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Abstract

Byzantine quorum systems provide higher throughput than proof-of-work and incur modest energy
consumption. Further, their modern incarnations incorporate personalized and heterogeneous trust.
Thus, they are emerging as an appealing candidate for global financial infrastructure. However, since
their quorums are not uniform across processes anymore, the properties that they should maintain to
support abstractions such as reliable broadcast and consensus are not well-understood. It has been
shown that the two properties quorum intersection and availability are necessary. In this paper, we
prove that they are not sufficient. We then define the notion of quorum subsumption, and show that
the three conditions together are sufficient: we present reliable broadcast and consensus protocols,
and prove their correctness for quorum systems that provide the three properties.
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1 Introduction

Bitcoin [42] had the promise to democratize the global finance. Globally scattered servers

validate and process transactions, and maintain a consistent replication of a ledger. However,

the nature of the proof-of-work consensus exhibited disadvantages such as high energy

consumption, and low throughput. In contrast, Byzantine replication have always had

modest energy consumption. Further, since its advent as PBFT [18], many recent extensions

[47, 39, 48, 17, 6, 12, 13] have improved its throughput. However, its basic model of quorums

is closed and homogeneous: the set of processes are fixed, and the quorums are assumed to

be uniform across processes. Thus, projects such as Ripple [44] and Stellar [38, 33] emerged

to bring heterogeneity and openness to Byzantine quorum systems. They let every process

declare its own set of quorums, or the processes it trusts called slices, from which quorums

are calculated.

In this paper, we first consider a basic model of heterogeneous quorum systems where each

process has an individual set of quorums. Then, we consider fundamental questions about

their properties. Quorum systems are the foundation of common distributed computing

abstractions such as reliable broadcast and consensus. We specify the expected safety and

liveness properties for these abstractions. What are the necessary and sufficient properties

of heterogeneous quorum systems to support these abstractions? Previous work [34] noted

that quorum intersection and weak availability properties are necessary for the quorum

system to implement the consensus abstraction. Quorum intersection requires that every

pair of quorums overlap at a well-behaved process. The safety of consensus relies on the

quorum intersection property of the underlying quorum system: intuitively, if an operation
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communicates with a quorum, and a later operation communicates with another quorum,

a single well-behaved process in their intersection can make the second quorum aware of

the first. A quorum system is weakly available for a process if it has a quorum for that

process whose members are all well-behaved. Intuitively, the quorum system is available to

that process through that quorum. Since a process needs to communicate with at least one

quorum to terminate, the liveness properties are dependent on the availability of the quorum

system.

The quorum intersection and availability properties are necessary. Are they sufficient as

well? In this paper, we prove that they are not sufficient conditions to implement reliable

broadcast and consensus. For each abstraction, we present execution scenarios, and apply

indistinguishability arguments to show that any protocol violates at least one of the safety or

liveness properties. What property should be added to make the properties sufficient? A less

known property is quorum sharing [34]. Roughly speaking, every quorum should include a

quorum for all its members. This is a property that trivially holds for homogeneous quorum

systems where every quorum is uniformly a quorum of all its members. However, in general,

it does not hold for heterogeneous quorum systems. Previous work showed that it also holds

for Stellar quorums if Byzantine processes do not lie about their slices.

Since Byzantine processes’ quorums is arbitrary, in practice, quorum sharing is too strong.

In order to require inclusion only for the quorums of a well-behaved subset of processes,

we consider a weaker notion, called quorum subsumption. As we will see, this property lets

processes in the included quorum make local decisions while preserving the properties of the

including quorum. We precisely capture this property, and show that together with the other

two properties, it is sufficient to implement reliable broadcast and consensus abstractions. We

present protocols for both reliable broadcast and consensus, and prove that if the underlying

quorum system has quorum intersection, availability, and subsumption for certain quorums,

then the protocols satisfy the required safety and liveness properties.

In summary, this paper makes the following contributions.

Properties of quorum-based protocols (Section 3) and specifications of reliable broadcast

and consensus on heterogeneous quorum systems (Section 4).

Proof of insufficiency of quorum intersection and availability to solve consensus (Subsec-

tion 5.1) and reliable broadcast (Subsection 5.2).

Sufficiency of quorum intersection, quorum availability and quorum subsumption to

solve consensus and reliable broadcast. We present protocols for reliable broadcast

(Subsection 6.1) and consensus (Subsection 6.2), and their proofs of correctness.

2 Heterogeneous Quorum Systems

A quorum is a subset of processes that are collectively trusted to perform an operation.

However, this trust may not be uniform: while a process may trust a part of a system,

another process may not trust that same part. In this section, we adopt a general model of

quorum systems [32, 34] and its properties. These basic definitions adapt common properties

of quorum systems to the heterogeneous setting, and serve as the foundation for theorems

and protocols in the later sections. Since we want the theorems to be as strong as possible,

we introduce the weak notion of quorum subsumption in this paper.
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2.1 Processes and Quorums

Processes and Failures. A quorum system is hosted on a set of processes P. For every

execution, we can partition the set P into Byzantine B and well-behaved W = P \B processes.

Well-behaved processes follow the given protocol, while Byzantine processes can deviate from

the protocol arbitrarily.

We assume that the network is partially synchronized, i.e., after an unknown global

stabilization time (GST), if both the sender and receiver are well-behaved, the message will

eventually be delivered with a known bounded delay [20].

Heterogeneous Quorum Systems (HQS). To represent subjective trust, we let each

process specify its own quorums. A quorum q of process p is a non-empty subset P of P

that p trusts to get information from if it obtains the same information from each member

of P . (In practice, a quorum of p can contain p itself, although the model does not require

it.) Each process p stores its own set of quorums that we call individual quorums of p. Any

superset of a quorum of p is also a quorum of p; thus, there are minimal quorums: a quorum

of p is a minimal quorum of p if none of its strict subsets is a quorum of p. Thus, to avoid

redundancy, p can ignore its quorums that are proper supersets of its minimal quorums.

Thus, each process stores only its individual minimal quorums.

◮ Definition 1 (Quorum System). A heterogeneous quorum system Q is a mapping from

processes to their non-empty set of individual minimal quorums.

Since the trust assumptions of Byzantine processes can be arbitrary, their quorums can

be left unspecified. Figure 1 presents an example quorum system. When obvious from the

context, we say quorums of p to refer to the individual minimal quorums of p, and use Q to

refer to the set of all individual minimal quorums of the system, i.e. the co-domain of Q.

Additionally, we say quorum systems to refer to heterogeneous quorum systems. A process p

is a follower of a process p′ iff there is a quorum q ∈ Q(p) that includes p′.

In dissemination quorum system (DQS) [37] (and the cardinality-based quorum systems

as a special case), quorums are uniform for all processes. Processes have the same set of

individual minimal quorums. For example, a quorum system that tolerates f Byzantine

failures out of 3f + 1 processes considers any set of 2f + 1 processes as a quorum for all

processes.

2.2 Properties

A quorum system is expected to maintain certain properties in order to provide distributed

abstractions such as Byzantine reliable broadcast and consensus. Quorum intersection and

quorum availability are well-established requirements for quorum systems. In the following

section, we will see their adaption to HQS. Further, we identify a new property we call

quorum subsumption that helps achieve the aforementioned abstractions on HQS. Finally,

we briefly present a few related quorum systems, and their properties.

Quorum Intersection. Processes store and retrieve information from the quorum system

by communicating with its quorums. To ensure that information is properly passed from a

quorum to another, the quorum system is expected to maintain a well-behaved process at

the intersection of every pair of quorums. For example, in the running example in Figure 1,

all the quorums of well-behaved processes intersect at at least one of well-behaved processes

in {1, 3, 4}.
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◮ Definition 2 (Quorum Intersection). A quorum system Q has quorum intersection iff every

pair of quorums of well-behaved processes in Q intersect at a well-behaved process, i.e.,

∀p, p′ ∈ W. q ∈ Q(p). q′ ∈ Q(p′). q ∩ q′ ∩ W 6= ∅

Quorum Availability. In order to support progress for a process, the quorum system is

expected to have at least one quorum for that process whose members are all well-behaved.

We say that the quorum system is weakly available for that process. (In the literature, this

notion of availability is often unqualified, but we explicitly contrast the weak notion to the

strong notion that we will define.) In classical quorum systems, any quorum is a quorum

for all processes. This guarantees that if the quorum system is available for a process, it is

available for all processes. However, this is obviously not true in a heterogeneous quorum

system where quorums are not uniform. In this setting, we weaken the availability property

so that it requires only a subset and not necessarily all well-behaved processes to have a

well-behaved quorum. In Figure 1, Q is available for the set {1, 3, 4}: the quorum {1, 4} of

process 1, and the quorum {3, 4} of processes 3 and 4 make them weakly available. Each

process in that subset can always communicate with a quorum independently of Byzantine

processes.

◮ Definition 3 (Weak Availability). A quorum system is weakly available for a set of processes

P iff every process in P has at least one quorum that is a subset of well-behaved processes

W. A quorum system is available iff it is available for a non-empty set of processes.

If a quorum system is weakly available, there is at least one well-behaved process that

can communicate with a quorum independently of Byzantine processes.

With quorum availability introduced, we can consider when a quorum system is unavailable.

A quorum system is unavailable for a process when that process has no quorum in W, i.e.,

the Byzantine processes B can block every one of its quorums. We generalize this idea in the

notion of blocking.

◮ Definition 4 (Blocking Set). A set of processes P is a blocking set for a process p (or is

p-blocking) if P intersects every quorum of p.

P =W ∪B, W = {1, 3, 4, 5}, B = {2}
Q = {1 7→ {{1, 2, 3}, {1, 4}},

3 7→ {{3, 4}, {1, 3}}
4 7→ {{3, 4}}
5 7→ {{1, 2, 3, 5}}}

Figure 1 Quorum System Example

For example, consider cardinality-based quorum

systems where the system contains 3f + 1 processes.

Any set of size f + 1 is a blocking set for all well-

behaved processes, since a set with f + 1 processes

intersects with any quorum, a set with 2f+1 processes.

In Figure 1, well-behaved process 5 is blocked by {2},

since its only quorum {1, 2, 3, 5} intersect with {2}

Notice also that the definition does not stipulate

that the blocking set is Byzantine, but rather it is

more general. The concept of blocking will be useful for designing our protocols in (Section 6).

For now, we prove a lemma for blocking sets. In order to state the lemma, we generalize

the notion of availability. Given a set of processes P , we generalize availability for P at the

complete set of well-behaved processes W (Definition 3) to availability for P at a subset P ′

of well-behaved processes. We say that a quorum system is weakly available for a set of

processes P at a subset of well-behaved processes P ′ iff every process in P has at least one

quorum that is a subset of P ′.

◮ Lemma 5. In every quorum system that is weakly available for a set of processes P at P ′,

every blocking set of every process in P intersects P ′.
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Proof. Consider a quorum system that is weakly available for P at P ′, a process p in P ,

and a set of processes P ′′ that blocks p. By the definition of available, there is at least one

quorum q of p that is a subset of P ′. By the definition of blocking set (Definition 4), q

intersects with P ′′. Hence, P ′ intersects P ′′ as well. ◭

Quorum subsumption. We now introduce the notion of quorum subsumption.

◮ Definition 6 (Quorum Subsumption). A quorum system Q is quorum subsuming for a

quorum q iff every process in q has a quorum that is included in q, i.e., ∀p ∈ q. ∃q′ ∈

Q(p). q′ ⊆ q. We say that Q is quorum subsuming for a set of quorums if it is quorum

subsuming for each quorum in the set.

In Figure 1, Q is quorum subsuming for {3, 4}: both members in this quorum have the

quorum {3, 4} that is trivially a subset of itself. However, Q is not quorum subsuming for

process 1’s quorum {1, 4}: process 4’s only quorum {3, 4} is not a subset of {1, 4}.

sender 1 2 3 4
BCast(m1 )

Echo(m1 ) Echo(m1 ) Echo(m1 )
Ready(m2 )

Ready(m1 ) Ready(m2 ) Ready(m2 )
blocked forever Deliver(m2 )

Table 1 Non-termination for Bracha protocol with blocking sets

Quorum subsumption

is inspired by and weak-

ens the notion of quorum

sharing [34]. Quorum

sharing requires the above

subsumption property for

all quorums. Thus, many

quorum systems includ-

ing Ripple and Stellar do not satisfy it (unless Byzantine processes do not lie about their

slices [34].) They can maintain the subsumption property only for quorums of a well-behaved

subset of processes. In particular, no requirement can be made for quorums of Byzantine

processes. Therefore, we define the weaker notion of quorum subsumption for a subset of

quorums, and later show that it is sufficient to implement broadcast and consensus.

In order to make progress, protocols (such as Bracha’s Byzantine reliable broadcast [9])

require the members of a quorum to be able to communicate with at least one of their own

quorums, or communicate with a subset of processes that contains at least one well-behaved

process. Let us see intuitively how quorum subsumption can support liveness properties.

Consider a quorum system Q for processes P = {1, 2, 3, 4} where the Byzantine processes

are {2}, and Q(1) = {{1, 3, 4}}, Q(3) = {{1, 2, 3}}, and Q(4) = {{2, 3, 4}}. The quorum

system Q has quorum intersection, and is weakly available for the set {1} since there is a

well-behaved quorum {1, 3, 4} for the process 1. In the classic Bracha protocol, the sender

broadcasts BCast(m), a well-behaved broadcasts Echo(m) when it receives it from the sender,

it broadcasts Ready(m) after receiving 2f + 1 Echo(m) or f + 1 Ready(m) messages, and

finally, delivers m if it receives 2f + 1 Ready(m) messages. In Stellar [33] and follow-up works

[34, 24, 15], the check for receiving Ready(m) messages from f + 1 processes is replaced with

receiving Ready(m) messages from a blocking set of the current process. Let’s consider the

example execution presented in Table 1; it gives an intuition of why the quorum system needs

stronger conditions than weak availability. Consider a Byzantine sender who sends BCast(m1)

to process {1, 3, 4}. Well-behaved processes {1, 3, 4} send out Echo(m1) to each other. We

let process 1 deliver Echo(m1) messages from process 1, 3, and 4 first; it then sends out

Ready(m1) messages. We note that the two processes 3, and 4 cannot broadcast Ready(m1)

since they have not received Echo(m1) from a quorum of their own. Then the Byzantine

process 2 sends Ready(m2) messages to process {3, 4}. Since the set {2} is blocking for the

quorums of both processes 3 and 4, both send out Ready(m2) messages. These broadcast
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protocols prevent a process that is ready for a value from getting ready for another value.

Therefore, although {3} and {4} are both blocking sets for the process 1, it cannot become

ready for m2. Process 1 never receives enough Ready messages for either m1 or m2 to deliver

a message, and is blocked forever. If the quorum {1, 3, 4} for 1 had the quorum subsumption

property, then 3 and 4 could send out Ready(m1) messages, and eventually 1 would make

progress.

Complete Quorum. We will later see that quorum availability and quorum subsumption

are important together for liveness. We succinctly combine the two properties into the notion

of complete quorums.

◮ Definition 7 (Complete Quorum). A quorum q in a quorum system Q is a complete quorum

if all its members are well-behaved, and Q is quorum subsuming for q.

In our previous running example Figure 1, quorum {3, 4} is a complete quorum: both of

its members are well-behaved and Q is quorum subsuming for {3, 4}.

◮ Definition 8 (Strong Availability). A quorum system Q has strong availability for a subset

of processes P iff every process in P has at least one complete quorum. We call P a strongly

available set for Q, and call a member of P a strongly available process. We say that Q is

strongly available if it is strongly available for a non-empty set.

Intuitively, operations stay available at a strongly available process since its complete

quorum can perform operations on his behalf in the face of Byzantine attacks. In Figure 1,

Q is strongly available for {3, 4}. In contrast, Q is only weakly available for process 1,

since its quorum {1, 2, 3} includes 2 that is not well-behaved, and its other quorum {1, 4} is

well-behaved but not a complete quorum.

By Lemma 5, every blocking set of every strongly available process contains at least one

well-behaved process.

3 Protocol Implementation

In the subsequent sections, we will see that it is impossible to construct a protocol for

Byzantine reliable broadcast and consensus in an HQS given only quorum intersection and

quorum availability. After that, we give a protocol for Byzantine reliable broadcast and

consensus for an HQS that has quorum intersection and strong availability. We first need

a model of quorum-based protocols, and then the exact specifications of the distributed

abstractions we aim to design protocols for. In this section, we consider the former.

We consider a modular design for protocols. A protocol is captured as a component that

accepts request events and issues response events. A component uses other components as

sub-components: it issues requests to them and accepts responses from them. A component

stores a state and defines handlers for incoming requests from the parent component, and

incoming responses from children components. Each handler gets the pre-state and the

incoming event as input, and outputs the post-state and outgoing events, either as responses

to the parent or requests to the children components. The outputs of a handler can be

deterministically a function of its inputs, or randomized.

◮ Definition 9 (Determinism). A protocol is deterministic iff the outputs of its handlers are

a function of the inputs.

Quorum-based Protocols. A large class of protocols are implemented based on quorum

systems. In order to state impossibility results for these protocols, we capture the properties
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of quorum-based protocols [34, 29] as a few axioms. Our impossibility results concern

protocols that adhere to the necessity, sufficiency, and locality axioms.

A process in a quorum-based protocol should process a request only if it can communicate

with at least one of its quorums.

◮ Axiom 1 (Necessity of Quorums [34]). If a well-behaved process p issues a response for a

request then there must be a quorum q of p such that p receives at least one message from

each member of q.

In a quorum-based protocol, a process only needs the participation of itself and members

of one of its quorums to deliver a message.

◮ Axiom 2 (Sufficiency of Quorums). For every execution where a well-behaved process p

issues a response, there exists an execution where only p and a quorum of p take steps, and p

eventually issues the same response.

We add a remark for Byzantine reliable broadcast (BRB) which has a designated sender

process. We will use a slight variant of the sufficiency axiom for BRB that states that there

exists an execution where only the sender, p and a quorum of p take steps.

A process’s local state is only affected by the information that it receives from the

members of it’s quorums.

◮ Axiom 3 (Locality). The state of a well-behaved process changes upon receiving a message

only if the sender is a member of one of its quorums.

For BRB, we will use a slight variant of the locality axiom that allows processes change

state upon receiving messages from the sender in addition to members of quorums.

4 Protocol Specification

We now define the specification of reliable broadcast and consensus for HQS. The liveness

properties are weaker than classical notions since in an HQS, availability might be maintained

only for a subset P of well-behaved processes.

Reliable Broadcast. We now define the specification of the reliable broadcast abstraction.

The abstraction accepts a single broadcast request from a designated sender (either in the

system or a process that is separate from the other processes in system), and issues delivery

responses.

◮ Definition 10 (Specification of Reliable Broadcast).

(Validity for a set of well-behaved processes P ). If a well-behaved process p broadcasts a

message m, then every process in P eventually delivers m.

(Integrity). If a well-behaved process delivers a message m from a well-behaved sender p,

then m was previously broadcast by p.

(Totality for a set of well-behaved processes P ). If a message is delivered by a well-behaved

process, then every process in P eventually delivers a message.

(Consistency). No two well-behaved processes deliver different messages.

(No duplication). Every well-behaved process delivers at most one message.

We also consider a variant of reliable broadcast called federated voting. Similar to reliable

broadcast, the abstraction accepts a broadcast request from processes, and issues delivery

responses. In contrast to reliable broadcast where there is a dedicated sender, in federated
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voting, every process can broadcast a message. The specification of federated voting is similar

to that of reliable broadcast except for validity. The messages that well-behaved processes

broadcast may not be the same. Therefore, the validity property provides guarantees only

when the messages are the same or there is only one sender. The validity property for a

set of well-behaved processes P guarantees that if all well-behaved processes broadcast a

message m, or only one well-behaved process broadcasts a message m, then every process in

P eventually delivers m.

Consensus. We now consider the specification of the consensus abstraction. It accepts

propose requests from processes in the system, and issues decision responses.

◮ Definition 11 (Specification of Consensus).

(Validity). If all processes are well-behaved, and some process decides a value, then that

value was proposed by some process.

(Agreement). No two well-behaved processes decide differently.

(Termination for a set of well-behaved processes P ). Every process in P eventually

decides.

5 Impossibility

We now present the impossibility results for consensus and Byzantine Reliable Broadcast

(BRB). It is known that quorum intersection and quorum availability are necessary conditions

[34] to implement consensus and BRB protocols. In this section, we show that while these

two conditions are necessary, they are not sufficient.

We consider the information-theoretic settings (Fault axiom [21]), where byzantine

processes have unlimited computational power, and can show arbitrary behavior. However,

processes communicate only over secure channels so that the recipient knows the identity of

the sender. A Byzantine process is unable to impersonate a well-behaved process. This is

similar to the classic unauthenticated Byzantine general problem [30], and is necessary for

open decentralized blockchains and HQS, where the trusted authorities including public key

infrastructures may not be available.

The two proofs will take a similar approach. First, we assume there does exist a protocol

for our distributed abstraction that satisfies all the desired specifications. We then present a

quorum system Q and consider its executions that have quorum intersection and availability

in the face of Byzantine attacks. We then show through a series of indistinguishable executions

that the protocol cannot satisfy all the desired specifications, leading to a contradiction. The

high-level idea is that in the information-theoretic setting, a well-behaved process is not able

to distinguish between an execution where the sender is Byzantine and sends misleading

messages, and an execution where the relaying process is Byzantine and forwards misleading

messages. For example, let p1, p2 and p3 be three processes in the system. When p3 receives

conflicting messages from p1 through p2, it does not know whether p1 or p2 is Byzantine.

This eventually leads to violation of the agreement or validity property of the abstraction.

We consider binary proposals for consensus, and binary values (from the sender) for

reliable broadcast. For the consensus abstraction, we succinctly present the values that

processes propose as as a vector of values that we call a configuration. If the initial value

of a process is ⊥ in the configuration, that process is considered Byzantine. Otherwise, the

process is well-behaved. For example, a configuration C = 〈0, 0, ⊥〉 denotes the first and

second process proposing zero and the third process being Byzantine.
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5.1 Consensus

We first consider consensus protocols in HQS.

◮ Theorem 12. Quorum intersection and weak availability are not sufficient for deterministic

quorum-based consensus protocols to provide validity, agreement and termination for weakly

available processes.

Proof. We suppose there is a quorum-based consensus protocol that guarantees validity,

agreement, and termination for every quorum system Q with quorum intersection and weak

availability, towards contradiction. Consider a quorum system Q for processes P = {a, b, c}

with the following quorums: Q(a) = {{a, c}}, Q(b) = {{a, b}}, Q(c) = {{b, c}}.

We make the following observations: (1) if all processes are well-behaved, then Q has

quorum intersection and weak availability for {a, b, c}, (2) if only process a is Byzantine,

then Q preserves quorum intersection, and weak availability for {c}, (3) if only process c

is Byzantine, then Q preserves quorum intersection, and weak availability for {b}. Going

forward, we implicitly assume termination for weakly available processes.

Now consider the following four configurations as shown in Figure 2: C0 = 〈0, 0, 0〉,

C1 = 〈1, 1, 1〉, C2 = 〈0, 1, ⊥〉, and C3 = 〈⊥, 1, 1〉. The goal is now to show a series of

executions over the configurations so that at least one property of the protocol is violated.

We begin with execution E0 (shown in red) with the initial configuration C0. All the

messages between a and c are delivered. By termination for weakly available processes

and validity, process a decides 0. Additionally, by quorum sufficiency, a can reach this

decision with only processes {a, c} taking steps.

Next, we have execution E1 (shown in blue) with initial configuration C1. All the messages

between b and c are delivered. Again, by termination for weakly available processes and

validity, process c decides 1. By quorum sufficiency, c can reach this decision with only

processes {b, c} taking steps.

Next, we have execution E2 as a sequence of E1 and E0, with initial configuration C2.

Suppose messages between well-behaved processes a and b are delayed. Byzantine process

c first replays E1 with process b, then replays E0 with process a. This cause process a to

decide 0. Now let Byzantine process c stay silent, and messages between processes a and

b be delivered. By termination for b, agreement and quorum sufficiency, process a makes

b decide 0 as well (shown in green).

Lastly, we have execution E3 with initial configuration C3. Suppose messages between b

to c are delivered in the beginning. We let processes {b, c} replay E1; thus, c decides 1.

Then, Byzantine process a sends messages to b as if it were at the end of E2. In turn, b

decides 0. Thus, agreement is violated as two well-behaved processes decided differently.

◭

Indistinguishably. We provide some intuition for the proof construction. Ultimately, the

problem lies in process b not being able to distinguish whether process a or process c is the

Byzantine process. More specifically, both E2 and E3 begin with execution E1. Since process

b cannot distinguish between the two executions, it does not know which value to decide.

If process b believes E2 is the actual execution, then b should decide 0 to agree with the

decision of well-behaved process a. However, if E3 is the actual execution, then agreement is

violated as process c decided 1. Conversely, if process b believes E3 is the actual execution,

then b should decide 1 to agree with the decision of well-behaved process c. Then, if E2 is

the actual execution, agreement is violated as the well-behaved process a decided 0.
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a b c

C0

C1

C2

C3

0 0 0

1 1 1

0 1 ⊥

⊥ 1 1

E0

E1

E2

E3

Figure 2 Indistinguishable Executions

We note that this proof could not be

constructed if there was quorum subsump-

tion. For example, if the process b adds

the quorum {a, b, c}, then Q will have quo-

rum subsumption for the quorum {a, b, c} of

b. However, then by quorum subsumption,

there will be no Byzantine process, and the

executions E2 and E3 cannot be constructed.

If the process a adds the quorum {a, b}, then

it will have quorum subsumption. However,

then the process a cannot Byzantine process anymore, and the executions E3 cannot be

constructed. Similarly, if the process b adds the quorum {b, c}, the executions E2 cannot be

constructed.

5.2 Byzantine Reliable Broadcast

Now, we prove the insufficiency of quorum intersection and quorum availability for Byzantine

reliable broadcast.

For the reliable broadcast abstraction, we represent the initial configuration as an array of

values received by the processes from the sender. The sender is a fixed and external process

in the executions, and is only used to assign input values for processes in the system, which

are captured as the initial configurations. The sender does not take steps in the executions,

and processes are not able to distinguish executions based on the sender.

◮ Theorem 13. Quorum intersection and weak availability are not sufficient for deterministic

quorum-based reliable broadcast protocols to provide validity and totality for weakly available

processes, and consistency.

Proof. The proof is similar to the proof for consensus. In fact, we will reuse the construction.

There are differences between reliable broadcast and consensus specifications in (1) their

validity properties, and (2) their totality and termination properties respectively. The proof

can be adjusted for these differences. For reliable broadcast, we need a sender process s

who broadcasts a message. In executions that we want a well-behaved process to deliver the

message m, we either (1) keep the sender s well-behaved and have it send m, and then apply

validity, or (2) have a process deliver m, then apply totality and consistency. The initial

configuration represents values received by each process from the sender.

Executions follow those in the previous proof. Message delivery and delays mirror

the previous executions. In execution E0 for configuration C0, the well-behaved sender s

broadcasts 0, and messages between processes a and c are delivered. By validity for weakly

available processes, process a delivers 0, and by quorum sufficiency, only processes {a, c} need

to take steps. In execution E1 for configuration C1, the well-behaved sender s broadcasts

1, and messages between processes b and c are delivered. By validity for weakly available

processes, and quorum sufficiency, process c delivers 1, only with {b, c} taking steps. In

configurations C2 and C3, the sender s is Byzantine. The messages between processes a and

b are delayed in the beginning. In execution E2 for configuration C2, the Byzantine sender

s and Byzantine process c replay E1 with process b, then replay E0 with process a. Then

Byzantine process c stays silent, and messages between processes a and b are delivered. By

totality for weakly available processes, since process a delivers 0, then process b will also

deliver a value. By consistency, process b delivers 0 as well. In the last execution E3 for

configuration C3, we let the Byzantine process a stay silent in the beginning, and processes b

© Xiao Li, Eric Chan, Mohsen Lesani;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 16; pp. 16:10–16:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany



Algorithm 1 Byzantine Reliable Broadcast (BRB)

1 Implements: ReliableBroadcast

2 request : broadcast(v)
3 response : deliver(v)
4 Vars:

5 Q ⊲ Minimal quorums of self

6 F : Set[P] ⊲ The followers of self

7 echoed, readied, delivered : Boolean← false

8 E, R : V 7→ Set[P]← ∅
⊲ Set of echoed and readied processes

9 Uses:

10 ptp : PointToPointLink

11 upon request broadcast(v) from sender
12 ptp request send(p, BCast(v)) for each

p ∈ P

13 upon ptp response deliver(p′, BCast(v))
14 if ¬echoed then

15 echoed ← true

16 ptp request send(p, Echo(v)) for each
p ∈ F

17 upon ptp response deliver(p′, Echo(v))
18 E(v)← E(v) ∪ {p′}

19 if ¬readied ∧ ∃q ∈ Q. q ⊆ E(v) then

20 readied ← true

21 ptp request send(p, Ready(v)) for
each p ∈ F

22 upon ptp response deliver(p′, Ready(v))
23 R(v)← R(v) ∪ {p′}

24 if ¬readied ∧ R is a blocking set of self

then

25 readied ← true

26 ptp request send(p, Ready(v)) for
each p ∈ F

27 if ¬delivered ∧ ∃q ∈ Q. q ⊆ R(v) then

28 delivered ← true

29 response deliver(v)

and c replay E1. Thus, process c delivers 1. Afterwards, messages between process b and c

are delayed, and the Byzantine process a replays E2. Again, process b cannot distinguish

between the two executions E2 and E3. Since process a sends the exact same messages to

process b as the end of E2, process b will deliver 0. Thus, consistency between c and b is

violated. ◭

6 Protocols

We just showed that quorum intersection and availability are not sufficient to implement

our desired distributed abstractions. Now, we show that quorum intersection and strong

availability, our newly introduced property are sufficient to implement both Byzantine reliable

broadcast and consensus.

6.1 Reliable Broadcast Protocol

In Algorithm 1, we adapt the Bracha protocol [9] to show that quorum intersection and

strong availability together are sufficient for Byzantine reliable broadcast. The parts that

are different from the classical protocol are highlighted in blue.

Each process stores the set of its individual minimal quorums Q, and its set of followers F .

It also stores the boolean flags echoed, readied, and delivered which record actions the process

has taken to avoid duplicate actions. It further uses point-to-point links ptp to each of its

followers. Upon receiving a request to broadcast a value v (at L. 11), the sender broadcasts

the value v to all processes (at L. 12). Upon receiving the message from the sender (at L. 13),

a well-behaved process echoes the message among its followers (at L. 16) only if it has not

already echoed. When a well-behaved process receives a quorum of consistent echo messages

(at L. 17), it sends ready messages to all its followers (at L. 21). A well-behaved process can

also send a ready message when it receives consistent ready messages from a blocking set (at

L. 24). When a well-behaved process receives a quorum of consistent ready messages for v
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(at L. 27), it delivers v (at L. 29). The implementation of the federated voting abstraction is

similar. The only difference is that there can be multiple senders (at L. 11).

We prove that this protocol implements Byzantine reliable broadcast when the quorum

system satisfies quorum intersection, and strong availability. We remember that strong

availability requires both weak availability and quorum subsumption. More precisely, it

requires a well-behaved quorum q for a process p, and quorum subsumption for q.

◮ Theorem 14. Quorum intersection and strong availability are sufficient to implement

Byzantine reliable broadcast.

This theorem follows from five lemmas in the appendix [31] that prove the protocol

satisfies the specification of Byzantine reliable broadcast that we defined in Definition 10.

Consider a quorum system with quorum intersection, and strong availability for P . Here, we

state and prove only the validity property.

◮ Lemma 15. The BRB protocol guarantees validity for P .

Proof. Consider a well-behaved sender that broadcasts a message m. We show that every

process in P eventually delivers m. By availability, every process p ∈ P has a complete

quorum q. Consider a process p′ ∈ q. By quorum subsumption, p′ has a quorum q′ ⊆ q. By

availability, all members of q (including q′) are well-behaved. Thus, when they receive m

from the sender, they all echo it to their followers. The processes in q′ have p′ as a follower.

Thus, p′ receives consistent echo messages for m from one of its quorums q′. Thus, p′ sends

out ready messages for m to its followers. Thus, all processes in q send out ready messages

for m to their followers. The processes in q have p as a follower. Therefore, p receives a

quorum of consistent ready messages for m from one of its quorums q, and delivers m. ◭

6.2 Byzantine Consensus Protocol

In this section, we show that quorum intersection and strong availability are sufficient to

implement Byzantine consensus. We first present the consensus protocol for heterogeneous

quorum systems, and then prove its correctness.

At a high level, the protocol proceeds in rounds with assigned leaders for each. Ballots

that carry proposal values are totally ordered. A leader tries to commit its own candidate

ballot only after aborting any lower ballot in the system. Leaders use the federated voting

abstraction (that we saw in Section 4) to abort or commit ballots. There may be multiple

leaders or Byzantine leaders before GST, and they may broadcast contradicting abort and

commit messages for the same ballot. However, by the consistency property of federated

voting, processes agree on aborting or committing ballots.

A ballot b is a pair 〈r, v〉 of a round number r and a proposed value v. Ballots are totally

ordered by first their round numbers, and then their values: a ballot 〈r, v〉 is below another

〈r′, v′〉, written as 〈r, v〉 < 〈r′, v′〉, if r < r′ or r = r′ ∧ v < v′. Two ballots b = 〈r, v〉 and

b′ = 〈r′, v′〉 are compatible, b ∼ b′, if they have the same value, i.e., v = v′; otherwise, they

are incompatible, b 6∼ b′. We say that a ballot is below and incompatible with another,

b � b′, if b < b′ and b 6∼ b′. For message passing communication, we assume batched network

semantics (BNS), where messages issued in an event are sent as a batch, and the receiving

process delivers and processes the batch of messages together. (In particular, as we will see

later in the correctness proofs, if prepare messages that are sent together are not processed

together the validity property can be violated.)

The protocol is similar to SCP [38, 25] in structure; the important difference is that this

protocol uses leaders [34] and guarantees termination. Our protocol guarantees termination
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Algorithm 2 Byzantine Consensus

1 Implements: Consensus

2 request : propose(v)
3 response : decide(v)
4 Vars:

5 round : N+ ← 0 ⊲ Current round number
6 candidate, prepared : 〈N+, V 〉 ← 〈0,⊥〉

7 leader : P ← p0 ⊲ current leader
8 Uses:

9 fv : B 7→ ByzantineReliableBroadcast

10 le : EventualLeaderElection

11 upon request propose(v)
12 candidate ← 〈1, v〉

13 if self = leader then

14 fv(b′) request broadcast(A) for all
b′ � candidate

15 upon fv(b′) response deliver(p,A) for all
b′ � b where prepared < b

16 prepared ← b

17 if self = leader ∧ prepared = candidate

then

18 fv(candidate) request broadcast(C)

19 upon fv(b) response deliver(p,C) where
b = prepared ∧ p = leader

20 response decide(b.v)
21 upon timeout triggered
22 le request Complain(round)
23 upon le response new-leader(p)
24 leader ← p

25 round ← round + 1
26 if self = leader then

27 Delay for time ∆
28 start-timer(round)
29 if prepared = 〈0,⊥〉 then

30 candidate ← 〈round, candidate.v〉

31 else

32 candidate ← 〈round, prepared.v〉

33 if self = leader then

34 fv(b′) request broadcast(A) for all
b′ � candidate

regardless of Byzantine processes. On the other hand, the SCP protocol guarantees a liveness

property called non-blocking which requires Byzantine processes to stop. (More precisely,

if a process p in the intact set [38, 24] has not yet decided in some execution, then for

every continuation of that execution in which all the Byzantine processes stop, the process p

eventually decides.)

Each process stores four local variables: round is the current round number, candidate is

the ballot that the process tries to commit, prepared is the ballot that the process is safe

to discard any ballots lower and incompatible with, and leader is the current leader. Each

process uses an instance of federated voting for each ballot, and an eventual leader election

module. The latter issues new-leader events, and eventually elects a well-behaved process as

the leader. (Previous work [34] presented a probabilistic leader election module.)

Upon receiving a proposal request (at L. 11), a well-behaved process initializes its

candidate ballot to the pair of the first round and its own proposal (at L. 12). If the current

process self is the leader, it tries to prepare its candidate by broadcasting abort A messages

for all ballots below and incompatible with candidate (at L. 14). When a well-behaved

process delivers A messages from the leader for all ballots below and incompatible with some

ballot b, and its current prepared ballot is below b (at L. 15), it sets prepared to b (at L. 16).

If the current process self is the leader, and the prepared ballot is equal to the candidate

ballot, then it broadcasts a commit C message for its candidate ballot (at L. 18). When a

well-behaved process delivers a C message for a ballot b from the leader, and it has already

prepared the same ballot (at L. 19), it decides the value of that ballot (at L. 20).

To ensure liveness, a well-behaved process triggers a timeout if no value is decided after a

predefined time elapses in each round. The process then complains to the leader election

module (at L. 22). When the leader election module issues a new leader (at L. 23), a

well-behaved process updates its leader variable, and increments the round number (at L. 25).

The leader itself then waits for a time ∆ (at L. 27) which we will further explain below. The
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process also resets the timer with a doubled timeout for the next round (at L. 28). It then

updates the candidate ballot: if no value is prepared before, the candidate ballot is updated

to the new round number and the value of the current candidate (at L. 30); otherwise, it is

updated to the new round number and the value of the prepared ballot (at L. 32). Then, the

leader tries to prepare the candidate by aborting below and incompatible ballots similar to

the steps above (at L. 34).
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Figure 3 Last Minute Attack. b = 〈1, 4〉. The candidate

of well-behaved leader l2 is b′ = 〈2, 3〉. The votes commit and
abort are abbreviated as C and A. The new leader events
are triggered at the black dots at each process. Prepared
ballots are shown below the time line for each process.

Let us now explain why delay ∆

is needed for termination. Without

this delay, a Byzantine leader can

perform a last minute attack that

we illustrate in Figure 3. Consider

that we have four processes, one of

them is Byzantine, and any set of

three processes is a quorum. Let

the Byzantine process be the leader

l1, and let the ballot b be prepared.

The leader l1 sends a commit for

ballot b to one well-behaved process

p3. Then, p3 echos commit for b.

Then, the timeout for l1 happens,

and the next well-behaved leader

l2 comes up. Without the delay, l2 may have not prepared b yet (although other well-behaved

processes p3 and p4 prepared it). Therefore, the ballot b′ that l2 updates its candidate to (at

L. 32) is not b, and may not be compatible with b. In order to prepare b′, the leader l2 tries

to abort b (at L. 34) but b cannot be aborted: in order to abort b, a quorum of processes

should echo it. However, the well-behaved process p3 has already echoed commit, and if

the Byzantine process l1 remains silent, the remaining two well-behaved processes l2 and

p4 are not a quorum, and cannot abort b. Therefore, l2 cannot succeed, and the timeout

is triggered. Further, if the next leader is the Byzantine process l1 again, it can repeat the

above scenario: it can abort b to prepare a higher ballot b2, and make a well-behaved process

echo commit for b2, before passing the leadership. The attack can continue infinitely, and

delay termination. If the delay ∆ is larger than the bounded communication delay after

GST, it makes the leader l2 observe the highest prepared ballot b, and adopt its value as the

value of its candidate b′

2 (at L. 32). When it tries to commit b′

2, since it is compatible with

b, it does not need abort it. Therefore, it can prepare and commit b′

2, and decide. We also

note that instead of the delay ∆, the above attack can be avoided if the leader election can

provide two successive well-behaved leaders.

◮ Theorem 16. Quorum intersection and strong availability are sufficient to implement

consensus.

This theorem follows from three lemmas in the appendix [31] that prove that the protocol

satisfies the specification of Byzantine consensus that we defined in Definition 11. An example

execution of the protocol is described in the appendix [31].

7 Related Works

Quorum Systems with Heterogeneous Trust. Ripple [44] and Cobalt [35] pioneered

decentralized trust. They let each node specify a list, called the unique node list (UNL), of

processes that it trusts. However, they do not consider quorum availability or subsumption.
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Stellar [38, 33] presents federated Byzantine quorum systems (FBQS) [24, 25] where

quorums are iteratively calculated from quorums slices. Stellar also presents a federated

voting and consensus protocol. In comparison, the assumptions of the protocols presented

in this paper are weaker, and their guarantees are stronger. The stellar consensus protocol

(SCP) guarantees termination when Byzantine processes stop. In contrast, the consensus

protocol in this paper guarantees termination regardless of Byzantine processes. Further,

abstract SCP [24] provides agreement only for intact processes. The intact set for an FBQS is

a subset of processes that have strong availability. On the other hand, the consensus protocol

in this paper provides agreement for all well-behaved processes. In FBQS, the intersections

of quorums should have a process in the intact set; however, in HQS, they only need to have

a well-behaved process. The validity and totality properties for the reliable broadcast for

FBQS are restricted to the intact set. On the other hand, the reliable broadcast protocol in

this paper provides totality for all processes that have weak availability, and validity for all

processes that have strong availability.

Personal Byzantine quorum systems (PBQS) [34] capture the quorum systems that FBQSs

derive form slices, and propose a responsiveness consensus protocol [48, 1, 43, 3]. They

define a notion called quorum sharing which requires quorum subsumption for every quorum.

Stellar quorums have quorum sharing if and only if processes do not lie about their slices.

(The appendix [31] presents examples.) In this paper, we relax quorum sharing to quorum

subsumption, and capture quorums that FBQSs derive even when Byzantine quorums lie

about their slices, and show that even if a quorum system does not satisfy quorum sharing,

safety can be maintained for all processes, and liveness can be maintained for the set of

strongly available processes.

Asymmetric Byzantine quorum systems (ABQS) [15, 16, 4] allow each process to define a

subjective dissemination quorum system (DQS), in a globally known system. The followup

model [14] lets each process specify a subjective DQS for processes that it knows, transitively

relying on the assumptions of other processes. In contrast, HQS lets each process specify its

own set of quorums without knowing the quorums of other processes. Further, it does not

require the specification of a set of possible Byzantine sets. Further, there are systems where a

strongly available set (from HQS) exists but no guild set (from ABQS) exists. (The appendix

[31] presents examples.) Therefore, HQS can provide safety and liveness for those executions

but ABQS cannot. ABQS presents shared memory and broadcast protocols, and further,

rules to compose two ABQSs. On the other hand, this paper proves impossibility results,

and presents protocols for reliable broadcast and consensus abstractions. HQS provides

strictly stronger guarantees with weaker assumptions. In ABQS, the properties of reliable

broadcast are stated for wise processes and the guild. However, this paper states these four

properties for well-behaved processes and the strongly available set. Well-behaved processes

are a superset of wise processes, and as noted above, in certain executions, the strongly

available set is a superset of the guild.

Flexible BFT [36] allows different failure thresholds between learners. Heterogeneous

Paxos [45, 46] further generalizes the separation between learners and acceptors with different

trust assumptions; it specifies quorums as sets rather than number of processes. These two

projects introduce a consensus protocol that guarantees safety or liveness for learners with

correct trust assumptions. However, they require the knowledge of all processes in the system.

In contrast, HQS only requires partial knowledge of the system, and captures the properties of

quorum systems where reliable broadcast and consensus protocols are impossible or possible.

Multi-threshold reliable broadcast and consensus [27] and MT-BFT [40] elaborate Bracha [9]

to have different fault thresholds for different properties, and different synchrony assumptions.

© Xiao Li, Eric Chan, Mohsen Lesani;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 16; pp. 16:15–16:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany



However, they have cardinality-based or uniform quorums across processes. In contrast, HQS

supports heterogeneous quorums.

K-consistent reliable broadcast (K-CRB) [7] introduces a relaxed reliable broadcast

abstraction where the correct processes can define their own quorum systems. Given a

quorum system, it focuses on delivering the smallest number k of different values. In contrast,

we propose the weakest condition to solve classical reliable broadcast and consensus. Moreover,

K-CRB’s relaxed liveness guarantee (accountability) requires public key infrastructure. In

contrast, all the results in this paper are for information-theoretic setting.

Our consensus protocol uses eventual leader election. Several other works present view

synchronization and eventual leader election for Byzantine replicated systems [11, 10], and

dynamic networks [41, 28]. It is interesting to see if their leader election modules can be

generalized to the heterogeneous setting, and support responsiveness [48, 5] for our consensus

protocol.

Impossibility Results. There are two categories of assumptions about the computa-

tional power of Byzantine processes. In the information-theoretic setting, Byzantine process

have unlimited computational resources. While in the computational setting, Byzantine

processes can not break a polynomial-time bound [23]. In this work, our impossibility results

for reliable broadcast and consensus fall in the information-theoretic category. Whether the

same results hold in the computational setting is an interesting open question.

FLP [22] proved that consensus is not solvable in asynchronous networks even with one

crash failure. Many following works [26, 19, 2, 21, 30, 8] considered solvability, and necessary

and sufficient conditions for consensus and reliable broadcast to tolerate f Byzantine failures

in partially synchronous networks. The number of processes should be more than 3f and the

connectivity of the communication graph should be more than 2f . However, these results

apply for cardinality-based quorums, which is a special instance of HQS. We generalize the

reliable broadcast and consensus abstractions to HQS which supports non-uniform quorums,

and prove impossibility results for them.

8 Conclusion

This paper presented a general model of heterogeneous quorum systems where each process

defines its own set of quorums, and captured their properties. Through indistinguishably

arguments, it proved that no deterministic quorum-based protocol can implement the consen-

sus and Byzantine reliable broadcast abstractions on a heterogeneous quorum system that

provides only quorum intersection and availability. It introduced the quorum subsumption

property, and showed that the three conditions together are sufficient to implement the two

abstractions. It presented Byzantine broadcast and consensus protocols for heterogeneous

quorum systems, and proved their correctness when the underlying quorum system maintain

the three properties.
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