
pending on the application. TABLE II shows the values of
these parameters that we considered in the simulations for the
data collection phase. As shown in TABLE II, we simulated
a total of 5 × 7 × 12 × 6 × 11 = 27, 720 configurations, but
among these, we only used 19, 874 to construct our dataset. In
particular, a total of 7, 846 configurations were left out since:

2We consider a general circular spiral coil and do not include various
operating conditions, such as coupling coefficient and operating temperature.
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TABLE II: Parameters used for the data collection phase.

Variables Values # of Splits

fs [MHz] 1, 6.78, 13.56, 20.34, 27.12 5
N [turns] 3, 4, 5, 6, 7, 8, 9 7
p [mm] 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 12
wt [mm] 0.822, 1.024, 1.290, 1.628, 2.052, 2.588 6
Do [cm] 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 11

Total : 19, 874 (27, 720) cases

(a) (b)

Fig. 5: FNN model training by splitting dataset: (a) 10%/90% ; (b) 80%/20%.

(i) 5, 645 resulted in a Di in (1) that was negative; and (ii)
2, 201 resulted in a negative Q factor.

C. FNN Training

Our FNN model for estimating the Q factor of the spiral coil
was trained using the dataset constructed in Section III-B. As
outlined in Section III-A, the designed FNN model contains
three hidden layers with 64, 128 and 32 neurons in each layer,
and the ReLU function was used as the activation function.
The inputs were the five parameters Do, fs, N, p and wt,
and the output is the Q factor. We applied the stochastic
gradient descent algorithm to optimize the model parameters
Θ. Specifically, we utilized the ADAM optimizer with learning
rate γ = 0.001 to train the model. The MSE, as defined in (9),
is the loss function that we used in the training phase.

We randomly split the dataset constructed in Section III-B
(19, 874 cases) into 8 different training datasets in order
to study the effect of the amount of data in our problem.
Specifically, these 8 datasets contain from 10% to 80% of
data samples, and the remaining data samples are used for
test. For instance, the first training dataset contains 10% of the
total samples (and the remaining 90% of the total samples are
used for test), the second training dataset contains 20% of the
total samples (and the remaining 80% of the total samples are
used for test), and the eighth training dataset contains 80% of
the total samples (and the remaining 20% of the total samples
are used for test). We note that a smaller dataset (e.g., 10%
dataset) is a subset of a larger dataset (e.g., 20% dataset). Fig. 5
shows the training and test losses as a function of the training
epochs. In Fig. 5, both the training and test losses decrease
as the number of training epochs increases. As expected, the
test loss in Fig. 5a is greater than the one in Fig. 5b. We note
that some training losses in Fig. 5b are greater than the ones
in Fig. 5a. This stems from the fact that the smaller dataset in
Fig. 5a tends to be easier to fit by the FNN model than the
larger dataset. We terminated the training before the model

Fig. 6: Block diagram of the evaluation procedures.

Fig. 7: Error rate distribution of the trained FNN model.

is over-fitted to the training dataset, where we observed that
the over-fitting occurs in between 7, 000 and 10, 000 epochs.
Moreover, from Fig. 5, we note that the test loss converges
after 1, 000 epochs. Based on these considerations, we chose
the parameters when the number of epochs is equal to 2, 000.

D. Q Factor Evaluation

To verify the effectiveness of our proposed ML-based Q
factor estimation, we assessed its accuracy using the evaluation
procedure illustrated in Fig. 6. In particular, we performed
eight evaluations, i.e., one for each of the eight datasets
outlined in Section III-C. Each evaluation utilized the same
FNN model and the same number of epochs for training, and
the performance was measured in terms of the error rate. In
details, for each dataset Di, i ∈ {1, 2, . . . , 8}, we used the
notation (10i)%/(100%−(10i)%) to denote that (10i)% of the
data was used for training and the remaining (100%−(10i)%)
of the data was used for test.

From the error rate, we can infer the performance of our
proposed ML-based Q factor estimation as a function of the
amount of training data. As shown in Fig. 7, the model perfor-
mance, which is measured in terms of the error rate, improves
as the amount of training data increases. In particular, the
corresponding average error rate of the 10%/90% model is
9.11% (90.89% accuracy), while the one of the 80%/20%
models was 3.45% (96.55% accuracy). This result empirically
demonstrates that our ML-based Q factor estimation performs
well (the average error rate is below 10%) even when less than
2, 000 data samples are used for training.

IV. SPIRAL COIL DESIGN OPTIMIZATION

Our ML-based Q factor estimation proposed in Section III
provides the value of the estimated Q factor for a specific
spiral coil with fixed values of N, p,Do, fs, and wt. In
this section, we take a further practically relevant step in
the design of a spiral coil by leveraging our ML-based Q
factor estimation proposed in Section III. In particular, we
assume that, given the application of interest, only some of
the parameters are given, namely Do and wt, whereas the
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other parameters p, fs and N can take any value in their
ranges, denoted as Sp,Sfs , and SN . Our proposed method
then uses the Q factor estimation framework of Section III
to select (via an exhaustive searching algorithm) the triplet
(p, fs, N), such that p ∈ Sp, fs ∈ Sfs and N ∈ SN , that
achieves the largest Q factor. In other words, given the values
of some spiral coil design parameters, i.e., Do and wt, the
method estimates the remaining design parameters p, fs, and
N that result in the highest Q factor of the coil. Our proposed
method is graphically illustrated in Fig. 8 and it consists of two
main building blocks, namely the trained ML-based Q factor
estimator of Section III and a searching algorithm. Moreover,
a high-level view of our method in terms of a pseudo-code is
given in Algorithm 1.

Algorithm 1: ML-based spiral coil design method
Data: Do, wt,Sp,SN ,Sfs
Result: p̂, f̂s, N̂ , Qmax and I
Initiate Qmax = 0, p̂ = 0, f̂s = 0, and N̂ = 0
for p ∈ Sp, fs ∈ Sfs and N ∈ SN do

Q← FNN(Do, fs, wt, p,N)
Stack (p, fs, N,Q) in I
if Q ≥ Qmax then

Update Qmax ← Q
Update p̂← p, f̂s ← fs and N̂ ← N

end
end

As shown in Algorithm 1, the method requires a fixed
pair (i.e., Do and wt) and three sets of feasible values for
p, fs and N (i.e., Sp,Sfs , and SN ). The method provides the
best (i.e., having the largest Q factor) values for the design
parameters p, fs and N (denoted as p̂, f̂s and N̂ ) among
every triplet of elements in Sp,Sfs and SN . In particular, the
method first initiates the variables Qmax = 0, p̂ = 0, f̂s = 0,
and N̂ = 0 that represent the maximum value of the Q
factor, the best pitch size, the best frequency, and the best
number of turns, respectively. In order to find the best pa-
rameters p̂, f̂s and N̂ among all of the elements in Sp,Sfs
and SN , the method iteratively runs the Q factor estimator
designed in Section III for every possible triplet (p, fs, N)
(i.e., exhaustive search over Sp,Sfs and SN ). At every it-
eration, the Q factor estimator evaluates the quality of the
coil according to (Do, fj , wt, pi, Nk) for all (i, j, k), where3

pi ∈ Sp, i ∈ {1, . . . , |Sp|}, fj ∈ Sfs , j ∈ {1, . . . , |Sfs |}
and Nk ∈ SN , k ∈ {1, . . . , |SN |}. The estimated Q factor is
then compared with Qmax, and if it is larger than Qmax, then
(p̂, f̂s, N̂ , Qmax) is updated such that p̂ = pi, f̂s = fj , N̂ =
Nk, and Qmax = Q. Moreover, each tuple (pi, fj , Nk, Q)
from the Q factor estimator is always stored in I so that it
can be leveraged later. After running all of the iterations in
the searching algorithm, the tuple (p̂, f̂s, N̂ , Qmax) provides
the best parameters and the corresponding estimated Q factor,
which is the maximum over all of the estimated Q factors,
resulting from all p ∈ Sp, fs ∈ Sfs and N ∈ SN .

3For a set A, the notation |A| indicates the cardinality of A.

Beyond estimating one triplet of optimal parameters for the
spiral coil (i.e., p̂, f̂s and N̂ ), our method also provides a
top-k% region of p, fs and N for each fixed pair (Do, wt).
Specifically, this region contains all the triplets (p, fs, N) ∈
Sp×Sfs ×SN in I that produce a Q factor with an error rate
smaller than k% from the highest Q factor. In other words, we
say that a design belongs to the top-k% region if its Q factor
is at least (100 − k)% of the highest Q factor among the
designs with the same Do and wt. We refer to this procedure
as top-k% filtering as shown in Fig. 8.

A. Numerical Evaluation

Here, we numerically assess the effectiveness of our
proposed spiral coil design. Towards this end, we adopt the
IoU metric, which, given two regions, is defined as the ratio
between the volume of their overlap and the volume of their
union [13]. Specifically, the two regions that we consider are
the top-k% region provided by our proposed method, and the
true4 top-k% region. In order to build these two regions (and
hence, evaluate the IoU factor) we made use of an interpolation
technique [23] over the discrete triplets (p, fs, N). Fig. 9
provides a graphical illustration of the used evaluation method.

As shown in Fig. 9, the IoU increases with the volume of
the overlap region, and we wish that our method has a large
IoU, as close as possible to one. This, in fact, would imply
that our proposed method provides a design that belongs to
the true top-k% region with high probability.

The evaluation results, shown in Fig. 10, consider k = 10
and they represent the IoUs averaged over 66 pairs5 of
(Do, wt). From Fig. 10, we observe that the maximum IoU
is of 69.7%, which is indeed moderately a high score in the
3-dimensional case. Moreover, our method performs well (i.e.,
IoU is more than 56%) even when the amount of training data
is less than 1, 000 samples (i.e., around 5% of the total 19, 874
samples). We also note that the computation time to obtain
the best design (i.e., top-k% region) over 1, 000 designs with
our method was around a second (i.e., 1.65 seconds), whereas
Ansys-Q3D took 2 ∼ 5 minutes to test a single design, leading
to requiring roughly at least 2, 000 minutes to run a searching
algorithm over the same 1, 000 designs.

V. EXPERIMENTAL RESULTS

In this section, we assess and verify the performance of the
proposed ML-based spiral coil design of Section IV through
experiments with the actual fabrication of some samples of the
spiral coil. For precise fabrication, the coils were custom-made
using winding bobbins and magnetic copper wire. The winding
bobbins were designed with a computer-aided design (CAD)
tool and fabricated using a 3D printer with polylactide (PLA)
plastic materials without any additional magnetic materials.
In order to connect with the measurement equipment, an
additional PCB, an SMA connector, and a variable capacitor
for resonance were attached to the ends of the coil nodes.

4The true best design is the spiral coil design with the highest Q factor in
the dataset built in Section III using the Ansys-Q3D simulator.

5In Fig. 10, we considered Do ∈ {100, 110, ..., 190, 200} and wt ∈
{0.8128, 1.0236, 1.2903, 1.6281, 2.0523, 2.5883}.
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Fig. 8: Detailed configuration of the ML-based coil optimization.

Fig. 9: Evaluation method between the estimated and the true top-k% regions
using the IoU.

Fig. 10: Average IoU versus amount of training data when k = 10. The
FNN model was trained over 1, 000 epochs.

As an application environment to test the proposed design
method, we considered Do = 100 mm and wt = 2.588 mm.
Based on these values, our ML-based coil design method of
Section IV outputted the top-10% region as a function of p, fs,
N , as shown in Fig. 11a. We further divided our experiment
into two sub-experiments, namely Experiment-A, in which
we fixed fs = 20.34 MHz, and Experiment-B, in which
we fixed p = 3 mm. The top 10% region for Experiment-
A (respectively, Experiment-B) was provided as shown in
Fig. 11b (respectively, Fig. 11c).

Based on these top 10% regions, for both Experiment-A
and Experiment-B, we fabricated seven spiral coils (see the
red dots and stars in Fig. 11b and Fig. 11c). In particular, for
Experiment-A, we considered values of N and p as shown in
Fig. 12a, and for Experiment-B, we considered values of N
and fs as shown in Fig. 12b.

For each experiment design, we measured the resistance Req

and reactance Xeq (from which we can compute the Q factor
using (5)) using the Vector Network Analyzer (E5061B from
Keysight Technologies). In particular, the resistance Req was
measured in a series resonance condition with an additional
variable capacitor in order to reduce the measurement error
due to the ratio between the resistance and the reactance [14],
[17]. From Fig. 11b, we observe that the pair p = 3 mm
and N = 4 (i.e., A2 in Fig. 12) achieves the largest Q
factor (star point in Fig. 11b). Similarly, from Fig. 11c, we
observe that the pair fs = 27.12 MHz and N = 3 (i.e.,
B1 in Fig. 12b) achieves the largest Q factor (star point in
Fig. 11c). Fig. 11b and Fig. 11c verify that the best spiral coil
designs indeed fall within the top-10% regions provided by our
proposed ML-based coil design method, hence showcasing its
effectiveness. Our experiments showcased a few discrepancies
between the Q factor values obtained via Ansys-Q3D and
those measured in the fabricated coils. We suspect that these
are due to several reasons, such as: (i) the presence of an
additional series capacitor Cs to create the series resonance;
(ii) an additional resistance due to soldering or a contact
resistance in the measurement phase; and (iii) a measurement
error of the equivalent resistance Req due to factors such as
calibration accuracy, noise, and other sources of uncertainty.

For further verification, the performance of the AC-to-AC
WPT system was measured using coils A1, A2, A3, and A4
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(a) (b) (c)

Fig. 11: Verification of the proposed coil design method. (a) Top-10% region. (b) Experiment-A: Estimated top-10% region, and measured results of the
fabricated coils; Do = 100 mm, fs = 20.34 MHz, wt = 2.588 mm. (c) Experiment-B: Estimated top-10% region, and measured results of the fabricated
coils; Do = 100 mm, p = 3 mm, wt = 2.588 mm.

(a)

(b)

Fig. 12: Fabricated coils for demonstration of the ML-based coil optimization:
(a) Experiment-A; (b) Experiment-B.

from Experiment-A, along with B2, B5, B6, and B7 from
Experiment-B. In this AC-to-AC WPT system, we fabricated
two identical coils for each case, designating one as the trans-
mitter coil Tx and the other as the receiver coil Rx. Additional
capacitors were connected to these coils to create a series-
series compensation network within the WPT system. The
value of Cs was calculated based on the measured inductance
Leq and on the numerical equations for series resonance [24].
The specific values are presented in TABLE III.

Before testing the WPT system, we measured the input
impedance and the coupling coefficient using a Vector Net-
work Analyzer (E5061B from Keysight Technologies). These
parameters were measured at the transmitter side by changing
the distance between the Tx coil and the Rx coil under well-
aligned conditions. We determined the coupling coefficient
between the two series compensated coils as follows,

k =
2(fh − fl)

fh + fl
, (10)

TABLE III: Additional capacitors Cs for the series-series compensation
network [24].

Coil fs [MHz] Leq [µH] Cs [pF ]

A1 20.34 1.39 44

A2(=B5) 20.34 2.08 29.3

A3 20.34 2.77 22.1

A4 20.34 3.24 18.9

B2 27.12 2.56 13.5

B6 13.56 1.83 753

B7 6.78 1.71 322

Fig. 13: Experimental setup of the AC-to-AC WPT system using the designed
coils.

where fh and fl are the higher and lower split frequencies of
the two coupled resonators, respectively.

The experimental setup for the AC-to-AC WPT system is
depicted in Fig. 13. The transmitter coil was connected to
the RF power amplifier (AR RF/Microwave Instrumentation,
500A250C), and a function generator was used to generate
high-frequency reference signals for RF amplifier operation.
On the receiver side, a 500 W and 50 Ω RF resistor was
connected with the Rx coil. The conversion efficiency was
calculated by measuring the input power on the RF amplifier
display panel, and the output power was assessed using tuned
voltage/current probes connected to an oscilloscope (Keysight
Tech., MSOX3034T). The conversion efficiency of the tested
AC-to-AC system is illustrated in Fig. 14. Among coils A1,
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A2, A3, and A4 in Experiment-A, coil A2 exhibited the highest
efficiency compared to the other coils. Similarly, among coils
B2, B5, B6, and B7 in Experiment-B, coil B5 outperformed the
other coils in terms of conversion efficiency. As suggested by
the top-k% regions in Fig. 11b and Fig. 11c, the efficiencies of
coils A1 and A2 (also, B2 and B5) were higher than the other
two. These results indicate that our ML-based optimization
method provides a reasonable design solution, leading to the
highest conversion efficiency.

(a)

(b)

Fig. 14: Measured conversion efficiency of the AC-to-AC WPT system
depending on the coupling coefficient (a) Experiment-A; (b) Experiment-B.

One of the appealing features of our proposed ML-based
spiral coil design method is its computation time in providing
suitable guidelines for the design and fabrication of a coil.
As shown in Fig. 15, the proposed method takes around 1.65
seconds to derive the top-k% region for a fixed pair (Do, wt)
and 1, 000 triplets of (p, fs, N). In contrast, simulation tools
such as Ansys-Q3D and Ansys-HFSS take around 2 minutes
(Ansys-Q3D) and 16 minutes (Ansys-HFSS) for each triplet
(p, fs, N). This means that it takes approximately 33 hours
(Ansys-Q3D) and 267 hours (Ansys-HFSS) to search over
1, 000 triplets (p, fs, N) for optimization. Therefore, our pro-
posed spiral coil design method offers significant time savings
for the design and optimization of a spiral coil.

Fig. 15: Comparison of the computation time for the spiral coil design.

In summary, our ML-based coil design method provides
several advantages over traditional approaches, as also illus-
trated in TABLE IV. The proposed ML-based design method

allows us to design coils, with different sizes and at different
frequencies, having a large Q factor without any complicated
analysis or long simulations. Specifically, our design method
leverages the collected dataset and provides a design solution
with reduced computational time and high accuracy. While an
analytical method, which computes the expressions in (2)-(4),
can optimize a design quickly, it relies on simplified equations,
which are often inaccurate and must be redefined depending
on the environment of interest. Differently, our FNN method
utilizes a data-based trained model for optimization (instead
of analytic equations). Because of this, our FNN method is
adaptable to design changes; it also offers a fast optimization
and it provides a high accuracy.

Also, finite element analysis (FEA) simulators extract ac-
curate results and are adaptable to various designs, provided
that a precise 3D CAD model is available. However, they
may require a long time to extract accurate results, as we
also demonstrated in Fig. 15. This would lead to a reduced
productivity in industrial applications. Our proposed method
promises accuracy and effective computational times, as long
as the training dataset is accurate. Even though we have
only utilized five design parameters, along with the evaluation
metric (Q factor), it is possible to incorporate additional
parameters or any other evaluation metric or index to train and
optimize the designs. Particularly, our optimization method
employs a searching algorithm to effectively output the top-
k% optimal designs without requiring the calculation of the
lumped elements or of the impedance. The proposed method
provides an intuitive and flexible approach to coil optimization.
This suggests that our design method has the potential to be
employed by ‘data-rich industries’ that possess a large number
of diverse datasets.

VI. CONCLUSION

This paper presented a spiral coil design for WPT sys-
tems using an ML-based optimization method. The proposed
method first accurately estimated the Q factor using ML,
which was then leveraged to obtain the top-k region for
selecting the best design of the coil in a specific environment.
The method was successfully evaluated in several test cases,
showing an up to 70% overlap between the estimated and
the true top-k% regions. In addition, the performance of
the proposed optimization method was verified through the
fabrication and testing of actual coils, with the optimal p, N
and fs values found to be in agreement with those provided
by the ML-based optimization method. Both numerical and
experimental results confirmed the effectiveness (both in terms
of accuracy and computation time) of the proposed method as
a design tool for spiral coils in WPT systems.
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from Télécom ParisTech (with work done with Eu-
recom, Sophia Antipolis, France) in 2015. She is
currently a McKnight Land-Grant Assistant Profes-
sor with the Electrical and Computer Engineering
Department, University of Minnesota (UMN). From
November 2017 to January 2018, she was a Post-
Doctoral Associate with the Electrical and Computer
Engineering Department, UMN. From July 2015 to
August 2017, she was a Post-Doctoral Research

Fellow with the Electrical and Computer Engineering Department, Henry
Samueli School, UCLA. Her main research interests include estimation
theory, network information theory, network coding, and wireless networks,
with a special focus on their capacity, security, and privacy aspects. She
was a recipient of the 2022 McKnight Land-Grant Professorship, the NSF
CAREER Award in 2021, the NSF CRII Award in 2019, the Second Prize
in the Outstanding Ph.D. Award, Télécom ParisTech, Paris, France, and the
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