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Abstract—This paper presents a spiral coil design for wireless
power transfer (WPT) systems using a machine learning (ML)-
based optimization method. The designed model allows us to
obtain the optimal values of the number of turns N and coil pitch
size p, when other coil design parameters such as the coil outer
diameter Do, the wire thickness wt, and the operating frequency
fs, are given based on the application environment. The proposed
ML-based spiral coil design method is assessed by using two
metrics: the top-k accuracy and the intersection over union (IoU)
factor. The first metric shows that the quality Q factor of the coil,
a critical parameter to determine the efficiency of a WPT system,
has an error rate less than 4% with respect to the value of the
true top-1 Q factor in the proposed method. The second metric
showcases that the IoU of the proposed method is more than
78% even when a small amount of the available data, less than
1, 000 samples, is used to train the model. The performance of
the proposed method is also demonstrated by means of fabricated
spiral coils in two application environments. Specifically, for each
environment, seven spiral coils are fabricated to find the optimum
design point for various values of p and N with fixed values of
Do, wt, fs. It is observed that the measured optimal p and N
values are identical to the values output by the proposed ML-
based optimization method.

Index Terms—Spiral Coil Design, High-Frequency Wireless
Power Transfer, Machine Learning.

I. INTRODUCTION

Recently, battery-powered movable devices, such as drones,
robots, and automated guided vehicles, have drawn a lot of
attention to move toward electrification [1]–[3]. These devices
work diligently and actively, demanding convenient and agile
charging methods, and a wireless charging system, without
any plug-in connections, has the potential to improve work
performance. One of the essential components of a wireless
power transfer (WPT) system is the coupling coil, providing
the electromagnetic coupling between the transmitter and
the receiver. Such a coil is usually designed by taking into
account the geometrical structure of the device (e.g., the size
of the coil should not exceed the available space) and the
application environment (e.g., electromagnetic properties) [4].
Towards this end, several analysis methods and simulators
such as Ansys-Q3D, HFSS, or COMSOL, are used to find
the optimal design structure [5], [6]. However, such simu-
lators and analysis, in general, require a long time, 2 ∼ 5
minutes for one coil design in Ansys-Q3D, as they need to
compare several designs with various parameters. Also, they
might intermittently estimate inaccurate results due to their

non-linear characteristics [7]–[9]. Therefore, it becomes of
fundamental importance to explore new methods that speed
up the design, while offering performance guarantees. Driven
by this observation, in [5], we proposed a machine learning
(ML) approach to characterize the quality Q factor, a figure-of-
merit of the coil performance, as a function of the geometrical
parameters of the spiral coil. In particular, we developed a
well-trained feedforward neural network (FNN) model, that
accurately with 96% accuracy estimates the Q factor. Al-
though our proposed method in [5] significantly reduces the
computation time and analysis complexity, it does not offer
insights on how to design and optimize the coil based on
the application environment of interest. Therefore, with the
goal to fill the aforementioned gap, we here propose a design
method with a searching algorithm based on ML to find the
optimal values of the number of turns N and of the pitch size
p for the highest Q value, when other design parameters are
given [10]. In particular, for given parameters such as the coil
outer diameter Do, the wire thickness wt, and the operating
frequency fs, the optimal pair, N and p, results in the largest
Q factor, estimated by using the method we proposed in [5].
Our method also provides the top-k region, which consists
of the interpolation (obtained by using the Clough-Tocher
scheme [11], [12]) of the (p,N) pairs producing a kth-highest
Q factor, among the Q factors generated by all considered
(p,N) pairs, where k ∈ {1, 2, . . .}. Based on the top-k region,
we numerically evaluate the proposed method by using two
metrics, namely the top-k accuracy and the intersection over
union (IoU). The top-k accuracy measures how probable the
output of the proposed method is to be at least a true1 top-k
design. The IoU measures the extent of overlap between two
regions, namely the top-k region output by our method and the
true top-k region, obtained from the dataset. Our evaluations
showcase the effectiveness of our proposed method: (i) the top-
k accuracy shows that the Q factor of the coil designed by our
method has an error rate less than 4% with respect to the value
of the true top-1 Q factor, and (ii) the IoU is more than 78%.
The effectiveness of our method is also demonstrated through
experiments, which consist of the actual fabrication of some

1We say that a top-k design is true if: (i) it yields a Q factor that is among
the k largest ones; and (ii) it belongs to the dataset generated using the Ansys-
Q3D simulator.



Fig. 1: Block diagram of the spiral coil design using ML-based optimization.

samples of the spiral coil in Section III.

II. ML-BASED OPTIMIZATION METHOD

In this section, we describe our proposed ML-based spiral
coil design method, as illustrated in Fig. 1. First, we introduce
the FNN that enables us to develop a fast and accurate spiral
coil design method. Then, we summarize the ML-based Q
factor estimator [5] for spiral coils, and we leverage it to
propose our spiral coil design method. Finally, we evaluate
the proposed method using two different metrics, namely the
top-k accuracy and the IoU.

A. Feedforward Neural Networks

A feedforward neural network (FNN) is one of the basic
neural networks in deep learning and ML [10], [13], [14]. An
FNN is structured as a graph in which every neuron (i.e., a
node) in each layer is connected to every neuron in the next
layer through weighted edges (i.e., links). Such a structure of
connections between two nearest layers is repeated in every
layer of an FNN. All of the neurons in an FNN perform
almost the same operation, i.e., they first calculate a weighted
summation over all values received through the incoming
edges, and then they apply a non-linear function, referred to
as the activation function, to the result of the summation. The
inputs to a neuron are the results of the activation functions in
the previous layer. The weights of every edge are parameters
that can be learned from a dataset during the training phase,
and the activation functions used by the neurons can vary
according to the application of the FNN.

In this work, we consider the same FNN model as the one
we used in [5] to estimate the Q factor using the five param-
eters N, p,Do, fs, and wt for the design of the spiral coil. In
particular, the considered FNN has a total of 3 hidden layers
with 64, 128 and 32 neurons in each layer. The activation
functions for every neuron are set to be the rectified linear
unit (ReLU) activation function, i.e., ReLU(x) = max{0, x}.

B. Spiral Coil Q Factor Estimation

We here briefly summarize our recent work in [5], one of
the key components of our proposed design method. Our ML-
based Q factor estimation in [5] provides the value of the

estimated Q factor for a specific spiral coil with fixed values of
N, p,Do, fs, and wt. We highlight that accurately estimating
the Q factor is important as this estimate would shed light
on the performance of the coil before its actual fabrication.
To build such an estimator, in [5], we trained an FNN model
based on a dataset consisting of 19, 874 sample values of the
Q factor generated from 19, 874 sample values of N, p,Do, fs,
and wt. In particular, we obtained these measurements from
a 3D quasi-static electromagnetic field simulator. Our results
in [5] show that our trained ML-based Q factor estimator
accurately, 96% level of accuracy on average, estimates the
true Q value of the coil designed according to the five input
parameters N, p,Do, fs, and wt.

Compared to the estimator designed in [5], that only pro-
vides an estimated Q factor for a coil with fixed parameters,
our proposed ML-based spiral coil design method brings the
best design parameters for a coil under some constraints
depending on the application of interest. The main distinction
is that our method predicts the best design in terms of the
Q factor among some given design parameters. Moreover, it
provides not only the best design parameters for a spiral coil
but also a number of candidates worth considering with their
associated Q factor values.

C. ML-based Spiral Coil Design Method

Given the application of interest, our proposed method
takes values of Do, fs, and wt as input, and it provides as
output the other coil design factors (i.e., p and N ), which
yield the largest Q factor. In other words, given the values
of some spiral coil design parameters, i.e., Do, fs, and wt,
the method estimates the remaining design parameters p and
N that result in the highest Q factor of the coil. In this
paper, we incorporated the Q factor estimator proposed in [5]
and an exhaustive search algorithm. Moreover, by leveraging
an interpolation technique, specifically the Clough-Tocher
scheme [11], [12], the proposed method provides not only the
top design parameters but also other design candidates as well
as the behavior of the Q factor along such parameters. Our
proposed method is graphically shown in Fig. 2, and it consists
of two main building blocks, namely a trained FNN model
and a searching algorithm with an interpolation technique.



Fig. 2: Detailed configuration and evaluation of the ML-based coil optimization.

Moreover, a high-level view of our method in terms of a
pseudo-code is given in Algorithm 1.

Algorithm 1 ML-based spiral coil design method

1: Input: Do, fs, wt,Sp,SN ,Sfs
2: Output: p̂, N̂ , Qmax and I
3: Initiate Qmax = 0, p̂ = 0, and N̂ = 0
4: for p ∈ Sp and N ∈ SN do
5: Q← FNN(Do, fs, wt, p,N)
6: Save (N, p,Q) in M ▷ This is for interpolation
7: if Q ≥ Qmax then
8: Update Qmax ← Q
9: Update p̂← p and N̂ ← N

10: I ← Interpolation(M)

As shown in Fig. 2 and Algorithm 1, the method requires
a fixed triplet (fs, Do, and wt) and two sets of feasible
values for p and N (denoted by Sp and SN , respectively).
The method provides the best (i.e., that produces the largest
Q factor) values for the design parameters p and N among
every pair of elements in Sp and SN . In particular, the
method first initiates the variables Qmax = 0, p̂ = 0, and
N̂ = 0 that represents the maximum value of the Q factor,
the best pitch, and the best number of turns, respectively.
In order to find the best parameters p̂ and N̂ among all of
the elements in Sp and SN , the method iteratively runs the
Q factor estimator designed in [5] for every possible pair
(p,N) (i.e., exhaustive search over Sp and SN ). At every
iteration, the Q factor estimator evaluates the quality of the
coil according to (Do, fs, wt, pi, Nj) for all (i, j), where2

pi ∈ Sp, i ∈ {1, . . . , |Sp|} and Nj ∈ SN , j ∈ {1, . . . , |SN |}.
The estimated Q factor is then compared with Qmax, and if it
is larger than Qmax, then the triplet (p̂, N̂ , Qmax) is updated
such that p̂ = pi, N̂ = Nj , and Qmax = Q. Moreover, the
triplet (pi, Nj , Q) from the Q factor estimator is always stored

2For a set A, the notation |A| indicates the cardinality of A.

Fig. 3: Definition of the intersection over union (IoU) factor [15].

in M so that later we can evaluate the quality of the coil
with parameters (p,N) not belonging to Sp and SN through
an interpolation. After running all of the iterations in the
searching algorithm, the triplet (p̂, N̂ , Qmax) provides the best
parameters and the corresponding estimated Q factor, which
is the maximum over all of the estimated Q factors, resulting
from all p ∈ Sp and N ∈ SN . One can further obtain any
arbitrary pair of candidates (p,N) for the coil design from I,
which is the result of the interpolation of the elements in M.

Beyond estimating one pair of optimal parameters for the
spiral coil (i.e., p̂ and N̂ ), our method also provides a top-k re-
gion (i.e., range) of p and N for each fixed triplet (fs, Do, wt).
Specifically, this region consists of the interpolation (obtained
by using the Clough-Tocher scheme [11], [12]) of all (p,N)
pairs that produce a Q factor that is among the kth largest Q
factors generated by all p ∈ Sp and N ∈ SN . Examples of the
estimated top-k regions with k ∈ {1, 3, 5, 10} can be found
in Fig. 5, and they will be discussed later. Any pair (p,N) in
the top-k region guarantees that the corresponding spiral coil
has a Q factor that is at least among the top-k Q factors.

D. Evaluation

We evaluated our proposed model in terms of two different
metrics, the top-k accuracy and the IoU. The top-k accuracy
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Fig. 4: Numerical evaluation of the proposed model. (a) The top-k accuracy
and the error rate between the Q values of the estimated best coil (Qest) and
of the true best coil (Qtrue). (b) Average IoU versus amount of training data
when k = 10. The FNN model was trained over 1, 000 epochs.

measures the empirical probability that the top-1 design from
the proposed method belongs to one of the true top-k designs.
In other words, it measures how probable the output of the
proposed method is to be at least a true top-k design. The
IoU is defined as the ratio between the area of the overlap
and the area of the union [15]. As shown in Fig. 3, the IoU
increases with the size of the overlap area. The evaluation
results, shown in Fig. 4, are based on fixed Sp and SN , and
on 330 different values of fs, Do, and wt. Therefore, the IoU
evaluates the accuracy of the entire design from the proposed
method, whereas the top-k accuracy assesses the model with
a focus on the best design from the method.

Fig. 4a shows the top-k accuracy of the proposed method
for k ∈ {1, 3, 5, 10}. As shown in this figure, although the
top-k accuracy is not very high (e.g., 54% for k = 10), the
Q factor of the coil designed by using the estimated top-
1 parameters from the proposed method (denoted by Qest)
has an error rate less than 4% with respect to the value of
the true top-1 Q factor (denoted by Qtrue). These results

indicate that the proposed method is very helpful for finding
the best coil design. Also, the top-k region involves design
parameters in Sp and SN for which the coil has (at least) a
top-k Q value. In particular, for a fixed triplet (fs, Do, and
wt), the estimated (respectively, the true) top-k region is built
by interpolating all of the (N, p) pairs with their Q values
from the proposed method (respectively, the dataset) and by
collecting the top-k pairs from the interpolation result; the
result of such an interpolation can be viewed as a contour
plot. The computation time to obtain the top-k region was
less than a second (i.e., 0.92 second), whereas Ansys-Q3D
took 2 ∼ 5 minutes to test a single design. We also highlight
that, thanks to the interpolation, our method provides not only
the top-k designs but also the Q factor values for any design
parameters (even real-valued) and thus, a manufacturer can
control the coil design in a sophisticated way. The evaluation
of the IoU for k = 10 is illustrated in Fig. 4b, from which we
observe a maximum IoU of 78.19% and our method performs
well (i.e., IoU is more than 60%) even when the amount of
training data less than 1, 000 samples (i.e., 5% of the total
20, 000 samples).

III. EXPERIMENTAL RESULTS

We assessed and verified the performance of the proposed
ML-based spiral coil method through experiments with the
actual fabrication of some samples of the spiral coil. The
actual spiral coils were fabricated using the magnetic wire
and the winding bobbin. The winding bobbin was printed by
a 3D printer using polylactide (PLA) plastic materials and
did not include any magnetic materials. The additional PCB
board and the SMA connector were added to the nodes of the
spiral coil to connect with the measurement equipment. We
considered two different environments, with different operat-
ing frequencies and outer diameters of the coil. Specifically,
we considered the following two cases and fabricated seven
coils for each of the two cases:

• Case-A: Do = 100 mm, fs = 6.78 MHz, wt = 2.588 mm.
• Case-B: Do = 160 mm, fs = 20.34 MHz, wt = 2.588 mm.

These fabrications have different values of p and N , based
on the estimated top-k region obtained from our ML-based
optimization design, as shown in Fig. 5. For completeness, we
also measured the Q factor of each of the fourteen fabricated
coils, by using the Vector Network Analyzer (E5061B from
Keysight Technologies). In order to minimize the measurement
error due to the ratio between the resistance and the reactance,
the resistance was measured in series resonance with an
additional capacitor at the operating frequency ,and the total
Q factor was extracted by using the measured resistance Req

and reactance Xeq [5], [16].
Case-A. The estimated Q factor plot obtained by our proposed
ML-based design method is illustrated in Fig. 6b. Our ML-
based optimization method provides the best design around
p = 3 mm and N = 5, the star point in Fig. 6b. Based on this
result, we fabricated seven spiral coils with various values of
N and p. In particular,

• A1: N = 3 and p = 3 mm,



(a)

(b)

Fig. 5: Estimated top-k regions from the proposed ML-based optimization
model. (a) Case-A;Do = 100 mm, fs = 6.78 MHz, wt = 2.588 mm. (b)
Case-B;Do = 160 mm, fs = 20.34 MHz, wt = 2.588 mm.

• A2: N = 4 and p = 3 mm,
• A3: N = 5 and p = 3 mm,
• A4: N = 6 and p = 3 mm,
• A5: N = 5 and p = 1 mm,
• A6: N = 5 and p = 5 mm,
• A7: N = 5 and p = 7 mm,

where the other parameters, Do = 100 mm, wt = 2.588 mm,
and fs = 6.78 MHz, are identical. Our measurement results
show that A3 has the highest Q factor, equal to 367, among
the seven fabricated coils. Also, this design falls within the
top-k region of the proposed optimization method.
Case-B. The estimated Q factor plot obtained by our proposed
ML-based design method is illustrated in Fig. 7b. Our ML-

(a)

(b)

Fig. 6: Fabricated coils and comparison with the ML-based coil optimization.
(a) Fabricated coils. (b) Estimated Q factor plot, top-k region, and measured
results of the fabricated coils; Do = 100 mm, fs = 6.78 MHz, wt =
2.588 mm.

based optimization method provides the best design around
p = 5 mm and N = 3, the star point in Fig. 7b. Based on
this, we fabricated seven spiral coils with various values of N
and p. In particular,

• B1: N = 3 and p = 5 mm,
• B2: N = 5 and p = 5 mm,
• B3: N = 6 and p = 5 mm,
• B4: N = 8 and p = 5 mm,
• B5: N = 3 and p = 1 mm,
• B6: N = 3 and p = 3 mm,
• B7: N = 3 and p = 8 mm,

where the other parameters, Do = 160 mm, wt = 2.588 mm,
and fs = 20.34 MHz, are identical. Our measurement results
show that B1 has the highest Q factor, equal to 484, among
the seven fabricated coils. Also, this design falls within the
top-k region of the proposed optimization method. □

Our experimental results demonstrate the effectiveness of
the proposed ML-based coil optimization method. The esti-
mated top-k regions shown in Fig. 6 and Fig. 7 from our
ML-based optimization method suggested the best design for
the fabrication of the spiral coil successfully. We note that
the values of the experimental Q factor and the estimated Q



(a)

(b)

Fig. 7: Fabricated coils and comparison with the ML-based coil optimization.
(a) Fabricated coils. (b) Estimated Q factor plot, top-k region, and measured
results of the fabricated coils; Do = 160 mm, fs = 20.34 MHz, wt =
2.588 mm.

factor by our method in [5] were different. We suspect that this
difference is mainly due to: (i) an additional resistance caused
by soldering; and (ii) a contact resistance in the measurement
phase. Such a difference is not due to the training dataset
collected from the Ansys-Q3D simulator. In fact, even if we
increase the mesh of the design in Ansys-Q3D, the training
data does not improve significantly. We point out that, although
of practical relevance, comparisons between the experimental
and estimated Q factors are not within the scope of this paper.
Our main goal here is rather to verify whether the estimated
top-k region and the experimental best coil design match,
and this is indeed the case. Thus, in this study, considering
a normalized version of the Q values is sufficient to find
the optimal design. For a specific value of the Q factor, its
normalized version is obtained by dividing it by the largest Q
factor among all those obtained from p ∈ Sp and N ∈ SN .

Another appealing feature of our proposed ML-based spiral
coil design method considers its computation time in providing
suitable guidelines for the design and fabrication of a coil. As
shown in Fig. 8, the proposed method takes around 1 sec
(= 0.92 sec) to derive the top-k region for a fixed triplet
(fs, Do, and wt) and 100 pairs of (N, p). Whereas using

Fig. 8: Comparison of the computation time for the spiral coil design.

simulation tools, such as Ansys-Q3D and Ansys-HFSS, takes
around 2 minutes (Ansys-Q3D) and 16 minutes (Ansys-HFSS)
for each pair (N, p). This means that it takes around 200
minutes (Ansys-Q3D) and 26 hours (Ansys-HFSS) when we
search over 100 pairs (N, p) for optimization. Therefore, our
proposed spiral coil provides notable time savings for the
design and optimization of a spiral coil.

IV. CONCLUSION

This paper presented a spiral coil design for WPT systems
using an ML-based optimization method. The proposed ML-
based optimization method provides the top-k region to extract
the best design of the coil in a specific environment. In
particular, given some coil design parameters, fs, Do, and wt,
the proposed method was used to obtain the values of N and
p that should be used for an effective coil design with a large
Q factor. The proposed optimization method was evaluated
under 330 requirement cases and showed a 78.19% overlap
between the estimated and the true top-k regions. Moreover,
actual coils were fabricated to verify the performance of the
proposed optimization method; the optimal p and N values
of the fabricated coils were identical to a top-k pair provided
by our ML-based optimization. Numerical and experimental
results showcase the effectiveness of the proposed method.
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