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Data-driven Model Predictive Control for Drop
Foot Correction

Mayank Singh, Nitin Sharma*

Functional Electrical Stimulation (FES) is an effective
method to restore the normal range of ankle motion in
people with Drop Foot. This paper aims to develop a
real-time, data-driven Model Predictive Control (MPC)
scheme of FES for drop foot correction (DFC). We
utilize a Koopman operator-based framework for system
identification required for setting up the MPC scheme.
Using the Koopman operator we can fully capture the
nonlinear dynamics through an infinite dimensional linear
operator describing the evolution of functions of state
space. We use inertial measurement units (IMUs) for
collecting the foot pitch and roll rate state information to
build an approximate linear predictor for FES actuated
ankle motion. In doing so, we also account for the implicit
muscle actuation dynamics which are dependent on the
activation and fatigue levels of the Tibialis Anterior (TA)
muscle contribution during ankle motion, and hence,
develop a relationship between FES input parameters
and ankle motion, tailored to an individual user. The ap-
proximation, although computationally expensive, leads
to reformulating the optimization problem as a quadratic
program for the MPC problem. Further, we show the
closed-loop system’s recursive feasibility and asymptotic
stability analysis. Simulation and experimental results
from a subject with Multiple Sclerosis show the effective-
ness of the data-driven MPC scheme of FES for DFC.

I. INTRODUCTION

Persons with drop foot, common in those with neurological
impairments due to stroke, spinal cord injury, and multiple
sclerosis, can benefit from advanced functional electrical
stimulation (FES)-based gait assistance systems. Numerous
challenges hinder the effectiveness of current FES systems
for drop foot correction (DFC). Experiments demonstrate that
the degree of foot lift induced by FES at a given intensity is
highly subject-dependent, varies with time, and is sensitive
to modest (~1 cm) changes in electrode position [1]. The
stimulation parameters need reconfiguration every time the
gait assistance system is utilized, to produce a physiological
foot lift in the paretic limb. Although many complex models
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have been used to represent dynamic muscle responses to
FES, there is no consensus on the most optimal model in
the literature . Moreover as the FES actuation dynamics
implicitly affect limb motion, the control synthesis problem
is extremely challenging. To address these challenges, we
develop a novel data-driven control scheme that does not
use system identification methods for estimating subject-
dependent parameters for optimal closed-loop control syn-
thesis.

FES has been utilized in several different implementation
settings to correct drop foot. A comprehensive survey can be
found in [2]. [3] used an adaptive torque tracking method for
DFC, wherein sSEMG based activation signals were designed,
and the model identification was performed through Kalman
filtering techniques. [4] used a MPC framework for offline
trajectory optimization. While constraints on ankle and con-
trol inputs were considered, a formal closed-loop stability and
control feasibility analysis were missing. In [5], [6] FES MPC
controller was proposed and was later extended to robust
MPC schemes in [7] and [8] for knee regulation and tracking,
respectively. While MPC framework yields optimal inputs
for FES, which are useful in avoiding overstimulation and
are constrained within prescribed stimulation intensity limits,
the aforementioned MPC schemes require extensive system
identification of the nonlinear musculoskeletal system. In this
regard, a data-driven approach is much more attractive than
traditional modeling approaches for MPC-based control of
FES.

To analyze the nonlinear dynamics of the ankle under FES
actuation, and motivated to derive a data-driven approach, we
utilize a Koopman framework to predict the dynamics and
subsequently design an MPC scheme. The Koopman operator
is an infinite-dimensional linear operator which captures the
nonlinear dynamical characteristics through a linear dynamic
evolution on a lifted observable function of states [9]. Re-
cent work in [10], [11] has shown the effectiveness of the
Koopman operator framework to analyze non-autonomous
dynamical systems for optimal control synthesis. In [11], a
finite-dimensional truncation of the Koopman operator was
used to form a linear predictor of nonlinear dynamics for
designing a linear MPC. MPC methods utilizing a deep
learning-based Koopman model were developed in [12].

We develop a data-driven Koopman observable-based an-
kle joint model to facilitate FES-based ankle joint torque
modulation and further develop an MPC scheme with results
on recursive feasibility and asymptotic stability of the data-
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driven closed-loop system. The novelty of the work is that
the system and the optimal control is designed for a cascaded
non-affine system in the control input without prior sys-
tem identification methods. We tested the developed control
scheme in simulations and experiments, wherein a subject
with Multiple Sclerosis used the developed FES-based DFC
controller.

The paper is organized as follows — Section II describes
the ankle dorsiflexion motion dynamics actuated under FES.
Section III discusses the overview of the Koopman-based
system identification for ankle dynamics and the subsequent
formulation of the MPC-based control synthesis problem.
Both feasibility and asymptotic stability results are derived in
Section III. Data collection, experimental setup, simulation,
and experiment results are discussed in IV. Finally, the paper
concludes in Section V with some discussion on future work.

II. ANKLE JOINT DORSIFLEXION MOTION DYNAMICS

A multi-dimensional dynamic model of the FES-actuated
ankle movement

JO + My(0,0eq) + My(0) + M(0) +d(t) =7, (1)

where J € R?*2 is the unknown inertia matrix of the foot
along the dorsiflexion/plantarflexion and inversion/eversion
axis of rotation, 6, 0,9 € R2denote the pitch and roll angle,
pitch and roll rate, and pitch and roll acceleration, respec-
tively. M,(6,0.,), M,(0), and M.(#) € R? represent the
gravitational, passive moment, and musculoskeletal elasticity
vector. The constant limb equilibrium point is represented as
0cq, Which represents the joint is at a posture when the limb
is completely relaxed. The gravitational term is described as
My(0,004) = mglsin(G +0+0.,). The mass of the limb and
the length from the limb’s center of mass to its rotation center
in the sagittal plane are denoted as m € RT and [ € RT,
respectively. The explicit definitions of the functions, M, (0)
and M. (0), can be obtained from [6], [13]. The term related
to external disturbance is denoted as d(t) € R2.

The net torque about the ankle is defined as 7 = p(6, 6)pu,
where p(0,60) € R2*2 represents the force-length, force-
velocity term, ¢ € R? represents the muscle fatigue term, and
u € R is the FES modulated parameter (current, pulse width,
or frequency) applied on the TA muscle. The expression for
terms p(6, 0), ¢ can be found in [6].

By selecting 6, = 6 and 0, = 0, the equivalent state space
representation for (1) can be formulated as

tq = f(%a) + 9(za, w)u, 2
where i, = | 0, 6, ]T, f(z,) € R* are the system
dynamics, and g(x,,u) € R* are the actuation dynamics.

Assumption 1: The inertia term, J, is positive and
bounded as J; < ||J|| < J,, where J;, J, € RT.

Assumption 2: The disturbance term, d(t), is bounded as
[|d(t)|| < d., where d,, is a positive constant.

We can now set up the optimal tracking problem by
defining a tracking error e(t) € R* is defined as

e =T, — Tq, 3)

where 14 € R? is a bounded desired trajectory for the desired

position and velocity. It is assumed that x4 and its first

derivative, 24 = hq(x4) € R?, are Lipschitz continuous.
Taking the derivative of (3) gives the error dynamics

&(t) = g — g
= f(za) + 9(xa, u)u — hy(zq), %)

. T
By defining an augmented state as x = [ el 27 ] € RS
the system dynamics can be written as

T = f(x) + g(x, u)ua ©)

where the system matrices f(z) and g(x,u) matrices become
fle+zq) — ha(zq)

gy = [ 1l st = [ 157 .

Using zero order hold approximation the continuous-time
system in (5) can be discretized and described as

Tyt = fe(Tr) + ge(Th, up)up (6)

III. KOOPMAN-BASED MODEL PREDICTIVE CONTROL
A. Prediction/Identification

The Koopman operator « is an infinite-dimensional linear
operator that models the time-based evolution of a composite
function A(zy) € R>, known as the koopman observables,
forward in time. The function, A(zy), can be the state
themselves or nonlinear functions of state that are Lipschitz
continuous. Appropriate choice for synthesis of such basis
functions can be found in [14]. This framework provides
an accurate linear representation of the original complex
nonlinear dynamics without any loss of accuracy [15], but
increases the dimensionality of the original system. The idea
can be extended to non-autonomous systems as well, see [9].
Mathematically, this can be represented as

A(zp41) = kA(zy) @)

While this operator renders an infinite-dimensional system
and accurately describes a nonlinear system through a lin-
ear system, but is practically infeasible to implement. For
practical feasibility, the infinite-dimensional operator, r, is
approximated using a finite dimensional operator, <, which
can be found by setting up a dynamic regression problem
of analyzing the evolution finite-dimensional Koopman ob-
servable vector, A(xy, ug) € RP, which for non-autonomous
systems is a function of control inputs as well.

To obtain the approximate Koopman operator for DFC, we
first collect M time snapshots of the state and control data
vectors as

Xi=[m Up=[ m (YNE))

where X, and Uy represent the prediction dynamics state
vector. The state and control vectors are further used to
populate the Koopman observable vector, Ax(z,u) € RP,
given as

Ap(z,u) = [af uf

M ]?

AT
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Vk = 1,...,m, with the collected data snapshots from
FES inputs and /IMU measurements (outputs). The selection
of basis functions, A(.), in (9) has been inspired from [12].
The Koopman observable vector dynamically evolves as

Agy1(z,u) = RAg(z, u), (10)

where & € RP*P It is important to note that the first n-+m
columns of kK govern the state and control vector evolution
between the kt* and the k + 1** instants. To obtain &, a
dynamic regression problem is set up and solved using least-
squares methods to the calculate the approximate Koopman
operator.

The minimization problem can be set up as

M-1

> 05| Agga (w,u) — BAg(x,u)|[?, (11)
k=0

R* = argmin
K

where K can be obtained by calculating the gradient of the
minimization function in (11) with respect to &, and equating
the resultant to zero. We obtain the approximate Koopman
operator as & = FG', where

1 M-1
F = M Z Akﬂ(x,u)/lk(x,u)T
k=0
—1
G= L Ag(z,u) A (2, u) " (12)
M Z k\+Ly k\Ly .

We can subdivide the Koopman operator as k = [FL:,; Ru} s
where the submatrix %, € R™ ! denotes the propagation
of state-dependent Koopman observables, Ag(x) € R™, and
Ry € R™*F denotes the propagation of control-dependent
Koopman observables, Ay (u) = ux, € R, where 1 +n = P.
Now, to obtain the the Koopman prediction dynamics for
FES-driven DFC described in for (6), we can redefine (10)
in terms of the evolution of the state-dependent Koopman
observable governed by K, K, as

Ak_;,_l(l‘) = RxAk(.%') + RyUg = fK(Ak, uk).

This results is a linear prediction dynamics for FES-driven
DFC in the state dependent observable Ay (z). To obtain the
prediction dynamics for the original state in (5), we compute
the flow map between A (z, u) and z, we setup another least
square minimization problem similar in (11). We redefine the
state vector x as zj to avoid any notational confusion with
(II). To recover zi, we can describe the mapping between
Koopman observable, Ay (x), and zj, as z;, = C Ay (x), where
C € R®*Pdenotes the mapping. To obtain C, we can setup
another minimization problem as

13)

M-1

argmcin ;0 §||C/1k.(:c,u) — 2|2

(14)

By solving (14), and plugging Ay (x,u) = C~ 1z in (13), we
obtain the linear prediction dynamics for FES-driven DFC as

Zk41 = A(zk)zk —+ B(zk)uk (15)

B. Data-driven model predictive control

Let the decision and state variables be defined as
(16)
(17)

zr = [ 2k|k Zk+N|k I;

up = [ Upp Ukt N—1[k )

where the vectors zj, uy € RS, R are the state and control
vectors written in the standard MPC notation. MPC predic-
tion dynamics can be defined as zi144x = A(2k)2k4ijx +
B(z) Ukt -

The model predictive problem can then be formulated as
follows

TU71
min J(zruge) = > 1) +  Vizgr,) (18)
=1
subject to

Zrr1tilk = A(2k)2erik + B(2k)ugrie  (a)
Zk|k (S QX’ uk|k (S Qv (b)
Azk+TN € QX+7 (C)

where V (241, k) = Zjyq, P2ri1y is the terminal cost.
Ty and Ty are the prediction and control horizon, respec-
tively. The running cost is I(.) = ZkT+i+1\kQZk+i+1\k +
u£+i| w gy is the performance measure penalizing the
kinematic state and control inputs considered over the control
horizon, Ty. @ € R™ ™ and R € R™*™ are positive
definite weighting matrices penalizing the individual states
and control inputs and ensures [ and V' are positive definite
(PD) and radially unbounded (RU). The control input u has
asymmetric saturation bounds captured in the control set
2, € R, and X € RP? is the set of allowable states. (2,
denotes the actuator’s limits and (2, denotes the set of the
state constraints. (As the current time step is fixed based on
the number of samples, z; will be used instead of z , and
system matrices derived over M samples will be denoted by
A, B to reduce notational burden).

The desired input vector uy is computed from the nominal
model to achieve a given desired state x4. Thus, the pair
(24, u) is the equilibrium point of the system.

Defining the optimal control input trajectory as 4y, = 4*.
The first control input u* (k| k : k — k+1), is applied for an
interval defined as Ak = 1. The corresponding optimal state
sequence is defined as z*(k|k : k — k + 1). The terminal
region, {2, + is the terminal set constraint.

Assumption 5: In (18) the function V, [, are continuous,
fw is twice continuously differentiable, uy — I (zp,ug) is
coercive , and V' (0) = 0, 1(0,0) = 0, f(0,0) = 0. The set
{2, is compact, uniformly bounded and contains the origin.

Assumption 6: There exist I, functions o; and ay, so
that oy ([[2]]) < Uz, k), av(|[2]]) < V(en).

Assumption 7: There exist an optimal input trajec-
tory ujy 1k for and a non-empty feasible region around
(zfnitial7 u;nitial '

By choosing appropriate lifting functions, the Koopman-
driven dynamics in (13) and (15) are controllable. A con-
troller gain Ky for the terminal controller u;, = Kz
such that A + BK is asymptotically stable is determined.
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Figure 1. Seated task setup - The electrodes were placed on the TA muscle
with stimulation parameters set at f = 50Hz, ¢ = 25mA, and the pulse
width was varied to determine the threshold and saturation values for ankle
dorsiflexion and use them further for system identification, and the inertial
measurement unit was placed on the shank and the foot.

Choose a constant € R* satisfying the inequality n <
—Amaz (A + BKy) and solve the following Lyapunov equa-
tion to determine a positive-definite and symmetric P

(A+ BK; +nI)"P+ P(A+ BK; +nl)

+Q+ KjRK; 0. (19)
Then, using Lemma 1 in [16], one can show that
Vizks1) = V(zk) +1<0 (20)

which implies that uj = Kz, is invariant in §2,, and satisfies
the input constraints.

Assuming @} exists for k € [k, k + 1], the next feasible
solution for ¢t € [k + 1, k + 1 + T,,] is constructed as

PR Lt
FE KN (2k+1),

kelk+1k+Ty)

21
telk+Ty, k+1+Ty)

where K1 (2p4+1) = uf, — Kfzpq1.

Theorem 1. The MPC algorithm is (i) recursively feasible
and (ii) asymptotically stable by defining the actual optimal
control sequence uy, if uy . exists for Vk € 1, Tyl

Proof: Theorem 1 proof is available upon request. M

IV. SIMULATION & EXPERIMENTAL RESULTS
A. Data Collection &Experiments

The study was approved by the IRB at North Carolina
State University (IRB number: 20602).

Participants: Four able-bodied subjects (A07, A08,AQ9,
A10, 4M, age: 27.4 + 3.1 years, height: 1.73 £ 0.15 m, mass:
82.0 £ 7.1 kg) without any neuromuscular or orthopedic
disorders were recruited.

Seated task: Fig. (1) illustrates the data-collection experi-
mental setup for repetitive seated position experiments. Each
participant was seated on a level seat table with adjustable
height, and the right foot was kept suspended in the air by
adjusting the chair height. The initial right ankle equilibrium
position (8 = 0°) for each experimental trial was set at
the position where the participants felt completely relaxed

Seated Position Ankle Dorsiflexion per FES pulse

Ankle Dorsiflexion (Deg.)

L L L
05 05 07 08

ot
Time [sec]

Figure 2. Ankle dorsiflexion response (threshold-saturation) for a constant
frequency (55Hz), current amplitude (30mA), and varying pulse width
duration [100 us — 350 us]. The figure shows the dorsiflexion response
of 5 subjects (4 able bodied).

about their right shank and foot. The threshold and saturation
levels for stimulation pulse width were determined using
the isometric dorsiflexion experiment based on [6] For IMU
and FES input data collection for ankle dorsiflexion, we
placed the FES electrodes on the fibular head and the lateral
malleolus of the TA muscle. The stimulation current and
frequency were kept constant, while the pulse-width was
chosen as the modulation parameter. Three trials per subject
were conducted with varying pulse width values to collect
the FES and ankle motion data. A 3-minute rest time was
provided for the participant to avoid TA muscle fatigue. The
collected average ankle dorsiflexion movement under one
trapezoidal pulse is presented in Fig.(2).

Data collection: Based on [17], a wearable sensing
system was used to measure the ankle joint kinematics. Along
with measuring the ankle kinematics, IMU measurements
were also used for gait phase detection based on methods
discussed in [18], [19]. Details on obtaining ankle angle from
IMU measurements can be found in [20]. The ankle pitch and
roll, and FES input signals were collected as (8) to derive the
Koopman prediction dynamics described in (13). Utilization
of the collected data is shown in subsequent section.

B. Prediction & Simulation Results

Simulation were performed by using the parameters from
[6] with different initial conditions to obtain the samples
of actual system trajectories. For Koopman prediction dy-
namics synthesis, we use M (= 300) sample ankle pitch
and roll trajectories for different stimulation and subject
parameters The measured samples consisted both simulations
and subject data (described in (IV-A)). To generate a lifted
system we considered different basis function for Koopman
observables - radial basis functions and polynomial based on
[14], and compared their prediction accuracies. Polynomial
basis function gave prediction accuracy of 93.7% per swing
phase as shown in Fig. (3). The Koopman observables was
defined as Ag(z,u) = [z Aj(z) A (z)  Ap(u)],
where Al(z) = e + 24 Vi = 1,...,W, a,b € RT,and
Ar(u) = u € R where e, x4 are the error and reference tra-
jectories described in (5). Based on the prediction dynamics,

2618

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on February 22,2024 at 01:01:49 UTC from IEEE Xplore. Restrictions apply.



Foot pitch prediction
T T T

—True
/\—\_mfio’n

0.1 0.2 0.3 0.4 0.5 0.6

Foot
pitch [deg.]
5 (4]
o o

a
=]

o
o
S

Foot roll prediction

I I —True
= Prediction

a
=]

58
g8 of
E = 2
50 ‘ ‘ ‘ ‘ ‘
0.1 0.2 0.3 0.4 05 0.6
Time [s]
Figure 3. Prediction results - Plot shows the foot pitch and foot roll

prediction dynamics under test FES actuation. The dynamics approximated
from (13) are utilized to predict the approximate dynamics.

Foot Pitch Trelng
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Figure 4. Simulation results - The plot shows the tracking response of foot
pitch with respect to a desired sinusoidal trajectory.

simulation results for a nominal sinusoidal trajectory tracking
of the ankle pitch are given in Fig. (4).

C. Experiments & Results

Participants: One subject with Multiple Sclerosis (MS)
(SO1, age: 67 years, height: 156 m, weight: 57 kg) partici-
pated in the study.

Walking task: The walking tasks were set up as level
ground walking to complete 8 steps with the FES actuation
provided on the TA muscle during the swing phase. The
walking setup is illustrated in Fig. (5). The FES electrodes
were placed on the fibular head and the lateral malleolus of
the TA muscle. The FES inputs were designed using the data-
driven methods described in (18) and (21), and implemented
with IMU-based gait phase detection. The primary objective
of these task was to avoid any foot drag and achieve adequate
foot clearance (pitch, z; > 12deg.) for each gait cycle
during the entire trial. The real-time implementation were
programmed in MATLAB/Simulink (R2020a, MathWorks,
MA, USA) together with a target machine (Speedgoat Inc.,
Liebefeld Switzerland). The mean dorsiflexion during swing
phase of the entire trial are presented in Fig. (6).

Experimentalresults: Before applying FES, SO1 demon-
strated foot drop accompanied with little to no volitional
knee flexion/extension and hip flexion/extension on the right
leg. To assist gait, we formulated the MPC problem as a
regulation problem with the objective of no foot drag while

Figure 5. Walking experimental setup - During the walking task, Subject
SO1 performed 8 steps on an even surface and demonstrating foot clearance
(> 11deg. w.r.t. the equilibrium position). The electrodes were placed on
the head of the TA muscle to produce the designed FES stimulation profile
for adequate foot clearance.

20 — - -
£ i e srce!
E E ';10 | n n A "\ Desired foot clearance reference
© o ©10F i S -]
=28 3 V
c 1
< i
0 I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time [sec]
1 T T T T T T
es
§5 2
S =05 4
@
=EQ®
o
4
0 . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time [sec]

Figure 6. The plot shows the experimental results for DFC for subject with
MS. The angle and stimulation profiles reflect the mean ankle dorsiflexion
response for 8 steps during the swing phase under optimal FES input
actuation. The spikes in the dorsiflexion angle are due to the unaccounted
volitional torque of the subject. The current control is derived based on gait
phase detection by IMU units. Further research will account for volitional
torque under the presence of FES.

achieving adequate foot clearance (pitch, 1 > 12deg.) for
each gait cycle during the swing phase. A trajectory tracking
was not attempted due to inconsistent heel strike times and
difficulty in timing a desired trajectory. Instead we imple-
mented the MPC as a regulation problem. As shown in Fig.
(6), adequate foot clearance was achieved during the swing
phase, but oscillations in the foot pitch were also observed.
We speculate the oscillations were likely due to ignoring
the activation and fatigue muscle dynamics. To improve this
ankle motion oscillation our future work aims to incorporate a
multi-electrode placement approach that can actuate different
muscles while accounting for muscle activation and fatigue
dynamics.

D. Discussion & Future Work

For future work, we aim to incorporate surface elec-
tromyography and Ultrasound-based information, presented
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in [20], to establish a data-driven relationship between muscle
fatigue, activation dynamics, and FES stimulation parameter
design enhance the closed-loop performance for DFC control.
We can further use the Koopman operator framework to an-
alyze cascaded/composite functions of state and control and
analyze the preservation of nonlinear dynamics for implicit
differential equations.

V. CONCLUSION

We proposed a data-driven MPC-based optimization for
FES to correct foot drop. Our method is aimed to be
real-time implementable without requiring a prior system
identification process to determine different muscle activation
and fatigue parameters. To achieve this objective, we develop
a Koopman-operator based predictive controller that assists in
adequate foot clearance for people with foot drop. We model
FES effectuated ankle dynamics using a Koopman operator
approximation, and then synthesize optimal control using
MPC. We provide the recursive feasibility and asymptotic
stability analysis of the closed-loop system. We have vali-
dated our design in real-time closed-loop FES experiments
with seated position and walking tasks. Our findings indicate
that the proposed data-driven MPC for FES can elicit the
necessary ankle dorsiflexion to facilitate normal gait. The
suggested FES system was used to correct the drop foot in
a patient with MS.
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