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Abstract—Extreme valuation and volatility of cryptocurrencies
require investors to diversify often which demands secure ex-
change protocols. A cross-chain swap protocol allows distrusting
parties to securely exchange their assets. However, the current
models and protocols assume predefined user preferences for
acceptable outcomes. This paper presents a generalized model
of swaps that allows each party to specify its preferences on
the subsets of its incoming and outgoing assets. It shows that
the existing swap protocols are not necessarily a strong Nash
equilibrium in this model. It characterizes the class of swap
graphs that have protocols that are safe, live and a strong Nash
equilibrium, and presents such a protocol for this class. Further,
it shows that deciding whether a swap is in this class is NP-
hard through a reduction from 3SAT, and further is »b -complete
through a reduction from 3VDNF.

I. INTRODUCTION

The multitude and volatility of cryptocurrencies force in-
vestors to diversify and frequenty trade their holdings. However,
these currencies are hosted by distinct distributed blockchains
and trading across blockchains is not atomic by default. This has
led to the development of cross-chain swap protocols [19], [8],
[10], [18], [13], [34] that allow distrusting parties to securely
exchange their assets. Application of such swap protocols is
not limited to trading digital currencies — they can be used for
trading any type of digital assets (NFTs, for example), or even
for trading physical objects by safely trasferring ownership
documentation.

In a pioneering work, Herlihy [19] formalizes a cross-chain
swap as a directed graph where vertices represent parties, and
arcs represent assets to be exchanged. An execution of a swap
graph is represented as the subset of arcs that are triggered in
that execution. The outcome for each party is captured in five
predefined classes: DEAL, NODEAL, DISCOUNT, FREERIDE,
and UNDERWATER. The classes DEAL and NODEAL represent
outcomes for a party where respectively, all and none of
the arcs of that party are triggered. The class DISCOUNT
represents outcomes where some of the outgoing arcs are
not triggered, and FREERIDE represents outcomes where at
least one incoming but no outgoing arc is triggered. Outcomes
in all these classes are considered acceptable by each party.
The class UNDERWATER captures all unacceptable outcomes,
namely outcomes where at least one outgoing arc is triggered
but not all incoming arcs are. Given this model of outcomes,
Herlihy presented a protocol based on hashed time-locks and
proved it to be afomic, meaning that it satisfies the conditions
of liveness, safety and strong Nash equilibrium.
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In practice, as noted in the original proposal [19], some
parties may find it advantageous to exchange only some of
their outgoing assets for only some of their incoming assets.
As an example, suppose that Alina has a white shirt and white
pants and she joins the swap hoping to trade for a black shirt
and black pants. Coincidentally, Bohdan has exactly these items
and joins the swap looking for the reverse trade. However, both
of them would actually prefer to retain one white article of
clothing and one black article of clothing, if possible. Thus,
it would be preferable for both parties to, say, only swap the
shirts or only swap the pants, although it is also acceptable to
swap both. Such scenarios are not captured by the model in
[19], because the outcomes with just one item swapped are in
the class UNDERWATER.

This leads to the natural question, left open in [19]: is there
a more general swap model that allows each party to specify
its personal preferences over all possible swap outcomes, and,
at the same time, admits an atomic protocol.

Addressing this question, this paper introduces a general
model of cross-chain swaps that we call swap systems. In a
swap system, as in [19], the set of prearranged asset transfers
is represented by a directed graph. Unlike in [19], however, in
our model each party can specify its own preferences between
all its possible outcomes (that is, between sets consisting of
its incoming and outgoing arcs). These preferences can be
arbitrary, as long as they form a poset and satisfy natural
monotonicity conditions. This generality allows us to capture
not only subjectivity of preferences, but also dependencies
between assets. The example above (about trading clothing
items) illustrates such a dependency: for the purpose of trading,
Alina values her pair of items higher than the sum of their
individual values. Such dependencies often arise in practice
when a party intends to trade multiple assets — in fact, common
investment strategies are guided by objectives (diversification,
for example) that inherently involve asset dependencies.

As it turns out, Herlihy’s protocol is not necessarily atomic
in all swap systems, although it still satisfies the conditions of
liveness, safety, and weak Nash equilibrium. We then present
a characterization of swap systems that admit atomic protocols.
The correctness proof of this characterization embodies such a
protocol. We then focus on the problem of verifying whether
a given swap systems has an atomic protocol. To this end, we
provide a full characterization of the time complexity of this
problem and show that it’s computationally infeasible, by a
novel proof of completeness in the complexity class ©5. As a
stepping stone to this full characterization, we also include an
easier proof of NP-hardness.



The paper is organized as follows.
o In section II we introduce our model of swap systems,

including the definitions of atomic protocols in this model.

e In section III we show that our model is indeed a
generalization of Herlihy’s model.

o The full characterization of swap systems that admit
atomic protocols is given in section IV.

o The decision problem of testing whether a swap systems
admits an atomic protocol is studied in section V and
section VI, first proving NP-hardness and then refining
the proof to show Y.5-completeness.

For readers interested in the practical impact of our work,
the overall take-out message from this paper is this: (i) Even if
some parties wish to specify outcome preferences not captured
by the model in [19], it still may be possible to realize the swap
with a protocol that is atomic and efficient. (ii) The challenge is
that in order to determine whether it is possible, and to actually
specify this protocol, one needs to solve a computationally
infeasible decision problem. Naturally, for small number of
parties this can still be done in practice — say by exhaustive
search.

II. SWAP SYSTEMS

As discussed in the introduction, Herlihy’s model [19]
for cross-chain swaps assumed that the rational behavior of
participating parties is determined by preferences between five
types of outcomes: DEAL, NODEAL, DISCOUNT, FREERIDE,
and UNDERWATER. These preferences were assumed to be
shared by all parties, and can be interpreted as a simple partial
order on all possible outcomes. Some of these preferences
are natural; for example, in DISCOUNT a party receives all
incoming assets without trading all outgoing assets, making it
preferable to DEAL. But, as explained in the introduction, in
practice a party may consider some outcomes designated as
UNDERWATER in [19] to be acceptable, or even preferable to
DEAL. As another example, suppose that Alina possesses items
A and B that she values at $10 and $12, and Bohdan possesses
items X and Y that Alina values at $11 and $14. Providing
that Alina’s preferences are based only on the monetary value,
she would accept to join the swap that allows her to swap
both A and B for Bohdan’s X and Y, but she would be even
happier if she ends up swapping only A for Y instead. Similarly,
there is no justification for the outcomes in FREERIDE to be
incomparable to DEAL or DISCOUNT.

To represent such individual preferences, we now refine
Herlihy’s model by allowing each party to specify a partial
order on all her possible outcomes of a protocol. Our model
is very general in that (unlike in the example above) a
party’s preferences are not determined by numerical values
of individual assets, but rather involve comparing directly
whole sets of traded and acquired assets. The advantage of this
approach is that it captures dependencies between assets, when
a party values a set of assets higher or lower than the sum of
their individual values. As an example, say that Alina owns a
power drill and a shovel, while Bohdan is in possession of a
pair of skis. Alina would not swap any of her items for any

single ski, but she may be happy to swap both of her items for
the pair. On the other hand, if, instead of skis, Bohdan needs
to get rid of two skateboards, Alina may prefer to swap any
of her items for one skateboard rather than swapping both for
two skateboards.

Swap Systems. A swap system is specified by a pair § =
(D,P) consisting of a digraph D that represents the pre-
arranged asset transfers and a collection P of posets that
specifies the preferences of each involved party among all of
its potential outcomes. Next, we give a formal definition of
these two components of S.

Digraph D = (V, A) is called a swap digraph. Each vertex
v € V represents a party that participates in the swap, and
each arc (u,v) € A represents an asset that is to be transferred

from party u to party v. By A" and A%t we will denote the
sets of vertex v’s incoming and outgoing arcs, respectively.
If (z,v) € A" then z is called an in-neighbor of v, and if
(v,z) € A% then x is called an out-neighbor of v. Throughout
the paper we assume that D does not have multiple arcs'. We
also assume that D is weakly connected (otherwise a swap
can be arranged for each connected component separately).
To exclude some degenerate scenarios, we also assume that
|V| > 2 and that AT () and A" = () for each v € V.

An outcome of a party v € V is a pair w = (W' |w°"),
where w'™ C A" and w°"* C A%“*. An outcome represents the
sets of acquired and traded assets, w'™ and w°* respectively.
The set of all possible outcomes of v will be denoted €2,. To
reduce clutter, instead of arcs, in (w® |w°*) we will often list
only the corresponding in-neighbors and out-neighbors of v;
for example, instead of ({(z,v), (y,v)}|{v, z}) we will write
(z,y]2).

The collection P = {P,}, . consists of preference posets.
The preference poset of a party v € V is P, = (2, <), where
=, is a partial order on €2,. We will write w <, w’ if w =<, W’
and w # w’. This poset naturally represents v’s evaluation of its
potential outcomes; that is, relation w <, w’ holds if v views
outcome w’ to be better than outcome w. The outcome where
v does not participate in any transfer is NODEAL, = (& | &)
and the outcome where all of v’s transfers are realized is
DEAL,, = (A" | A%"*). Each preference poset P, is assumed
to have the following properties:

(p.1) DEAL is better than NODEAL: NODEAL,, <, DEAL,,.
Naturally, each party prefers swapping all assets over being
completely excluded, as otherwise it would not even join the
swap system.

(p-2) Inclusive Monotonicity: (wi" C wi™ A wg" C wiut) =
w1 =y, we, for every two outcomes wi,ws € €2,. That is, it’s
better to receive more assets and to trade fewer assets’.

The preference pairs w; <, wo that are determined by rules
(p.1) and (p.2) above will be called generic. The size of the
preference poset may be exponentially large with respect to

!'This assumption is only for convenience — our model and results trivially
extend to multi-digraphs, although this requires more cumbersome notation
and terminology.
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the size of the swap digraph D, but it is not necessary for a
party to specify generic preferences as they are implied from
the above rules. Therefore, throughout the paper, we assume
that P, is specified by its generator set, which is a subset of
its non-generic preference pairs that, together with the generic
pairs and transitivity, generate the whole poset. A generator
set of a poset may not be unique. We use this convention in
our examples and running time bounds. (This does not affect
our hardness results — they hold even if the preference poset
of each party is specified by listing all preference pairs.)

An outcome w € €, is called acceptable if w = NODEAL,.
The set of acceptable outcomes of a node v will be denoted
A2

Throughout the paper, we will often omit subscript v in these
notations (and others as well) if v is implicit in the context or
irrelevant. On the other hand, if any ambiguity may arise, we
will sometimes add a superscript to some notations specifying
the digraph under consideration; for example we will write
DEALUD to specify that outcome DEALUD is with respect to
digraph D.

Protocols. Given a swap system S = (D, P), a swap protocol
P for S specifies actions of each party over time, in particular
it determines how assets change hands. Initially, an asset
represented by an arc (u,v) € A is in the possession of u, and,
when P completes, this asset must be in possession of either
w or v. If (u,v) ends up in the possession of v, we will say
that the arc (u, v) has been triggered. The outcome of v after
executing P is (W™ |w°"t), where w'™ and w®“! are the sets
of incoming and outgoing arcs of v that are triggered in this
execution. In particular, we write P(v) for the outcome of v
in an execution of protocol P in which all parties follow P. If
some party (possibly v itself) deviates from PP, we assume that
v’s outcome is also finalized when [P completes, but it may be
different from P(v).

A protocol may use appropriate cryptographic primitives. In
particular, following [19], we assume the availability of smart
contracts. A smart contract for an arc a = (u,v) allows u to
put asset a in an escrow secured with a suitable collection
of hashed time-locks: each such time-lock is specified by a
pair (h,7), where h = H(s) is a hashed value of a secret s
and 7 is a time-out value. In order to unlock this time-lock,
v (and only v) must provide the value of s before time 7.
If all time-locks of (u,v) are unlocked, v can claim a. This
automatically triggers arc (u,v). If any time-lock times out, a
is automatically returned to u. We describe a more elaborate
hashed time-lock in the next section.

Properties. For a swap protocol to be useful, it must guarantee
that if all parties follow it then every party ends in an outcome
at least as favorable as trading all their outgoing for all their

3This definition can be relaxed to allow some outcomes incomparable
to NODEAL be acceptable. In this extended model, the set A, of accept-
able outcomes would be part of a swap system specification, and would
have to satisfy three conditions: (i) {w :w = NODEAL,} C A,, (i)
{w:w < NODEAL, } N A, =0, and (jii)) w € Ay Aw W' = ' € A,.
Our results can be extended naturally to this model. We adopted the simpler
definition to streamline the presentation.

incoming assets. Further, every conforming party should end
up with an acceptable outcome, no matter whether other parties
follow the protocol or not. Lastly, rational parties should have
no incentive to deviate from the protocol. Herlihy [19] captured
these properties using the concepts of uniformity and strong
Nash equilibrium. Our definitions, below, are their natural
extensions to the more general model of swap systems.

Uniformity. A swap protocol P is called uniform if it
satisfies the following two conditions:

Liveness: If all parties follow P, they all end in outcome
DEAL or better, that is P(v) > DEAL, for all v € V.
Safety: If a party conforms to PP, then its outcome will be
acceptable, independently of the behavior of other parties.
A less restrictive concept of uniformity may also be of interest:
We say that a protocol P is weakly uniform if it satisfies the
safety condition above, but the liveness condition is replaced by
the following weak liveness requirement: if all parties follow
P, then at least one party ends in an outcome strictly better
than NODEAL. The assumptions on preference posets imply
directly that a protocol that is uniform is also weakly uniform.

Nash equilibria and atomicity. We extend the concept of
outcomes to sets of parties, where an outcome of a set is just a
vector of individual outcomes. On this set we can then define
a preference relation in a standard way, via a coordinate-wise
ordering of outcomes. Formally, for any set of parties C C V,
an outcome vector of C' is @ = (wy)yec, Where w, € Q, for
all v € C. Denote by Q¢ the set of all outcome vectors of C.
Given two outcome vectors @, @’ € Qc¢, we write @ =<¢ @'
if w, X, w) for all v € C. If also @ # @' then we write
w <c @'. (In other words, & <¢ @' means that at least one
party in C does strictly better in &’ than in @, and every party
in C' does at least as good.) In this notation, if all parties follow
a protocol P, then the outcome vector P(C) of a protocol P
for a set of parties C' is (P(v))yec-

We will say that a protocol P is a strong Nash equilibrium
if no coalition of participating parties can improve its vector
outcome by deviating from P; more precisely, for every set
C of parties, if w denotes the outcome vector of C' in some
execution of P where all parties in V' \ C follow P, then we
cannot have @ =¢ P(C). We will call P atomic if it is both
uniform and a strong Nash equilibrium.

Example 1. Consider a swap system S = (D,P) whose
digraph D is shown in Figure 1. The preference poset P, is
generated by two preference pairs DEAL, < (v]|v) < (v |w),
the preference poset P, is generated by two preference pairs
DEAL, < (u|u) < (w|u), and the preference poset P, is
generated by one preference pair DEAL,, < (u|v).

Consider also a swap protocol P for S such that if all parties
follow P then all end up with outcome DEAL. Then P is not a
strong Nash equilibrium, because for C' = {u, v}, the parties
in C' can ignore P altogether and simply swap their assets
between themselves, improving their outcomes. Nevertheless,
as we show later in Section IV, S does have an atomic protocol.
Roughly, instead of using the whole digraph D, in this protocol
only assets represented by arcs (u,w), (w,v) and (v, u) will
be swapped. Then the outcome of each party will be better



Fig. 1. The digraph D in the example.

than DEAL, and v and v will have no incentive to deviate from
this protocol.

III. HERLIHY’S SWAP MODEL

In this section, we show that the concept of swap systems
is a generalization of Herlihy’s model [19]. To this end, we
define a simple type of swap system called h-swap systems,
and we show that it captures the model in [19]. In particular
we prove that in h-swap systems, our definition of atomicity
is equivalent to the definition in [19].

h-Swap Systems. Given a swap system S = (D,P) and a
party v € V, define three sets of outcomes of v:

DISCOUNT, = {w | w™ = A" Aw® £ A}
FREERIDE, = {w | w" # @ Aw’" = o}
UNDERWATER, = {w | w™ # A" Aw # &}

Since A" # ( and A% # (), all sets DISCOUNT,,

FREERIDE, and UNDERWATER, are well-defined,
none of them contains NODEAL, nor DEAL,,
UNDERWATER,, N (DISCOUNT, U FREERIDE,) = 1§,

DISCOUNT, N FREERIDE, = {(A4!"| @)}, and
2, = {NODEAL,}U {DEAL,} U DISCOUNT,

U FREERIDE, U UNDERWATER,,.
The inclusive monotonicity property (p.2) implies that all

outcomes in FREERIDE, are better than NODEAL,, and all
outcomes in DISCOUNT,, are better than DEAL,,.

We will call S an h-swap system if it satisfies the following
conditions for all v € V:

(h.1) If w € UNDERWATER,, then w <, NODEAL,,
(h.2) Party v has no other non-generic preferences besides
these in (h.1).

In other words, in an h-swap system all preference posets
are generated by relations w < NODEAL for outcomes w in
UNDERWATER. Figure 2 illustrates the structure of a preference
poset of an h-swap system®*. Note that in an h-swap system,
the set of acceptable outcomes of a node v is A4, = Q, \
UNDERWATER,, = {NODEAL, } U {DEAL,} UDISCOUNT, U
FREERIDE,. The preferences of an h-swap system S = (D, P)
are uniquely determined by its digraph D, so it is not even
necessary to specify P.

The preference poset structure of h-swap systems, as defined
above, captures the concept of a party’s preferences assumed

4This figure differs slightly from Figure 3 in [19], which mistakenly showed
the sets DISCOUNT,, and FREERIDE,, as disjoint.

~
FREERIDE,
L)
/ | DiscounTt,
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Fig. 2. The structure of a preference poset of a party v in an h-swap system. The
arrows symbolize the preference relation. The one outcome in DISCOUNT, N
FREERIDE,, is (A} | @).

in the model from [19], except for the addition of preferences
determined by inclusive monotonicity.

Comment. The model in [19] was not formulated in terms
of posets, raising a question of how to formally capture a
relation for pairs of outcomes between which preferences
were not specified in [19]. In our model, such outcomes
are considered incomparable in the poset (unless they are
related by the inclusive monotonicity). One may try to consider
another option: to allow arbitrary relations between such
pairs, providing that the poset axioms are satisfied and the
condition (h.1) holds. However, with this approach there is
no meaningful way to extend such individual preferences to
collective preferences of sets of parties (see the discussion later
in this section).

h-Uniformity. To distinguish between our and Herlihy’s
definition of uniformity, we will refer to his concept as h-
uniformity. A swap protocol P is called h-uniform if it satisfies
the safety property and the following h-liveness condition:
If all parties follow PP, they all end in outcome DEAL. This
condition seems stricter than our definition of uniformity, but
we show that in h-swap systems these two definitions are in fact
equivalent. In fact, they are also equivalent to weak uniformity,
as defined earlier in Section II.

Lemma 1. Let S = (D, P) be an h-swap system in which
some subset of arcs in D are triggered, and let QQ be a path in
D whose all internal nodes are in acceptable outcomes. Then,
along Q, all triggered arcs of Q are before all non-triggered

arcs of Q.

Proof. If all arcs on @) are triggered, except possibly for the
last one, we are done. Otherwise, let (z,y) be the first non-
triggered arc on () and let z be the successor of y. Since y’s
outcome is acceptable and (x,y) is not triggered, this outcome
must be either NODEAL,, or in FREERIDE,,. Therefore (y, z)
is also not triggered. Repeating this argument, we obtain that
all arcs on @ after (x,y) are not triggered. O

Theorem 1. Let P be a swap protocol for an h-swap system
S = (D, P), where D is strongly connected. Then the following
three conditions are equivalent: (i) P is uniform, (ii) P is weakly
uniform, (iii) P is h-uniform.

Proof. Trivially, h-uniformity implies uniformity, which in turn
implies weak uniformity. Thus it is sufficient to show that weak
uniformity implies h-uniformity.

So assume that IP is weakly uniform. As the safety condition
is the same, it is sufficient to show that P satisfies the h-



liveness property. Assume that all parties follow P. Then, from
the assumptions about safety and weak liveness, all parties will
end up in acceptable outcomes, with at least one party ending
in an outcome strictly better than NODEAL.

Suppose, towards contradiction, that there is a party with
outcome other than DEAL. This gives us that some arc (z,y)
is not triggered. Further, since some party has an outcome
other than NODEAL, there must be a triggered arc (2',y’). By
strong connectivity, there is a path P from z to y’ whose first
arc is (z,y) and the last arc is (2/,y’). Then the existence of
this path contradicts Lemma 1. O

h-Atomicity. 'The approach in [19] differs from ours in the
way it formalizes the gain of a coalition (subset) of parties
when they deviate from the protocol. Roughly, the definition
in [19] captures a collective gain, while our definition views it
as a vector of individual outcomes. In spite of this apparent
difference, we show that in h-swap systems our concept of
atomicity is in fact equivalent to the one in [19].

In the discussion below, let S = (D, P) be a fixed h-swap
system. Following [19], we will define the h-outcome of a
coalition C of parties by, in essence, contracting C into a single
vertex. (The term “h-outcome” is ours, to better distinguish
this concept from our concept of outcome vectors.) More
formally, define C’s incoming and outgoing arcs in a natural
way: A7 = Uycc A\ Upec A9 and similarly, Ag" =
Uvec A5\ U,ec AL™. The h-outcomes for C are pairs & =
(@™ ] &°uty where ™ C A% and @w°"* C A%, Q¢ is the set
of all h-outcomes of C. The preference poset and acceptable
set of C are defined analogously to that of a single party
in an h-swap system. That is, we define NODEAL¢, DEAL(,
DISCOUNT¢, FREERIDE, and UNDERWATER ¢ in the natural
way, and we assume the analogues of conditions (p.1) and (p.2)
for swap systems (in Section II) and conditions (h.1) and (h.2)
for h-swap systems. The set of acceptable h-outcomes A¢
consists of all h-outcomes of C that are not in UNDERWATER .
(Note that if C consists of a single party then its h-outcome is
identical to its outcome.)

Define a protocol P to be a strong Nash h-equilibrium if
it satisfies the following condition for every set C of parties:
providing that the parties outside C follow P, the parties in
C cannot end up in an h-outcome better than their outcome
resulting from following P. P is called h-atomic if it is h-
uniform and a strong Nash h-equilibrium.

Culminating the earlier discussion, the following theorem
establishes that our model indeed captures the model introduced
in [19].

Theorem 2. Let P be a protocol for an h-swap system S =
(D, P). P is atomic if and only if it is h-atomic.

Proof. (=) Suppose that P is atomic. Theorem 1 implies that
P is h-uniform. Thus, from the definition of h-uniformity, if
all parties follow P then each party’s outcome will be DEAL.

It remains to show that P is a strong Nash h-equilibrium. Let
C C V, and consider an execution of P in which all parties
outside C follow P. Since IP is a strong Nash equilibrium, the

outcome vector of C' is not better than (DEAL,),cc. Denote
by @ the h-outcome of C. We need to show that @ is not better
than DEAL¢.

Towards contradiction, suppose that @ > DEALc. The
definition of preference posets for h-outcomes gives us that
w € DISCOUNT¢. Now consider another execution of P where
the parties in C' behave just like before, but they also trigger
all arcs connecting two members of C. This will not affect
the execution of P for parties outside C. Then the outcome
vector @ of C' consists of all arcs between C' and V' \ C' (in
both directions) that are triggered in w, as well as all arcs
with both endpoints inside C. Since & € DISCOUNT¢, each
v € C has all its incoming arcs in @, and there is at least
one u € C that has one arc to V' \ C' that is not in @. So the
outcome of each v € C' is either DEAL, or DISCOUNT,,, and
this u’s outcome is DISCOUNT,. But then @ is better than
(DEAL, )yec, contradicting the assumption that IP is a strong
Nash equilibrium.

(«=) Now suppose that I is h-atomic; that is, P is h-uniform
and is a strong Nash h-equilibrium. From Theorem 1 we obtain
that P is uniform.

It remains to prove that IP is a strong Nash equilibrium. Let
C C V, and consider some execution of P in which all parties
outside C' follow P. Since P is a strong Nash h-equilibrium,
the h-outcome of C' is not better than DEAL-. We need to
show that C’s outcome vector is not better than (DEAL,),ec-

We again argue by contradiction. Suppose that C’s outcome
vector is @ > (DEAL,)ycc. Then each v € C has outcome
in {DEAL,} U DISCOUNT, and there is some v € C with
outcome in DISCOUNT,,. This implies that all parties in C
have their incoming arcs in @w. Further, some outgoing arc of
u is not in w, and this arc must go to V' \ C. We consider
the h-outcome of C' in the same run of P, without changing
the behavior of any members of C. (In the h-outcome of C
the status of arcs internal to C' is not relevant.) Denote this
h-outcome by w. Then @ will include the same arcs between
C and V' \ C (in both directions) as in w. The properties of
i established earlier imply that & € DISCOUNT¢, and thus
w > DEAL¢, which contradicts our earlier assumption that P
is a strong Nash h-equilibrium. O

Herlihy’s Protocol. Herlihy presented a protocol for h-swap
systems [19] that is h-atomic. We summarize this protocol that
we will refer to as H.

Since the generation and distribution of the swap system is
not the focus of this paper, we assume a third-party service that
reliably distributes information to the participating parties. The
service begins by assembling a swap graph D and distributing
it to every party. Each party p; then generates and hashes a
secret h; = hash(s;) and sends it back to the service.’> The

SHerlihy describes an optimization where the service computes a feedback
vertex set for D (i.e. the removal of this set would leave D acyclic). He refers
to these parties as leaders and only uses the hashed secrets of these parties
in subsequent steps of the protocol. As this is not a necessary step, we will
ignore it for simplicity.



service distributes the hashed secrets as a vector hg...h, to
every party.

The protocol can be broken into two phases, which we
call contract creation and secret propagation respectively. The
contract creation phase, in essence, realizes D. For every arc
(u,v) € D, party u generates a smart contract with an escrowed
asset to counterparty v. Each contract is hash-locked by a vector
of hashlocks hyg...h,, generated by the given vector of hashed
secrets. A particular hashlock h,, on arc (u,v) unlocks when
provided a hashkey (s,,,p, o), where s,, is the preimage of
hw, p is any simple path from v to w (where w is the party
that generated secret s,,), and o is a sequence of signatures
stg(.., $1g(8w, w), .., v) backwards along path p. It should be
noted that a single hashlock may have multiple hashkeys, as
any simple path is acceptable. Hashlocks and hashkeys are
also time-locked. Each hashkey only remains valid for a certain
amount of time, scaling with the length of the path specified
within it. Ignoring constant factors, a hashkey remains valid for
Ip| - A time, where A is an upper bound of the time needed for
a single step of a party. The longer the path in the hashkey, the
longer the hashkey remains valid. A hashlock expires when all
of its hashkeys expire, in which the escrowed asset is returned
to the sender. That is, the hashkey containing the longest path
from the recipient to the generator of the corresponding secret
has expired. If all hashlocks in the vector are unlocked, the

contract triggers and the escrowed asset is sent to the recipient.

When a party u observes that each of its incoming contracts
has been created correctly, it enters the secret propagation
phase. Party w first wants to propagate its own secret. This is

done by unlocking hashlock h,, on each of their incoming arcs.

Specifically, u generates hashkey (s, u, $ig(sy,u)) and uses

this to unlock the corresponding hashlock on each arc in A",

Party w also wants to propagate the secrets of others, which they
learn by observing their own outgoing arcs. Let u observe on
outgoing arc (u,v) that hashlock h,, was unlocked by hashkey
(8w, D, 0). Then u can generate hashkey (S, u =+ p, sig(o, u))

and unlock the corresponding hashlock h,, on each arc in A",

Algorithm 1 Herlihy’s Protocol For Vertex v

Input: Digraph D, vector (ho, ..., hy), secret s,

. for every (v,w) € A% do > Phase 1
create contract to w hashlocked by (hg, ..., hy,)
: upon contract for every (u,v) € A" > Phase 2

. for every arc (u,v) € A" do
unlock hashlock A, with k;
- while no timed out hashlock and not all assets received
do
8 if new hashkey ks = (s,p,0) on (v,w) € A%"' then

1
2
3
4: generate hashkey ki = (s,,v, sig(8y,v))
5
6
7

9: generate hashkey k3 = (s,v + p, sig(o,v))
10: for every arc (v,w) € A" do
11: unlock hashlock with k3
Example 2. Consider the swap graph in Figure 3. Assume

each party is given the same vector of hashed secrets. Parties

start the protocol by creating their outgoing contracts using
this vector. The party x creates the contract (z,v), the party u
creates the contracts (u,x) and (u,v), the party v creates the
contracts (v, u) and (v, y), and the party y creates the contract
(y,u). Then when the party = observes that the contract (u,v)
is created, it releases its secret on (u,z). Once the party u
observes this secret on its outgoing contract (u, z), it applies it
to its incoming contracts (v,u) and (y,w). Similarly, when the
parties v and y observe the secret on their outgoing contracts,
they apply it to their incoming contracts (z,v) and (v,y)
respectively. Thus, the secret s, is propagated through the
whole graph. With similar steps, each other party releases its
secret on its incoming contracts, and each secret is propagated
by other parties to the rest of the graph. Thus, all secrets are
eventually applied to all contracts, and all assets are transferred.

Lemma 2. Consider the execution of H on a directed graph
D. Let u be a party that follows H. After the execution is
complete, for any e € A2t of u, e is triggered only if all arcs
in A" are triggered.

If e is triggered, every hashlock on e was unlocked. Since
u is following H, it will observe whenever a hashlock on e
is unlocked. Whenever a hashlock h; is unlocked, u sees a
hashkey k1 = (s;,p, o). Then, u can generate a hashkey ko =
(siyu+p, sig(o,u)) to post on the corresponding hashlocks h;
for their incoming arcs. Since k; was an acceptable hashkey,
and increasing the length of a hashkey by 1 means it remains
acceptable for A more time, « had sufficient time to post ko
to all arcs in A", We repeat this argument for every hashlock
on e, wherein when every hashlock on e is unlocked, every
hashlock on every arc in A" is also unlocked.

IV. A CHARACTERIZATION OF SWAP SYSTEMS WITH
ATOMIC PROTOCOLS

As shown in [19], all swap systems considered in Herlihy’s
approach (that is all h-swap systems, in our terminology) have
an atomic protocol, providing that the underlying digraph is
strongly connected. In our more general model this is not
always the case. Consider, for example, a swap system whose
digraph is shown in Figure 3. The only non-generic preferences
are: DEAL,, < (u]|u) for v, and DEAL,, < (v|v) for u. Using
the liveness condition for x and y, any atomic protocol needs
to trigger arcs (u,z), (z,v), (v,y) and (y,u). But u and v
can cooperatively deviate from the protocol by triggering only
arcs (u,v) and (v,u), each obtaining a better outcome than if
they followed the protocol. So this protocol cannot be a strong
Nash equilibrium, and thus is not atomic.

This raises the question as to whether there exists a simple
characterization of swap systems that admit atomic protocols.
We provide such a characterization in this section. Interestingly
enough, we show that if a swap system admits an atomic
protocol, then it also admits an atomic protocol that is
essentially equivalent to running Herlihy’s protocol on a suitable
subgraph.
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Fig. 3. The example of a swap system in which H is not a strong Nash
equilibrium.

We saw Herlihy’s protocol [19], denote by H., in the previous
section. Herlihy proved that H is h-atomic for h-swap systems
(in our terminology).

Uniformity and Nash equilibrium of Herlihy’s protocol.
Let S = (D, P) be any swap system with strongly connected
digraph D. If all parties follow H then they all will end up in
outcome DEAL. If v follows H then either it does not trigger
any outgoing arcs, and thus its outcome is in {NODEAL, } U
FREERIDE,, or it triggers some, but then also all its incoming

arcs are triggered, so its outcome is in {DEAL, } UDISCOUNT,,.

In each case, regardless of the behavior of other parties, this

outcome is at least as good as NODEAL,,, and thus acceptable.

This means that H is uniform.

We now claim that H is a Nash equilibrium in S, in the
sense that no single party can improve its outcome by deviating
from Hi, if all other parties follow H. If all parties follow the
protocol, all outcomes are DEAL. If any party v has outcome
w > DEAL,, then in w there needs to be an incoming arc
(u,v) but some outgoing arc (v,w) must be missing. (This
holds for any preference poset, by properties (p.1) and (p.2).)
In Herlihy’s protocol a vertex triggers an outgoing arc only if
all its incoming arcs are triggered. So if all parties other than v
follow the protocol, then we get a contradiction by considering
a path from w to u (following an argument similar to the proof
of Theorem 1).

Note that this argument does not work for larger coalitions.
In fact, in the swap system example discussed earlier in this

section, H], nor any other protocol, is a strong Nash equilibrium.

Characterization. Let S = (D,P) be a swap system for a
set of parties V, and let G and H be two subgraphs of D. G
will be called piece-wise strongly connected if every connected
component of G is strongly connected. G is called spanning if
its vertex set is V. If G is spanning, we say that H dominates
gif DEAL?;L > DEALg for all vertices v in H. In other words,
if only the arcs in ‘H are triggered, then all parties in H end
in outcomes at least as good as if all their arcs in G were
triggered. Also, H strictly dominates G if, in addition, there
exists a party u of H such that DEAL? ~ DEALY. That is,
every party in H ends in an outcome at least as good and at
least one party strictly improves their outcome when triggering
the arcs of H instead of G.

For example, consider the swap system & = (D,P) in
Example 1. The subgraph G; = D is spanning, and is strictly
dominated by the subgraph H consisting of vertices u, v and
arcs (u,v) and (v,u). On the other hand, the subgraph G, that

has arcs (u,w), (w,v) and (v, ) is spanning, and there is no
subgraph of D that strictly dominates it.

Theorem 3. A swap system S = (D, P) has an atomic swap
protocol if and only if there exists a spanning subgraph G of
D with the following properties: (c.1) G is piece-wise strongly
connected and has no isolated vertices, (c.2) G dominates D,
and (c.3) no subgraph ‘H of D strictly dominates G.

Proof. (=) Let P be an atomic swap protocol for S. Define G
to be the subgraph whose vertex set is V' and whose arcs are
the arcs triggered in an execution of P where all parties follow
the protocol. By definition of P’s atomicity, G is spanning.

We first show property (c.1). First, G cannot have any isolated
vertices, since any isolated vertex v of G would have outcome
NODEAL? when all parties follow P. This would contradict
the uniformity (the liveness condition) of P. Second, if G had
a connected component B that is not strongly connected, then
B would contain a strongly connected component C' of G that
has no arcs of G coming from V' \ C but has at least one arc
of G going to V'\ C. We could then consider another run of P
in which the parties in C' ignore P entirely and simply trigger
the arcs of G that are within C. By the inclusive monotonicity
property (p.2) of swap systems, this would strictly improve
the outcome vector of C, contradicting P being a strong Nash
equilibrium. We can thus conclude that such B cannot exist,
completing the proof that G is piece-wise strongly connected.

Next, we consider property (c.2). By the uniformity (liveness)
of P, every party v must end in outcome DEAL? or better when
all parties follow PP. The arcs that are triggered at the conclusion
of P are exactly the arcs in G. Therefore DEALf = DEALE,
for all parties v.

Finally, we show property (c.3). Suppose there is a subgraph
‘H that strictly dominates G, towards contradiction. Let C
be the set of vertices of H. Modify the behavior of the
parties in C' to ignore P and instead trigger exactly the arcs
of H, giving C the outcome vector (DEAL’!),cc. Then,
P(C) = (DEALY)yec <c¢ (DBALY),cc, as H strictly
dominates G. This contradicts the assumption that IP is a strong
Nash equilibrium, proving that H does not exists.

(<) Suppose that G is a spanning subgraph that satisfies
properties (c.1), (c.2) and (c.3). We show that then there is an
atomic protocol for S.

Let SY be the h-swap system with digraph G. Our protocol,
denoted Hlg, simply executes Herlihy’s protocol H on SY. For
simplicity, assume that G is strongly connected; otherwise we
can apply our reasoning below to each strongly connected
component of G separately. By the h-liveness condition of Hyg,
if all parties follow Hg then each will end up in outcome
DEALY. Also, any party v that follows Hg will not have any
of its arcs outside G triggered and, by the safety property of
Hg, will end up in an outcome that is acceptable in SY, that
is in {NODEALY} U FREERIDEY U {DEALY } U DISCOUNTY .

When comparing outcomes in the argument that follows,
we will use notation “<” for the preference relation in the
original swap system & (that is, not in the auxiliary system
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Sg). Similarly, unless stated otherwise, the term “acceptable
also refers to the acceptability of an outcome in S.

We first show that Hg is uniform. Suppose that every party
follows Hg. Then, by the h-uniformity of Hg, the outcome of
each party v will be DEAL%. Using the assumptions that G is
spanning and that it dominates D, we obtain that DEAL% >
DEALUD for all parties v, so Hg indeed satisfies the liveness
condition.

Next, we deal with the safety condition. Using the prop-
erties of Hg established above, if a party v conforms to
Hg then we have two cases. Either the outcome w of v
satisfies w € {NODEALY} U FREERIDEY, in which case
w € {NODEALY} U FREERIDE® as well (because no edges
of v outside G are triggered), so w >~ NODEALUD, that is w is
acceptable. Or w € {DEALY }UDISCOUNTY, in which case, us-
ing the monotonicity property (p.2) for S and assumption (c.2),
we obtain w = DEALY = DEALY ~ NODEALP; that is w is
acceptable in this case as well. We conclude that Hg satisfies
the safety property, completing the proof that Hg is uniform.

It remains to show that Hg is a strong Nash equilibrium
for S. Assume that it is not, towards contradiction. Then there
exists a coalition C' C V that, by deviating from Hyg, can
end in an outcome vector @ > (DEALY),cc, even though all
parties outside C' follow Hg. We can assume C' is maximal,
in the sense that each party outside of C' ends in an outcome
that is not DEALY nor in DISCOUNTY. Otherwise, we can add
those parties to C' and the relation @ > (DEALY),cc will be
preserved.

We first show that no arc (u,v) € A entering C from outside
(thatis uw € V'\ C and v € C) is triggered. Assume such an arc
is triggered, towards contradiction. Firstly, (u,v) must be in G,
otherwise u would not be following Hg by creating/triggering
this arc. By the h-safety property of H in SY, Hg guarantees
that u must end up in an outcome acceptable in SY. This means
that u’s outcome is in {DEALY} U DISCOUNTY, contradicting
the assumption that C' is maximal. So, indeed, (u,v) cannot
be triggered.

Further, without loss of generality we can assume that no
arc from C to V' \ C is triggered. This is because, as we just
showed, for each v € C, v only receives arcs from other parties
in C. Then, no member of C' can have its outcome worsened
if v changes its behavior and does not trigger any arc to V'\ C.

Thus all arcs that appear in @ are between members of C.
Let # be the subgraph with vertex set C' and the arcs that
are in @, that is @ = (DEALY),cc. Since @ = (DEALY),cc,
then DEALY = DEALY for all v € C and DEAL?' - DEALY
for some w € C. This means that H strictly dominates G,
contradicting (c.3). We conclude that no such C exists, and
thus Hg is a strong Nash equilibrium protocol. O

Comment: As some readers may have noticed, the proof
of the (=) implication in Theorem 3 does not use the safety
property of protocol P. What this shows, in essence, is that
in our setting of swap systems, a swap protocol that has the
liveness and strong Nash equilibrium properties can be modified
to also satisfy the safety property.

With Theorem 3 established, we can determine if a given
swap system S permits an atomic protocol. Additionally, if it
does, we can define such a protocol. Algorithm 2 describes
how to check if a given swap protocol permits an atomic
protocol. If it does not, it returns -1. Otherwise, it returns a
set of strongly connected components. Then, the atomic swap
protocol is running H with each component as the underlying
graph.

Algorithm 2 Generalized Atomic Swap Protocol
Input: Swap System S = (D, P)
Output: set of strongly connected components or -1

1: for every spanning subgraph G of D do

2 if G is piece-wise strongly connected then > c.l
3 if G dominates D then >c.2
4 for every subgraph H of D do >c.3
5: if 7 strictly dominates G then

6 return -1

7 return {C | C is an SCC of G}

8: return -1

Example 3. (Example 1 continued) To illustrate Theorem 3,

consider again the swap system S = (D,P) in Example 1.
Let G; = D. Then G; is spanning, satisfies conditions (c.1)
and (c.2), but it does not satisfy condition (c.3) because it is
strictly dominated by subgraph H consisting of vertices u, v
and arcs (u,v) and (v, u). .

But we can take instead subgraph G, consisting of arcs
(u,w), (w,v) and (v, u). Then Go is spanning, satisfies (c.1)
and (c.2), and there is no subgraph of D that strictly dominates
G, so (c.3) holds as well. Therefore S has an atomic swap
protocol. This protocol will completely ignore arcs outside
Go. It will execute Herlihy’s protocol, described in Section III,
using G, as the underlying graph. In fact, since G, is a simple
cycle, the full protocol of Herlihy is not needed — the simpler
protocol that uses only one leader and does not need signatures
can be used instead, see [19]. Roughly, this protocol chooses
one leader, say u, who creates its secret, then the smart contracts
based on this (hashed) secret are created by parties u, v and
w on their outgoing arcs, with decreasing time-out values, and
then the counter-parties claim the assets in these contracts, one
by one, in the reverse order.

Example 4. We now give a larger example. Consider the
swap system S = (D, P) with digraph D in Figure 4 and with
preference posets defined as follows. For i = 1, 2:

« The preference poset of u; is generated by DEAL,,, < (v; | v;)
and DEALui < <’LL3,1‘ | U3,i>.

« The preference poset of v; is generated by DEAL,, < (u; | u;)
and DEALW < <t3,i ‘ti> < <’U3,i |U3,Z‘>.

e The preference poset of t; is generated by DEAL; =<
<’U1j |’l}3_7;> and DEALti < <t3—i | t3_1;>.

We consider three candidates for the spanning sugraph G.
One candidate is G; = D. It’s obviously spanning and it
satisfies conditions (c.1) and (c.2) from Theorem 3. However,
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Fig. 4. Digraph D in the example illustrating Theorem 3.

it is strictly dominated by several subgraphs including the
following two: subgraph 4, consisting of v; and v with arcs
(v1,v2) and (vy,v1), and subgraph Hs consisting of ¢ and ¢o
with arcs (t1,t2) and (t2,17).

Another candidate G consists of arcs (u;, uz—;), (vi,t;)
and (t;,v3_;). for i = 1,2. Gy is spanning and it satisfies
condition (c.1). By inspecting the preferences of each vertex,
it also satisfies (c.2). But it is strictly dominated by ;.

The third candidate G3 consists of arcs (u;,v;), (vi,u;),
and (t;,t3—;), for ¢ = 1,2. It is also spanning and satisfies
conditions (c.1) and (c.2). Also, the outcome of each vertex in
Gs is maximal in its preference poset, so there is no subgraph
of D that strictly dominates Gs. Thus, by Theorem 3, S has
an atomic swap protocol. This protocol is obtained by running
H in g3.

V. NP-HARDNESS

Now that we have characterized the swap systems that permit
an atomic protocol, a natural next question is the complexity
of the corresponding decision problem: given a swap system,
does it permit an atomic protocol? In the next two sections,
we consider this. In this section, we define the corresponding
decision problem and show it is in NP-hard. In the following
section, we tighten this classification to X5 -complete. Although
showing the problem is ¥-complete would imply it is NP-
hard, we first present the NP-hardness proof since it is more
digestible, and then present the more involved >F-completeness
proof.

Let SwapAtomic be the following decision problem: The
input is a swap system S = (D, P), where D is a (weakly)
connected digraph with no vertices of in-degree or out-degree
0. The objective is to decide whether S has an atomic swap
protocol.

Theorem 4. SwapAtomic is NP-hard, even for swap systems
S = (D, P) in which digraph D is strongly connected.

Proof. The proof is by showing a polynomial-time reduction
from CNF. Recall that in CNF we are given a boolean
expression « in conjunctive normal form, and the objective is
to determine whether there is a truth assignment that satisfies .
In our reduction we convert « into a swap system S = (D, P)
such that « is satisfiable if and only if S has an atomic swap
protocol.

Let z1, 2o, ..., x, be the variables in «. The negation of xz;
is denoted ;. We will use notation z; for an unspecified literal
of variable x;, that is Z; € {z;,Z;}. Leta = c1 Vea V... Ve,
where each ¢; is a clause. Without loss of generality we assume
that in each clause all literals are different.

We first describe the reduction. The fundamental approach
is similar to other reductions from CNF: D will consist of
so-called “gadgets” which are subgraphs used to simulate the
role of variables and clauses. We then add some connections
between these gadgets and specify appropriate preference pairs
to assure that the resulting swap system S satisfies the required
property, given above.

Specifically, in D there will be n gadgets corresponding to
variables, m gadgets corresponding to clauses, and one more
vertex called the core vertex. The x;-gadget has vertices x; and
Z;, that represent the literals of variable x;, plus two additional
vertices s; and ¢;. Its internal arcs are (s;, z;), (Si, T;), (i, i),
and (;, s;). The c¢;j-gadget has two vertices ¢; and a;, with
internal arcs (c;, a;), (aj,¢;). (See Figure 5.) We then add the
following arcs: For each clause ¢; and each literal Z; in c;,
we add arc (;, Cj). The core vertex, denoted b, is connected
by arcs to and from each vertex in the above gadgets.

Next, we describe the preference posets P, for each vertex
v in D. (See Figure 6.) As explained in Section II, an outcome
(W™ |wut) of a vertex v is specified by lists wi” and wo*!
of its in-neighbors and out-neighbors, respectively, and any
preference poset can be uniquely defined by an appropriate set
of generators.

The center vertex b’s preference poset is generated by all



Fig. 5. The variable and clause gadgets in the proof of Theorem 4. The arcs to and from the core vertex b are shown as bi-directional arcs.

relations w < NODEAL,, for w € UNDERWATER,. (This is the
same poset as in h-swap systems.) For each vertex s;, its pref-
erence poset is generated by relations (b, t; | t;, Z;) < (t; | t;),
(t;|t;) < (b]|b,x;), and (t;|t;) < (b|b,Z;). For each vertex
t;, its generators are DEAL;, < (b|b) and (b, s; | b) < (s; ]| si).
Each vertex ; € {z;,Z;} has one generator DEALz, < (b|b).
Each vertex c; has generators DEAL.; < (b, Z; | b), for each
literal Z; in c¢;. The only generator of each vertex a; is
DEAL,; < (b]b).

With this, the description of S is complete. The construction
of S clearly takes time that is polynomial in the size of a.

Applying Theorem 3, it remains to show that « is satisfiable
if and only if D has a spanning subgraph G with the following
properties: (c.1) G is piece-wise strongly connected and has no
isolated vertices, (c.2) G dominates D, and (c.3) no subgraph
‘H of D strictly dominates G.

(=) Suppose that « is satisfiable, and consider some satis-
fying assignment for . Using this assignment, we construct a
spanning subgraph G of D that satisfies the three conditions
(c.1)-(c.3) above.

Graph G will contain all vertices from the above construction
and all arcs that connect b to all other vertices, in both directions.
This makes G spanning and strongly connected, so (c.1) holds.
Other arcs of G are defined as follows. For each true literal Z;,
add to G arc (s;,Z;). For each clause ¢; and each true literal
Z; in ¢j, add to G arc (Z;, ¢;j).

Condition (c.2) can be verified through routine inspection,
by observing that DEALvD = DEAL% holds for each vertex v,
directly from the above specification of the preference posets.
For example, for a vertex s;, if Z; is the true literal of z;
then we have DEALi =(b|b,z;) = DEALZ_. For any Z,, let
C(Z;) be the set of clauses that contain Z;. If &; is true then
DEALY = (b, 5;|b,C(3;)) = DEALY, and if ; is false then
DEALgi = (b|b) = DEALZ. For each clause c;, denote by
T'(c;) the set of true literals in c;. Since we use a satisfying
assignment, each T'(c;) is non-empty. For a clause c;, for any
true literal &; € T'(c;), applying the inclusive monotonicity
property (p.2) we have DEALfJ_ = (b,T(cj)|b) = (b,z; |b) =
DEAL?.

J

It remains to verify condition (c.3). Let H be a subgraph of
D, and suppose that # dominates G, that is DEAL’! = DEALY
for all vertices v in H.

We claim first that  must contain b. Indeed, otherwise for
any vertex v of H we would have DEAL? = w = (W™ | wo™)
with b ¢ w™ and w = DEAL%. The only vertices that have
such outcomes w are ¢,s. For any ¢;, the only outcome w that
has these properties is (s; | s;). But then H would also have
to contain s; contradicting the earlier statement. (We note that
DEALi = (b|b,%;) where Z; is the true literal of z;, and
there is no strictly better outcome for s;.)

So we can assume from now on that 7 contains b. The
idea of the remaining argument is to show that the assumption
that { dominates G implies that in fact X = G — so H
cannot strictly dominate G. To this end, we examine the arcs
of D one by one. For each arc (u,v), we use the relation
DEALY = DEALY for some z € {u,v}, to show that (u,v)
belongs to  if and only if it belongs to G. We will divide
this argument into a sequence of claims.

Claim 1: H contains all arcs (v,b) and (b,v), for v # b. From
the definition of the preference poset of b, H must contain all
incoming arcs of b. This gives us that # is spanning. For each
v # b, any outcome w = DEALY that has outgoing arc (v, b)
must also have incoming arc (b,v). This proves the claim.

Claim 2: H does not contain any arc (a;, ¢;) or (c;, a;). Indeed,
no outcome of a; that has arc (a;, c;) is better than (b|b) =
DEAng, so A cannot contain (aj,¢;). Similarly, no outcome
of ¢; that has arc (c.j, a;) is better than (b, T'(c;) | b) = DEAij,
so # cannot contain (cj,a;).

Claim 3: For each literal Z; in clause c;, H contains (Z;,c;)
iff T; is true. Suppose first that Z; is a literal in c; that is
true. There is no outcome of ¢; that does not contain (Z;, ¢;)
and is better than (b, T(c;) |b) = DEAij, so 1 must contain
(%;, ¢j). Next, suppose that Z; is false. Then no outcome of Z;
that contains (Z;,c;) is better than (b|b) = DEAL%. Thus H
cannot contain (Z;, ¢;).

Claim 4: For each literal &;, H contains arc (s;,%;) iff &; is
true. Suppose first that literal Z; is true. From the previous
claim, we have that the outgoing arcs to C'(Z;) are in H. There
is no outcome of Z; that contains the arcs to C(Z;), does
not contain arc (s;,Z;), and is better than (b, s; |b,C(Z;)) =
DEALgi. Thus A must contain (s;, &;). Next, suppose that Z;
is false, and let Z; be the negation of &; (that is, the true literal
of x;). Then there is no outcome of s; that contains arc (s;, Z;)



2. <b|b7xl>

PSi DEALSL. < <b,ti‘$i,ﬂ_ji> < <ti|ti>

Pa; DEALq; < (b|b)

~ _
(b6, 2;) Pz, DEALz, < (b|b)

Pt DEAL, < (b[b) < (b,si|b) < (si]si)

ch DEALCj =< <b, i’i | b> Vif?z S Cj

Fig. 6. The specifications of preference posets in the reduction. We include in the figure some generic preferences for s; and ¢;, to illustrate the relationship

of some outcomes to the corresponding DEAL outcome.

and is better than (b| b, &;) = DEALY . Thus H cannot contain
(8, Z4)-

Claim 5: H does not contain any arc (s;,t;) or (t;,s;). There
is no outcome of s; that has an arc (s;,t;) and is better than
(b|b,z;) = DEALfI_, where 7; is the true literal of z;. So H
cannot contain (s;,t;). Also, there is no outcome of ¢; that
has arc (t;, s;), does not have arc (s;,t;), and is better than
(b|by = DEALtgi. So H cannot contain (%;, s;).

(<) Assume now that D has a spanning subgraph G that
satisfies properties (c.1)-(c.3). From G we will construct a
satisfying assignment for .

Since DEALg > DEALE, G must contain incoming arcs of
b from all other vertices. For each v # b, any outcome of v
that is at least as good as DEALUD and contains arc (v, b) must
also contain arc (b,v). So G contains all outgoing arcs of b.

Next, we claim that, for each variable x;, G contains at most
one of arcs (s;,z;) and (s;,Z;). Indeed, towards contradiction,
suppose that G contains both arcs (s;, x;) and (s;,%;). The
best possible outcome of s; with both arcs (s;, ;) and (s;, Z;)
is (b,t; | z;,Z;), and using the preferences of s;, we obtain
(tilti) = (bti|xs, Ti) = DEALi. Regarding ¢;, we have
already established that ¢; has arcs to and from b, and the best
such outcome for ¢; is (b, s; | b). Thus, using the preferences of
t; we obtain (s; |s;) > (b,s;|b) = DEALZ. So we could take
‘H to consist of s;, t;, and arcs (s;,t;) and (¢;, s;), and this H
would strictly dominate G, contradicting our assumption that
G satisfies condition (c.3).

Using the claim in the previous paragraph, we construct a
satisfying assignment for «v as follows: For each variable z;, set
it to true if G contains (s;, z;); otherwise set it to false. (Note
that G may not contain any arc (s;, z;), (S;, Z;), in which case
we could set the value of z; arbitrarily.) This truth assignment
is well defined.

We now argue that this truth assignment satisfies . Consider
any clause c;. Vertex c; must have at least one incoming arc
(Z;,¢;) in G, because otherwise we couldn’t have DEAng =
DEALCDJ,. Similarly, if G contains this arc (Z;, ¢;) then it must
also contain arc (s;,Z;), because otherwise we couldn’t have
DEAL% > DEALQ_. This implies that literal z; is true in our
truth aésignment, so clause ¢; is true as well. As this holds
for each clause, we can conclude that « is satisfied. O

VI. ¥5-COMPLETENESS

In the previous section, we showed that SwapAtomic is NP-
hard. In this section, we tighten the complexity classification of
SwapAtomic, and show that it is in fact 35 -complete. Recall
that 5 = NPNP s the class of problems at the 2nd level of
the polynomial hierarchy that consists of problems solvable
non-deterministically in polynomial time with an NP oracle.

Our proof is based on a reduction from a restricted variant
of the 3VDNF problem. An instance of 3VDNF is a boolean
expression o« = IxVyS(x,y), where x = (x1,...,x;) and
y = (y1,...,y1) are vectors of boolean variables and 8(x,y)
is a quantifier-free boolean expression in disjunctive normal
form, that is S(x,y) = 71 V 72 V ... V Ty, and each term 7,
is a conjunction of literals involving different variables. The
goal is to determine whether « is true. 3VDNF is a canonical
EQP -complete problem [29], [26]. The restriction of IYDNF that
we use in our proof, denoted IVDNF; ., consists of instances
a = IxVypB(x,y) where each term of S includes exactly
one x-literal and one or more y-literals that involve different
variables.

Lemma 3. 3VDNFy, is ¥5-complete.

The proof can be found in the supplemental material.
We remember that SwapAtomic is the decision problem of
deciding whether a swap system has an atomic protocol.

Theorem 5. SwapAtomic is %5-complete.

The complete proof can be found in the supplemental
material. In the remainder of this section, we briefly present a
high-level description of our reduction and the accompanying
proof.

According to Theorem 3, a swap system S = (D, P) has
an atomic swap protocol if and only if D has a spanning
subgraph G with the following properties: (c.1) G is piece-
wise strongly connected and has no isolated vertices, (¢.2) G
dominates D, and (c.3) no subgraph H of D strictly dominates
G. This characterization is of the form 3G.-3H.7 (G, H),
where 7(G,H) is a polynomial-time decidable predicate, so
it immediately implies that SwapAtomic is in 5. Thus it
remains to show that SwapAtomic is ¥5-hard.

To prove Y.5-hardness, we present a polynomial-time reduc-
tion from the above-defined decision problem 3VDNF;,. Let
the given instance of 3VDNFy, be a = IxVyS(x,y), where
x = (z1,...,25) and y = (y1, ..., y;) are vectors of boolean



to 7,’s that contain z;

(o

to and from all
nodes except a and a’

to 7,’s that contain Z;

Fig. 7. The construction of digraph D in the proof of Eg -hardness. This figure shows vertices a, a’, b, and an 3-gadget for variable ;. The arcs to and from

b are shown as bi-directional arrows at b.

from x-nodes and z-nodes

G —C—D

from y-nodes

) o

to and from
all nodes
except a and o’

Fig. 8. The construction of digraph D in the proof of Eg—hardness. This figures shows the V-gadget, namely the part of D that contains the vertices that
simulate setting the values of the y;-variables and the terms 7. The arcs to and from b are shown as bi-directional arrows at b.

variables and §(x,y) =71 V 72 V...V T,,, Where each 7, is a
conjunction of one x-literal and one or more y-literals. Our
reduction converts « into a swap system S = (D, P) such
that « is true if and only if D has a spanning subgraph G that
satisfies conditions (c.1)-(c.3) from Theorem 3.

The following informal interpretation of IVDNF;, will
be helpful in understanding our reduction. Say that a truth
assignment to some variables “kills” a term 7, if it sets one
of its literals to false. A truth assignment ¢ to the x-variables
will kill some terms, while others will survive. Thus a will
be true for assignment ¢ iff there is no assignment v for the
y-variables that kills all terms that survived ¢. In our reduction,
the existence of this assignment ¢ will be represented by the
existence of subgraph G. The non-existence of v/ that kills all
terms that survived ¢ will be represented by the non-existence
of a subgraph 7 that strictly dominates G.

Throughout this section, the negation of a boolean variable
x,; will be denoted ;. We will also use notation T; for an
unspecified literal of z;, that is Z; € {z;,%;}. The same
conventions apply to the variables ;.

We now give an overview of our reduction. The digraph D
consists of several “gadgets”. There will be 3-gadgets, which
correspond to the variables z; and will be used to set their
values, through the choice of subgraphs that G includes. Then
there is the V-gadget, that contains “sub-gadgets” representing
the literals g; and the terms 7,. These gadgets will allow for

the values of the variables y; to admit all possible assignments.

If any setting of these values kills all terms not yet killed by
the variables z;, this gadget will contain a subgraph H that
strictly dominates G. Figure 7 shows a single 3-gadget and

Figure 8 shows the V-gadget. As we explain the high-level
intuition, we gradually visit vertices and explain their purpose.

The argument is based on several ideas. One, we design the
preference posets of z;’s so that G is forced to choose between
two possible subsets of arcs within the 3-gadget. The choice
between these two subsets of arcs corresponds to choosing a
truth assignment for variable x;. We focus on the literals z; that
are set to false, since these kill the terms where they appear. If
Z; is set to false, its arcs to the terms 74’s in which the literal
appears will be included in G (the first subset), otherwise its
arc to Z; will be included in G (the second subset).

Another idea is that vertices outside of the V-gadget have
their preference posets defined in such a way that their arcs in G
define an outcome that is already the best for them. Therefore,
if a subgraph # that strictly dominates G does indeed exist,
we know it must appear in the V-gadget. This leads into the
key idea of the V-gadget. The vertices in this gadget can have
outcomes that are better than their outcomes in G. All the arcs
in these better outcomes together form the cycle

C = qg—=h—...—0u—q—
Po—T1L = .Tm —> Dm — (D)
qo

for some choice of the literals gi,...,7;. We design the
preference posets of each 7, so that its outcome in G can
only be improved (specifically, towards C) only if it receives
an arc from one of its literals — in other words, if it is killed
by that literal. This way, G will have a strictly dominating
subgraph H (namely cycle C) only if all terms are killed, i.e.
when « is false.



Next, we provide brief insight to the important vertices
and how they help capture the ideas above. Firstly, we want
to simulate a truth assignment for variable z;, which we
represent by having G choose between two subsets of arcs
in the corresponding 3-gadget for z;. Intuitively, one subset
corresponds to assigning x; to true while the other subset
corresponds to assigning x; to false. These two subsets of
arcs are established by how we define the preference posets
of x; and ;. In order to force G to make a choice (instead of
taking all the arcs), we introduce the auxiliary vertex a, which
has arcs to every literal z;. The graph D has two strongly
connected components: (1) a and a’, and (2) all the other
vertices. We claim graph G cannot include any arcs from
a to the literal vertices. Otherwise, since there is no edge
from the second component to the first, dropping those arcs
always results in a better outcome for the first component.
However, that contradicts condition (c.3). Then, for G to satisfy
condition (c.2), G is forced to make a choice between the two
subsets of arcs. Specifically, G must choose to include all arcs
from z; to its terms (corresponds to setting x; to be false) or
all arcs from Z; to its terms (corresponds to setting x; to be
true).

Next, we want to simulate a term 7, being killed. We achieve
this by designing the preference poset of each 7, so that if it
receives its arc from its x-literal, it would prefer its outcome
in the cycle C over its outcome in G. A term 7, can also be
killed by one of its y-literals, which we describe later.

Now, we want to simulate checking whether there is a truth
assignment for the y-variables that make VyS(¢,y) false,
where ¢ is a truth assignment over the x variables. In other
words, G’s assignment of the x variables have killed some
terms and now we want to see if H can give an assignment
of the y variables that kill the surviving terms.

First, we need to simulate a truth assignment for each variable
y;. This is simple: we flank y; and ¥; by vertices g;_1 and g;
as seen in Figure 8. We define the preference posets of g;_;
and g; in a way that only one of y; or %; can be included
in the cycle C, thus forcing # to choose between them. If H
selects a vertex g;, then g; will send an arc to every term it
appears in. This corresponds to assigning y; to false.

We additionally define 7,’s poset so that if it receives an arc
from any of its y-literals, it wants to join C. At this point, we
have represented 7, being killed if it receives either its x-literal
arc or any of its y-literal arcs. (The Zz; vertices are actually
used for this purpose. They help distinguish between when a
term is killed by their x-literal and when a term survived in
which it needs to be killed by a y-literal.)

The V-gadget is designed in the following manner: the
preference posets of the g;, ¥;, and p, vertices are such that if
every 7, prefers C, so will they; otherwise, if any 7, does not
prefer C, then none of the vertices can cooperatively deviate
to improve their outcomes. In other words, each 7, acts as a
bottleneck for the cycle C, thus we focus only on the 7,’s.

We give an analogy to better understand the remainder of
the reduction. Each 7, is given a vote to whether or not they
want to participate in cycle C. In order for C to pass, it must

receive a unanimous vote from every 7,. Vertex 7, only casts
its vote to join C if it receives an arc from either its x-literal
arc or any of its y-literal arcs (corresponds to being killed).
Then, G’s selection in each 3-gadget (truth assignment over x
variables) caused some 7,’s to vote for C. Now, H is tasked with
selecting vertices g1, ..., y; (truth assignment over y variables)
so that the remaining 74’s also vote for C. At the end of this,
if the 7,’s unanimously voted for C, then there is an # that
strictly dominates G, namely the subgraph induced by C. (This
corresponds to giving an assignment y — 1 such that 5(¢, ¥)
is false.) Otherwise, if H{ cannot give such a selection over
Y1, ---, §i, then there is no H that strictly dominates G. (This
corresponds to Vy3(¢,y) being true, i.e. « is true.)

The remaining vertices are primarily used for convenience
and to influence the behavior/preference posets of their neigh-
bors. In other words, they make the topology of G and H
predictable, holding them to a particular form. For example,
vertex b is used to guarantee condition (c.1), the piece-wise
strong connectivity condition. Also, it is used where vertices
would otherwise have no incoming or outgoing arcs.

To conclude the section, we provide some brief insight to
both directions of the proof. In the (=) implication, we show
that if « is true, then the swap graph D has a subgraph G
that satisfies the properties of Theorem 3. We begin by fixing
some truth assignment x > ¢ that makes « true. We convert
¢ into a graph G that satisfies the properties of Theorem 3
using the ideas described above. Conditions (c.1) and (c.2) can
be verified by routine inspection, leaving condition (c.3) that
G does not have a strictly dominating subgraph 7. The idea is,
towards contradiction, if such an H existed, we could convert
it into an assignment ) of the y variables so that 5(¢, 1)) is
false. This contradicts the fact that « is true.

In the (<) implication, we show that if D has a subgraph
G that satisfies the properties of theorem 3, then « is true.
We begin by showing that the topology of G must have a
certain form; specifically, it is representative of the graph G we
constructed in the proof of the (=) implication. This allows us
to reconstruct an assignment of the x variables. We then show,
again by contradiction, that VyS(¢, y) must be true. If it were
not, we can take a falsifying assignment y — 1) and convert
it into a subgraph # that strictly dominates G. However, this
contradicts condition (c.3) of G.

VII. RELATED WORKS

The fair exchange problem [23], [16], [7], [4], [5] was of
interest even before the blockchain technology. It arises when
two parties want to exchange their assets, and the outcome
must be either that the two parties end up trading their assets,
or that they both keep their assets. However, in contrast to the
swap problem, some trust in a third party is often assumed. The
optimistic fair exchange protocol [23] relies on invisible trusted
parties: parties that work as a background service and intervene
only in case of a misbehaviour. Similarly, the secure group
barter protocol [16] studies multi-party barter with semi-trusted
agents.



To the best of our knowledge, it was back in 2013 when the
notion of cross-chain swaps first emerged in an online forum
[35]. Atomic cross-chain swap is since an active problem for
the blockchain community [8], [35], [9], [10]. The two wiki
pages [8] and [35] and later platforms such as deCRED [13]
proposed protocols for bilateral swaps. However, these projects
offer only two-party transactions. Later, protocols for cross-
chain swaps and transactions [19], [20], [18], [34] emerged
that can work for an arbitrary number of parties; however, they
assumed the predefined preference relation that we saw earlier
for all the parties.

These protocols motivated a host of follow-up research. The
time and space complexity [21] and privacy guarantees [14]
of the protocol were improved. The former [21] uses a model
where each asset is assigned two numerical values, one by its
current owner and one by the intended recipient. These values
can then be used to determine preferences for each party, and
can be extended to sets of parties by considering the difference
between the total values of incoming and outgoing assets. To
assure that their swap graphs have atomic protocols, restrictions
(similar in spirit to our Theorem 3) are placed on allowed swap
graphs. As we discussed in the introduction, such value-based
preferences cannot express dependencies between assets. So
the model in [21] would not capture some natural scenarios, for
example trades involving assets from an investment portfolio
with fixed proportions between different asset classes. Their
way of extending individual preferences to coalitions (sets of
parties) is different from our model, and it involves a tacit
assumption that the coalition members agree on these values.
Nevertheless, the approach in [21] is natural and worth studing,
and in particular it would be of interest to investigate the time
complexity to determine whether a swap graph has an atomic
protocol in that model. We suspect that this problem may be
computationally easier than for our swap systems.

Further, extensions to support off-chain steps [30] and reduce
the asset lock-up time [37] appeared. Others presented hardness
and impossibility results [39], [12] formal verification [25],
and protocols with all-or-nothing guarantees [38] and success
guarantees under synchrony assumptions [36]. Others proposed
moving assets [32] and smart contracts [17] across blockchains,
and executing code that spans multiple blockchains [28], and
presented implementations for industrial blockchains [3], [2],
[11], [33].

Payment channel networks process multi-hop payments in
the same blockchain through a sequence of channels using
Hash Timelock Contracts [27], [1] or adaptor signatures [22].
Recent protocols such as AMCU [15], Sprites [24] and Thora
[6] support more general topologies for transactions.

In contrast to previous work, this paper presented a gen-
eralized model of swaps where each party can specify a
personalized preference on their set of incoming and outgoing
assets in a finer manner, e.g. dependencies between subsets of
acquired and traded assets.

VIII. CONCLUSION

We presented a general swap model that allows each party
to specify their preference on their possible outcomes. We
saw that Herlihy’s pioneering protocol is a uniform and Nash
strategy in this model; however, it is not a strong Nash strategy.
We presented a characterization of the class of swap graphs
that have uniform and Strong Nash protocols. Interestingly,
Herlihy’s protocol is such a strategy when executed on a
particular subgraph of the swap graphs in this class. We
further presented reductions that shows the NP-harness and
Y P-completeness of the decision problem for this class.
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