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Evaluation of a Fused Sonomyography and
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Abstract—This article presents an assist-as-needed (AAN) con-
trol framework for exoskeleton assistance based on human voli-
tional effort prediction via a Hill-type neuromuscular model. A se-
quential processing algorithm-based multirate observer is applied
to continuously estimate muscle activation levels by fusing surface
electromyography (sEMG) and ultrasound (US) echogenicity sig-
nals from the ankle muscles. An adaptive impedance controller
manipulates the exoskeleton’s impedance for a more natural behav-
ior by following a desired intrinsic impedance model. Two neural
networks provide robustness to uncertainties in the overall ankle
joint-exoskeleton model and the prediction error in the volitional
ankle joint torque. A rigorous Lyapunov-based stability analysis
proves that the AAN control framework achieves uniformly ul-
timately bounded tracking for the overall system. Experimental
studies on five participants with no neurological disabilities walking
on a treadmill validate the effectiveness of the designed ankle ex-
oskeleton and the proposed AAN approach. Results illustrate that
the AAN control approach with fused sEMG and US echogenicity
signals maintained a higher human volitional effort prediction
accuracy, less ankle joint trajectory tracking error, and less robotic
assistance torque than the AAN approach with the sEMG-based vo-
litional effort prediction alone. The findings support our hypotheses
that the proposed controller increases human motion intent pre-
diction accuracy, improves the exoskeleton’s control performance,
and boosts voluntary participation from human subjects. The new
framework potentially paves a foundation for using multimodal
biological signals to control rehabilitative or assistive robots.
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NOMENCLATURE

AAN Assist-as-needed.
HNM Hill-type neuromuscular model.
sEMG Surface electromyography.
EMG Electromyography.
US Ultrasound.
AIC Adaptive impedance controller.
NN Neural network.
ID Inverse dynamics.
CNS Central nervous system.
HMI Human-machine-interface.
RBFNN Radial basis function neural network.
SNR Signal-to-noise ratio.
BCD-AnkleExo Bidirectional cable-driven ankle exoskeleton.
GAS Gastrocnemius.
LGS Lateral gastrocnemius.
SOL Soleus.
MTU Muscle-tendon-unit.
CE Contractile element.
PE Passive element.
RHS Right-hand side.
SEA Series-elastic actuator.
RMSE Root mean square error.
IRB Institutional Review Board.
S1 Scenario 1.
S2 Scenario 2.
S3 Scenario 3.
SD Standard deviation.
GRF Ground reaction force.
B-mode Brightness mode.
ANOVA Analysis of variance.
Tukey’s HSD Tukey’s honestly significant difference test.
GAPSO Genetic algorithm-based particle swarm op-

timization.

I. INTRODUCTION

LOCOMOTION accounts for a dominant part of human
activities in daily living, such as moving around the
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community, going to work or school, doing errands, etc. The
human ankle plantarflexors play an essential role in achieving
locomotion, especially for generating a large burst of “push-off”
mechanical power during the late stance phase that enables
the forward and upward acceleration of the center of mass.
However, a variety of neurological disorders, such as spinal cord
injury, stroke, and multiple sclerosis, weaken the plantarflexion
function, cause a dramatic decrease in the “push-off” power
that impairs walking, leading to a poor energy economy [1], and
disrupt both physical and emotional well-being [2].

Recent advanced robotic devices, such as powered ankle
exoskeletons [3], [4], [5], [6], ankle emulators [7], [8], soft exo-
suits [9], [10], and hybrid neuroprostheses [11], [12], [13], [14],
[15], either aim to help people with neurological disorders regain
ankle joint mobility and improve gait patterns or augment limb
function and improve the energy economy in persons without
disabilities. Controllers in these robotic devices predominantly
provide a priori defined torque/angle profiles [7], [10], [16],
[17], [18], while some use neuromuscular reflexive rules [5],
[19] that are event-triggered during different gait phases. The
predefined joint torque profiles have also been optimized via
human-in-the-loop optimization methods to reduce metabolic
cost [7], [16] or muscles’ EMG/sEMG activities [19]. However,
these control approaches mainly emphasize human augmenta-
tion and may not be designed to encourage human volitional
effort, a relevant objective for neurorehabilitation.

A user-driven assistive device control approach can ar-
guably improve walking performance in people with neuro-
logical disorders [20], [21], [22]. Considering human motion
intent/voluntary effort while computing minimal robotic assis-
tance, also known as AAN control, is essential to increase muscle
activities of the subject, encourage neuroplasticity, and max-
imize the recovery effects during rehabilitation training [23],
[24], [25]. Wolbrecht et al. [23] developed a model-based adap-
tive AAN approach to learn the patient’s abilities and assist
in completing movements while remaining compliant. Hussain
et al. [24] proposed an AAN control architecture for providing
seamless adaptive robotic assistance to hip and knee joints
during gait training, powered by pneumatic muscle actuators.
Asl et al. [25] proposed a novel adaptive NN controller with
input saturation to address the unknown system dynamics and
external disturbances on the hip and knee joints of a lower limb
robotic exoskeleton. These studies used NNs to estimate human
volitional effort, which depended on the measures of interaction
dynamics or estimates of the joint torque from ID. However, the
nature of interaction dynamics and ID may not be appropriate in
some cases, as the users must produce a torque on the joints that
exceeds some threshold to initiate the motion before the devices
can generate assistance. For example, if the users have high-level
muscle weakness and are not able to produce sufficient torques
on their joints, such as may be the case of individuals with severe
impairments, the robotic devices may not be successfully con-
trolled. Fortunately, this disadvantage can be avoided by using
the human intent-based control of robotic devices according to
physiological signals, like sEMG, that are sent from the CNS to
the functional motor units.

Computing appropriate robotic assistance in an AAN control
approach may be accomplished by predicting the user-generated

volitional effort or motion intent from skeletal muscles’ sEMG
signals. In recent years, the use of sEMG-driven HNMs, as a
HMI to estimate the motion intent or residual volitional effort,
has been particularly motivated to implement bio-inspired AAN
control for enhancing the voluntary participation of the user.
For example, myoelectric controllers [19], [26], [27], [28] pro-
portionally assist the user based on real-time recorded EMG
signals. However, these model-free methods directly relied on
sEMG signals and disregarded the highly nonlinear transforma-
tion from sEMG onset to joint torque generation. Instead, the
neuromuscular model-based AAN control methods [29], [30],
[31], [32] use a nonlinear mapping to predict limb torques from
sEMG signals. Subsequently, the proportional adjustment of
the robotic assistance according to the biological joint torque
estimation could be achieved [30], [31], [32]. Some studies
bypassed the use of the complex neuromuscular model [33],
[34] in the AAN control. Instead, the rectified and low-pass
filtered EMG signals were used as inputs to a RBFNN that was
incorporated into a Slotine–Li adaptive controller [35].

Despite sEMG’s impressive performance and wide applica-
tion in rehabilitative/assistive device control, its susceptibility
to signal interference coming from neighboring muscles, low
SNR, and inability to measure contractions of deeply located
muscles [36], [37], [38] are significant hurdles for sEMG’s use in
HMIs and accurate muscle activation measures. As an alternative
to sEMG-based HMIs, US imaging has recently been applied to
quantitatively measure muscle contractility. Its advantages over
sEMG include direct muscle visualization, high SNR, and access
to deep muscle layers. One-dimensional (pennation angle, fasci-
cle length, muscle thickness [39], and echogenicity/image inten-
sity [38], [40], [41], [42]), two-dimensional (tissue displacement
or strain [43], [44]), and high-dimensional (implicit features
from deep learning [45]) features have been investigated to char-
acterize the muscle contraction force, net joint torque, and joint
movement. However, nearly all studies above were offline due to
computationally intensive US imaging beamforming and post-
processing. In a recent study [46], the SOL muscle average
velocity profiles during versatile walking tasks were measured
through prerecorded US images and then used to estimate the
muscle force and determine the exosuit assistance profile, which
was proportional to the estimated muscle force. The muscle-
based assistance approach was evaluated by calculating the
reduction of metabolic cost with a bilateral ankle exosuit in
a variety of walking conditions. Although this muscle-based
approach enables a rapid generation of individualized assistance
profiles, the US images were processed offline; thus, the real-
time feedback from US imaging-derived signals that estimate
muscle force remains unexplored. Importantly, given the time-
varying nature of the muscle force generation among gait cycles
and the highly nonlinear relationship between muscle contrac-
tility and muscle force/joint moment, the desired assistance
may deteriorate in the absence of real-time US imaging-derived
feedback.

Considering the aforementioned corresponding advantages
of both sEMG- and US imaging-based HMIs, recent evidence
from offline studies has shown that the joint torque or motion
intent prediction accuracy can be further increased by fusing
US imaging-derived and sEMG-derived measures of muscle

Authorized licensed use limited to: N.C. State University Libraries ­ Acquisitions & Discovery  S. Downloaded on February 22,2024 at 01:04:53 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: EVALUATION OF A FUSED SONOMYOGRAPHY AND ELECTROMYOGRAPHY-BASED CONTROL 2185

Fig. 1. Overview of the voluntary torque prediction via the sEMG-US imaging-driven HNM that incorporates an AIC for adjusting the assistance of a novel
BCD-AnkleExo.

contractility [37], [47], [48], [49]. A probable reason for the
improved accuracy of the dual-modal approach is that the dual-
modal signals provide complementary electrical and mechanical
information regarding the same muscle contraction activity.
From the perspective of human volitional effort or motion intent
prediction, since there is a lack of real-time methods for fusing
sEMG and the US-derived signals, motivation exists to develop
a data fusion algorithm for predicting the joint torque or motion
intent online. Furthermore, few AAN control studies for robotic
assistive devices have focused on the ankle joint or used any
real-time sensor fusion between sEMG and US imaging signals,
especially for locomotion tasks, to the best of the authors’
knowledge. Therefore, there is also a need for incorporating the
novel data fusion algorithm into the control design of wearable
robotic assistive devices, thus promoting a greater symbiosis
between the robotic assistive device and the user.

To tackle these motivations, there are two main challenges: 1)
the sparsity of US imaging measurement feedback, which causes
different sampling rates of the US imaging and sEMG signals
when used in the real-time closed-loop control framework; and
2) the design of an intuitive AAN controller to adapt to the
time-varying residual volitional effort or motion intent from
HMIs. In this article, for the first time, we propose to combine
US imaging–derived echogenicity signals with sEMG signals
to continuously predict human ankle joint net plantarflexion
torque online during a walking task. The AAN control design
incorporates the volitional effort prediction and an AIC to au-
tomatically adjust the assistance levels from a BCD-AnkleExo.
The overview of the work is presented in Fig. 1. Mainly, the
contributions and innovations are as follows.

1) This is the first study that uses the skeletal muscle’s US
imaging signals online in the real-time closed-loop control
design of assistive robotic devices.

2) The volitional net plantarflexion torque is predicted by us-
ing an sEMG-US imaging-driven HNM, where the synthe-
sized muscle activation signal is estimated by fusing both
real-time low-sampled US imaging-derived echogenicity
signals and high-sampled sEMG signals through a sequen-
tial processing algorithm-based multirate observer.

3) The predicted torque is implemented in an NN-based
AIC-based AAN framework that automatically adjusts
the BCD-AnkleExo assistance while guaranteeing the
uniformly ultimately bounded stability of the overall

closed-loop system according to the Lyapunov stability
analysis.

4) The proposed AAN control framework is experimentally
validated on five unimpaired participants when wearing
the BCD-AnkleExo and walking on the treadmill. The
comparison results show that the proposed control frame-
work exhibits superior performance over a traditional
AAN control approach that only uses sEMG signals,
where control outcomes include joint trajectory tracking
error and assistance levels from the exoskeleton.

The rest of this article is organized as follows. Section II
presents the sEMG–US imaging fusion-based ankle joint vo-
litional effort prediction based on a modified HNM. The ankle
joint-exoskeleton hybrid dynamical system modeling and the
development of the AIC-based AAN control framework are
illustrated in Section III. Section IV shows the treadmill walking
experimental study, results analysis, and discussions. Finally,
Section V concludes this article.

II. HUMAN ANKLE JOINT VOLITIONAL EFFORT PREDICTION

In this section, we develop a plantarflexion torque predic-
tion model by synthesizing muscle activation from sEMG- and
US imaging-derived signals. The first subsection establishes
a HNM-based torque prediction model that takes input from
a fused muscle activation model and the second subsection
presents an approach to synthesize muscle activation from high-
sampled sEMG and low-sampled US imaging signals.

A. HNM Formulation of Net Plantarflexion Torque Prediction

The main contributors to the net plantarflexion torque gener-
ation include LGS and SOL muscles. An anatomical diagram of
the ankle joint musculoskeletal system is shown in Fig. 2. Ac-
cording to the HNM [50], [51], [52], [53], [54], the volitional net
plantarflexion torque τnet(t) at the ankle, when only considering
LGS and SOL muscles, is given as

τnet(t) =
2∑

j=1

Mj(t) (1)

where the individual torque produced by each MTU is calculated
as

Mj(t) = Fmtj (t)rmtj (t) (2)
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Fig. 2. Illustration of the HNM for both the LGS and SOL muscles when
performing ankle plantarflexion function. (a) LGS and SOL muscles’ dynamic
contraction diagram. (b) Schematic representation of both LGS and SOL mus-
cles’ geometry model around the ankle joint. (c) Anatomical representation of
both LGS and SOL muscles during the walking stance phase.

where Fmtj (t) ∈ R (j = 1, 2 represents the LGS and SOL
muscles, respectively) denotes the individual contraction force
applied on the corresponding MTU. It is represented as

Fmtj (t) = (Fcej (t) + Fpej (t)) cos(φj(t)) (3)

where φj(t) ∈ R denotes the pennation angle that can be deter-
mined based on the method in [48]. Fcej (t) ∈ R and Fpej (t) ∈
R denote the corresponding forces generated by the parallelly
located CE and PE and can be calculated as [50], [51], [54][

Fcej (t)

Fpej (t)

]
=

[
Fmax
j flj (lmj

(t))fvj
(vmj

(t))aj(t)

Fmax
j fpj

(lmj
(t))

]
(4)

where Fmax
j ∈ R denotes the muscle contraction force at

maximum volitional isometric contraction, which can be re-
ferred from the literature [52], [55], [56] or identified based
on an optimization algorithm in the HNM calibration proce-
dures. flj (lmj

(t)), fvj
(vm(t)), and fpj

(lmj
(t)) ∈ R denote the

generic muscle contractile force-fascicle length, force-fascicle
velocity, and passive elastic force-fascicle velocity curves, re-
spectively. These curves were normalized to Fmax

j , optimal
fascicle length l0mj

∈ R, and maximum fascicle contraction
velocity vmax

mj
∈ R. The values of l0mj

and vmax
mj

were fixed and
reported by Delp [55]. The explicit expressions of flj (lmj

(t)),
fvj

(vm(t)), and fpj
(lmj

(t)) can be found in [30], [37], [54], and
[57]. The CE length and velocity were determined by using data
from OpenSim (National Institutes of Health for Biomedical
Computation, Stanford, CA, USA) [58] and the scaling method
therein. For both the LGS and SOL muscles, we built a third-
order polynomial relationship between the CE length and the
ankle joint position, as well as between the CE velocity and the
ankle joint velocity, according to the data from OpenSim. These
two polynomial functions were used in the HNM to determine
the CE length and velocity for either LGS or SOL muscle in
real-time. aj(t) ∈ R denotes the muscle activation that will
be derived by using the proposed sEMG–US imaging fusion
subsequently.

In (2), rmtj (t) ∈ R represents the moment arm of each MTU
and is calculated by using the musculoskeletal geometry model

in Fig. 2. Consider the ankle joint dorsiflexion/plantarflexion’s
rotation center in the sagittal plane as point O, the proximal and
distal osteotendinous junction points of each MTU asPj andQj ,
and the angle between OPj and OQj as q(t). Then, each MTU
length, lmtj (t) ∈ R, is represented as the distance between Pj

and Qj and calculated based on the law of cosines as

lmtj (t) =
√
l2OPj

+ l2OQj
− 2lOPj

lOQj
cos(q(t)) (5)

where lOPj
∈ R and lOQj

∈ R represent the distances of OPj

andOQj in Fig. 2 that are obtained from OpenSim, respectively.
By using the law of sines, we can derive rmtj (t) as

rmtj (t) =
∂lmtj (t)

∂(q(t))
=

2lOPj
lOQj

sin(q(t))

lmtj (t)
. (6)

B. Sequential Processing for the Muscle Activation Fusion

The objective of the sensor fusion is to obtain an estimation
of muscle activation aj(t) in (4), noted as âj(t), by combining
the sEMG-derived muscle activation, a1, and the US imaging-
derived muscle activation,a2. Our pilot study in [37] investigated
one possible way to fuse the muscle activation components from
both sEMG and US imaging signals by adding an allocation
ratio. The optimal allocation ratio was determined based on the
HNM model calibration by using offline processed experimental
data (with a lower sampling rate of 20 Hz). However, some
challenges still remain to be solved, including: 1) a generalized
optimal allocation ratio for different participants; 2) the online
generation of US imaging-derived features; and 3) the fusion
of signals with asynchronous sampling rates. To address the
above challenges, we propose to use the subsequent stochastic
approach to obtain the optimal estimation of muscle activation.

The discrete-time form of the first-order activation dynamics,
shown in [59], can be written as

aj(tk+1) = Aj, kaj(tk) +Bj, kuj(tk) + v∗j(tk) (7)

where Aj, k, Bj, k, and v∗j(tk) ∈ R are calculated as Aj, k =

e
− 1

Taj
(tk+1−tk)

, Bj, k = 1− e
− 1

Taj
(tk+1−tk)

, and v∗j(tk) =∫ tk+1

tk
e
− 1

Taj
(tk+1−t)

vj(t)dt. Since the input of the muscle ac-
tivation dynamics is from the CNS, which is very challenging
to acquire directly, it is hypothesized that uj(tk) ∈ R is an
unknown input signal. Taj

∈ R
+ is the time constant of each

muscle activation, and vj(t) ∈ R is assumed to be an additive
white Gaussian noise signal. The index j = 1, 2 represents the
LGS and SOL muscles, and the index k = 1, 2, . . . represents
the discrete sampling time instant.

The high-sampled and low-sampled muscle activation signal
measurements from sEMG and US imaging are depicted in
Fig. 3. The vertical orange lines represent the sEMG measure-
ments, which are immediately available without considering
delay, and the dashed blue lines represent the US imaging
measurements. Here, tk is the current measurement instant,
ts is the sampling instant for the US imaging measurement
that is available at tk, hs ∈ R

+ is the basic sampling interval,
and Y 1(tk) ∈ R and Y 2(tk) ∈ R represent the sEMG-induced
and US imaging-induced muscle activation measurements,

Authorized licensed use limited to: N.C. State University Libraries ­ Acquisitions & Discovery  S. Downloaded on February 22,2024 at 01:04:53 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: EVALUATION OF A FUSED SONOMYOGRAPHY AND ELECTROMYOGRAPHY-BASED CONTROL 2187

Fig. 3. Schematic of multirate and delayed muscle activation measurements
from sEMG signals and US imaging.

respectively. There exists a delay Ns from the sampling instant
ts ∈ R

+ to the instant tk ∈ R
+ when the US-derived measure-

ment is available. The time instants when only sEMG signals
are available and when both sEMG and US imaging signals are
available are defined as the minor instance and major instance,
respectively. The US imaging is sampled at a low rate, and the
next sample is taken at ts +Ms, where Ms ∈ R

+ is a constant
number of intervals between two successive US imaging sam-
ples.

Given the description above, the measurement models for
sEMG signals and US imaging are presented as[

Y 1
j (tk)

Y 2
j (tk)

]
=

[
aj(tk) + ν1j (tk)

aj(ts) + ν2j (ts), if k = s+Ns

]
(8)

where Y 1
j and Y 2

j are the normalized measurements from the
sEMG linear envelope and US imaging-derived echogenicity,
respectively, which will be detailed in the subsequent experi-
mental protocol section. The noise sources v∗j(tk), ν

1
j (tk), and

ν2j (ts) ∈ R are assumed to be additive white Gaussian noise
signals with respective covariance matricesQj ,R1

j , andR2
j ∈ R.

To fuse the multirate measurements with delays, a sequen-
tial processing scheme [60] was applied here. This sequential
processing occurs whenever the individual measurement from
either sEMG or US imaging is available. The measurements
Y 1
j (tk) are first processed by a Kalman filter. Starting with the

filtered state estimate â1j (tk−1|tk−1) and its error covariance
matrixP 1

j (tk−1|tk−1), the state estimation at time tk is computed
recursively as

â1j (tk|tk−1) = Aj, k−1â
1
j (tk−1|tk−1) +Bj, kûj (tk−1) (9)

ûj (tk) = Sj (tk)
(
Y 1
j (tk)− â1j (tk|tk−1)

)
(10)

â1j (tk|tk) = â1j (tk|tk−1)

+K1
j (tk)

(
Y 1
j (tk)− â1j (tk|tk−1)

)
(11)

whereSj(tk) ∈ R is an optimal gain that is calculated iteratively
based on the approach mentioned in [61, Sec. 4]. K1

j (tk) ∈ R is
the Kalman gain for sEMG measurement and is also calculated
iteratively.

At minor instances, only Y 1
j (tk) are available, so we can set

âj(tk|tk) = â1j (tk|tk) and Pj(tk|tk) = P 1
j (tk|tk). For a linear

system, the error covariance and the Kalman gain are only
dependent on the variance of the error in the measurement and
not on the measured value [60]. Therefore, even though the

US imaging measurement Y 2
j (tk) is not immediately available

at time instant tk, the error covariance and Kalman gain with
respect to this measurement can still be updated as follows as
soon as the US imaging is sampled:

K2
j (tk) = P 1

j (tk|tk)
[
P 1
j (tk|tk) +R2

j

]−1
(12)

P 2
j (tk|tk) =

[
I −K2

j (tk)
]
P 1
j (tk|tk) . (13)

During the time period ts and tk, since Y 2
j (ts) is not available,

the state estimation continues to be updated by using only the
sEMG measurements. At the major instance ts+Ns

, the US
imaging measurements are available, and the correction term
is added to the previous estimated state âj(tk|tk) as

âj(tk|tk) = â1j (tk|tk) + δâj(tk) (14)

where δâj(tk) is the correction term that is defined as

δâj(tk) = WsK
2
j (ts)

(
Y 2
j (tk)− âj(ts|ts−1)

)
(15)

where Ws is an accumulated term that accounts for the delay
and is calculated by

Ws =

i=Ns∏
i=1

(
I −K∗

j (s+ i)
)
Aj, s+i−1. (16)

In (16), K∗
j (t) ∈ R is used to distinguish it from K1

j (t) ∈
R, where t ∈ [ts+1, ts+Ns−1]. In other words, K∗

j (tk) ∈ R

is computed with the condition Pj(tk|tk) = P 2
j (tk|tk), while

K1
j (tk) ∈ R is computed with the condition Pj(tk|tk) =

P 1
j (tk|tk). Therefore, the muscle activation state estimates in

the time interval [ts+1, ts+Ns−1] are suboptimal, but the above
correction (15) offers the optimal state estimates at the major
instance. The convergence proof can be found in [60].

III. AAN CONTROL DEVELOPMENT

Fig. 4 presents the overall diagram of the proposed AIC-based
AAN control framework for the BCD-AnkleExo with the con-
sideration of the ankle joint volitional effort that is predicted
via the sEMG-US imaging-driven HNM. The details for each
component are given in the following subsections.

A. System Dynamics and Impedance Matching Error

The dynamics of the ankle joint with the exoskeleton are given
as

Jq̈(t) + Cq̇(t) +G(q(t)) + fdis(t) = τh(t) + τm(t) (17)

where q(t), q̇(t), q̈(t) ∈ R represent the angular position, ve-
locity, and acceleration, respectively, of the ankle joint relative
to the static standing posture. J, C, G ∈ R are the unknown
system inertia, damping, and gravitational terms, respectively.
fdis(t) ∈ R is the combination of the unknown external distur-
bances and the modeling uncertainties, including the Bowden
cable friction, the impact from the environment, and so on. The
variable τh(t) ∈ R is the voluntary plantarflexion torque exerted
by the wearer, and τm(t) ∈ R is the applied assistance torque
from the BCD-AnkleExo. To facilitate the controller design and
stability analysis, the following assumptions are provided.
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Fig. 4. Overall diagram of the AIC-based AAN control framework for the BCD-AnkleExo to provide plantarflexion assistance during the walking stance phase.
The red, blue, and black lines with arrows represent the direct sensor measurements, the intermediate signals in the control system, and the torque command to the
BCD-AnkleExo, respectively.

Assumption 1: The external disturbance and modeling un-
certainty term fdis is uniformly upper bounded by f̄ ∈ R

+,
∀ t ∈ [0, ∞).

Assumption 2: The unknown system inertia J is lower and
upper bounded by J ∈ R

+ and J̄ ∈ R
+, ∀ t ∈ [0, ∞), respec-

tively.
In general, the terms J , C, and G of the overall dynamic

system cannot be obtained accurately beforehand in actual ap-
plications. Thus, we introduce reference impedance parameters
to the sole human ankle joint system as

Jdq̈ + Cdq̇ +Kdq = τh (18)

where Jd, Cd, Kd ∈ R
+ are known reference inertia, damping,

and stiffness coefficients of the ankle joint during the walking
stance phase [62].

Define the error between the actual angular position and
desired angular position as e = q − qd, where qd ∈ R is contin-
uously differentiable, bounded, and generated online based on
the virtual constraints by using the shank and thigh orientations
and angular velocities (see details in Appendix A). Also, the
first- and second-order time derivatives of qd are continuously
differentiable and bounded. Using (18), the desired impedance
model is equivalent to

Jdë+ Cdė+Kde � τh − Jdq̈d − Cdq̇d −Kdqd. (19)

In (19), the reference impedance model can be achieved (the
RHS is equal to 0) if the real angular position q accurately
tracks the desired impedance trajectory qd. Therefore, the control
objective here is to find an appropriate control input τm such that
the ankle joint-ankle exoskeleton dynamics mentioned in (17)
can precisely match the reference model dynamics in (19).

Due to the fact that the human volitional effort τh can only be
predicted from the HNM, noted as τnet, and because a difference
exists between the system dynamics and the reference model
dynamics, an impedance-matching error can be introduced as

ε = Jdë+ Cdė+Kde− τnet + Jdq̈d + Cdq̇d +Kdqd (20)

where the control objective will be fulfilled when the impedance
matching error meets ε(t) = 0. Since Jd is a positive constant,
the newly augmented matching error can be written as

εJ = ë+ CJ ė+KJe+Kσσ (21)

where εJ = ε/Jd, CJ = Cd/Jd, KJ = Kd/Jd, Kσ = 1/Jd,
and σ = Jdq̈d + Cdq̇d +Kdqd − τnet.

Selecting two positive constants α and β that satisfy the
conditionsCJ = α+ β andKJ = αβ, the augmented matching
error is rewritten as

εJ = ë+ (α+ β)ė+ αβe+ η̇ + αη (22)

where η is elaborately selected to satisfy the condition that
Kσσ = η̇ + αη. In addition, by defining a filtered matching er-
ror term r = ė+ βe+ η, we can rewrite the augmented match-
ing error as

εJ = ṙ + αr. (23)

B. Neural Networks-Based Controller Development

The overall system dynamics given in (17) can be written in
a state-space form as[

ẋ1

ẋ2

]
=

[
x2

(τh + τm − Cx2 −G− fdis) /J

]
(24)

where [x1, x2]
T = [q, q̇]T . Defining q̇s = q̇d − βe− η, we

have q̈s = q̈d − βė− η̇. Considering that r = ė+ βe+ η, we
can get q̇s = q̇ − r, which implies q̈s = q̈ − ṙ. To facilitate the
stability analysis, we define variables s1 = x1 − qd = e and
s2 = x2 − q̇s. Since only one degree of freedom exists in the
targeted system, qs ∈ R, s1 ∈ R, and s2 ∈ R.

By taking the time derivatives of s1 and s2, we have[
ṡ1
ṡ2

]
=

[
s2 − βe− η

(τh + τm − Cx2 −G− fdis) /J − q̈s

]
. (25)

Considering the error between the ankle joint torque esti-
mation τnet from the sEMG-US imaging-driven HNM and the
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actual exact torque τh in (17), we define �τ = τnet − τh, which
is unknown. In addition, the external disturbance and ankle
exoskeleton dynamics are also unknown. Inspired by Wolbrecht
et al. [23] and Li et al. [29], we exploit two Gaussian RBFNNs
to represent these two unknown functions as

�τ = W ∗TΘ(Zτ ) + ετ (26)

Cs2 + Cq̇s +G(x1) + Jq̈s = R∗TΦ(Z) + εe (27)

whereW ∗ ∈ R
N1 andR∗ ∈ R

N2 are optimal weights for the two
NNs andN1 andN2 are the number of neurons in the hidden lay-
ers. Θ(Zτ ) : R

5 → R
N1 and Φ(Z) : R6 → R

N2 are the basis
function matrices of the two NNs, and ετ ∈ R and εe ∈ R are ap-
proximation errors of the two NNs, which are upper bounded by
positive constants that can be written as |ετ | ≤ ε̄τ and |εe| ≤ ε̄e.
The augmented input vectors for the two NNs are defined as
Zτ = [1, x1, x2, â1, â2]

T and Z = [1, x1, x2, qs, q̇s, q̈s]
T .

The Gaussian radial basis functions of Θ(Zτ ) and Φ(Z) are
defined as

θn1
= e

−‖Zτ−μ1
n1‖2

2δ2
1 , φn2

= e
−‖Z−μ2

n2‖2

2δ2
2 (28)

where μ1
n1

∈ R
5 (n1 = 1, 2, . . ., N1) and μ2

n2
∈ R

6 (n2 =
1, 2, . . ., N2) are the centers of the nth

1 or nth
2 RBF with respect

to the elements in Zτ or Z. Zτ and Z are the current state
variables in the augmented input vectors, and δ1 and δ2 are
scalar smoothing constants that determine the width of the basis
functions. The number of basis functions and the values of δ1
and δ2 will be chosen experimentally to provide the best possible
tradeoff between the precision of the approximation and the
computational complexity of the proposed controller. Therefore,
the matrices of all radial basis functions for the two NNs are
defined as

Θ(Zτ ) =
[
θ1 θ2 · · · θN1

]T
Φ(Z) =

[
φ1 φ2 · · · φN2

]T
. (29)

Based on the GRBFNNs, the unknown volitional net plantarflex-
ion torque prediction error can be approximated as ŴTΘ(Zτ ),
while the external disturbance and exoskeleton dynamics can
be approximated as R̂TΦ(Z). The vectors Ŵ and R̂ are the
estimates of the optimal weights for the NNs in (26) and (27),
and their updating laws are designed as

˙̂
W = −Γ1

(
Θ(Zτ )s2 + γ1Ŵ

)
˙̂
R = −Γ2

(
Φ(Z)s2 + γ2R̂

)
(30)

where γ1 and γ2 are small positive gains and Γ1 ∈ R
N1×N1

andΓ2 ∈ R
N2×N2 are symmetric positive-definite matrices. The

first term on the RHS of either ˙̂
W or ˙̂

R tends to reduce the
tracking error and is a typical adaptive control term in which
Γ1 or Γ2 determines the overall tracking error-based adaption

rate. The second term on the RHS of either ˙̂
W or ˙̂

R tends to
reduce the control input and preserve the system information
learned from the previous motion cycle, which is essential for the
repeated movement of the ankle joint during walking. We define

the optimal weights’ estimation errors as W̃ = Ŵ −W ∗ and
R̃ = R̂−R∗, which need to be bounded during the impedance
control implementation. The updating laws proposed in (30) are
supposed to achieve a decrease in the torque applied by the ankle
exoskeleton when the wearer is able to complete the ankle joint
movement during walking and vice versa.

The overall AAN control law (in Fig. 4) for achieving zero
error between the ankle exoskeleton dynamics and the human
ankle joint desired impedance model is given as

τm = −s1 − kss2 + ŴTΘ(Zτ ) + R̂TΦ(Z)− τnet. (31)

The sufficient conditions of selected control gains, i.e., β, ks,
γ1, and γ2, the semiglobal boundedness of signals in the closed-
loop system, i.e., Ωs1 , Ωs2 , ΩW̃ , and ΩR̃, and the Lyapunov
stability analysis are presented in Appendix B.

IV. EXPERIMENTAL STUDY AND RESULTS

A. Experimental Protocol and Apparatus

The treadmill walking experimental study was approved by
the IRB at North Carolina State University (IRB approval num-
ber: 20602). Five young participants (identified as A01, A02, ...,
A05, three males and two females, age: 25.4±3.1 years, height:
1.77±0.10 m, and mass: 78.0±21.1 kg) with no neurological
disabilities were included to conduct walking experiments at
0.60 m/s on an instrumented treadmill when wearing the de-
signed BCD-AnkleExo. Participants signed a written informed
consent form prior to the experimental sessions. The entire study
included three different scenarios that are detailed below for each
participant. During each scenario, we asked the participants to
walk for 3 min with the first 2 min as an acclimation procedure,
and the last 1 min for data collection, which was used for results’
presentation and analysis in this article.

1) Scenario 1 (S1): Treadmill walking task while wearing
the BCD-AnkleExo with the setting of zero impedance
control mode.

2) Scenario 2 (S2): Treadmill walking task while wearing the
BCD-AnkleExo in the AIC mode with only sEMG-based
ankle joint effort prediction.

3) Scenario 3 (S3): The similar procedures as S2 but in the
proposed AIC with sEMG-US imaging-based ankle joint
effort prediction.

During the treadmill walking experiments, in addition to the
BCD-AnkleExo (details of the mechatronic design and benchtop
testings can be seen in Appendix C), we placed 28 reflective
markers (Vicon Motion System Ltd., Los Angeles, CA, USA)
on the lower limbs and pelvis for the measurements of three-
dimensional coordinates of each segment at 100 Hz and used
them for offline ID calculation. The GRF signals from two force
plates (Bertec, Columbus, OH, USA) mounted beneath the split
treadmill belts were also collected at 1000 Hz for offline ID
calculation. Furthermore, a threshold (5% of the z-axis GRF
signal) was selected to differentiate the stance and swing phases
in real time on both legs during each gait cycle, which was
used to switch between two controllers, i.e., the AIC during the
stance phase and a traditional proportional–derivative controller
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for regulating the dorsiflexion motion during the swing phase.
In this article, only results from the stance phase are presented.

Two sEMG sensors (BagnoliTM Desktop, DELSYS, Natick,
MA, USA) were attached onto both the LGS and SOL muscles
to measure the corresponding sEMG signals at 1000 Hz. A
linear US transducer (38 mm in length, 6.4 MHz center fre-
quency, L7.5SC Prodigy Probe, S-Sharp, Taipei, Taiwan) was
cross-sectionally attached to the location next to the sEMG
sensor for the LGS muscle to image both superficial LGS and
deep SOL muscles in the same plane. sEMG signals were first
bandpass filtered with a bandwidth between 20 and 450 Hz,
full-wave rectified and low-pass filtered with a cutoff frequency
of 6 Hz, and then normalized to the peak value/contraction under
scenario S1. After obtaining the normalized linear envelope,
denoted as Nj(tk), a second-order recursive filter was used to
calculate the neural activation of each muscle, denoted asuj(tk),
which is given by

uj(tk) = α0Nj(tk − τj)− β1uj(tk − 1)− β2uj(tk − 2)

where α0 = 0.9486, β1 = —0.056, and β2 = 0.000627 [52].
τj is the EMD and is usually between 30 and 120 ms. Finally,
a nonlinear relationship between the neural activation Nj(tk)
and the corresponding muscle activation, denoted as Y 1

j (tk) in
Section II-B, is given as [52]

Y 1
j (tk) =

eAjNj(tk) − 1

eAj − 1

where Aj represents the nonlinear shape factor for each muscle,
which is allowed to vary between −3 and 0, with Aj = 0 being
a linear relationship.

The US echogenicity signals of LGS and SOL muscles at each
available time instant tk are calculated as

Echoj(tk) =
1

NANL

NA∑
x=1

NL∑
y=1

Ij, tk(x, y) (32)

where NA, NL ∈ R
+ represent the pixel numbers along axial

and lateral directions, respectively. Ij, tk(x, y) ∈ R represents
the US intensity information at the pixel location (x, y) in the
region of interest from the logarithmically compressed imaging
signals after the beamforming procedure. Owing to the pixel
displacement tracking-free nature of the US echogenicity signal,
it is the most feasible US imaging-derived feature for online
feedback and implementation in the closed-loop control prob-
lem. Visually, the echogenicity signal reflects the overall bright-
ness change of the muscle’s region of interest, which linearly
correlates with the muscle contraction level [38], [44]. Similarly,
the US echogenicity signals from (32) were also normalized to
the values between no contraction and the peak contraction in S1
to calculate the US imaging-induced muscle activation, denoted
as Y 2

j (tk) in Section II-B. Prior tests showed that the transfer
rate of the real-time US echogenicity data from the US machine
to the host computer running the control algorithm was around
7.8 frames/s. This implied that the US imaging-derived muscle
activation measurement sampling rate was significantly lower
than the sampling rates of other sensing channels for a real-time

Fig. 5. Treadmill walking experimental setup and snapshots from (A) to (H)
of a representative gait cycle on A02. The bottom plots demonstrate the real-
time sEMG-derived muscle activation (left column), US-echogenicity-derived
muscle activation (middle column), and muscle activation fusion (right column)
from both LGS and SOL muscles during multiple stance cycles in S1.

control purpose, which was addressed by using the sequential
processing algorithm in Section II-A.

B. Treadmill Walking Experimental Results

1) Validation of the Sensor Fusion on the Ankle Joint Vo-
litional Effort Prediction: The snapshots of treadmill walk-
ing experiments on one representative participant in S1 are
shown on the top of Fig. 5 with a sequence from (A) to (H),
where each gait cycle was defined between the current and
next heel-strike instants based on the real-time GRF measure-
ments. Readers can find more intuitive demonstrations when
referring to the supplementary videos. During the demonstrated
gait cycle, the corresponding B-mode US image sequences of
both LGS and SOL muscles are plotted on the RHS of each
snapshot and the echogenicity changes of both muscles are
visualized during the stance phase. On the bottom of Fig. 5,
the left column, middle column, and right column plots show
the sEMG-derived muscle activation, US echogenicity-derived
muscle activation, and muscle activation fusion from both LGS
and SOL muscles during the walking stance phases within the
last minute, respectively. The x-axis from each plot is normal-
ized between 0% and 100% to represent the time instants of heel-
strike and toe-off, namely stance phase/cycle. Recalling the net
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TABLE I
MEAN AND SD VALUES OF NET PLANTARFLEXION TORQUE PREDICTION RMSE RESULTS BASED ON DIFFERENT HNMS ACROSS ALL STANCE CYCLES WITHIN

THE RECORDED 1-MIN WALKING DURATION AND PEAK TORQUE FROM BENCHMARK MEASUREMENTS (UNIT: N·M)

Fig. 6. Mean and SD values of the ankle joint net plantarflexion torque
prediction results via sEMG- and sEMG-US imaging-driven HNMs, along with
the benchmark measurement from the ID algorithm.

plantarflexion torque during the walking stance phase in [63],
the change of either sEMG profiles or US echogenicity signals
highly correlate to the ankle joint biological torque change
during the stance phase, so the normalization of both sEMG
profiles and echogenicity signals from both muscles with respect
to the peak values/contractions in S1 was used in the muscle
activation fusion.

The direct benefit of fusing both sEMG- and US imaging-
derived muscle activation signals is the higher volitional plan-
tarflexion torque prediction accuracy. According to the treadmill
walking experimental results, this benefit holds for all three
scenarios and was evaluated by comparing the net plantarflex-
ion torque prediction errors by using sEMG- and sEMG-US
imaging-driven HNMs. Corresponding to the muscle activation
level calculations from the neuromuscular measurements in
Fig. 5, the net plantarflexion torque prediction and benchmark
results are presented in Fig. 6. The benchmark results were
calculated based on the ID algorithm in Visual 3D software
(C-Motion, Rockville, MD, USA) given the coordinates of
markers on lower extremities and GRF data. More details of
the HNMs’ calibration can be found in the model calibration
and validation section in [48]. Considering the RMSE between
torque prediction and benchmark during each stance cycle as an
individual evaluation metric, the RMSE values as shown in Fig. 6
are 14.32±5.99 and 9.74±4.45 N·m across all stance cycles
when using the sEMG- and sEMG-US imaging-driven HNMs,
respectively. The averaged prediction error of the proposed
HNM, when normalized to the peak value of the benchmark
torque according to the ID (106.55 N·m), is around 9.2%.

Fig. 7. Net plantarflexion torque prediction performance during the walking
stance phase by using the proposed sEMG-US imaging-driven HNM in treadmill
walking experiments at multiple walking speeds. The blue and red curves repre-
sent the HNM-based prediction and the benchmark results from ID, respectively.

Similar results were observed for all three scenarios from five
participants, and net plantarflexion torque prediction RMSE
values are summarized and compared in Table I. Except for S2
and S3 on A03 and S2 on A04, the torque prediction RMSE
was significantly reduced by using the proposed sEMG-US
imaging-driven HNM compared to the sEMG-driven HNM.

While the main outcomes in the current study focused on the
treadmill walking experiments at a speed of 0.60 m/s, we also
examined the human volitional effort (net plantarflexion torque
during the walking stance phase) prediction performance of the
proposed sEMG-US imaging-driven HNM in treadmill walking
experiments at multiple higher walking speeds, including 0.75,
1.00, and 1.25 m/s. The representative results from participant
A03 in S1 are demonstrated in Fig. 7, where blue/red solid
curves and shadowed areas represent the mean and standard
deviation (SD) values across multiple stance cycles within in
one minute from the HNM-based prediction/ID-based calcu-
lation. The averaged prediction error normalization values are
9.1%, 8.3%, 10.3%, and 8.9%, respectively, for these four in-
vestigated speeds, which indicates that the proposed sEMG-US
imaging-driven HNM achieved a good prediction performance
that followed the demand for volitional net plantarflexion torque.
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Fig. 8. Convergence results of both NN weight vectors’ estimations during individual stance cycles, Ŵ and R̂, in S3 when the proposed AAN control framework
is working. Each column represents the convergence performance on an individual participant, and each color in a separate plot represents the time-varying change
of each element in that weight vector.

TABLE II
NECESSARY DESIGN PARAMETERS AND CONTROL GAINS FOR THE PROPOSED

AAN FRAMEWORK

2) Outcomes With and Without AIC Frameworks: To facil-
itate the reproduction of these results, the necessary design
parameters and control gains are summarized in Table II.

To guarantee the success and effectiveness of the NN-based
AIC design, one necessary assumption is that the estimations
of the NN weight vectors will converge within a finite time.
Taking the experimental results in S3 as an example, Fig. 8 shows
the convergence of Ŵ and R̂ in (30) during each stance cycle
for each participant, which indicates that almost all elements in
the two weight vectors converge to corresponding stable values
within the recorded 1 min. In addition, stable values for elements
from Ŵ are relatively close to each other, while the majority of
elements from R̂ converge to somewhere close to zero.

The top plots in Fig. 9 show the ankle joint trajectory tracking
performance during the walking stance phase with the pro-
posed AIC framework in S3 (embedded with the sEMG-US
imaging-driven HNM for net plantarflexion torque prediction).
The sequential data of both desired (red dashed curves) and
actual (blue solid curves) ankle joint trajectories are from ten
consecutive stance cycles out of the 1-min data collection
on participant A02. In addition, corresponding to each stance
phase, the net plantarflexion torque prediction via the sEMG-US
imaging-driven HNM and the assistance torque from the BCD-
AnkleExo are presented at the bottom of Fig. 9. These results
indicate that the proposed AAN control framework achieved a

Fig. 9. Results of desired and actual ankle joint trajectories, volitional plan-
tarflexion torque prediction via sEMG-US imaging-driven HNM, and assistance
torque from the BCD-AnkleExo during representative stance phases in S3 on
A02.

good trajectory tracking performance, a stable net plantarflex-
ion torque prediction performance, and an adaptive assistance
level from the BCD-AnkleExo (the torque assistance profile
changes in response to the torque prediction and joint angle
trajectory tracking error). Across all stance cycles in the second
minute under S3, the ankle joint trajectory tracking RMSE
is 4.76±0.42◦, which is acceptable since the eventual control
objective of the AIC is to achieve a more natural behavior of the
ankle exoskeleton instead of minimizing the trajectory tracking
error. Instead of using a predefined fixed assistance torque profile
like in [46], the assistance torque from the BCD-AnkleExo in
this study is generated automatically from the AIC framework
within each stance cycle, and it is time varying during different
gait cycles, which is more adaptive to variations in gait pattern
and ankle joint volitional effort. The peak assistance torque
appeared between 60% and 70% of the stance cycle, which is
nearly consistent with the peak voluntary plantarflexion torque
prediction.

To evaluate the control performance between the proposed
and traditional AIC frameworks (we adopted an sEMG-driven
HNM to predict the volitional plantarflexion effort in the tra-
ditional AIC framework), metrics during each stance cycle,
including trajectory tracking RMSE value, assistance torque
integral, and overall assistance work, were calculated and com-
pared based on the results in S2 and S3. Fig. 10(a) and (b)
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(a)

(b)

Fig. 10. Metrics of injected assistance from the BCD-AnkleExo during individual stance phases of the last minute of walking experiments in S2 and S3 on each
participant. (a) Assistance torque integral during individual stance phase. (b) Overall assistance work during the individual stance phase.

shows the assistance torque integral and overall assistance work
of each stance cycle at the last minute from all participants. The
two metrics for evaluating the injected energy from the ankle
exoskeleton in Fig. 10 indicate that the assistance during the
treadmill walking stance phase was reduced for all participants
when the AIC framework was incorporated with the sEMG-
US imaging-driven HNM. From the individual perspective, the
mean and SD values of the assistance torque integral and overall
assistance work among all recorded stance cycles are presented
in the middle and bottom plots of Fig. 11(a), while the mean
and SD values of the trajectory tracking RMSE values in all
three scenarios are shown in the top plot of Fig. 11(a). The blue,
orange, and yellow bars represent the corresponding metrics’
mean values under S1, S2, and S3, respectively, while the error
bars represent the SD values. It should be noted that the injected
assistance metrics in S1 are not shown in Fig. 11 due to the fact
that zero impedance would provide minimal assistance and so
can be neglected in the current work. Fig. 11(b) summarizes the
interparticipant results that correspond to the individual results
in Fig. 11(a) in each scenario, where the scattered points repre-
sent the mean values of each metric on individual participants
across all stance cycles, and the bar plots represent the mean and
SD values of each metric across all five participants.

The results of a Shapiro–Wilk parametric hypothesis test
showed the normal distribution of each metric group across all
stance cycles on each participant and across participants (known
as interparticipant) shown in Fig. 11. A one-way repeated-
measure ANOVA and a post-hoc Tukey’s HSD were used to
determine if there was any significant difference among the
RMSE values in these three scenarios on each participant and
across participants. The results in Fig. 11(a) show that both AIC
frameworks significantly reduced the ankle trajectory tracking
RMSE compared with S1 on each participant. In addition,
the AIC framework in S3 significantly outperforms the AIC
framework in S2 in terms of the trajectory tracking RMSE on
all participants except for A04 (p-value = 2.18e−7, 7.21e−3,
2.88e−2, 5.60e−2, and 4.63e−3 for A01, A02,..., A05). Across all
five participants, Fig. 11(b) shows the proposed AIC frameworks

in S3 and S2 significantly reduced the trajectory tracking RMSE
during the stance phase by 28.42% (p-value< 0.01) and 15.56%
(p-value < 0.05), respectively, when compared to results in S1.
In addition, the proposed AIC framework in S3 significantly
reduced the ankle joint trajectory tracking RMSE by 15.23%
(p-value < 0.05) compared to the AIC framework in S2.

Furthermore, the experimental results in Fig. 11(a) show
that the AIC framework in S3 significantly reduced the assis-
tance torque integral (p-value = 2.56e−8, 2.87e−4, 4.15e−12,
6.17e−19, and 1.02e−15 for A01, A02,..., A05) and overall
assistance work (p-value = 1.62e−8, 5.00e−3, 2.68e−23,
5.14e−15, and 6.28e−7 for A01, A02,..., A05) from the indi-
vidual perspective compared to results in S2. Across all five
participants, Fig. 11(b) shows that the proposed AIC framework
in S3 significantly reduced the assistance torque integral and
overall assistance work by 18.08% (p-value< 0.01) and 25.48%
(p-value < 0.01), respectively. The asterisk in Fig. 11 represents
the statistically significant difference at a 95% confidence level.

C. Discussions

Rehabilitative or assistive devices can achieve a more intuitive
and transparent control when applying an AAN control frame-
work. In addition, AAN control can also encourage the wearers
to actively participate in rehabilitation procedures, which is
likely to maximize training benefits. The accurate determination
of human joint motion intent or residual effort is essential
for AAN control development. In this article, we proposed
to use an sEMG-US imaging-driven HNM, a biological HMI
that fuses neuromuscular signals from both sEMG and US
imaging to predict human ankle joint volitional effort. We then
incorporated this new HNM into an NN-based AIC framework
to achieve the AAN control objective of a BCD-AnkleExo,
which automatically adjusted the assistance torque from the
ankle exoskeleton. The system’s mechatronic performance and
the controller’s effectiveness were validated through treadmill
walking experiments at 0.60 m/s on five participants with no
neurological disabilities.
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Fig. 11. Results of ankle joint trajectory tracking RMSE in three scenarios, and
results of assistance torque integral and assistance work in S2 and S3 from the
BCD-AnkleExo. (a) Mean and SD values of each metric across all stance phases
in the corresponding scenario on each participant. (b) Intersubject statistical
results of each metric across all stance phases in the corresponding scenario.
The asterisk represents that the statistically significant difference is at a 95%
confidence level.

Given that the targeted users of the BCD-AnkleExo are
individuals with residual voluntary motor control, effective
controller development needs to take the human motion in-
tent/volitional effort into consideration. Although simpler con-
trollers that do not consider sEMG, US, HNM, or NN could
estimate human motion intent by measuring mechanically intrin-
sic signals, including the joint angles, impedance, gait events,
interaction dynamics, or estimate the joint torque from ID [37],
[64], [65], [66], these mechanically intrinsic measurements are
the outcomes of physical motion, which are prone to mechanical
delays and may not be appropriate in some cases, as the users
must produce a torque on the joints above some threshold to
initiate the motion before the devices can generate assistance.
Compared to the mechanically intrinsic measurements, one of
the main advantages of using biological signals to estimate
the motion intent/volitional effort is the time lag (between
30 and 150 ms in [44], [52], [67], [68], and [69]) between the

signal generation and joint motion execution, which enables
the human-intent-based control of wearable robotic devices.
Specifically, the control command generation of the robotic
devices advances the generation of the human joint torque or
limb motion. Therefore, biological signals, especially sEMG
signals, have been successfully applied in robotic devices control
in the past, like examples being in [19], [26], [70], [71], [72],
and [73]. The crucial perspective of the biological-signal-based
control is that even if the users are not capable of producing
sufficient joint motion or torque, the motion intent of the human
user can still be detected, and consequently, the wearable robotic
devices can be controlled.

What does the additional complexity of adding US imaging
in addition to sEMG add to one or the other alone? In the current
study, the US imaging was not used to track the CE length
or velocity in real time due to the computationally intensive
image processing procedures, which would significantly lower
the sampling rate of US imaging-derived signal feedback. In-
stead, the echogenicity signal from US imaging was used to
represent and refine the sEMG-derived muscle activation levels.
We argue that both signals provide complementary informa-
tion, which is beneficial to joint torque or motion prediction
accuracy improvement. Our previous studies [44], [48] have
shown the improvement ranges from 14% to 48% and from
28% to 54% when compared to the usage of sole sEMG or
sole US imaging signals, respectively. An sEMG signal and a
US imaging signal are both indirect measures of descending
neural signals from the CNS. Specifically, sEMG signals mea-
sure electrical potentials generated by muscle motor units when
they are neurally activated, and the amplitude of a filtered and
rectified sEMG signal linearly correlates with the number of
firing motor units, which offers a physical measurement of the
microphysiological response [74]. Meanwhile, US imaging sig-
nals show visualized 2-D information of the macrophysiological
response [75] of a targeted muscle caused by the same group of
motor unit firing. Therefore, sEMG- and US imaging-derived
signals provide the information from an electrical aspect and a
mechanical aspect, respectively, with respect to the same phys-
iological stimulus. Furthermore, the US echogenicity signals
could provide both superficial (LGS) and deep (SOL) muscles’
activation information in the same image plane on the same
transducer location with less interference from adjacent muscles,
while sEMG sensors would need to be placed on different
locations for collecting signals from LGS and SOL muscles.
The combination between sEMG and US echogenicity signals
could 1) mitigate any crosstalking or interference effect from
neighboring sEMG signals and 2) lower the echogenicity signals
drift caused by the accumulated pixel motion and muscle tissue
deformation.

The results from three scenarios demonstrated the su-
perior performance of the proposed AAN control frame-
work with volitional ankle joint effort prediction through the
sEMG-US imaging-driven HNM, including ankle joint voli-
tional effort prediction error reduction, trajectory tracking error
reduction, and assistance torque integral and overall assistance
work reduction. Although the desired ankle joint trajectory
during the stance phase was generated online through virtual
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Fig. 12. Overall torque on the ankle joint under both S2 and S3 individually according to ID. The demonstrated data are from multiple gait cycles within the last
minute of walking under each scenario, where the red/blue solid curves and light-shadowed areas represent the mean and SD of overall torque values under S2/S3,
respectively.

constraints and varied with gait cycles and across participants
due to the variations of the thigh and shank orientations and
velocities, the AAN control framework maintained a relatively
small trajectory tracking RMSE while providing compliant
plantarflexion assistance from the exoskeleton. In addition,
the volitional plantarflexion moment prediction via either the
sEMG-driven or sEMG-US imaging-driven HNMs varied along
with gait cycles and across participants due to the variations of
sEMG and US imaging signals, but the AIC effectively regulated
the assistance torque without causing discomfort to the wearers.

In this study, since participants were asked to walk on the
treadmill at 0.60 m/s when wearing the BCD-AnkleExo that
provided plantarflexion assistance in S2 and S3, we hypothe-
sized that there was no obvious ankle joint torque change of the
overall system due to the consistent walking speed and rhythm.
By comparing the net plantarflexion torque calculated from ID in
S2 and S3, we did not observe a significant difference (the rela-
tive change was under 5% of peak torque value). The results from
Fig. 11 indicate that the injected torque from the BCD-AnkleExo
was reduced by using the proposed AIC framework in S3 com-
pared to the AIC framework in S2. According to the ankle joint
overall net plantarflexion torque from ID, as shown in Fig. 12,
the Pearson correlation coefficient (PCC) values between ankle
joint trajectories within corresponding stance cycles under both
S2 and S3 were calculated with the mean and SD values of
0.967±0.032, 0.985±0.010, 0.987±0.011, 0.977±0.016, and
0.974±0.023 for participants A01, A02, A03, A04, and A05,
respectively. From these high PCC values, we observed that
the overall torque remained invariant although the assistance
strategies were set differently between S2 and S3. Therefore,
by subtracting the injected torque from the overall torque, the
biological torque on the ankle joint volitionally generated by
the participants was increased, which supported the objective of
encouraging and boosting the active involvement/muscle con-
traction from the participants using the exoskeleton. Although
these results were observed from participants without neurolog-
ical disorders, they are promising and potentially translatable to
people with weakened plantarflexion functions.

Despite promising results, more improvements and investi-
gations will be of interest in future work. For example, in our
current BCD-AnkleExo design, due to the space limitation on the
end-effector and the application of a commercial SEA module,
we did not directly get the assistance torque measurement on the
ankle joint since no force or torque sensors, as mentioned in [9],
[10], and [76], were installed between the cable output side and
the end-effector. Instead, a transmission model was developed to

calculate the output torque on the distal cable end, as mentioned
in Appendix C. However, the transmission modeling accuracy
may be compromised by many unexpected factors such as the
cable bending angle, the sliding of the exoskeleton attachment
position, and nonlinear friction. In addition, the time-invariant
reference impedance parameters referred from [62] were se-
lected during the stance phase to simplify the AIC development
and facilitate the walking task application. However, a more
accurate physiologically inspired ankle exoskeleton impedance
control approach should consider the time-varying properties of
reference impedance parameters to accomplish a more natural
walking gait pattern. Furthermore, as shown in Fig. 11, the reduc-
tion of the assistance torque integral along with individual stance
phase duration by using the proposed AAN control framework
may indicate that the undesired human–machine interaction was
mitigated, and thus, the volitional effort from the ankle joint was
boosted, which needs more investigation.

There are still some limitations in the current study. First of all,
from the hardware design perspective, the BCD-AnkleExo was
designed to be a portable assistive device (with lower assistance
torque magnitude due to the selection of a low-power actuation
module) to provide a supplementary torque upon the existing
residual volitional ankle joint torque, so the BCD-AnkleExo was
not able to reproduce the same torque command as the biological
torque on the ankle joint during walking, like these designs
in [76] and [77]. As introduced in the BCD-AnkleExo hardware
design and benchtop testing section, the peak output torque from
the actuator module is ±38 N·m. With the consideration of
the energy ratio through the Bowden cable transmission over a
certain distance, the real assistance torque applied on the ankle
joint is saturated at ±25 N·m. Second, given the compliance of
the SEA within the actuator module and the serial transmission
chain design, results from benchtop testings demonstrated lim-
ited bandwidth (4.1 Hz to 2.7 Hz for torque > 12 N·m) when
compared to the design in [76] and [77]. However, since the
goal of the assistance level was not to reproduce the full torque
command as the ankle, we interpret that the 2.7 Hz would be
fairly enough for the treadmill walking task at 0.60 m/s.

Furthermore, although results in Fig. 8 showed that the con-
vergence time of NN weights was around 40–60 s under the
treadmill walking task at 0.60 m/s, we do not assume that the
convergence time will be finite or the same if the walking speed
or task is changed. Note that finite-time convergence of NN
weights in an adaptive control design is a challenging and active
research problem. In the provided stability analysis, we show
that the proposed AIC framework only guarantees the uniformly
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ultimately bounded stability of the overall closed-loop dynamic
system, which means that the system error state exponentially
converges to a bounded region. This proof does not claim that the
estimated NN weights converge to their ideal weights, but the
error between the ideal weight and estimated weight remains
bounded. Also, note that the analysis provides sufficient con-
ditions, which means that even if not proven, experimentally
we may observe it. As seen in the experiments, NN weights
converge to a steady-state value, which may or may not be ideal
NN weights. In short, if the desired speed is modified we can
only guarantee that the NN weights would remain bounded but
do not claim convergence in finite time.

Finally, one limitation of the current experimental study de-
sign is that no experimental comparison results were included
between sEMG or sEMG+US imaging and US imaging alone
in the real-time control outcomes. Although the comparison
of human volitional effort (joint motion or joint net torque)
prediction among sEMG only, US imaging only, and sEMG+US
imaging would be easier if performed offline with synchronously
collected data, such as in previous studies [37], [38], [44], [48],
[49], the online implementation for real-time control has two
main technical challenges. First of all, the online implementation
will be quite different from offline processing given that the
data acquisition sampling rate of sEMG signals is much higher
than that of US imaging signals, which significantly affects
the data synchronization between these two sensing modalities.
The computationally intensive US imaging beamforming and
feature extraction cause a much lower data acquisition sampling
rate for the online implementation of US imaging-based feed-
back. Second, the working mechanism of the applied sequen-
tial processing algorithm that tackles the data fusion between
high-sampled sEMG signals (1000 Hz) and low-sampled US
echogenicity signals (∼7.8 Hz) needs a carrier sampling rate the
same as the high-sampled sEMG signals to guarantee the output
of the sensor fusion with a high sampling rate (1000 Hz), which
satisfies the real-time closed-loop control frequency (200 Hz).
This implies that the sequential processing algorithm could
still work with only sEMG signals at a high sampling rate
but could not work with only US imaging signals at a low
sampling rate. Although we could apply an easy approach, like
zero-order hold, to process sole US imaging signals in the real-
time implementation, it may significantly reduce the temporal
resolution of the human effort prediction as a feedback signal
for the closed-loop control problem and deteriorate the control
performance.

In the current experimental study, only healthy participants
were included, so no results are available related to the proposed
AAN control performance on individuals with weakened ankle
joint function. The next step of this study will be dedicated to
the validation of the AAN control framework on participants
with incomplete spinal cord injury or hemiplegia after stroke.
Although the current treadmill walking experimental study fo-
cused on the stance phase, the bidirectional actuation of the
ankle exoskeleton can also potentially dorsiflex the ankle joint
with adequate assistance torque and bandwidth. Future work
will expand the proposed AAN control to both plantarflexion
and dorsiflexion assistance during the stance phase and swing
phase, respectively.

V. CONCLUSION

In this article, for the first time, we investigated the on-
line combination of sEMG and US imaging signals into a
neuromuscular model for a continuous joint volitional effort
prediction, which was incorporated with an AIC approach to
achieve the AAN control of a powered ankle exoskeleton.
From a real-time perspective, the online muscle activation fu-
sion between high-sampled sEMG signals and low-sampled US
imaging signals was achieved by applying a sequential-
processing-algorithm-based multirate observer. The human vo-
litional net plantarflexion effort was predicted via an sEMG–US
imaging-driven HNM. A bioinspired AIC method that incorpo-
rated the volitional effort from the sEMG-US imaging-driven
HNM was proposed and implemented on the BCD-AnkleExo
for ankle joint plantarflexion assistance. The effectiveness of
the hardware design and the newly proposed AAN control
framework was verified on five participants with no neurological
disorders walking on a treadmill. The results from three scenar-
ios demonstrated the superior performance of the proposed AAN
control framework with volitional ankle joint effort prediction
through the sEMG-US imaging-driven HNM, including ankle
joint volitional effort prediction error reduction, trajectory track-
ing error reduction, and assistance torque integral and overall
injected work reduction.

APPENDIX A
DESIRED ANKLE JOINT TRAJECTORY GENERATION

For human locomotion overground or on the treadmill, due
to the gait-to-gait, speed-to-speed, and person-to-person vari-
ations, the time-dependent predefined desired ankle joint tra-
jectory during the stance phase needs to be compressed or
stretched to adapt to different walking conditions or speeds,
a process that is sophisticated and unreliable. Therefore, we
introduce a time-independent trajectory generation profile based
on virtual constraint theory [15], [78]. In the current study,
the time-independent desired ankle joint trajectory was gener-
ated based on the virtual constraint theory by using the thigh,
shank, and ankle joint kinematics data during the walking stance
phase of the natural gait collected from individual participants
walking on the treadmill at 0.60 m/s without wearing the ankle
exoskeleton. Once the participant wears the ankle exoskeleton,
the ankle joint kinematics will be directly affected even with
the zero impedance mode, but the effects on the thigh and knee
kinematics will be minor. Although the participant could gen-
erate the intended motion when wearing the ankle exoskeleton,
a distinct difference was observed between free walking and
zero-impedance walking. To reproduce the natural gait for the
treadmill walking task, we considered the ankle joint trajectory
errors between the virtual constraint-derived desired trajectory
and the real ankle joint motion when designing the feedback
terms in the overall AAN control framework.

Consider the term qd(θ(q)) ∈ R
(
q = [qshank, q̇shank, qthigh,

q̇thigh]
T
)

as a desired virtual constraint function that is repre-
sented with the Bezier polynomial as

qd(θ(q)) =
M∑
k=0

�k
M !

k!(M − k)!
wk(1− w)M−k (33)
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where M ∈ R is an integer equal to the number of Bezier
polynomial terms, �k represents the parameters that are deter-
mined through optimization, and w is calculated according to
the following equation:

w(q) =
θ(q)− θ

θ− − θ+

+

(34)

where θ+ and θ− are the maximum and minimum values
of the function θ(q), respectively, and θ(q) = ζ0 + ζ1qshank +
ζ2q̇shank + ζ3qthigh + ζ4q̇thigh represents the applied phase vari-
able. ζi ∈ R is selected such that θ(q) is monotonically increas-
ing or decreasing. Finally, the desired ankle joint trajectory qd
during the stance phase is set as qd(θ(q)).

To obtain the optimal solution of �k in the Bezier polynomial
(33), a GAPSO [79] is used to minimize the following cost
function:

min
�k

J =

N∑
i=1

(
qid (θ(q))− qim

)2
(35)

where N represents the number of data samples used in the
optimization and qid and qim represent the Bezier polynomial-
computed and measured ankle joint motion values at the ith
time instant, respectively. The GAPSO utilizes kinematics data
that were collected during the stance phase from able-bodied
subjects at the walking speed of 0.60 m/s.

APPENDIX B
STABILITY ANALYSIS OF THE CLOSED-LOOP SYSTEM

Theorem 1: Considering the ankle joint dynamic model in
(17) with the human voluntary plantarflexion torque predicted
from Section II, as well as the unknown external disturbance
and modeling uncertainties that satisfy Assumptions 1 and 2,
provided that the control gains β, ks, γ1, and γ2 satisfy the
following sufficient conditions:

β >
1

2
, ks >

1

2
, γ1 > 0, γ2 > 0 (36)

the proposed AAN control approach based on the AIC frame-
work in (31), together with NN updating laws in (30) with
bounded initial weight matrices, achieve the semiglobal bound-
edness of signals in the closed-loop system, including s1, s2,
W̃ , and R̃, by compact sets of Ωs1 , Ωs2 , ΩW̃ , and ΩR̃, given by

Ωs1 =

{
s1 ∈ R| |s1| ≤

√
2V (0) + 2

ς

κ

}

Ωs2 =

{
s2 ∈ R| |s2| ≤

√
2κV (0) + 2ς

κJ

}

ΩW̃ =

{
W̃ ∈ R

N1 |
∥∥∥W̃∥∥∥ ≤

√
2κV (0) + 2ς

κλmin

(
Γ−1
1

)
}

ΩR̃ =

{
R̃ ∈ R

N2 |
∥∥∥R̃∥∥∥ ≤

√
2κV (0) + 2ς

κλmin

(
Γ−1
2

)
}

(37)

where V (0) represents the initial condition of the subsequently
selected Lyapunov candidate function and κ, ς ∈ R

+ are pre-
selected positive constant values that are used in the stability
analysis. After straightforward mathematical manipulations, the
impedance matching error εJ is bounded by utilizing the pro-
posed AAN control approach.

From the formulation of (25), the open-loop error system is
provided as

Jṡ2 = τh + τm − Cx2 −G− fdis − Jq̈s. (38)

Given that s2 = x2 − q̇s and�τ = τnet − τh, the above error
system becomes

Jṡ2 = τnet −�τ + τm − Cs2 − Cq̇s −G

− fdis − Jq̈s. (39)

After substituting the control law (31) and two NNs (26) and
(27), the resulting closed-loop error dynamic system is given as

Jṡ2 = τnet −W ∗TΘ(Zτ )−R∗TΦ(Z)− fdis − εe − ετ

− s1 − kss2 + ŴTΘ(Zτ ) + R̂TΦ(Z)− τnet

= − s1 − kss2 + W̃TΘ(Zτ ) + R̃TΦ(Z)

− εe − ετ − fdis (40)

where W̃ = Ŵ −W ∗ and R̃ = R̂−R∗.
A Lyapunov-method-based stability analysis was conducted

to determine the sufficient conditions and guarantee the above
closed-loop error system, and the estimation errors of those
two NN weight vectors, W̃ and R̃, are semiglobally uniformly
ultimately bounded. The proof of Theorem 1 is provided as
follows.

Proof: Consider the continuously differentiable, nonnega-
tive, radially unbounded Lyapunov function candidate

V (t) =
1

2
s21 +

1

2
Js22 +

1

2
W̃TΓ−1

1 W̃ +
1

2
R̃TΓ−1

2 R̃. (41)

By using Assumption 2 and typical NN properties [80], V (t)
can be lower and upper bounded as

λ1 ‖X‖2 ≤ V (t) ≤ λ2 ‖X‖2 + ζ (42)

where λ1, λ2, and ζ ∈ R
+are known positive constants.

Among these, λ1 and λ2 are defined as λ1 � 1
2 min

{1, J, λmin(Γ
−1
1 ), λmin(Γ

−1
2 )} and λ2 � 1

2 max{1, J, λmax

(Γ−1
1 ), λmax(Γ

−1
2 )}, respectively. In addition, X ∈ R

2 is de-
fined as X = [s1 s2]

T .
Taking the time derivative of V and utilizing (25) and (40)

yields

V̇ = s1(s2 − βe− η) + s2 (−s1 − kss2 − fdis)

+ s2

(
W̃TΘ(Zτ ) + R̃TΦ(Z)− ετ − εe

)
+ W̃TΓ−1

1
˙̂
W + R̃TΓ−1

2
˙̂
R. (43)
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After applying the two NN updating laws in (30) and cancel-
ing similar terms, we have

V̇ = − βs21 − ηs1 − kss
2
2 − s2 (ετ + εe + fdis)

− γ1W̃
T Ŵ − γ2R̃

T R̂

≤ − βs21 − ηs1 − kss
2
2 + |s2|Υ

− γ1W̃
T Ŵ − γ2R̃

T R̂ (44)

where Υ ∈ R
+ is a known positive constant and defined

as Υ � f̄ + ε̄τ + ε̄e. Based on Young’s inequality, we have
−ηs1 ≤ 1

2η
2 + 1

2s
2
1 and |s2|Υ ≤ 1

2s
2
2 +

1
2Υ

2. In addition,
since −γ1W̃

T Ŵ = −γ1W̃
T (W̃ +W ∗) and −γ1W̃

TW ∗ ≤
1
2γ1W̃

T W̃ + 1
2γ1W

∗TW ∗, we have −γ1W̃
T Ŵ ≤ − 1

2γ1
W̃T W̃ + 1

2γ1W
∗TW ∗. Similarly, −γ2R̃

T R̂ ≤ − 1
2γ2R̃

T R̃+
1
2γ2R

∗TR∗. Substituting these inequalities into (44), we have

V̇ ≤ −
(
β − 1

2

)
s21 −

(
ks − 1

2

)
s22 +

1

2
η2 +

1

2
Υ2

− 1

2
γ1W̃

T W̃ − 1

2
γ2R̃

T R̃

+
1

2
γ1W

∗TW ∗ +
1

2
γ2R

∗TR∗. (45)

To facilitate the proposed controller in (31) to be stable,
a series of conditions need to be satisfied to make (45) as a
representation of V̇ ≤ −κV + ς , where the two terms κ and ς
are given by

κ = min

{
β − 1

2
, ks − 1

2
,
1

2
γ1,

1

2
γ2

}

ς =
1

2
η2 +

1

2
Υ2 +

1

2
γ1W

∗TW ∗ +
1

2
γ2R

∗TR∗. (46)

Furthermore, to guarantee κ > 0, the gains in (46) need
to be selected as β > 1

2 , ks >
1
2 , γ1 > 0, and γ2 > 0, which

corresponds to the sufficient conditions in Theorem 1. Also, it
is obvious that ς ≥ 0 for all the time. Therefore, the solution of
the first-order differential equation V̇ ≤ −κV + ς can be easily
given as

V ≤ V (0)e−κt +
ς

κ

(
1− e−κt

)
. (47)

Provided that the control gain β, ks, γ1, and γ2 are selected
according to the sufficient conditions in (36), the results in (47)
indicate that s1(t), s2(t), W̃ (t), R̃(t) ∈ L∞. In detail, the upper
boundedness of each variable in (41) is given as

Ωs1 =

{
s1 ∈ R| |s1| ≤

√
2V (0) + 2

ς

κ

}

Ωs2 =

{
s2 ∈ R| |s2| ≤

√
2κV (0) + 2ς

κJ

}

ΩW̃ =

{
W̃ ∈ R

N1 |
∥∥∥W̃∥∥∥ ≤

√
2κV (0) + 2ς

κλmin

(
Γ−1
1

)
}

Fig. 13. 3-D model of BCD-AnkleExo. 1—base frame, 2—SEA, 3—3-D
printed pinion, 4—3-D printed rack, 5—3-D printed rack track, 6—holding
frame of proximal cable housing, 7—proximal cable housing, 8—distal cable
housing, 9—mounting frame, 10—Clevis rod for cable output side, 11—in-shoe
ankle brace and 3-D printed articular hinge, 12—supporting frame on the shank,
and 13—Velcro straps.

ΩR̃ =

{
R̃ ∈ R

N2 |
∥∥∥R̃∥∥∥ ≤

√
2κV (0) + 2ς

κλmin

(
Γ−1
2

)
}
.

Given that qd(t), q̇d(t), q̈d(t) ∈ L∞ and considering the
above boundedness conditions and (25), it is clear that
e(t), r(t), q(t) ∈ L∞ since s1 = e = q − qd. In equation
Kσσ = η̇ + αη, since Kσσ ∈ L∞ and α > 0, we can get
η(t), η̇(t) ∈ L∞. Based on r = ė+ βe+ η, we have ė(t) ∈
L∞. Given that q̇s = q̇d − βe− η, we have q̇s(t) ∈ L∞. Given
that s2 = q̇ − q̇s, we have q̇(t) ∈ L∞. Therefore, from (18), we
also have q̈(t) ∈ L∞. From q̈s = q̈d − βė− η̇, it is clear that
q̈s ∈ L∞. Finally, we have ṙ(t) ∈ L∞ based on the definition
of q̈s = q̈ − ṙ, which implies that εJ ∈ L∞ given that εJ =
ṙ + αr. Thereafter, the impedance matching error is bounded
by utilizing the proposed AAN control approach. Further-
more, since W̃ (t), R̃(t) ∈ L∞, the boundedness of the optimal
weights [80] can be used to conclude that Ŵ (t), R̂(t) ∈ L∞.
Because s1(t), s2(t), Ŵ (t), R̂(t), τnet(t) ∈ L∞, it can be con-
cluded that τm from the BCD-AnkleExo is bounded. �

APPENDIX C
BCD-ANKLEEXO HARDWARE DESIGN AND BENCHTOP

TESTING

A. Mechatronic Design

Inspired by the biological ankle joint dorsiflexion and plan-
tarflexion functions actuated by agonistic and antagonistic skele-
tal muscles on the human lower leg, we designed and constructed
the BCD-AnkleExo.

The electromechanical exoskeleton system comprises an on-
board actuation unit and an instrumented end-effector unit, as
shown in Fig. 13. The overall mass of both units is 2.52 kg, and
all components are portable except for the power and communi-
cation cables on the actuation unit. A clamp-mount low-friction
Push–Pull Bowden cable transfers motion and power from the
actuation unit (a) to the end-effector unit (b) for the dorsiflexion
and plantarflexion assistance.

In the actuation unit shown in Fig. 13(a), a compact low-
inertial electrical actuator module (X8-16, HEBI Robotics, Pitts-
burgh, PA, USA), with embedded position, velocity, and torque
control modes, was used. This actuator module is a smart SEA
with a spring stiffness of 170 N·m/rad that integrates a brushless
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Fig. 14. Experimental results from benchtop tests of the BCD-AnkleExo prototype. (a) Torque measurement accuracy results. (b) Bode plots—the frequency
response of the system with peak desired torques changing from 1 to 25 N·m. (c) Rotational stiffness Kr and damping Cr of the cable housing at different SEA
speed control commands.

motor, gear train, spring, encoder, and control electronics into
a compact package that runs on standard dc voltages. Desired
control commands (position, velocity, or torque) are generated
using a real-time MATLAB programming environment. The
SEA’s maximum output velocity is 90◦/s after the 1462:1 gear
train reduction, and peak output torque is 38 N·m. The rotation
motion (torque) of the SEA is transferred to the linear motion
(force) of the steel cable through a rack-pinion transmission
mechanism. The rotation radius of the pinion is designed as
100 mm to gain satisfactory linear speed of the cable for walking.

As shown in Fig. 13(b), we adopted a lightweight design for
the end-effector unit, where the distal cable housing is mounted
on the 3-D printed mounting frame and the mounting frame is
connected to the participant’s shank through medial and lateral
rigid supporting frames and three pieces of soft velcro straps. The
inner cable end is screwed into the clevis rod, which is connected
to the in-shoe ankle brace through a 3-D printed articular hinge.
We assumed that the distal cable end keeps a linear motion along
the center line, and the moment arm is consistent as the biological
ankle joint motion during walking is sufficiently small (∼20◦

of peak plantarflexion to ∼7◦ of peak dorsiflexion) [63]. To
facilitate the 1:1 transmission, the articular hinge was designed
to keep the moment arm at 100 mm.

The rotation position, velocity, and output torque of the SEA
were directly measured by the embedded sensors at 1000 Hz.
The ankle joint position and velocity were measured by an incre-
mental encoder (1024 pulses per revolution, TRD-MX1024BD,
AutomationDirect, Cumming, GA, USA) installed on the ankle
brace at 1000 Hz. The output torque of the end-effector was
computed by multiplying the force on the distal cable end and
the end-effector’s moment arm mentioned above.

B. Results of Benchtop Testings

Multiple tests were performed for characterizing the BCD-
AnkleExo performance in terms of output peak torque, torque
measurement accuracy, and closed-loop torque control band-
width. The outcomes of each test are given as follows.

1) Under the fixed end-effector configuration, the input
torque command for both rotation directions of the
SEA, τSEA, was increased continuously from 0 N·m
until the moment that the gear tooth skipping happened.

The corresponding torque command was regarded as the
input saturation. The results showed that the range of τSEA

is between ±25 N·m.
2) Under the fixed end-effector configuration, τSEA was set

with the amplitude of 25 N·m and frequency of 1.0 Hz,
and the output torque on the end-effector, τm, was mea-
sured through the multiplication of a load cell measure-
ment (LC201-300, Omega Engineering Inc., Norwalk, CT,
USA) and a moment arm. The relationship between the
sinusoidal SEA input torque command and the measured
torque at the end-effector is shown in Fig. 14(a). Although
hysteresis is observed between the input torque command
and the end-effector output torque signal due to the elastic
element in the SEA module, the two signals exhibit a
highly linear correlation with R2 of 0.958 and a small
RMSE of 3.78 N·m.

3) Under the fixed end-effector configuration, a series of
chirp desired τSEA with different peak torque values and
increasing frequencies between 0 and 20 Hz were applied
to characterize the torque control bandwidth of the trans-
mission design. A fast Fourier transform was applied to
the chirp-type τSEA and τm signals to mathematically eval-
uate the end-effector’s response in the frequency domain
and calculate the device’s response magnitude. Fig. 14(b)
shows the torque control bandwidths based on the −3-dB
magnitude criteria, and they are 7.2, 8.3, 5.7, 4.1, 3.3, 2.7,
and 2.7 Hz for peak torques of 1, 4, 8, 12, 16, 20, and
25 N·m, respectively.

4) Under the free end-effector configuration, the rotation
speed for both directions of the SEA was increased from
20◦/s to the peak speed value to characterize the overall
rotational stiffness Kr and damping Cr of the Bowden
cable transmission approach. The results of this free end-
effector test are shown in Fig. 14(c), which indicates that
the stiffness and damping coefficients are asymmetric
in the pull and push directions, and the stiffness and
damping coefficients in both directions are positively
and negatively proportional to SEA speed commands,
respectively. Using the test results depicted in Fig. 14,
the relationship between the output of end-effector τm
and the SEA input command τSEA can be determined as
τSEA = (τm +Krq + Cr q̇)/0.958.

Authorized licensed use limited to: N.C. State University Libraries ­ Acquisitions & Discovery  S. Downloaded on February 22,2024 at 01:04:53 UTC from IEEE Xplore.  Restrictions apply. 



2200 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023

REFERENCES

[1] P. H. Tzu-wei, K. A. Shorter, P. G. Adamczyk, and A. D. Kuo, “Mechanical
and energetic consequences of reduced ankle plantar-flexion in human
walking,” J. Exp. Biol., vol. 218, no. 22, pp. 3541–3550, 2015.

[2] L. I. Iezzoni, E. P. McCarthy, R. B. Davis, and H. Siebens, “Mobility
difficulties are not only a problem of old age,” J. Gen. Intern. Med., vol. 16,
no. 4, pp. 235–243, 2001.

[3] K. Z. Takahashi, M. D. Lewek, and G. S. Sawicki, “A neuromechanics-
based powered ankle exoskeleton to assist walking post-stroke: A feasi-
bility study,” J. Neuroeng. Rehabil., vol. 12, no. 1, 2015, Art. no. 23.

[4] Z. F. Lerner et al., “An untethered ankle exoskeleton improves walking
economy in a pilot study of individuals with cerebral palsy,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 26, no. 10, pp. 1985–1993, Oct. 2018.

[5] F. Tamburella et al., “Neuromuscular controller embedded in a powered
ankle exoskeleton: Effects on gait, clinical features and subjective per-
spective of incomplete spinal cord injured subjects,” IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 28, no. 5, pp. 1157–1167, May 2020.

[6] A. J. Young and D. P. Ferris, “State of the art and future directions for
lower limb robotic exoskeletons,” IEEE Trans. Neural Sys. Rehabil. Eng.,
vol. 25, no. 2, pp. 171–182, Feb. 2017.

[7] J. Zhang et al., “Human-in-the-loop optimization of exoskeleton assistance
during walking,” Science, vol. 356, no. 6344, pp. 1280–1284, 2017.

[8] M. Kim and S. H. Collins, “Once-per-step control of ankle push-off work
improves balance in a three-dimensional simulation of bipedal walking,”
IEEE Trans. Robot., vol. 33, no. 2, pp. 406–418, Apr. 2017.

[9] B. Quinlivan et al., “Assistance magnitude versus metabolic cost reductions
for a tethered multiarticular soft exosuit,” Sci. Robot., vol. 2, no. 2, 2017,
Art. no. eaah 4416.

[10] A. T. Asbeck, S. M. De Rossi, K. G. Holt, and C. J. Walsh, “A biologically
inspired soft exosuit for walking assistance,” Int. J. Rob. Res., vol. 34,
no. 6, pp. 744–762, 2015.

[11] A. J. Del-Ama, Á. Gil-Agudo, J. L. Pons, and J. C. Moreno, “Hybrid FES-
robot cooperative control of ambulatory gait rehabilitation exoskeleton,”
J. Neuroeng. Rehabil., vol. 11, no. 1, 2014, Art. no. 27.

[12] K. H. Ha, S. A. Murray, and M. Goldfarb, “An approach for the cooperative
control of FES with a powered exoskeleton during level walking for
persons with paraplegia,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24,
no. 4, pp. 455–466, Apr. 2016.

[13] N. A. Alibeji, V. Molazadeh, F. Moore-Clingenpeel, and N. Sharma, “A
muscle synergy-inspired control design to coordinate functional electrical
stimulation and a powered exoskeleton: Artificial generation of synergies
to reduce input dimensionality,” IEEE Control Syst. Mag., vol. 38, no. 6,
pp. 35–60, Dec. 2018.

[14] N. Kirsch, X. Bao, N. Alibeji, B. Dicianno, and N. Sharma, “Model-based
dynamic control allocation in a hybrid neuroprosthesis,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 26, no. 1, pp. 224–232, Jan. 2018.

[15] V. Molazadeh, Q. Zhang, X. Bao, and N. Sharma, “An iteratively learning
time-invariant controller for a switched cooperative allocation strategy
during sit-to-stand task with a hybrid exoskeleton,” IEEE Trans. Control
Syst. Technol., vol. 30, no. 3, pp. 1021–1036, Jul. 2021.

[16] Y. Ding, M. Kim, S. Kuindersma, and C. J. Walsh, “Human-in-the-loop
optimization of hip assistance with a soft exosuit during walking,” Sci.
Robot., vol. 3, no. 15, 2018, Art. no. eaar5438.

[17] C. Khazoom, C. Véronneau, J.-P. L. Bigué, J. Grenier, A. Girard, and
J.-S. Plante, “Design and control of a multifunctional ankle exoskeleton
powered by magnetorheological actuators to assist walking, jumping, and
landing,” IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 3083–3090, Jul. 2019.

[18] J. Kim et al., “Reducing the metabolic rate of walking and running with
a versatile, portable exosuit,” Science, vol. 365, no. 6454, pp. 668–672,
2019.

[19] R. W. Jackson and S. H. Collins, “Heuristic-based ankle exoskeleton
control for co-adaptive assistance of human locomotion,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 27, no. 10, pp. 2059–2069, Aug. 2019.

[20] L. Marchal-Crespo and D. J. Reinkensmeyer, “Review of control strate-
gies for robotic movement training after neurologic injury,” J. Neuroeng.
Rehabil., vol. 6, no. 1, pp. 1–15, 2009.

[21] S. A. Murray, K. H. Ha, C. Hartigan, and M. Goldfarb, “An assistive control
approach for a lower-limb exoskeleton to facilitate recovery of walking
following stroke,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 23, no. 3,
pp. 441–449, Aug. 2014.

[22] L. N. Awad et al., “A soft robotic exosuit improves walking in patients
after stroke,” Sci. Transl. Med., vol. 9, no. 400, 2017, Art. no. eaai 9084.

[23] E. T. Wolbrecht, V. Chan, D. J. Reinkensmeyer, and J. E. Bobrow,
“Optimizing compliant, model-based robotic assistance to promote neu-
rorehabilitation,” IEEE Trans. Neural Sys. Rehabil. Eng., vol. 16, no. 3,
pp. 286–297, Jun. 2008.

[24] S. Hussain, P. K. Jamwal, M. H. Ghayesh, and S. Q. Xie, “Assist-as-needed
control of an intrinsically compliant robotic gait training orthosis,” IEEE
Trans. Ind. Electron., vol. 64, no. 2, pp. 1675–1685, Feb. 2017.

[25] H. J. Asl, T. Narikiyo, and M. Kawanishi, “Adaptive neural network-based
saturated control of robotic exoskeletons,” Nonlinear Dyn., vol. 94, no. 1,
pp. 123–139, 2018.

[26] J. R. Koller, D. A. Jacobs, D. P. Ferris, and C. D. Remy, “Learning
to walk with an adaptive gain proportional myoelectric controller for a
robotic ankle exoskeleton,” J. Neuroeng. Rehabil., vol. 12, no. 1, 2015,
Art. no. 97.

[27] J. R. Koller, C. D. Remy, and D. P. Ferris, “Biomechanics and energetics of
walking in powered ankle exoskeletons using myoelectric control versus
mechanically intrinsic control,” J. Neuroeng. Rehabil., vol. 15, no. 1, 2018,
Art. no. 42.

[28] E. M. McCain et al., “Mechanics and energetics of post-stroke walking
aided by a powered ankle exoskeleton with speed-adaptive myoelectric
control,” J. Neuroeng. Rehabil., vol. 16, no. 1, 2019, Art. no. 57.

[29] Z. Li, Z. Huang, W. He, and C.-Y. Su, “Adaptive impedance control for
an upper limb robotic exoskeleton using biological signals,” IEEE Trans.
Ind. Electron., vol. 64, no. 2, pp. 1664–1674, Feb. 2017.

[30] D. Ao, R. Song, and J. Gao, “Movement performance of human-robot co-
operation control based on EMG-driven hill-type and proportional models
for an ankle power-assist exoskeleton robot,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 25, no. 8, pp. 1125–1134, Aug. 2017.

[31] Y. Zhuang, S. Yao, C. Ma, and R. Song, “Admittance control based on
EMG-driven musculoskeletal model improves the human–robot synchro-
nization,” IEEE Trans. Ind. Informat., vol. 15, no. 2, pp. 1211–1218,
Feb. 2019.

[32] G. Durandau, W. F. Rampeltshammer, H. van der Kooij, and M. Sartori,
“Neuromechanical model-based adaptive control of bilateral ankle ex-
oskeletons: Biological joint torque and electromyogram reduction across
walking conditions,” IEEE Trans. Robot., vol. 38, no. 3, pp. 1380–1394,
Jun. 2022.

[33] K. Gui, H. Liu, and D. Zhang, “A practical and adaptive method to achieve
EMG-based torque estimation for a robotic exoskeleton,” IEEE/ASME
Trans. Mechatronics, vol. 24, no. 2, pp. 483–494, Apr. 2019.

[34] K. Gui, U.-X. Tan, H. Liu, and D. Zhang, “Electromyography-driven
progressive assist-as-needed control for lower limb exoskeleton,” IEEE
Trans. Med. Robot. Bionics., vol. 2, no. 1, pp. 50–58, Feb. 2020.

[35] J.-J. E. Slotine and W. Li, Applied Nonlinear Control, vol. 199. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1991.

[36] D. L. Crouch, L. Pan, W. Filer, J. W. Stallings, and H. Huang, “Com-
paring surface and intramuscular electromyography for simultaneous and
proportional control based on a musculoskeletal model: A pilot study,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 9, pp. 1735–1744,
Jul. 2018.

[37] Q. Zhang, K. Kim, and N. Sharma, “Prediction of ankle dorsiflexion
moment by combined ultrasound sonography and electromyography,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 1, pp. 318–327,
Nov. 2020.

[38] Q. Zhang, A. Iyer, K. Kim, and N. Sharma, “Evaluation of non-invasive
ankle joint effort prediction methods for use in neurorehabilitation using
electromyography and ultrasound imaging,” IEEE Trans. Biomed. Eng.,
vol. 68, no. 3, pp. 1044–1055, Mar. 2021.

[39] P. Hodges, L. Pengel, R. Herbert, and S. Gandevia, “Measurement of
muscle contraction with ultrasound imaging,” Muscle Nerve, vol. 27, no. 6,
pp. 682–692, 2003.

[40] S. Sikdar et al., “Novel method for predicting dexterous individual finger
movements by imaging muscle activity using a wearable ultrasonic sys-
tem,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 1, pp. 69–76,
Jan. 2014.

[41] E. N. Wilhelm, A. Rech, F. Minozzo, R. Radaelli, C. E. Botton, and R. S.
Pinto, “Relationship between quadriceps femoris echo intensity, muscle
power, and functional capacity of older men,” Age, vol. 36, pp. 1113–1122,
2014.

[42] K. G. Rabe, T. Lenzi, and N. P. Fey, “Performance of sonomyographic
and electromyographic sensing for continuous estimation of joint torque
during ambulation on multiple terrains,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 29, pp. 2635–2644, Dec. 2021.

[43] Z. Sheng, N. Sharma, and K. Kim, “Quantitative assessment of changes
in muscle contractility due to fatigue during NMES: An ultrasound imag-
ing approach,” IEEE Trans. Biomed. Eng., vol. 67, no. 3, pp. 832–841,
Mar. 2020.

[44] Q. Zhang, A. Iyer, Z. Sun, K. Kim, and N. Sharma, “A dual-modal ap-
proach using electromyography and sonomyography improves prediction
of dynamic ankle movement: A case study,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 29, pp. 1944–1954, Nov. 2021.

Authorized licensed use limited to: N.C. State University Libraries ­ Acquisitions & Discovery  S. Downloaded on February 22,2024 at 01:04:53 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: EVALUATION OF A FUSED SONOMYOGRAPHY AND ELECTROMYOGRAPHY-BASED CONTROL 2201

[45] R. J. Cunningham and I. D. Loram, “Estimation of absolute states of
human skeletal muscle via standard B-mode ultrasound imaging and deep
convolutional neural networks,” J. Roy. Soc. Interface, vol. 17, no. 162,
2020, Art. no. 20190715.

[46] R. Nuckols, S. Lee, K. Swaminathan, D. Orzel, R. Howe, and C. Walsh,
“Individualization of exosuit assistance based on measured muscle dy-
namics during versatile walking,” Sci. Robot., vol. 6, no. 60, 2021,
Art. no. eabj 1362.

[47] Y. Fang, N. Hettiarachchi, D. Zhou, and H. Liu, “Multi-modal sensing
techniques for interfacing hand prostheses: A review,” IEEE Sens. J.,
vol. 15, no. 11, pp. 6065–6076, Nov. 2015.

[48] Q. Zhang, N. Fragnito, J. Franz, and N. Sharma, “Fused ultrasound and
electromyography-driven neuromuscular model to improve plantarflexion
moment prediction across multiple walking speeds,” J. Neuroeng. Rehabil.,
vol. 86, no. 19, 2022, Art. no. 86.

[49] K. G. Rabe and N. P. Fey, “Evaluating electromyography and sonomyo-
graphy sensor fusion to estimate lower-limb kinematics using gaussian
process regression,” Front. Robot. AI, vol. 9, 2022, Art. no. 716545.

[50] A. V. Hill, “The heat of shortening and the dynamic constants of mus-
cle,” Philos. Trans. R. Soc. London, B., Biol. Sci., vol. 126, no. 843,
pp. 136–195, 1938.

[51] F. E. Zajac, “Muscle and tendon: Properties, models, scaling, and applica-
tion to biomechanics and motor control,” Crit. Rev. Biomed. Eng., vol. 17,
no. 4, pp. 359–411, 1989.

[52] D. G. Lloyd and T. F. Besier, “An EMG-driven musculoskeletal model
to estimate muscle forces and knee joint moments in vivo,” J. Biomech.,
vol. 36, no. 6, pp. 765–776, 2003.

[53] T. S. Buchanan, D. G. Lloyd, K. Manal, and T. F. Besier, “Neuromuscu-
loskeletal modeling: Estimation of muscle forces and joint moments and
movements from measurements of neural command,” J. Appl. Biomech.,
vol. 20, no. 4, pp. 367–395, 2004.

[54] M. F. Eilenberg, H. Geyer, and H. Herr, “Control of a powered ankle–foot
prosthesis based on a neuromuscular model,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 18, no. 2, pp. 164–173, Jan. 2010.

[55] S. L. Delp, Surg. Simul.: A Computer Graph. System to Analyze and Des.
Musculoskelet. Reconstructions of the Lower Limb. Redwood City, CA,
USA: Stanford Univ., 1990.

[56] L. F. de Oliveira and L. L. Menegaldo, “Individual-specific muscle max-
imum force estimation using ultrasound for ankle joint torque prediction
using an EMG-driven hill-type model,” J. Biomech., vol. 43, no. 14,
pp. 2816–2821, 2010.

[57] T. J. M. Dick, A. A. Biewener, and J. M. Wakeling, “Comparison of human
gastrocnemius forces predicted by hill-type muscle models and estimated
from ultrasound images,” J. Exp. Biol., vol. 220, no. 9, pp. 1643–1653,
2017.

[58] S. L. Delp et al., “OpenSim: Open-source software to create and analyze
dynamic simulations of movement,” IEEE Trans. Biomed. Eng., vol. 54,
no. 11, pp. 1940–1950, Nov. 2007.

[59] N. Kirsch, N. Alibeji, and N. Sharma, “Nonlinear model predictive con-
trol of functional electrical stimulation,” Control Eng. Pract., vol. 58,
pp. 319–331, 2017.

[60] H. L. Alexander, “State estimation for distributed systems with sensing
delay,” Proc. SPIE, vol. 1470, pp. 103–111, 1991.

[61] S. Gillijns and B. De Moor, “Unbiased minimum-variance input and
state estimation for linear discrete-time systems with direct feedthrough,”
Automatica, vol. 43, no. 5, pp. 934–937, 2007.

[62] E. J. Rouse, L. J. Hargrove, E. J. Perreault, and T. A. Kuiken, “Estima-
tion of human ankle impedance during the stance phase of walking,”
IEEE Trans. Neural Sys. Rehabil. Eng., vol. 22, no. 4, pp. 870–878,
2014.

[63] D. A. Winter, Biomechanics and Motor Control of Human Movement.
Hoboken, NJ, USA: Wiley, 2009.

[64] J. Blaya and H. Herr, “Adaptive control of a variable-impedance ankle-foot
orthosis to assist drop-foot gait,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 12, no. 1, pp. 24–31, Mar. 2004.

[65] S. K. Banala, S. H. Kim, S. K. Agrawal, and J. P. Scholz, “Robot assisted
gait training with active leg exoskeleton (ALEX),” IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 17, no. 1, pp. 2–8, Mar. 2009.

[66] R. Jiménez-Fabián and O. Verlinden, “Review of control algorithms for
robotic ankle systems in lower-limb orthoses, prostheses, and exoskele-
tons,” Med. Eng. Phys., vol. 34, no. 4, pp. 397–408, 2012.

[67] S. Zhou, D. L. Lawson, W. E. Morrison, and I. Fairweather, “Electrome-
chanical delay in isometric muscle contractions evoked by voluntary,
reflex and electrical stimulation,” Eur. J. Appl. Physiol. Occupat. Physiol.,
vol. 70, no. 2, pp. 138–145, 1995.

[68] J. T. Blackburn, D. R. Bell, M. F. Norcross, J. D. Hudson, and L. A.
Engstrom, “Comparison of hamstring neuromechanical properties be-
tween healthy males and females and the influence of musculotendinous
stiffness,” J. Electromyography Kinesiol., vol. 19, no. 5, pp. e362–e369,
2009.

[69] H. Begovic, G.-Q. Zhou, T. Li, Y. Wang, and Y.-P. Zheng, “Detection of the
electromechanical delay and its components during voluntary isometric
contraction of the quadriceps femoris muscle,” Front. Physiol., vol. 5,
2014, Art. no. 494.

[70] H. Kawamoto and Y. Sankai, “Comfortable power assist control method
for walking aid by HAL-3,” in Proc. IEEE Int. Conf. Syst., Man, Cybern.,
2002, vol. 4, p. 6.

[71] C. Fleischer and G. Hommel, “A human–exoskeleton interface utilizing
electromyography,” IEEE Trans. Robot., vol. 24, no. 4, pp. 872–882,
Aug. 2008.

[72] T. Lenzi, S. M. M. De Rossi, N. Vitiello, and M. C. Carrozza, “Intention-
based EMG control for powered exoskeletons,” IEEE Trans. Biomed. Eng.,
vol. 59, no. 8, pp. 2180–2190, Aug. 2012.

[73] L. Peternel, T. Noda, T. Petrič, A. Ude, J. Morimoto, and J. Babič,
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