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Abstract—Extreme valuation and volatility of cryptocurrencies
require investors to diversify often which demands secure ex-
change protocols. A cross-chain swap protocol allows distrusting
parties to securely exchange their assets. However, the current
models and protocols assume predefined user preferences for
acceptable outcomes. This paper presents a generalized model
of swaps that allows each party to specify its preferences on
the subsets of its incoming and outgoing assets. It shows that
the existing swap protocols are not necessarily a strong Nash
equilibrium in this model. It characterizes the class of swap
graphs that have protocols that are safe, live and a strong Nash
equilibrium, and presents such a protocol for this class. Further,
it shows that deciding whether a swap is in this class is NP-
hard through a reduction from 3SAT, and further is ΣP

2 -complete
through a reduction from ∃∀DNF.

I. INTRODUCTION

The multitude and volatility of cryptocurrencies force in-

vestors to diversify and frequenty trade their holdings. However,

these currencies are hosted by distinct distributed blockchains

and trading across blockchains is not atomic by default. This has

led to the development of cross-chain swap protocols [19], [8],

[10], [18], [13], [34] that allow distrusting parties to securely

exchange their assets. Application of such swap protocols is

not limited to trading digital currencies — they can be used for

trading any type of digital assets (NFTs, for example), or even

for trading physical objects by safely trasferring ownership

documentation.

In a pioneering work, Herlihy [19] formalizes a cross-chain

swap as a directed graph where vertices represent parties, and

arcs represent assets to be exchanged. An execution of a swap

graph is represented as the subset of arcs that are triggered in

that execution. The outcome for each party is captured in five

predefined classes: DEAL, NODEAL, DISCOUNT, FREERIDE,

and UNDERWATER. The classes DEAL and NODEAL represent

outcomes for a party where respectively, all and none of

the arcs of that party are triggered. The class DISCOUNT

represents outcomes where some of the outgoing arcs are

not triggered, and FREERIDE represents outcomes where at

least one incoming but no outgoing arc is triggered. Outcomes

in all these classes are considered acceptable by each party.

The class UNDERWATER captures all unacceptable outcomes,

namely outcomes where at least one outgoing arc is triggered

but not all incoming arcs are. Given this model of outcomes,

Herlihy presented a protocol based on hashed time-locks and

proved it to be atomic, meaning that it satisfies the conditions

of liveness, safety and strong Nash equilibrium.
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In practice, as noted in the original proposal [19], some

parties may find it advantageous to exchange only some of

their outgoing assets for only some of their incoming assets.

As an example, suppose that Alina has a white shirt and white

pants and she joins the swap hoping to trade for a black shirt

and black pants. Coincidentally, Bohdan has exactly these items

and joins the swap looking for the reverse trade. However, both

of them would actually prefer to retain one white article of

clothing and one black article of clothing, if possible. Thus,

it would be preferable for both parties to, say, only swap the

shirts or only swap the pants, although it is also acceptable to

swap both. Such scenarios are not captured by the model in

[19], because the outcomes with just one item swapped are in

the class UNDERWATER.

This leads to the natural question, left open in [19]: is there

a more general swap model that allows each party to specify

its personal preferences over all possible swap outcomes, and,

at the same time, admits an atomic protocol.

Addressing this question, this paper introduces a general

model of cross-chain swaps that we call swap systems. In a

swap system, as in [19], the set of prearranged asset transfers

is represented by a directed graph. Unlike in [19], however, in

our model each party can specify its own preferences between

all its possible outcomes (that is, between sets consisting of

its incoming and outgoing arcs). These preferences can be

arbitrary, as long as they form a poset and satisfy natural

monotonicity conditions. This generality allows us to capture

not only subjectivity of preferences, but also dependencies

between assets. The example above (about trading clothing

items) illustrates such a dependency: for the purpose of trading,

Alina values her pair of items higher than the sum of their

individual values. Such dependencies often arise in practice

when a party intends to trade multiple assets — in fact, common

investment strategies are guided by objectives (diversification,

for example) that inherently involve asset dependencies.

As it turns out, Herlihy’s protocol is not necessarily atomic

in all swap systems, although it still satisfies the conditions of

liveness, safety, and weak Nash equilibrium. We then present

a characterization of swap systems that admit atomic protocols.

The correctness proof of this characterization embodies such a

protocol. We then focus on the problem of verifying whether

a given swap systems has an atomic protocol. To this end, we

provide a full characterization of the time complexity of this

problem and show that it’s computationally infeasible, by a

novel proof of completeness in the complexity class ΣP

2
. As a

stepping stone to this full characterization, we also include an

easier proof of NP-hardness.



The paper is organized as follows.

• In section II we introduce our model of swap systems,

including the definitions of atomic protocols in this model.

• In section III we show that our model is indeed a

generalization of Herlihy’s model.

• The full characterization of swap systems that admit

atomic protocols is given in section IV.

• The decision problem of testing whether a swap systems

admits an atomic protocol is studied in section V and

section VI, first proving NP-hardness and then refining

the proof to show ΣP

2
-completeness.

For readers interested in the practical impact of our work,

the overall take-out message from this paper is this: (i) Even if

some parties wish to specify outcome preferences not captured

by the model in [19], it still may be possible to realize the swap

with a protocol that is atomic and efficient. (ii) The challenge is

that in order to determine whether it is possible, and to actually

specify this protocol, one needs to solve a computationally

infeasible decision problem. Naturally, for small number of

parties this can still be done in practice – say by exhaustive

search.

II. SWAP SYSTEMS

As discussed in the introduction, Herlihy’s model [19]

for cross-chain swaps assumed that the rational behavior of

participating parties is determined by preferences between five

types of outcomes: DEAL, NODEAL, DISCOUNT, FREERIDE,

and UNDERWATER. These preferences were assumed to be

shared by all parties, and can be interpreted as a simple partial

order on all possible outcomes. Some of these preferences

are natural; for example, in DISCOUNT a party receives all

incoming assets without trading all outgoing assets, making it

preferable to DEAL. But, as explained in the introduction, in

practice a party may consider some outcomes designated as

UNDERWATER in [19] to be acceptable, or even preferable to

DEAL. As another example, suppose that Alina possesses items

A and B that she values at $10 and $12, and Bohdan possesses

items X and Y that Alina values at $11 and $14. Providing

that Alina’s preferences are based only on the monetary value,

she would accept to join the swap that allows her to swap

both A and B for Bohdan’s X and Y, but she would be even

happier if she ends up swapping only A for Y instead. Similarly,

there is no justification for the outcomes in FREERIDE to be

incomparable to DEAL or DISCOUNT.

To represent such individual preferences, we now refine

Herlihy’s model by allowing each party to specify a partial

order on all her possible outcomes of a protocol. Our model

is very general in that (unlike in the example above) a

party’s preferences are not determined by numerical values

of individual assets, but rather involve comparing directly

whole sets of traded and acquired assets. The advantage of this

approach is that it captures dependencies between assets, when

a party values a set of assets higher or lower than the sum of

their individual values. As an example, say that Alina owns a

power drill and a shovel, while Bohdan is in possession of a

pair of skis. Alina would not swap any of her items for any

single ski, but she may be happy to swap both of her items for

the pair. On the other hand, if, instead of skis, Bohdan needs

to get rid of two skateboards, Alina may prefer to swap any

of her items for one skateboard rather than swapping both for

two skateboards.

Swap Systems. A swap system is specified by a pair S =
(D,P) consisting of a digraph D that represents the pre-

arranged asset transfers and a collection P of posets that

specifies the preferences of each involved party among all of

its potential outcomes. Next, we give a formal definition of

these two components of S .

Digraph D = (V,A) is called a swap digraph. Each vertex

v ∈ V represents a party that participates in the swap, and

each arc (u, v) ∈ A represents an asset that is to be transferred

from party u to party v. By Ain
v and Aout

v we will denote the

sets of vertex v’s incoming and outgoing arcs, respectively.

If (x, v) ∈ Ain
v then x is called an in-neighbor of v, and if

(v, x) ∈ Aout
v then x is called an out-neighbor of v. Throughout

the paper we assume that D does not have multiple arcs1. We

also assume that D is weakly connected (otherwise a swap

can be arranged for each connected component separately).

To exclude some degenerate scenarios, we also assume that

|V | ≥ 2 and that Ain
v 6= ∅ and Aout

v 6= ∅ for each v ∈ V .

An outcome of a party v ∈ V is a pair ω = 〈ωin |ωout〉,
where ωin ⊆ Ain

v and ωout ⊆ Aout
v . An outcome represents the

sets of acquired and traded assets, ωin and ωout respectively.

The set of all possible outcomes of v will be denoted Ωv . To

reduce clutter, instead of arcs, in 〈ωin |ωout〉 we will often list

only the corresponding in-neighbors and out-neighbors of v;

for example, instead of 〈{(x, v), (y, v)} | {v, z}〉 we will write

〈x, y | z〉.
The collection P = {Pv}v∈V consists of preference posets.

The preference poset of a party v ∈ V is Pv = (Ωv,�v), where

�v is a partial order on Ωv . We will write ω ≺v ω′ if ω �v ω′

and ω 6= ω′. This poset naturally represents v’s evaluation of its

potential outcomes; that is, relation ω �v ω′ holds if v views

outcome ω′ to be better than outcome ω. The outcome where

v does not participate in any transfer is NODEALv = 〈∅ |∅〉
and the outcome where all of v’s transfers are realized is

DEALv = 〈Ain
v |Aout

v 〉. Each preference poset Pv is assumed

to have the following properties:

(p.1) DEAL is better than NODEAL: NODEALv ≺v DEALv.

Naturally, each party prefers swapping all assets over being

completely excluded, as otherwise it would not even join the

swap system.

(p.2) Inclusive Monotonicity: (ωin
1

⊆ ωin
2

∧ ωout
2

⊆ ωout
1

) ⇒
ω1 �v ω2, for every two outcomes ω1, ω2 ∈ Ωv . That is, it’s

better to receive more assets and to trade fewer assets2.

The preference pairs ω1 ≺v ω2 that are determined by rules

(p.1) and (p.2) above will be called generic. The size of the

preference poset may be exponentially large with respect to

1This assumption is only for convenience – our model and results trivially
extend to multi-digraphs, although this requires more cumbersome notation
and terminology.
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the size of the swap digraph D, but it is not necessary for a

party to specify generic preferences as they are implied from

the above rules. Therefore, throughout the paper, we assume

that Pv is specified by its generator set, which is a subset of

its non-generic preference pairs that, together with the generic

pairs and transitivity, generate the whole poset. A generator

set of a poset may not be unique. We use this convention in

our examples and running time bounds. (This does not affect

our hardness results — they hold even if the preference poset

of each party is specified by listing all preference pairs.)

An outcome ω ∈ Ωv is called acceptable if ω � NODEALv .

The set of acceptable outcomes of a node v will be denoted

Av
3.

Throughout the paper, we will often omit subscript v in these

notations (and others as well) if v is implicit in the context or

irrelevant. On the other hand, if any ambiguity may arise, we

will sometimes add a superscript to some notations specifying

the digraph under consideration; for example we will write

DEAL
D
v to specify that outcome DEAL

D
v is with respect to

digraph D.

Protocols. Given a swap system S = (D,P), a swap protocol

P for S specifies actions of each party over time, in particular

it determines how assets change hands. Initially, an asset

represented by an arc (u, v) ∈ A is in the possession of u, and,

when P completes, this asset must be in possession of either

u or v. If (u, v) ends up in the possession of v, we will say

that the arc (u, v) has been triggered. The outcome of v after

executing P is 〈ωin |ωout〉, where ωin and ωout are the sets

of incoming and outgoing arcs of v that are triggered in this

execution. In particular, we write P(v) for the outcome of v
in an execution of protocol P in which all parties follow P. If

some party (possibly v itself) deviates from P, we assume that

v’s outcome is also finalized when P completes, but it may be

different from P(v).
A protocol may use appropriate cryptographic primitives. In

particular, following [19], we assume the availability of smart

contracts. A smart contract for an arc a = (u, v) allows u to

put asset a in an escrow secured with a suitable collection

of hashed time-locks: each such time-lock is specified by a

pair (h, τ), where h = H(s) is a hashed value of a secret s
and τ is a time-out value. In order to unlock this time-lock,

v (and only v) must provide the value of s before time τ .

If all time-locks of (u, v) are unlocked, v can claim a. This

automatically triggers arc (u, v). If any time-lock times out, a
is automatically returned to u. We describe a more elaborate

hashed time-lock in the next section.

Properties. For a swap protocol to be useful, it must guarantee

that if all parties follow it then every party ends in an outcome

at least as favorable as trading all their outgoing for all their

3This definition can be relaxed to allow some outcomes incomparable
to NODEAL be acceptable. In this extended model, the set Av of accept-
able outcomes would be part of a swap system specification, and would
have to satisfy three conditions: (i) {ω : ω � NODEALv} ⊆ Av , (ii)
{ω : ω ≺ NODEALv} ∩ Av = ∅, and (iii) ω ∈ Av ∧ ω � ω′ ⇒ ω′ ∈ Av .
Our results can be extended naturally to this model. We adopted the simpler
definition to streamline the presentation.

incoming assets. Further, every conforming party should end

up with an acceptable outcome, no matter whether other parties

follow the protocol or not. Lastly, rational parties should have

no incentive to deviate from the protocol. Herlihy [19] captured

these properties using the concepts of uniformity and strong

Nash equilibrium. Our definitions, below, are their natural

extensions to the more general model of swap systems.

Uniformity. A swap protocol P is called uniform if it

satisfies the following two conditions:

Liveness: If all parties follow P, they all end in outcome

DEAL or better, that is P(v) � DEALv for all v ∈ V .

Safety: If a party conforms to P, then its outcome will be

acceptable, independently of the behavior of other parties.

A less restrictive concept of uniformity may also be of interest:

We say that a protocol P is weakly uniform if it satisfies the

safety condition above, but the liveness condition is replaced by

the following weak liveness requirement: if all parties follow

P, then at least one party ends in an outcome strictly better

than NODEAL. The assumptions on preference posets imply

directly that a protocol that is uniform is also weakly uniform.

Nash equilibria and atomicity. We extend the concept of

outcomes to sets of parties, where an outcome of a set is just a

vector of individual outcomes. On this set we can then define

a preference relation in a standard way, via a coordinate-wise

ordering of outcomes. Formally, for any set of parties C ⊆ V ,

an outcome vector of C is ω̄ = (ωv)v∈C , where ωv ∈ Ωv for

all v ∈ C. Denote by Ω̄C the set of all outcome vectors of C.

Given two outcome vectors ω̄, ω̄′ ∈ Ω̄C , we write ω̄ �C ω̄′

if ωv �v ω′
v for all v ∈ C. If also ω̄ 6= ω̄′ then we write

ω̄ ≺C ω̄′. (In other words, ω̄ ≺C ω̄′ means that at least one

party in C does strictly better in ω̄′ than in ω̄, and every party

in C does at least as good.) In this notation, if all parties follow

a protocol P, then the outcome vector P(C) of a protocol P

for a set of parties C is (P(v))v∈C .

We will say that a protocol P is a strong Nash equilibrium

if no coalition of participating parties can improve its vector

outcome by deviating from P; more precisely, for every set

C of parties, if ω̄ denotes the outcome vector of C in some

execution of P where all parties in V \ C follow P, then we

cannot have ω̄ ≻C P(C). We will call P atomic if it is both

uniform and a strong Nash equilibrium.

Example 1. Consider a swap system S = (D,P) whose

digraph D is shown in Figure 1. The preference poset Pu is

generated by two preference pairs DEALu ≺ 〈v | v〉 ≺ 〈v |w〉,
the preference poset Pv is generated by two preference pairs

DEALv ≺ 〈u |u〉 ≺ 〈w |u〉, and the preference poset Pw is

generated by one preference pair DEALw ≺ 〈u | v〉.
Consider also a swap protocol P for S such that if all parties

follow P then all end up with outcome DEAL. Then P is not a

strong Nash equilibrium, because for C = {u, v}, the parties

in C can ignore P altogether and simply swap their assets

between themselves, improving their outcomes. Nevertheless,

as we show later in Section IV, S does have an atomic protocol.

Roughly, instead of using the whole digraph D, in this protocol

only assets represented by arcs (u,w), (w, v) and (v, u) will

be swapped. Then the outcome of each party will be better





liveness property. Assume that all parties follow P. Then, from

the assumptions about safety and weak liveness, all parties will

end up in acceptable outcomes, with at least one party ending

in an outcome strictly better than NODEAL.

Suppose, towards contradiction, that there is a party with

outcome other than DEAL. This gives us that some arc (x, y)
is not triggered. Further, since some party has an outcome

other than NODEAL, there must be a triggered arc (x′, y′). By

strong connectivity, there is a path P from x to y′ whose first

arc is (x, y) and the last arc is (x′, y′). Then the existence of

this path contradicts Lemma 1.

h-Atomicity. The approach in [19] differs from ours in the

way it formalizes the gain of a coalition (subset) of parties

when they deviate from the protocol. Roughly, the definition

in [19] captures a collective gain, while our definition views it

as a vector of individual outcomes. In spite of this apparent

difference, we show that in h-swap systems our concept of

atomicity is in fact equivalent to the one in [19].

In the discussion below, let S = (D,P) be a fixed h-swap

system. Following [19], we will define the h-outcome of a

coalition C of parties by, in essence, contracting C into a single

vertex. (The term “h-outcome” is ours, to better distinguish

this concept from our concept of outcome vectors.) More

formally, define C’s incoming and outgoing arcs in a natural

way: Ain
C =

⋃
v∈C

Ain
v \

⋃
v∈C

Aout
v and similarly, Aout

C =⋃
v∈C

Aout
v \

⋃
v∈C

Ain
v . The h-outcomes for C are pairs ω̂ =

〈ω̂in | ω̂out〉 where ω̂in ⊆ Ain
C and ω̂out ⊆ Aout

C . ΩC is the set

of all h-outcomes of C. The preference poset and acceptable

set of C are defined analogously to that of a single party

in an h-swap system. That is, we define NODEALC , DEALC ,

DISCOUNTC , FREERIDEC , and UNDERWATERC in the natural

way, and we assume the analogues of conditions (p.1) and (p.2)

for swap systems (in Section II) and conditions (h.1) and (h.2)

for h-swap systems. The set of acceptable h-outcomes AC

consists of all h-outcomes of C that are not in UNDERWATERC .

(Note that if C consists of a single party then its h-outcome is

identical to its outcome.)

Define a protocol P to be a strong Nash h-equilibrium if

it satisfies the following condition for every set C of parties:

providing that the parties outside C follow P, the parties in

C cannot end up in an h-outcome better than their outcome

resulting from following P. P is called h-atomic if it is h-

uniform and a strong Nash h-equilibrium.

Culminating the earlier discussion, the following theorem

establishes that our model indeed captures the model introduced

in [19].

Theorem 2. Let P be a protocol for an h-swap system S =
(D,P). P is atomic if and only if it is h-atomic.

Proof. (⇒) Suppose that P is atomic. Theorem 1 implies that

P is h-uniform. Thus, from the definition of h-uniformity, if

all parties follow P then each party’s outcome will be DEAL.

It remains to show that P is a strong Nash h-equilibrium. Let

C ⊆ V , and consider an execution of P in which all parties

outside C follow P. Since P is a strong Nash equilibrium, the

outcome vector of C is not better than (DEALv)v∈C . Denote

by ω̂ the h-outcome of C. We need to show that ω̂ is not better

than DEALC .

Towards contradiction, suppose that ω̂ ≻ DEALC . The

definition of preference posets for h-outcomes gives us that

ω̂ ∈ DISCOUNTC . Now consider another execution of P where

the parties in C behave just like before, but they also trigger

all arcs connecting two members of C. This will not affect

the execution of P for parties outside C. Then the outcome

vector ω̄ of C consists of all arcs between C and V \ C (in

both directions) that are triggered in ω̂, as well as all arcs

with both endpoints inside C. Since ω̂ ∈ DISCOUNTC , each

v ∈ C has all its incoming arcs in ω̄, and there is at least

one u ∈ C that has one arc to V \ C that is not in ω̄. So the

outcome of each v ∈ C is either DEALv or DISCOUNTv , and

this u’s outcome is DISCOUNTu. But then ω̄ is better than

(DEALv)v∈C , contradicting the assumption that P is a strong

Nash equilibrium.

(⇐) Now suppose that P is h-atomic; that is, P is h-uniform

and is a strong Nash h-equilibrium. From Theorem 1 we obtain

that P is uniform.

It remains to prove that P is a strong Nash equilibrium. Let

C ⊆ V , and consider some execution of P in which all parties

outside C follow P. Since P is a strong Nash h-equilibrium,

the h-outcome of C is not better than DEALC . We need to

show that C’s outcome vector is not better than (DEALv)v∈C .

We again argue by contradiction. Suppose that C’s outcome

vector is ω̄ ≻ (DEALv)v∈C . Then each v ∈ C has outcome

in {DEALv} ∪ DISCOUNTv and there is some u ∈ C with

outcome in DISCOUNTu. This implies that all parties in C
have their incoming arcs in ω̄. Further, some outgoing arc of

u is not in ω̄, and this arc must go to V \ C. We consider

the h-outcome of C in the same run of P, without changing

the behavior of any members of C. (In the h-outcome of C
the status of arcs internal to C is not relevant.) Denote this

h-outcome by ω̂. Then ω̂ will include the same arcs between

C and V \ C (in both directions) as in ω̄. The properties of

ω̄ established earlier imply that ω̂ ∈ DISCOUNTC , and thus

ω̂ ≻ DEALC , which contradicts our earlier assumption that P

is a strong Nash h-equilibrium.

Herlihy’s Protocol. Herlihy presented a protocol for h-swap

systems [19] that is h-atomic. We summarize this protocol that

we will refer to as H.

Since the generation and distribution of the swap system is

not the focus of this paper, we assume a third-party service that

reliably distributes information to the participating parties. The

service begins by assembling a swap graph D and distributing

it to every party. Each party pi then generates and hashes a

secret hi = hash(si) and sends it back to the service.5 The

5Herlihy describes an optimization where the service computes a feedback
vertex set for D (i.e. the removal of this set would leave D acyclic). He refers
to these parties as leaders and only uses the hashed secrets of these parties
in subsequent steps of the protocol. As this is not a necessary step, we will
ignore it for simplicity.



service distributes the hashed secrets as a vector h0...hn to

every party.

The protocol can be broken into two phases, which we

call contract creation and secret propagation respectively. The

contract creation phase, in essence, realizes D. For every arc

(u, v) ∈ D, party u generates a smart contract with an escrowed

asset to counterparty v. Each contract is hash-locked by a vector

of hashlocks h0...hn generated by the given vector of hashed

secrets. A particular hashlock hw on arc (u, v) unlocks when

provided a hashkey (sw, p, σ), where sw is the preimage of

hw, p is any simple path from v to w (where w is the party

that generated secret sw), and σ is a sequence of signatures

sig(.., sig(sw, w), .., v) backwards along path p. It should be

noted that a single hashlock may have multiple hashkeys, as

any simple path is acceptable. Hashlocks and hashkeys are

also time-locked. Each hashkey only remains valid for a certain

amount of time, scaling with the length of the path specified

within it. Ignoring constant factors, a hashkey remains valid for

|p| ·∆ time, where ∆ is an upper bound of the time needed for

a single step of a party. The longer the path in the hashkey, the

longer the hashkey remains valid. A hashlock expires when all

of its hashkeys expire, in which the escrowed asset is returned

to the sender. That is, the hashkey containing the longest path

from the recipient to the generator of the corresponding secret

has expired. If all hashlocks in the vector are unlocked, the

contract triggers and the escrowed asset is sent to the recipient.

When a party u observes that each of its incoming contracts

has been created correctly, it enters the secret propagation

phase. Party u first wants to propagate its own secret. This is

done by unlocking hashlock hu on each of their incoming arcs.

Specifically, u generates hashkey (su, u, sig(su, u)) and uses

this to unlock the corresponding hashlock on each arc in Ain
u .

Party u also wants to propagate the secrets of others, which they

learn by observing their own outgoing arcs. Let u observe on

outgoing arc (u, v) that hashlock hw was unlocked by hashkey

(sw, p, σ). Then u can generate hashkey (sw, u+ p, sig(σ, u))
and unlock the corresponding hashlock hw on each arc in Ain

u .

Algorithm 1 Herlihy’s Protocol For Vertex v

Input: Digraph D, vector 〈h0, ..., hn〉, secret sv

1: for every (v, w) ∈ Aout
v do ⊲ Phase 1

2: create contract to w hashlocked by 〈h0, ..., hn〉

3: upon contract for every (u, v) ∈ Ain
v ⊲ Phase 2

4: generate hashkey k1 = (sv, v, sig(sv, v))
5: for every arc (u, v) ∈ Ain

v do

6: unlock hashlock hv with k1
7: while no timed out hashlock and not all assets received

do

8: if new hashkey k2 = (s, p, σ) on (v, w) ∈ Aout
v then

9: generate hashkey k3 = (s, v + p, sig(σ, v))
10: for every arc (v, w) ∈ Ain

v do

11: unlock hashlock with k3

Example 2. Consider the swap graph in Figure 3. Assume

each party is given the same vector of hashed secrets. Parties

start the protocol by creating their outgoing contracts using

this vector. The party x creates the contract (x, v), the party u
creates the contracts (u, x) and (u, v), the party v creates the

contracts (v, u) and (v, y), and the party y creates the contract

(y, u). Then when the party x observes that the contract (u, v)
is created, it releases its secret on (u, x). Once the party u
observes this secret on its outgoing contract (u, x), it applies it

to its incoming contracts (v, u) and (y, u). Similarly, when the

parties v and y observe the secret on their outgoing contracts,

they apply it to their incoming contracts (x, v) and (v, y)
respectively. Thus, the secret sx is propagated through the

whole graph. With similar steps, each other party releases its

secret on its incoming contracts, and each secret is propagated

by other parties to the rest of the graph. Thus, all secrets are

eventually applied to all contracts, and all assets are transferred.

Lemma 2. Consider the execution of H on a directed graph

D. Let u be a party that follows H. After the execution is

complete, for any e ∈ Aout
u of u, e is triggered only if all arcs

in Ain
u are triggered.

If e is triggered, every hashlock on e was unlocked. Since

u is following H, it will observe whenever a hashlock on e
is unlocked. Whenever a hashlock hi is unlocked, u sees a

hashkey k1 = (si, p, σ). Then, u can generate a hashkey k2 =
(si, u+p, sig(σ, u)) to post on the corresponding hashlocks hi

for their incoming arcs. Since k1 was an acceptable hashkey,

and increasing the length of a hashkey by 1 means it remains

acceptable for ∆ more time, u had sufficient time to post k2
to all arcs in Ain

u . We repeat this argument for every hashlock

on e, wherein when every hashlock on e is unlocked, every

hashlock on every arc in Ain
u is also unlocked.

IV. A CHARACTERIZATION OF SWAP SYSTEMS WITH

ATOMIC PROTOCOLS

As shown in [19], all swap systems considered in Herlihy’s

approach (that is all h-swap systems, in our terminology) have

an atomic protocol, providing that the underlying digraph is

strongly connected. In our more general model this is not

always the case. Consider, for example, a swap system whose

digraph is shown in Figure 3. The only non-generic preferences

are: DEALv ≺ 〈u |u〉 for v, and DEALu ≺ 〈v | v〉 for u. Using

the liveness condition for x and y, any atomic protocol needs

to trigger arcs (u, x), (x, v), (v, y) and (y, u). But u and v
can cooperatively deviate from the protocol by triggering only

arcs (u, v) and (v, u), each obtaining a better outcome than if

they followed the protocol. So this protocol cannot be a strong

Nash equilibrium, and thus is not atomic.

This raises the question as to whether there exists a simple

characterization of swap systems that admit atomic protocols.

We provide such a characterization in this section. Interestingly

enough, we show that if a swap system admits an atomic

protocol, then it also admits an atomic protocol that is

essentially equivalent to running Herlihy’s protocol on a suitable

subgraph.
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Fig. 3. The example of a swap system in which H is not a strong Nash
equilibrium.

We saw Herlihy’s protocol [19], denote by H, in the previous

section. Herlihy proved that H is h-atomic for h-swap systems

(in our terminology).

Uniformity and Nash equilibrium of Herlihy’s protocol.

Let S = (D,P) be any swap system with strongly connected

digraph D. If all parties follow H then they all will end up in

outcome DEAL. If v follows H then either it does not trigger

any outgoing arcs, and thus its outcome is in {NODEALv} ∪
FREERIDEv , or it triggers some, but then also all its incoming

arcs are triggered, so its outcome is in {DEALv}∪DISCOUNTv .

In each case, regardless of the behavior of other parties, this

outcome is at least as good as NODEALv , and thus acceptable.

This means that H is uniform.

We now claim that H is a Nash equilibrium in S, in the

sense that no single party can improve its outcome by deviating

from H, if all other parties follow H. If all parties follow the

protocol, all outcomes are DEAL. If any party v has outcome

ω ≻ DEALv, then in ω there needs to be an incoming arc

(u, v) but some outgoing arc (v, w) must be missing. (This

holds for any preference poset, by properties (p.1) and (p.2).)

In Herlihy’s protocol a vertex triggers an outgoing arc only if

all its incoming arcs are triggered. So if all parties other than v
follow the protocol, then we get a contradiction by considering

a path from w to u (following an argument similar to the proof

of Theorem 1).

Note that this argument does not work for larger coalitions.

In fact, in the swap system example discussed earlier in this

section, H, nor any other protocol, is a strong Nash equilibrium.

Characterization. Let S = (D,P) be a swap system for a

set of parties V , and let G and H be two subgraphs of D. G
will be called piece-wise strongly connected if every connected

component of G is strongly connected. G is called spanning if

its vertex set is V . If G is spanning, we say that H dominates

G if DEAL
H
v � DEAL

G
v for all vertices v in H. In other words,

if only the arcs in H are triggered, then all parties in H end

in outcomes at least as good as if all their arcs in G were

triggered. Also, H strictly dominates G if, in addition, there

exists a party u of H such that DEAL
H
u ≻ DEAL

G
u . That is,

every party in H ends in an outcome at least as good and at

least one party strictly improves their outcome when triggering

the arcs of H instead of G.

For example, consider the swap system S = (D,P) in

Example 1. The subgraph G1 = D is spanning, and is strictly

dominated by the subgraph H consisting of vertices u, v and

arcs (u, v) and (v, u). On the other hand, the subgraph G2 that

has arcs (u,w), (w, v) and (v, u) is spanning, and there is no

subgraph of D that strictly dominates it.

Theorem 3. A swap system S = (D,P) has an atomic swap

protocol if and only if there exists a spanning subgraph G of

D with the following properties: (c.1) G is piece-wise strongly

connected and has no isolated vertices, (c.2) G dominates D,

and (c.3) no subgraph H of D strictly dominates G.

Proof. (⇒) Let P be an atomic swap protocol for S . Define G
to be the subgraph whose vertex set is V and whose arcs are

the arcs triggered in an execution of P where all parties follow

the protocol. By definition of P’s atomicity, G is spanning.

We first show property (c.1). First, G cannot have any isolated

vertices, since any isolated vertex v of G would have outcome

NODEAL
D
v when all parties follow P. This would contradict

the uniformity (the liveness condition) of P. Second, if G had

a connected component B that is not strongly connected, then

B would contain a strongly connected component C of G that

has no arcs of G coming from V \ C but has at least one arc

of G going to V \C. We could then consider another run of P

in which the parties in C ignore P entirely and simply trigger

the arcs of G that are within C. By the inclusive monotonicity

property (p.2) of swap systems, this would strictly improve

the outcome vector of C, contradicting P being a strong Nash

equilibrium. We can thus conclude that such B cannot exist,

completing the proof that G is piece-wise strongly connected.

Next, we consider property (c.2). By the uniformity (liveness)

of P, every party v must end in outcome DEAL
D
v or better when

all parties follow P. The arcs that are triggered at the conclusion

of P are exactly the arcs in G. Therefore DEAL
G
v � DEAL

D
v ,

for all parties v.

Finally, we show property (c.3). Suppose there is a subgraph

H that strictly dominates G, towards contradiction. Let C
be the set of vertices of H. Modify the behavior of the

parties in C to ignore P and instead trigger exactly the arcs

of H, giving C the outcome vector (DEAL
H
v )v∈C . Then,

P(C) = (DEAL
G
v )v∈C ≺C (DEAL

H
v )v∈C , as H strictly

dominates G. This contradicts the assumption that P is a strong

Nash equilibrium, proving that H does not exists.

(⇐) Suppose that G is a spanning subgraph that satisfies

properties (c.1), (c.2) and (c.3). We show that then there is an

atomic protocol for S .

Let SG be the h-swap system with digraph G. Our protocol,

denoted HG , simply executes Herlihy’s protocol H on SG . For

simplicity, assume that G is strongly connected; otherwise we

can apply our reasoning below to each strongly connected

component of G separately. By the h-liveness condition of HG ,

if all parties follow HG then each will end up in outcome

DEAL
G . Also, any party v that follows HG will not have any

of its arcs outside G triggered and, by the safety property of

HG , will end up in an outcome that is acceptable in SG , that

is in {NODEAL
G
v } ∪ FREERIDE

G
v ∪ {DEAL

G
v } ∪ DISCOUNT

G
v .

When comparing outcomes in the argument that follows,

we will use notation “≺” for the preference relation in the

original swap system S (that is, not in the auxiliary system



SG). Similarly, unless stated otherwise, the term “acceptable”

also refers to the acceptability of an outcome in S .

We first show that HG is uniform. Suppose that every party

follows HG . Then, by the h-uniformity of HG , the outcome of

each party v will be DEAL
G
v . Using the assumptions that G is

spanning and that it dominates D, we obtain that DEAL
G
v �

DEAL
D
v for all parties v, so HG indeed satisfies the liveness

condition.

Next, we deal with the safety condition. Using the prop-

erties of HG established above, if a party v conforms to

HG then we have two cases. Either the outcome ω of v
satisfies ω ∈ {NODEAL

G
v } ∪ FREERIDE

G
v , in which case

ω ∈ {NODEAL
D
v } ∪ FREERIDE

D
v as well (because no edges

of v outside G are triggered), so ω � NODEAL
D
v , that is ω is

acceptable. Or ω ∈ {DEAL
G
v }∪DISCOUNT

G
v , in which case, us-

ing the monotonicity property (p.2) for S and assumption (c.2),

we obtain ω � DEAL
G
v � DEAL

D
v ≻ NODEAL

D
v ; that is ω is

acceptable in this case as well. We conclude that HG satisfies

the safety property, completing the proof that HG is uniform.

It remains to show that HG is a strong Nash equilibrium

for S . Assume that it is not, towards contradiction. Then there

exists a coalition C ⊆ V that, by deviating from HG , can

end in an outcome vector ω̄ ≻ (DEAL
G
v )v∈C , even though all

parties outside C follow HG . We can assume C is maximal,

in the sense that each party outside of C ends in an outcome

that is not DEAL
G nor in DISCOUNT

G . Otherwise, we can add

those parties to C and the relation ω̄ ≻ (DEAL
G
v )v∈C will be

preserved.

We first show that no arc (u, v) ∈ A entering C from outside

(that is u ∈ V \C and v ∈ C) is triggered. Assume such an arc

is triggered, towards contradiction. Firstly, (u, v) must be in G,

otherwise u would not be following HG by creating/triggering

this arc. By the h-safety property of H in SG , HG guarantees

that u must end up in an outcome acceptable in SG . This means

that u’s outcome is in {DEAL
G
u} ∪ DISCOUNT

G
u , contradicting

the assumption that C is maximal. So, indeed, (u, v) cannot

be triggered.

Further, without loss of generality we can assume that no

arc from C to V \ C is triggered. This is because, as we just

showed, for each v ∈ C, v only receives arcs from other parties

in C. Then, no member of C can have its outcome worsened

if v changes its behavior and does not trigger any arc to V \C.

Thus all arcs that appear in ω̄ are between members of C.

Let H be the subgraph with vertex set C and the arcs that

are in ω̄, that is ω̄ = (DEAL
H
v )v∈C . Since ω̄ ≻ (DEAL

G
v )v∈C ,

then DEAL
H
v � DEAL

G
v for all v ∈ C and DEAL

H
w ≻ DEAL

G
w

for some w ∈ C. This means that H strictly dominates G,

contradicting (c.3). We conclude that no such C exists, and

thus HG is a strong Nash equilibrium protocol.

Comment: As some readers may have noticed, the proof

of the (⇒) implication in Theorem 3 does not use the safety

property of protocol P. What this shows, in essence, is that

in our setting of swap systems, a swap protocol that has the

liveness and strong Nash equilibrium properties can be modified

to also satisfy the safety property.

With Theorem 3 established, we can determine if a given

swap system S permits an atomic protocol. Additionally, if it

does, we can define such a protocol. Algorithm 2 describes

how to check if a given swap protocol permits an atomic

protocol. If it does not, it returns -1. Otherwise, it returns a

set of strongly connected components. Then, the atomic swap

protocol is running H with each component as the underlying

graph.

Algorithm 2 Generalized Atomic Swap Protocol

Input: Swap System S = (D,P)
Output: set of strongly connected components or -1

1: for every spanning subgraph G of D do

2: if G is piece-wise strongly connected then ⊲ c.1

3: if G dominates D then ⊲ c.2

4: for every subgraph H of D do ⊲ c.3

5: if H strictly dominates G then

6: return -1

7: return {C | C is an SCC of G}

8: return -1

Example 3. (Example 1 continued) To illustrate Theorem 3,

consider again the swap system S = (D,P) in Example 1.

Let G1 = D. Then G1 is spanning, satisfies conditions (c.1)

and (c.2), but it does not satisfy condition (c.3) because it is

strictly dominated by subgraph H consisting of vertices u, v
and arcs (u, v) and (v, u). .

But we can take instead subgraph G2 consisting of arcs

(u,w), (w, v) and (v, u). Then G2 is spanning, satisfies (c.1)

and (c.2), and there is no subgraph of D that strictly dominates

G2, so (c.3) holds as well. Therefore S has an atomic swap

protocol. This protocol will completely ignore arcs outside

G2. It will execute Herlihy’s protocol, described in Section III,

using G2 as the underlying graph. In fact, since G2 is a simple

cycle, the full protocol of Herlihy is not needed — the simpler

protocol that uses only one leader and does not need signatures

can be used instead, see [19]. Roughly, this protocol chooses

one leader, say u, who creates its secret, then the smart contracts

based on this (hashed) secret are created by parties u, v and

w on their outgoing arcs, with decreasing time-out values, and

then the counter-parties claim the assets in these contracts, one

by one, in the reverse order.

Example 4. We now give a larger example. Consider the

swap system S = (D,P) with digraph D in Figure 4 and with

preference posets defined as follows. For i = 1, 2:

• The preference poset of ui is generated by DEALui
≺ 〈vi | vi〉

and DEALui
≺ 〈u3−i |u3−i〉.

• The preference poset of vi is generated by DEALvi
≺ 〈ui |ui〉

and DEALvi ≺ 〈t3−i | ti〉 ≺ 〈v3−i | v3−i〉.
• The preference poset of ti is generated by DEALti ≺
〈vi | v3−i〉 and DEALti ≺ 〈t3−i | t3−i〉.

We consider three candidates for the spanning sugraph G.

One candidate is G1 = D. It’s obviously spanning and it

satisfies conditions (c.1) and (c.2) from Theorem 3. However,
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t2

<latexit sha1_base64="8EDKGVqw3tn90i2a11RD0dQaHzA=">AAAB6nicbZDLSsNAFIZP6q1Gq1WXbgZLwVVJRLTLgiAuK9oLtKFMppN26GQS5iKU0Edw40IRt+KD+AjufBunl4W2/jDw8f/nMOecMOVMac/7dnJr6xubW/ltd2e3sLdfPDhsqsRIQhsk4Ylsh1hRzgRtaKY5baeS4jjktBWOrqZ564FKxRJxr8cpDWI8ECxiBGtr3Zme3yuWvIo3E1oFfwGlWuHTlK/dj3qv+NXtJ8TEVGjCsVId30t1kGGpGeF04naNoikmIzygHYsCx1QF2WzUCSpbp4+iRNonNJq5vzsyHCs1jkNbGWM9VMvZ1Pwv6xgdVYOMidRoKsj8o8hwpBM03Rv1maRE87EFTCSzsyIyxBITba/j2iP4yyuvQvOs4l9Uzm/9Uq0Kc+XhGE7gFHy4hBrcQB0aQGAAj/AMLw53npxX521emnMWPUfwR877D4zDkDg=</latexit>u1
<latexit sha1_base64="XAzdpy5WDyRCQ2uSxSXBFcppmmY=">AAAB6nicbZDNSgMxFIXv1L86Wq26dBMsBVdlIqJdFgRxWdG2QjuUTJppQzOZIckUytBHcONCEbfig/gI7nwb05+Fth4IfJxzL7n3Bong2njet5NbW9/Y3Mpvuzu7hb394sFhU8epoqxBYxGrh4BoJrhkDcONYA+JYiQKBGsFw6tp3hoxpXks7804YX5E+pKHnBJjrbtRF3eLJa/izYRWAS+gVCt8puVr96PeLX51ejFNIyYNFUTrNvYS42dEGU4Fm7idVLOE0CHps7ZFSSKm/Ww26gSVrdNDYazskwbN3N8dGYm0HkeBrYyIGejlbGr+l7VTE1b9jMskNUzS+UdhKpCJ0XRv1OOKUSPGFghV3M6K6IAoQo29jmuPgJdXXoXmWQVfVM5vcalWhbnycAwncAoYLqEGN1CHBlDowyM8w4sjnCfn1Xmbl+acRc8R/JHz/gOOSZA5</latexit>v1

<latexit sha1_base64="OSRgs0fvn10UNzEFICD+ra4lSQY=">AAAB6nicbZDLSsNAFIZPvNZoterSzWApuCpJEe2yIIjLivYCbSiT6aQdOpmEuQgl9BHcuFDErfggPoI738bpZaGtPwx8/P85zDknTDlT2vO+nbX1jc2t7dyOu7uX3z8oHB41VWIkoQ2S8ES2Q6woZ4I2NNOctlNJcRxy2gpHV9O89UClYom41+OUBjEeCBYxgrW17kyv0isUvbI3E1oFfwHFWv7TlK7dj3qv8NXtJ8TEVGjCsVId30t1kGGpGeF04naNoikmIzygHYsCx1QF2WzUCSpZp4+iRNonNJq5vzsyHCs1jkNbGWM9VMvZ1Pwv6xgdVYOMidRoKsj8o8hwpBM03Rv1maRE87EFTCSzsyIyxBITba/j2iP4yyuvQrNS9i/K57d+sVaFuXJwAqdwBj5cQg1uoA4NIDCAR3iGF4c7T86r8zYvXXMWPcfwR877D45HkDk=</latexit>u2
<latexit sha1_base64="RW7ry5apsnLczL4fuih14wNR62g=">AAAB6nicbZDNSsNAFIVv6l+NVqsu3QyWgquSFNEuC4K4rGh/oA1lMp20QyeTMDMplNBHcONCEbfig/gI7nwbp2kX2npg4OOce5l7rx9zprTjfFu5jc2t7Z38rr23Xzg4LB4dt1SUSEKbJOKR7PhYUc4EbWqmOe3EkuLQ57Ttj6/neXtCpWKReNDTmHohHgoWMIK1se4n/Wq/WHIqTia0Du4SSvXCZ1K+sT8a/eJXbxCRJKRCE46V6rpOrL0US80IpzO7lygaYzLGQ9o1KHBIlZdmo85Q2TgDFETSPKFR5v7uSHGo1DT0TWWI9UitZnPzv6yb6KDmpUzEiaaCLD4KEo50hOZ7owGTlGg+NYCJZGZWREZYYqLNdWxzBHd15XVoVSvuZeXizi3Va7BQHk7hDM7BhSuowy00oAkEhvAIz/BicevJerXeFqU5a9lzAn9kvf8Aj82QOg==</latexit>v2

<latexit sha1_base64="L1q+DbVkEr/7noE8ZeQnXcCy4q4=">AAAB6nicbZDLSgNBEEVr4iuORqMu3TSGgKswI6JZBgRxGdE8IBlCT6cnadLzoLtGCEM+wY0LRdyKH+InuPNv7DwWmnih4XBvFV1VfiKFRsf5tnJr6xubW/lte2e3sLdfPDhs6jhVjDdYLGPV9qnmUkS8gQIlbyeK09CXvOWPrqZ564ErLeLoHscJ90I6iEQgGEVj3WHP7RVLTsWZiayCu4BSrfCZlq/tj3qv+NXtxywNeYRMUq07rpOgl1GFgkk+sbup5gllIzrgHYMRDbn2stmoE1I2Tp8EsTIvQjJzf3dkNNR6HPqmMqQ41MvZ1Pwv66QYVL1MREmKPGLzj4JUEozJdG/SF4ozlGMDlClhZiVsSBVlaK5jmyO4yyuvQvOs4l5Uzm/dUq0Kc+XhGE7gFFy4hBrcQB0awGAAj/AML5a0nqxX621emrMWPUfwR9b7D4s9kDc=</latexit>

t1

<latexit sha1_base64="mUxQMUi0T85Sjh/x3Ic5XjLwGyc=">AAAB6nicbZDLSsNAFIZPvNZoterSTbAUXJWkiHZZEMRlRXuBNpTJdNIOnUzCzIlQQh/BjQtF3IoP4iO4822cXhba+sPAx/+fw5xzgkRwja77ba2tb2xubed27N29/P5B4fCoqeNUUdagsYhVOyCaCS5ZAzkK1k4UI1EgWCsYXU3z1gNTmsfyHscJ8yMykDzklKCx7rBX6RWKbtmdyVkFbwHFWv4zLV3bH/Ve4avbj2kaMYlUEK07npugnxGFnAo2sbupZgmhIzJgHYOSREz72WzUiVMyTt8JY2WeRGfm/u7ISKT1OApMZURwqJezqflf1kkxrPoZl0mKTNL5R2EqHIyd6d5OnytGUYwNEKq4mdWhQ6IIRXMd2xzBW155FZqVsndRPr/1irUqzJWDEziFM/DgEmpwA3VoAIUBPMIzvFjCerJerbd56Zq16DmGP7LefwCMwZA4</latexit>

t2

<latexit sha1_base64="8EDKGVqw3tn90i2a11RD0dQaHzA=">AAAB6nicbZDLSsNAFIZP6q1Gq1WXbgZLwVVJRLTLgiAuK9oLtKFMppN26GQS5iKU0Edw40IRt+KD+AjufBunl4W2/jDw8f/nMOecMOVMac/7dnJr6xubW/ltd2e3sLdfPDhsqsRIQhsk4Ylsh1hRzgRtaKY5baeS4jjktBWOrqZ564FKxRJxr8cpDWI8ECxiBGtr3Zme3yuWvIo3E1oFfwGlWuHTlK/dj3qv+NXtJ8TEVGjCsVId30t1kGGpGeF04naNoikmIzygHYsCx1QF2WzUCSpbp4+iRNonNJq5vzsyHCs1jkNbGWM9VMvZ1Pwv6xgdVYOMidRoKsj8o8hwpBM03Rv1maRE87EFTCSzsyIyxBITba/j2iP4yyuvQvOs4l9Uzm/9Uq0Kc+XhGE7gFHy4hBrcQB0aQGAAj/AMLw53npxX521emnMWPUfwR877D4zDkDg=</latexit>u1
<latexit sha1_base64="XAzdpy5WDyRCQ2uSxSXBFcppmmY=">AAAB6nicbZDNSgMxFIXv1L86Wq26dBMsBVdlIqJdFgRxWdG2QjuUTJppQzOZIckUytBHcONCEbfig/gI7nwb05+Fth4IfJxzL7n3Bong2njet5NbW9/Y3Mpvuzu7hb394sFhU8epoqxBYxGrh4BoJrhkDcONYA+JYiQKBGsFw6tp3hoxpXks7804YX5E+pKHnBJjrbtRF3eLJa/izYRWAS+gVCt8puVr96PeLX51ejFNIyYNFUTrNvYS42dEGU4Fm7idVLOE0CHps7ZFSSKm/Ww26gSVrdNDYazskwbN3N8dGYm0HkeBrYyIGejlbGr+l7VTE1b9jMskNUzS+UdhKpCJ0XRv1OOKUSPGFghV3M6K6IAoQo29jmuPgJdXXoXmWQVfVM5vcalWhbnycAwncAoYLqEGN1CHBlDowyM8w4sjnCfn1Xmbl+acRc8R/JHz/gOOSZA5</latexit>v1

<latexit sha1_base64="OSRgs0fvn10UNzEFICD+ra4lSQY=">AAAB6nicbZDLSsNAFIZPvNZoterSzWApuCpJEe2yIIjLivYCbSiT6aQdOpmEuQgl9BHcuFDErfggPoI738bpZaGtPwx8/P85zDknTDlT2vO+nbX1jc2t7dyOu7uX3z8oHB41VWIkoQ2S8ES2Q6woZ4I2NNOctlNJcRxy2gpHV9O89UClYom41+OUBjEeCBYxgrW17kyv0isUvbI3E1oFfwHFWv7TlK7dj3qv8NXtJ8TEVGjCsVId30t1kGGpGeF04naNoikmIzygHYsCx1QF2WzUCSpZp4+iRNonNJq5vzsyHCs1jkNbGWM9VMvZ1Pwv6xgdVYOMidRoKsj8o8hwpBM03Rv1maRE87EFTCSzsyIyxBITba/j2iP4yyuvQrNS9i/K57d+sVaFuXJwAqdwBj5cQg1uoA4NIDCAR3iGF4c7T86r8zYvXXMWPcfwR877D45HkDk=</latexit>u2
<latexit sha1_base64="RW7ry5apsnLczL4fuih14wNR62g=">AAAB6nicbZDNSsNAFIVv6l+NVqsu3QyWgquSFNEuC4K4rGh/oA1lMp20QyeTMDMplNBHcONCEbfig/gI7nwbp2kX2npg4OOce5l7rx9zprTjfFu5jc2t7Z38rr23Xzg4LB4dt1SUSEKbJOKR7PhYUc4EbWqmOe3EkuLQ57Ttj6/neXtCpWKReNDTmHohHgoWMIK1se4n/Wq/WHIqTia0Du4SSvXCZ1K+sT8a/eJXbxCRJKRCE46V6rpOrL0US80IpzO7lygaYzLGQ9o1KHBIlZdmo85Q2TgDFETSPKFR5v7uSHGo1DT0TWWI9UitZnPzv6yb6KDmpUzEiaaCLD4KEo50hOZ7owGTlGg+NYCJZGZWREZYYqLNdWxzBHd15XVoVSvuZeXizi3Va7BQHk7hDM7BhSuowy00oAkEhvAIz/BicevJerXeFqU5a9lzAn9kvf8Aj82QOg==</latexit>v2

<latexit sha1_base64="L1q+DbVkEr/7noE8ZeQnXcCy4q4=">AAAB6nicbZDLSgNBEEVr4iuORqMu3TSGgKswI6JZBgRxGdE8IBlCT6cnadLzoLtGCEM+wY0LRdyKH+InuPNv7DwWmnih4XBvFV1VfiKFRsf5tnJr6xubW/lte2e3sLdfPDhs6jhVjDdYLGPV9qnmUkS8gQIlbyeK09CXvOWPrqZ564ErLeLoHscJ90I6iEQgGEVj3WHP7RVLTsWZiayCu4BSrfCZlq/tj3qv+NXtxywNeYRMUq07rpOgl1GFgkk+sbup5gllIzrgHYMRDbn2stmoE1I2Tp8EsTIvQjJzf3dkNNR6HPqmMqQ41MvZ1Pwv66QYVL1MREmKPGLzj4JUEozJdG/SF4ozlGMDlClhZiVsSBVlaK5jmyO4yyuvQvOs4l5Uzm/dUq0Kc+XhGE7gFFy4hBrcQB0awGAAj/AML5a0nqxX621emrMWPUfwR9b7D4s9kDc=</latexit>

t1

<latexit sha1_base64="mUxQMUi0T85Sjh/x3Ic5XjLwGyc=">AAAB6nicbZDLSsNAFIZPvNZoterSTbAUXJWkiHZZEMRlRXuBNpTJdNIOnUzCzIlQQh/BjQtF3IoP4iO4822cXhba+sPAx/+fw5xzgkRwja77ba2tb2xubed27N29/P5B4fCoqeNUUdagsYhVOyCaCS5ZAzkK1k4UI1EgWCsYXU3z1gNTmsfyHscJ8yMykDzklKCx7rBX6RWKbtmdyVkFbwHFWv4zLV3bH/Ve4avbj2kaMYlUEK07npugnxGFnAo2sbupZgmhIzJgHYOSREz72WzUiVMyTt8JY2WeRGfm/u7ISKT1OApMZURwqJezqflf1kkxrPoZl0mKTNL5R2EqHIyd6d5OnytGUYwNEKq4mdWhQ6IIRXMd2xzBW155FZqVsndRPr/1irUqzJWDEziFM/DgEmpwA3VoAIUBPMIzvFjCerJerbd56Zq16DmGP7LefwCMwZA4</latexit>

t2

<latexit sha1_base64="XAzdpy5WDyRCQ2uSxSXBFcppmmY=">AAAB6nicbZDNSgMxFIXv1L86Wq26dBMsBVdlIqJdFgRxWdG2QjuUTJppQzOZIckUytBHcONCEbfig/gI7nwb05+Fth4IfJxzL7n3Bong2njet5NbW9/Y3Mpvuzu7hb394sFhU8epoqxBYxGrh4BoJrhkDcONYA+JYiQKBGsFw6tp3hoxpXks7804YX5E+pKHnBJjrbtRF3eLJa/izYRWAS+gVCt8puVr96PeLX51ejFNIyYNFUTrNvYS42dEGU4Fm7idVLOE0CHps7ZFSSKm/Ww26gSVrdNDYazskwbN3N8dGYm0HkeBrYyIGejlbGr+l7VTE1b9jMskNUzS+UdhKpCJ0XRv1OOKUSPGFghV3M6K6IAoQo29jmuPgJdXXoXmWQVfVM5vcalWhbnycAwncAoYLqEGN1CHBlDowyM8w4sjnCfn1Xmbl+acRc8R/JHz/gOOSZA5</latexit>v1
<latexit sha1_base64="RW7ry5apsnLczL4fuih14wNR62g=">AAAB6nicbZDNSsNAFIVv6l+NVqsu3QyWgquSFNEuC4K4rGh/oA1lMp20QyeTMDMplNBHcONCEbfig/gI7nwbp2kX2npg4OOce5l7rx9zprTjfFu5jc2t7Z38rr23Xzg4LB4dt1SUSEKbJOKR7PhYUc4EbWqmOe3EkuLQ57Ttj6/neXtCpWKReNDTmHohHgoWMIK1se4n/Wq/WHIqTia0Du4SSvXCZ1K+sT8a/eJXbxCRJKRCE46V6rpOrL0US80IpzO7lygaYzLGQ9o1KHBIlZdmo85Q2TgDFETSPKFR5v7uSHGo1DT0TWWI9UitZnPzv6yb6KDmpUzEiaaCLD4KEo50hOZ7owGTlGg+NYCJZGZWREZYYqLNdWxzBHd15XVoVSvuZeXizi3Va7BQHk7hDM7BhSuowy00oAkEhvAIz/BicevJerXeFqU5a9lzAn9kvf8Aj82QOg==</latexit>v2

<latexit sha1_base64="L1q+DbVkEr/7noE8ZeQnXcCy4q4=">AAAB6nicbZDLSgNBEEVr4iuORqMu3TSGgKswI6JZBgRxGdE8IBlCT6cnadLzoLtGCEM+wY0LRdyKH+InuPNv7DwWmnih4XBvFV1VfiKFRsf5tnJr6xubW/lte2e3sLdfPDhs6jhVjDdYLGPV9qnmUkS8gQIlbyeK09CXvOWPrqZ564ErLeLoHscJ90I6iEQgGEVj3WHP7RVLTsWZiayCu4BSrfCZlq/tj3qv+NXtxywNeYRMUq07rpOgl1GFgkk+sbup5gllIzrgHYMRDbn2stmoE1I2Tp8EsTIvQjJzf3dkNNR6HPqmMqQ41MvZ1Pwv66QYVL1MREmKPGLzj4JUEozJdG/SF4ozlGMDlClhZiVsSBVlaK5jmyO4yyuvQvOs4l5Uzm/dUq0Kc+XhGE7gFFy4hBrcQB0awGAAj/AML5a0nqxX621emrMWPUfwR9b7D4s9kDc=</latexit>

t1

<latexit sha1_base64="mUxQMUi0T85Sjh/x3Ic5XjLwGyc=">AAAB6nicbZDLSsNAFIZPvNZoterSTbAUXJWkiHZZEMRlRXuBNpTJdNIOnUzCzIlQQh/BjQtF3IoP4iO4822cXhba+sPAx/+fw5xzgkRwja77ba2tb2xubed27N29/P5B4fCoqeNUUdagsYhVOyCaCS5ZAzkK1k4UI1EgWCsYXU3z1gNTmsfyHscJ8yMykDzklKCx7rBX6RWKbtmdyVkFbwHFWv4zLV3bH/Ve4avbj2kaMYlUEK07npugnxGFnAo2sbupZgmhIzJgHYOSREz72WzUiVMyTt8JY2WeRGfm/u7ISKT1OApMZURwqJezqflf1kkxrPoZl0mKTNL5R2EqHIyd6d5OnytGUYwNEKq4mdWhQ6IIRXMd2xzBW155FZqVsndRPr/1irUqzJWDEziFM/DgEmpwA3VoAIUBPMIzvFjCerJerbd56Zq16DmGP7LefwCMwZA4</latexit>

t2

<latexit sha1_base64="MHVmINHnpYkpEamW1fK8Q/JH6nE="></latexit>

D = G1

<latexit sha1_base64="04/McWyuDd8Cx2qhiFjOrYI3v4s=">AAAB+HicdVDLSgMxFM34rPXRqriQboJFcDXMo9gWXBRc6LIF+4DOMGTSTBuaeZBkhDr0S9y4UMStH+LCnX6NaaugogcCh3Pu5Z4cP2FUSMN405aWV1bX1nMb+c2t7Z1CcXevI+KUY9LGMYt5z0eCMBqRtqSSkV7CCQp9Rrr++Hzmd68JFzSOruQkIW6IhhENKEZSSV6xkDkhkiOMWHYxnXqWVywbumFVrLoNDd20a3a1oohVM6p2HZq6MUe5ceCU3luHL02v+OoMYpyGJJKYISH6ppFIN0NcUszINO+kgiQIj9GQ9BWNUEiEm82DT+GxUgYwiLl6kYRz9ftGhkIhJqGvJmcpxW9vJv7l9VMZ1NyMRkkqSYQXh4KUQRnDWQtwQDnBkk0UQZhTlRXiEeIIS9VVXpXw9VP4P+lYunmqmy2z3DgDC+RACRyBE2CCKmiAS9AEbYBBCm7BPXjQbrQ77VF7WowuaZ87++AHtOcPM1uWZQ==</latexit>

G2

<latexit sha1_base64="jbVEW9ZbU8GIYlJqFriHBT/4N98=">AAAB+HicdVDLSgMxFM34rPXRqriQboJFcDXMo9gWXBRc6LIF+4DOMGTSTBuaeZBkhDr0S9y4UMStH+LCnX6NaaugogcCh3Pu5Z4cP2FUSMN405aWV1bX1nMb+c2t7Z1CcXevI+KUY9LGMYt5z0eCMBqRtqSSkV7CCQp9Rrr++Hzmd68JFzSOruQkIW6IhhENKEZSSV6xkDkhkiOMWHYxnXq2VywbumFVrLoNDd20a3a1oohVM6p2HZq6MUe5ceCU3luHL02v+OoMYpyGJJKYISH6ppFIN0NcUszINO+kgiQIj9GQ9BWNUEiEm82DT+GxUgYwiLl6kYRz9ftGhkIhJqGvJmcpxW9vJv7l9VMZ1NyMRkkqSYQXh4KUQRnDWQtwQDnBkk0UQZhTlRXiEeIIS9VVXpXw9VP4P+lYunmqmy2z3DgDC+RACRyBE2CCKmiAS9AEbYBBCm7BPXjQbrQ77VF7WowuaZ87++AHtOcPNN+WZg==</latexit>

G3

<latexit sha1_base64="PqYQsd6EGxFBUbCgkvnpXctZIMM=">AAAB+HicdVDLSgMxFM34rPXRUXEh3QSL4GqYR7EtuCi46bIF+4DOUDJp2oZmHiQZoQ79EjcuFHHrh7hwp19jplVQ0QOBwzn3ck+OHzMqpGm+aSura+sbm7mt/PbO7l5B3z/oiCjhmLRxxCLe85EgjIakLalkpBdzggKfka4/vcz87jXhgkbhlZzFxAvQOKQjipFU0kAvpG6A5AQjljbm84E10EumYdplu+ZA07CcqlMpK2JXzYpTg5ZhLlCqH7nF99bxS3Ogv7rDCCcBCSVmSIi+ZcbSSxGXFDMyz7uJIDHCUzQmfUVDFBDhpYvgc3iqlCEcRVy9UMKF+n0jRYEQs8BXk1lK8dvLxL+8fiJHVS+lYZxIEuLloVHCoIxg1gIcUk6wZDNFEOZUZYV4gjjCUnWVVyV8/RT+Tzq2YZ0bVssq1S/AEjlQBCfgDFigAuqgAZqgDTBIwC24Bw/ajXanPWpPy9EV7XPnEPyA9vwBM1+WZQ==</latexit>

H1

<latexit sha1_base64="xLQIkdknr8T9vj0NDdbxWIhJFFA=">AAAB+HicdVDLSgMxFM34rPXRqriQboJFcDXMo9gWXBTcdNmCfUBbhkyatqGZzJBkhDrMl7hxoYhbP8SFO/0a01ZBRQ8EDufcyz05fsSoVJb1Zqysrq1vbGa2sts7u3u5/P5BW4axwKSFQxaKro8kYZSTlqKKkW4kCAp8Rjr+9HLud66JkDTkV2oWkUGAxpyOKEZKS14+l/QDpCYYsaSepp7j5YuWaTklp+pCy7TdilsuaeJUrLJbhbZpLVCsHfUL783jl4aXf+0PQxwHhCvMkJQ924rUIEFCUcxImu3HkkQIT9GY9DTlKCBykCyCp/BUK0M4CoV+XMGF+n0jQYGUs8DXk/OU8rc3F//yerEaVQYJ5VGsCMfLQ6OYQRXCeQtwSAXBis00QVhQnRXiCRIIK91VVpfw9VP4P2k7pn1u2k27WLsAS2RAAZyAM2CDMqiBOmiAFsAgBrfgHjwYN8ad8Wg8LUdXjM+dQ/ADxvMHNOOWZg==</latexit>

H2

Fig. 4. Digraph D in the example illustrating Theorem 3.

it is strictly dominated by several subgraphs including the

following two: subgraph H1 consisting of v1 and v2 with arcs

(v1, v2) and (v2, v1), and subgraph H2 consisting of t1 and t2
with arcs (t1, t2) and (t2, t1).

Another candidate G2 consists of arcs (ui, u3−i), (vi, ti)
and (ti, v3−i). for i = 1, 2. G2 is spanning and it satisfies

condition (c.1). By inspecting the preferences of each vertex,

it also satisfies (c.2). But it is strictly dominated by H1.

The third candidate G3 consists of arcs (ui, vi), (vi, ui),
and (ti, t3−i), for i = 1, 2. It is also spanning and satisfies

conditions (c.1) and (c.2). Also, the outcome of each vertex in

G3 is maximal in its preference poset, so there is no subgraph

of D that strictly dominates G3. Thus, by Theorem 3, S has

an atomic swap protocol. This protocol is obtained by running

H in G3.

V. NP-HARDNESS

Now that we have characterized the swap systems that permit

an atomic protocol, a natural next question is the complexity

of the corresponding decision problem: given a swap system,

does it permit an atomic protocol? In the next two sections,

we consider this. In this section, we define the corresponding

decision problem and show it is in NP-hard. In the following

section, we tighten this classification to ΣP

2
-complete. Although

showing the problem is ΣP

2
-complete would imply it is NP-

hard, we first present the NP-hardness proof since it is more

digestible, and then present the more involved ΣP

2
-completeness

proof.

Let SwapAtomic be the following decision problem: The

input is a swap system S = (D,P), where D is a (weakly)

connected digraph with no vertices of in-degree or out-degree

0. The objective is to decide whether S has an atomic swap

protocol.

Theorem 4. SwapAtomic is NP-hard, even for swap systems

S = (D,P) in which digraph D is strongly connected.

Proof. The proof is by showing a polynomial-time reduction

from CNF. Recall that in CNF we are given a boolean

expression α in conjunctive normal form, and the objective is

to determine whether there is a truth assignment that satisfies α.

In our reduction we convert α into a swap system S = (D,P)
such that α is satisfiable if and only if S has an atomic swap

protocol.

Let x1, x2, ..., xn be the variables in α. The negation of xi

is denoted x̄i. We will use notation x̃i for an unspecified literal

of variable xi, that is x̃i ∈ {xi, x̄i}. Let α = c1 ∨ c2 ∨ ...∨ cm,

where each cj is a clause. Without loss of generality we assume

that in each clause all literals are different.

We first describe the reduction. The fundamental approach

is similar to other reductions from CNF: D will consist of

so-called “gadgets” which are subgraphs used to simulate the

role of variables and clauses. We then add some connections

between these gadgets and specify appropriate preference pairs

to assure that the resulting swap system S satisfies the required

property, given above.

Specifically, in D there will be n gadgets corresponding to

variables, m gadgets corresponding to clauses, and one more

vertex called the core vertex. The xi-gadget has vertices xi and

x̄i, that represent the literals of variable xi, plus two additional

vertices si and ti. Its internal arcs are (si, xi), (si, x̄i), (si, ti),
and (ti, si). The cj-gadget has two vertices cj and aj , with

internal arcs (cj , aj), (aj , cj). (See Figure 5.) We then add the

following arcs: For each clause cj and each literal x̃i in cj ,

we add arc (x̃i, cj). The core vertex, denoted b, is connected

by arcs to and from each vertex in the above gadgets.

Next, we describe the preference posets Pv , for each vertex

v in D. (See Figure 6.) As explained in Section II, an outcome

〈ωin |ωout〉 of a vertex v is specified by lists ωin and ωout

of its in-neighbors and out-neighbors, respectively, and any

preference poset can be uniquely defined by an appropriate set

of generators.

The center vertex b’s preference poset is generated by all
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Fig. 5. The variable and clause gadgets in the proof of Theorem 4. The arcs to and from the core vertex b are shown as bi-directional arcs.

relations ω ≺ NODEALb, for ω ∈ UNDERWATERb. (This is the

same poset as in h-swap systems.) For each vertex si, its pref-

erence poset is generated by relations 〈b, ti | ti, x̄i〉 ≺ 〈ti | ti〉,
〈ti | ti〉 ≺ 〈b | b, xi〉, and 〈ti | ti〉 ≺ 〈b | b, x̄i〉. For each vertex

ti, its generators are DEALti ≺ 〈b | b〉 and 〈b, si | b〉 ≺ 〈si | si〉.
Each vertex x̃i ∈ {xi, x̄i} has one generator DEALx̃i

≺ 〈b | b〉.
Each vertex cj has generators DEALcj ≺ 〈b, x̃i | b〉, for each

literal x̃i in cj . The only generator of each vertex aj is

DEALaj
≺ 〈b | b〉.

With this, the description of S is complete. The construction

of S clearly takes time that is polynomial in the size of α.

Applying Theorem 3, it remains to show that α is satisfiable

if and only if D has a spanning subgraph G with the following

properties: (c.1) G is piece-wise strongly connected and has no

isolated vertices, (c.2) G dominates D, and (c.3) no subgraph

H of D strictly dominates G.

(⇒) Suppose that α is satisfiable, and consider some satis-

fying assignment for α. Using this assignment, we construct a

spanning subgraph G of D that satisfies the three conditions

(c.1)-(c.3) above.

Graph G will contain all vertices from the above construction

and all arcs that connect b to all other vertices, in both directions.

This makes G spanning and strongly connected, so (c.1) holds.

Other arcs of G are defined as follows. For each true literal x̃i,

add to G arc (si, x̃i). For each clause cj and each true literal

x̃i in cj , add to G arc (x̃i, cj).

Condition (c.2) can be verified through routine inspection,

by observing that DEAL
D
v � DEAL

G
v holds for each vertex v,

directly from the above specification of the preference posets.

For example, for a vertex si, if x̃i is the true literal of xi

then we have DEAL
G
si

= 〈b | b, x̃i〉 � DEAL
D
si

. For any x̃i, let

C(x̃i) be the set of clauses that contain x̃i. If x̃i is true then

DEAL
G
x̃i

= 〈b, si | b, C(x̃i)〉 = DEAL
D
x̃i

, and if x̃i is false then

DEAL
G
x̃i

= 〈b | b〉 � DEAL
D
x̃i

. For each clause cj , denote by

T (cj) the set of true literals in cj . Since we use a satisfying

assignment, each T (cj) is non-empty. For a clause cj , for any

true literal x̃i ∈ T (cj), applying the inclusive monotonicity

property (p.2) we have DEAL
G
cj

= 〈b, T (cj) | b〉 � 〈b, x̃i | b〉 �

DEAL
D
cj

.

It remains to verify condition (c.3). Let H be a subgraph of

D, and suppose that H dominates G, that is DEAL
H
v � DEAL

G
v

for all vertices v in H.

We claim first that H must contain b. Indeed, otherwise for

any vertex v of H we would have DEAL
H
v = ω = 〈ωin |ωout〉

with b /∈ ωin and ω � DEAL
G
v . The only vertices that have

such outcomes ω are t′is. For any ti, the only outcome ω that

has these properties is 〈si | si〉. But then H would also have

to contain si contradicting the earlier statement. (We note that

DEAL
G
si

= 〈b | b, x̃i〉 where x̃i is the true literal of xi, and

there is no strictly better outcome for si.)

So we can assume from now on that H contains b. The

idea of the remaining argument is to show that the assumption

that H dominates G implies that in fact H = G — so H
cannot strictly dominate G. To this end, we examine the arcs

of D one by one. For each arc (u, v), we use the relation

DEAL
H
z � DEAL

G
z for some z ∈ {u, v}, to show that (u, v)

belongs to H if and only if it belongs to G. We will divide

this argument into a sequence of claims.

Claim 1: H contains all arcs (v, b) and (b, v), for v 6= b. From

the definition of the preference poset of b, H must contain all

incoming arcs of b. This gives us that H is spanning. For each

v 6= b, any outcome ω � DEAL
G
v that has outgoing arc (v, b)

must also have incoming arc (b, v). This proves the claim.

Claim 2: H does not contain any arc (aj , cj) or (cj , aj). Indeed,

no outcome of aj that has arc (aj , cj) is better than 〈b | b〉 =
DEAL

G
aj

, so H cannot contain (aj , cj). Similarly, no outcome

of cj that has arc (cj , aj) is better than 〈b, T (cj) | b〉 = DEAL
G
cj

,

so H cannot contain (cj , aj).

Claim 3: For each literal x̃i in clause cj , H contains (x̃i, cj)
iff x̃i is true. Suppose first that x̃i is a literal in cj that is

true. There is no outcome of cj that does not contain (x̃i, cj)
and is better than 〈b, T (cj) | b〉 = DEAL

G
cj

, so H must contain

(x̃i, cj). Next, suppose that x̃i is false. Then no outcome of x̃i

that contains (x̃i, cj) is better than 〈b | b〉 = DEAL
G
x̃i

. Thus H
cannot contain (x̃i, cj).

Claim 4: For each literal x̃i, H contains arc (si, x̃i) iff x̃i is

true. Suppose first that literal x̃i is true. From the previous

claim, we have that the outgoing arcs to C(x̃i) are in H. There

is no outcome of x̃i that contains the arcs to C(x̃i), does

not contain arc (si, x̃i), and is better than 〈b, si | b, C(x̃i)〉 =
DEAL

G
x̃i

. Thus H must contain (si, x̃i). Next, suppose that x̃i

is false, and let ¯̃xi be the negation of x̃i (that is, the true literal

of xi). Then there is no outcome of si that contains arc (si, x̃i)
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x̄i

<latexit sha1_base64="W+WwYHbKuQ4w5UNc7gWBU7hM9iI="></latexit>

to τg’s that contain xi

<latexit sha1_base64="8NE/2vOhr0a/Ynd3I91sCuu43cQ="></latexit>

to τg’s that contain x̄i

<latexit sha1_base64="wteq9uI/OBEtDRWPXzPV1yQaPQ0=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBsAq7IprOgI1lAuYCyRJmJ2eTMbOzy8ysEJaUVjYWitj6FKl8CDufwZdwcik0+sPAx/+fw5xz/JgzpR3n08osLa+srmXXcxubW9s7+d29uooSSbFGIx7Jpk8Uciawppnm2IwlktDn2PAHV5O8cYdSsUjc6GGMXkh6ggWMEm2sqt/JF5yiM5X9F9w5FC7fx9Wv+8NxpZP/aHcjmoQoNOVEqZbrxNpLidSMchzl2onCmNAB6WHLoCAhKi+dDjqyj43TtYNImie0PXV/dqQkVGoY+qYyJLqvFrOJ+V/WSnRQ8lIm4kSjoLOPgoTbOrInW9tdJpFqPjRAqGRmVpv2iSRUm9vkzBHcxZX/Qv206J4Xz6puoVyCmbJwAEdwAi5cQBmuoQI1oIDwAE/wbN1aj9aL9TorzVjznn34JevtG4xlkS4=</latexit>

b

<latexit sha1_base64="GbsOITiX9skRMM2hkzMRWxWQxZs="></latexit>

to and from all
nodes except a and a0

Fig. 7. The construction of digraph D in the proof of ΣP

2
-hardness. This figure shows vertices a, a′, b, and an ∃-gadget for variable xi. The arcs to and from

b are shown as bi-directional arrows at b.

<latexit sha1_base64="wteq9uI/OBEtDRWPXzPV1yQaPQ0=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBsAq7IprOgI1lAuYCyRJmJ2eTMbOzy8ysEJaUVjYWitj6FKl8CDufwZdwcik0+sPAx/+fw5xz/JgzpR3n08osLa+srmXXcxubW9s7+d29uooSSbFGIx7Jpk8Uciawppnm2IwlktDn2PAHV5O8cYdSsUjc6GGMXkh6ggWMEm2sqt/JF5yiM5X9F9w5FC7fx9Wv+8NxpZP/aHcjmoQoNOVEqZbrxNpLidSMchzl2onCmNAB6WHLoCAhKi+dDjqyj43TtYNImie0PXV/dqQkVGoY+qYyJLqvFrOJ+V/WSnRQ8lIm4kSjoLOPgoTbOrInW9tdJpFqPjRAqGRmVpv2iSRUm9vkzBHcxZX/Qv206J4Xz6puoVyCmbJwAEdwAi5cQBmuoQI1oIDwAE/wbN1aj9aL9TorzVjznn34JevtG4xlkS4=</latexit>

b

<latexit sha1_base64="Gm05VTJwpWdkBgf3ADqFt0h4qkA=">AAAB6nicdVC7SgNBFJ2Nj8TER9TSwsEgWC37CGbTBW0sI5oHJEuYncwmY2YfzMwKy5I/0MZCEVu/yM7fsLZwkiio6IELh3Pu5Z57vZhRIQ3jVcstLa+s5gtrxdL6xuZWeXunLaKEY9LCEYt410OCMBqSlqSSkW7MCQo8Rjre5HTmd64JFzQKL2UaEzdAo5D6FCOppIt0cDUoVwzdsKpW3YaGbtqOXasqYjlGza5DUzfmqDT2307ypZv35qD80h9GOAlIKDFDQvRMI5ZuhrikmJFpsZ8IEiM8QSPSUzREARFuNo86hYdKGUI/4qpCCefq94kMBUKkgac6AyTH4rc3E//yeon0HTejYZxIEuLFIj9hUEZwdjccUk6wZKkiCHOqskI8Rhxhqb5TVE/4uhT+T9qWbh7r1XOz0nDAAgWwBw7AETBBDTTAGWiCFsBgBG7BPXjQmHanPWpPi9ac9jmzC35Ae/4AEtaRTg==</latexit>

yj

<latexit sha1_base64="fUbSYdymmiPtjZVRU7stznUdRuM=">AAAB8XicdVDLSsNAFJ3UR2vro+rShYNFcBWSpth0V3TjsoJ9YBvKZDptx04mYWYihNA/cOnGhSJu/Rt3/oZrF05bBRU9cOFwzr3cc68fMSqVZb0amaXlldVsbi1fWN/Y3Cpu77RkGAtMmjhkoej4SBJGOWkqqhjpRIKgwGek7U9OZ377mghJQ36hkoh4ARpxOqQYKS1dpj0fCZhM+1f9YskyrXKlXHOgZdqO61QrmpRdq+rUoG1ac5Tq+28n2cLNe6NffOkNQhwHhCvMkJRd24qUlyKhKGZkmu/FkkQIT9CIdDXlKCDSS+eJp/BQKwM4DIUuruBc/T6RokDKJPB1Z4DUWP72ZuJfXjdWQ9dLKY9iRTheLBrGDKoQzs6HAyoIVizRBGFBdVaIx0ggrPST8voJX5fC/0mrbNrHZuXcLtVdsEAO7IEDcARsUAV1cAYaoAkw4OAW3IMHQxp3xqPxtGjNGJ8zu+AHjOcPLhuUPQ==</latexit>

ȳj

<latexit sha1_base64="7/3vhp0mu5nEMsWnlq2ORCRfasU=">AAAB6nicdVDLSsNAFJ34am19VF26cLAIrkLSFJvuim5cVrQPaEOZTCft2MkkzkyEEvoHunGhiFu/yJ2/4dqF01ZBRQ9cOJxzL/fc68eMSmVZr8bC4tLySia7msuvrW9sFra2mzJKBCYNHLFItH0kCaOcNBRVjLRjQVDoM9LyRydTv3VNhKQRv1DjmHghGnAaUIyUls6vepe9QtEyrVK5VHWgZdqO61TKmpRcq+JUoW1aMxRre2/HmfzNe71XeOn2I5yEhCvMkJQd24qVlyKhKGZkkusmksQIj9CAdDTlKCTSS2dRJ/BAK30YREIXV3Cmfp9IUSjlOPR1Z4jUUP72puJfXidRgeullMeJIhzPFwUJgyqC07thnwqCFRtrgrCgOivEQyQQVvo7Of2Er0vh/6RZMu0js3xmF2sumCMLdsE+OAQ2qIAaOAV10AAYDMAtuAcPBjPujEfjad66YHzO7IAfMJ4/AAamkUY=</latexit>

qj
<latexit sha1_base64="XqLyTWfRmy1H2ZvVRxQWzu3nnAQ=">AAAB7nicdVC7SgNBFJ31lZj4iFpaOBgEG5fZ3WCSLmhjGcE8IFnC7GQ2GTP7cGZWCEv+wMbGQhFbv8fO37C2cJIoqOiBC4dz7uWee72YM6kQejUWFpeWVzLZ1Vx+bX1js7C13ZRRIghtkIhHou1hSTkLaUMxxWk7FhQHHqctb3Q69VvXVEgWhRdqHFM3wIOQ+YxgpaXWVS+9PLImvUIRmcgu2VUHItNyKk65pIldQWWnCi0TzVCs7b2dZPI37/Ve4aXbj0gS0FARjqXsWChWboqFYoTTSa6bSBpjMsID2tE0xAGVbjqLO4EHWulDPxK6QgVn6veJFAdSjgNPdwZYDeVvbyr+5XUS5VfclIVxomhI5ov8hEMVwentsM8EJYqPNcFEMJ0VkiEWmCj9oZx+wtel8H/StE3r2CydW8VaBcyRBbtgHxwCC5RBDZyBOmgAAkbgFtyDByM27oxH42neumB8zuyAHzCePwCnvZLE</latexit>

qj−1

<latexit sha1_base64="x0zyuUV2hMUzZS+QakPCu3pe6SY=">AAAB7XicdVC7SgNBFJ31lZj4iFpaOBgEq2UfwWy6oI1lBPOAZAmzk9lkzOzOMjMrhCV/YGFjoYit/2Pnb1hbOEkUVPTAhcM593LPvUHCqFSW9WosLa+sruXy64XixubWdmlntyV5KjBpYs646ARIEkZj0lRUMdJJBEFRwEg7GJ/N/PY1EZLy+FJNEuJHaBjTkGKktNTqKZT2h/1S2TItp+LUXGiZtuu51YomjmdV3Rq0TWuOcv3g7TRXvHlv9EsvvQHHaURihRmSsmtbifIzJBTFjEwLvVSSBOExGpKupjGKiPSzedopPNLKAIZc6IoVnKvfJzIUSTmJAt0ZITWSv72Z+JfXTVXo+RmNk1SRGC8WhSmDisPZ6XBABcGKTTRBWFCdFeIREggr/aCCfsLXpfB/0nJM+8SsXNjlugcWyIN9cAiOgQ2qoA7OQQM0AQZX4BbcgweDG3fGo/G0aF0yPmf2wA8Yzx9KEZKW</latexit>

τg
<latexit sha1_base64="R5Pgu/zYUlrTHBV9c38R6qBHUQM=">AAAB6nicdVC7SgNBFJ31lZj4iFpaOBgEq2UfwWy6oI1lRPOAZAmzk9nNkNnZZWZWCCF/oI2FIrZ+kZ2/YW3hJFFQ0QMXDufcyz33BimjUlnWq7G0vLK6lsuvF4obm1vbpZ3dlkwygUkTJywRnQBJwignTUUVI51UEBQHjLSD0dnMb18TIWnCr9Q4JX6MIk5DipHS0mXaj/qlsmVaTsWpudAybddzqxVNHM+qujVom9Yc5frB22muePPe6JdeeoMEZzHhCjMkZde2UuVPkFAUMzIt9DJJUoRHKCJdTTmKifQn86hTeKSVAQwToYsrOFe/T0xQLOU4DnRnjNRQ/vZm4l9eN1Oh508oTzNFOF4sCjMGVQJnd8MBFQQrNtYEYUF1VoiHSCCs9HcK+glfl8L/Scsx7ROzcmGX6x5YIA/2wSE4Bjaogjo4Bw3QBBhE4BbcgweDGXfGo/G0aF0yPmf2wA8Yzx8AlJFC</latexit>

pg
<latexit sha1_base64="5Z2qOCdSr23th/lfCu6M1yP7Kww=">AAAB7nicdVC7SgNBFJ31lZj4iFpaOBgEG5d9BLPpgjaWEcwDkiXMTmaTIbO7w8ysEJb8gY2NhSK2fo+dv2Ft4SRRUNEDFw7n3Ms99wacUaks69VYWl5ZXcvl1wvFjc2t7dLObksmqcCkiROWiE6AJGE0Jk1FFSMdLgiKAkbawfh85reviZA0ia/UhBM/QsOYhhQjpaU272fDE3vaL5Ut03IqTs2Flmm7nlutaOJ4VtWtQdu05ijXD97OcsWb90a/9NIbJDiNSKwwQ1J2bYsrP0NCUczItNBLJeEIj9GQdDWNUUSkn83jTuGRVgYwTISuWMG5+n0iQ5GUkyjQnRFSI/nbm4l/ed1UhZ6f0ZinisR4sShMGVQJnN0OB1QQrNhEE4QF1VkhHiGBsNIfKugnfF0K/yctx7RPzcqlXa57YIE82AeH4BjYoArq4AI0QBNgMAa34B48GNy4Mx6Np0XrkvE5swd+wHj+AKGeksA=</latexit>

pg−1.  .  . .  .  .

.  .  . .  .  .
<latexit sha1_base64="lOySS1Tl2w2OcHTzy1DMY8TtHJ4=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsFpmd4PZdAEby4jmAUkIs5PZZMjsw5lZISzpbG0sFLH1W/wAO/0Av8APcJIoqOiBC4dz7uWee72YM6kQejEyC4tLyyvZ1dza+sbmVn57pyGjRBBaJxGPRMvDknIW0rpiitNWLCgOPE6b3uh46jcvqZAsCs/VOKbdAA9C5jOClZbOLnqoly8gE9klu+JAZFqO65RLmtguKjsVaJlohkJ1r3j1/vT2Wuvlnzv9iCQBDRXhWMq2hWLVTbFQjHA6yXUSSWNMRnhA25qGOKCym86iTmBRK33oR0JXqOBM/T6R4kDKceDpzgCrofztTcW/vHaifLebsjBOFA3JfJGfcKgiOL0b9pmgRPGxJpgIprNCMsQCE6W/k9NP+LoU/k8atmkdmaVTq1B1wRxZsA8OwCGwQBlUwQmogTogYACuwS24M7hxY9wbD/PWjPE5swt+wHj8AGvMklk=</latexit>

q0

<latexit sha1_base64="RowmHRmaWhIhWnMGuIHRHGCxJzQ=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsFr2EcymC9hYRjQPiEuYncwmQ2Znl5lZISzpbG0sFLH1W/wAO/0Av8APcJIoqOiBC4dz7uWee4OEUaks68XILSwuLa/kVwtr6xubW8XtnZaMU4FJE8csFp0AScIoJ01FFSOdRBAUBYy0g9Hx1G9fEiFpzM/VOCF+hAachhQjpaWzpBf1iiXLtJyKU3OhZdqu51YrmjieVXVr0DatGUr1vfLV+9Pba6NXfL7oxziNCFeYISm7tpUoP0NCUczIpHCRSpIgPEID0tWUo4hIP5tFncCyVvowjIUuruBM/T6RoUjKcRTozgipofztTcW/vG6qQs/PKE9SRTieLwpTBlUMp3fDPhUEKzbWBGFBdVaIh0ggrPR3CvoJX5fC/0nLMe0js3Jql+oemCMP9sEBOAQ2qII6OAEN0AQYDMA1uAV3BjNujHvjYd6aMz5ndsEPGI8fxrqSlQ==</latexit>

pm
<latexit sha1_base64="o/uZ3XBP6boVrYZCkhD6XCNxLjA=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsFpmd4PZdAEby4jmAXEJs5PZZMjsg5lZISzpbG0sFLH1W/wAO/0Av8APcJIoqOiBC4dz7uWee/2EM6kQejFyC4tLyyv51cLa+sbmVnF7pyXjVBDaJDGPRcfHknIW0aZiitNOIigOfU7b/uh46rcvqZAsjs7VOKFeiAcRCxjBSktnSQ/1iiVkIrti1xyITMtxnWpFE9tFVacGLRPNUKrvla/en95eG73i80U/JmlII0U4lrJroUR5GRaKEU4nhYtU0gSTER7QrqYRDqn0slnUCSxrpQ+DWOiKFJyp3ycyHEo5Dn3dGWI1lL+9qfiX101V4HoZi5JU0YjMFwUphyqG07thnwlKFB9rgolgOiskQywwUfo7Bf2Er0vh/6Rlm9aRWTm1SnUXzJEH++AAHAILVEEdnIAGaAICBuAa3II7gxs3xr3xMG/NGZ8zu+AHjMcPakaSWA==</latexit>

p0

<latexit sha1_base64="p3gi7n3qjENhZ8FNC9Wp602hXvE=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsFpmd4PZdAEby4jmAUkIs5PZZMjsw5lZISzpbG0sFLH1W/wAO/0Av8APcJIoqOiBC4dz7uWee72YM6kQejEyC4tLyyvZ1dza+sbmVn57pyGjRBBaJxGPRMvDknIW0rpiitNWLCgOPE6b3uh46jcvqZAsCs/VOKbdAA9C5jOClZbOLnq8ly8gE9klu+JAZFqO65RLmtguKjsVaJlohkJ1r3j1/vT2Wuvlnzv9iCQBDRXhWMq2hWLVTbFQjHA6yXUSSWNMRnhA25qGOKCym86iTmBRK33oR0JXqOBM/T6R4kDKceDpzgCrofztTcW/vHaifLebsjBOFA3JfJGfcKgiOL0b9pmgRPGxJpgIprNCMsQCE6W/k9NP+LoU/k8atmkdmaVTq1B1wRxZsA8OwCGwQBlUwQmogTogYACuwS24M7hxY9wbD/PWjPE5swt+wHj8AMa8kpU=</latexit>

ql

<latexit sha1_base64="RDooi039C9/xCVezAzW+dSn28JU=">AAACGXicdZDPahRBEMZ7YtRk/bfRo5cmS8CLQ8/u4m5OCXjxGMFNArvL0tNTkzTpP0N3jWQzzGsE1Ffx4kERj/GUx8gbpGc3ARXzQcPHr6qori8tlPTI2GW0cm/1/oOHa+utR4+fPH3W3ni+723pBIyEVdYdptyDkgZGKFHBYeGA61TBQXrytqkffATnpTUfcF7AVPMjI3MpOAY0a7MJwik6XeXOalpN0rw6revXxmbgKTfZEp3doro1a3dYzLr97naPsjjpDXuDfjDdIRv0tmkSs4U6O1efGn3em7UvJpkVpQaDQnHvxwkrcFpxh1IoqFuT0kPBxQk/gnGwhmvw02pxWU23Aslobl14BumC/jlRce39XKehU3M89v/WGvi/2rjEfDitpClKBCOWi/JSUbS0iYlm0oFANQ+GCyfDX6k45o4LDGE2IdxeSu82+904eRMn75PObp8stUZekk3yiiRkQHbJO7JHRkSQc/KVfCc/oi/Rt+hn9GvZuhLdzLwgfyn6fQ3NqKaB</latexit>

from x-nodes and z-nodes

<latexit sha1_base64="EoOANfQTKtizyUOMMhULwPUY0Ww="></latexit>

from y-nodes

<latexit sha1_base64="m4/ez8rgsjsNnW6T7Mlb1vi1ay0="></latexit>

to and from
all nodes
except a and a0

Fig. 8. The construction of digraph D in the proof of Σ
P

2
-hardness. This figures shows the ∀-gadget, namely the part of D that contains the vertices that

simulate setting the values of the yj -variables and the terms τg . The arcs to and from b are shown as bi-directional arrows at b.

variables and β(x,y) = τ1 ∨ τ2 ∨ ... ∨ τm, where each τg is a

conjunction of one x-literal and one or more y-literals. Our

reduction converts α into a swap system S = (D,P) such

that α is true if and only if D has a spanning subgraph G that

satisfies conditions (c.1)-(c.3) from Theorem 3.

The following informal interpretation of ∃∀DNF1x will

be helpful in understanding our reduction. Say that a truth

assignment to some variables “kills” a term τg if it sets one

of its literals to false. A truth assignment φ to the x-variables

will kill some terms, while others will survive. Thus α will

be true for assignment φ iff there is no assignment ψ for the

y-variables that kills all terms that survived φ. In our reduction,

the existence of this assignment φ will be represented by the

existence of subgraph G. The non-existence of ψ that kills all

terms that survived φ will be represented by the non-existence

of a subgraph H that strictly dominates G.

Throughout this section, the negation of a boolean variable

xi will be denoted x̄i. We will also use notation x̃i for an

unspecified literal of xi, that is x̃i ∈ {xi, x̄i}. The same

conventions apply to the variables yj .

We now give an overview of our reduction. The digraph D
consists of several “gadgets”. There will be ∃-gadgets, which

correspond to the variables xi and will be used to set their

values, through the choice of subgraphs that G includes. Then

there is the ∀-gadget, that contains “sub-gadgets” representing

the literals ỹj and the terms τg. These gadgets will allow for

the values of the variables yj to admit all possible assignments.

If any setting of these values kills all terms not yet killed by

the variables xi, this gadget will contain a subgraph H that

strictly dominates G. Figure 7 shows a single ∃-gadget and

Figure 8 shows the ∀-gadget. As we explain the high-level

intuition, we gradually visit vertices and explain their purpose.

The argument is based on several ideas. One, we design the

preference posets of x̃i’s so that G is forced to choose between

two possible subsets of arcs within the ∃-gadget. The choice

between these two subsets of arcs corresponds to choosing a

truth assignment for variable xi. We focus on the literals x̃i that

are set to false, since these kill the terms where they appear. If

x̃i is set to false, its arcs to the terms τg’s in which the literal

appears will be included in G (the first subset), otherwise its

arc to z̃i will be included in G (the second subset).

Another idea is that vertices outside of the ∀-gadget have

their preference posets defined in such a way that their arcs in G
define an outcome that is already the best for them. Therefore,

if a subgraph H that strictly dominates G does indeed exist,

we know it must appear in the ∀-gadget. This leads into the

key idea of the ∀-gadget. The vertices in this gadget can have

outcomes that are better than their outcomes in G. All the arcs

in these better outcomes together form the cycle

C = q0 → ỹ1 → ... → ỹl → ql →
p0 → τ1 → ...τm → pm →
q0

(1)

for some choice of the literals ỹ1, ..., ỹl. We design the

preference posets of each τg so that its outcome in G can

only be improved (specifically, towards C) only if it receives

an arc from one of its literals — in other words, if it is killed

by that literal. This way, G will have a strictly dominating

subgraph H (namely cycle C) only if all terms are killed, i.e.

when α is false.



Next, we provide brief insight to the important vertices

and how they help capture the ideas above. Firstly, we want

to simulate a truth assignment for variable xi, which we

represent by having G choose between two subsets of arcs

in the corresponding ∃-gadget for xi. Intuitively, one subset

corresponds to assigning xi to true while the other subset

corresponds to assigning xi to false. These two subsets of

arcs are established by how we define the preference posets

of xi and x̄i. In order to force G to make a choice (instead of

taking all the arcs), we introduce the auxiliary vertex a, which

has arcs to every literal x̃i. The graph D has two strongly

connected components: (1) a and a′, and (2) all the other

vertices. We claim graph G cannot include any arcs from

a to the literal vertices. Otherwise, since there is no edge

from the second component to the first, dropping those arcs

always results in a better outcome for the first component.

However, that contradicts condition (c.3). Then, for G to satisfy

condition (c.2), G is forced to make a choice between the two

subsets of arcs. Specifically, G must choose to include all arcs

from xi to its terms (corresponds to setting xi to be false) or

all arcs from x̄i to its terms (corresponds to setting xi to be

true).

Next, we want to simulate a term τg being killed. We achieve

this by designing the preference poset of each τg so that if it

receives its arc from its x-literal, it would prefer its outcome

in the cycle C over its outcome in G. A term τg can also be

killed by one of its y-literals, which we describe later.

Now, we want to simulate checking whether there is a truth

assignment for the y-variables that make ∀yβ(φ,y) false,

where φ is a truth assignment over the x variables. In other

words, G’s assignment of the x variables have killed some

terms and now we want to see if H can give an assignment

of the y variables that kill the surviving terms.

First, we need to simulate a truth assignment for each variable

yj . This is simple: we flank yj and ȳj by vertices qj−1 and qj
as seen in Figure 8. We define the preference posets of qj−1

and qj in a way that only one of yj or ȳj can be included

in the cycle C, thus forcing H to choose between them. If H
selects a vertex ỹj , then ỹj will send an arc to every term it

appears in. This corresponds to assigning ỹj to false.

We additionally define τg’s poset so that if it receives an arc

from any of its y-literals, it wants to join C. At this point, we

have represented τg being killed if it receives either its x-literal

arc or any of its y-literal arcs. (The z̃i vertices are actually

used for this purpose. They help distinguish between when a

term is killed by their x-literal and when a term survived in

which it needs to be killed by a y-literal.)

The ∀-gadget is designed in the following manner: the

preference posets of the qj , ỹj , and pg vertices are such that if

every τg prefers C, so will they; otherwise, if any τg does not

prefer C, then none of the vertices can cooperatively deviate

to improve their outcomes. In other words, each τg acts as a

bottleneck for the cycle C, thus we focus only on the τg’s.

We give an analogy to better understand the remainder of

the reduction. Each τg is given a vote to whether or not they

want to participate in cycle C. In order for C to pass, it must

receive a unanimous vote from every τg . Vertex τg only casts

its vote to join C if it receives an arc from either its x-literal

arc or any of its y-literal arcs (corresponds to being killed).

Then, G’s selection in each ∃-gadget (truth assignment over x

variables) caused some τg’s to vote for C. Now, H is tasked with

selecting vertices ỹ1, ..., ỹl (truth assignment over y variables)

so that the remaining τg’s also vote for C. At the end of this,

if the τg’s unanimously voted for C, then there is an H that

strictly dominates G, namely the subgraph induced by C. (This

corresponds to giving an assignment y 7→ ψ such that β(φ,ψ)
is false.) Otherwise, if H cannot give such a selection over

ỹ1, ..., ỹl, then there is no H that strictly dominates G. (This

corresponds to ∀yβ(φ,y) being true, i.e. α is true.)

The remaining vertices are primarily used for convenience

and to influence the behavior/preference posets of their neigh-

bors. In other words, they make the topology of G and H
predictable, holding them to a particular form. For example,

vertex b is used to guarantee condition (c.1), the piece-wise

strong connectivity condition. Also, it is used where vertices

would otherwise have no incoming or outgoing arcs.

To conclude the section, we provide some brief insight to

both directions of the proof. In the (⇒) implication, we show

that if α is true, then the swap graph D has a subgraph G
that satisfies the properties of Theorem 3. We begin by fixing

some truth assignment x 7→ φ that makes α true. We convert

φ into a graph G that satisfies the properties of Theorem 3

using the ideas described above. Conditions (c.1) and (c.2) can

be verified by routine inspection, leaving condition (c.3) that

G does not have a strictly dominating subgraph H. The idea is,

towards contradiction, if such an H existed, we could convert

it into an assignment ψ of the y variables so that β(φ,ψ) is

false. This contradicts the fact that α is true.

In the (⇐) implication, we show that if D has a subgraph

G that satisfies the properties of theorem 3, then α is true.

We begin by showing that the topology of G must have a

certain form; specifically, it is representative of the graph G we

constructed in the proof of the (⇒) implication. This allows us

to reconstruct an assignment of the x variables. We then show,

again by contradiction, that ∀yβ(φ,y) must be true. If it were

not, we can take a falsifying assignment y 7→ ψ and convert

it into a subgraph H that strictly dominates G. However, this

contradicts condition (c.3) of G.

VII. RELATED WORKS

The fair exchange problem [23], [16], [7], [4], [5] was of

interest even before the blockchain technology. It arises when

two parties want to exchange their assets, and the outcome

must be either that the two parties end up trading their assets,

or that they both keep their assets. However, in contrast to the

swap problem, some trust in a third party is often assumed. The

optimistic fair exchange protocol [23] relies on invisible trusted

parties: parties that work as a background service and intervene

only in case of a misbehaviour. Similarly, the secure group

barter protocol [16] studies multi-party barter with semi-trusted

agents.



To the best of our knowledge, it was back in 2013 when the

notion of cross-chain swaps first emerged in an online forum

[35]. Atomic cross-chain swap is since an active problem for

the blockchain community [8], [35], [9], [10]. The two wiki

pages [8] and [35] and later platforms such as deCRED [13]

proposed protocols for bilateral swaps. However, these projects

offer only two-party transactions. Later, protocols for cross-

chain swaps and transactions [19], [20], [18], [34] emerged

that can work for an arbitrary number of parties; however, they

assumed the predefined preference relation that we saw earlier

for all the parties.

These protocols motivated a host of follow-up research. The

time and space complexity [21] and privacy guarantees [14]

of the protocol were improved. The former [21] uses a model

where each asset is assigned two numerical values, one by its

current owner and one by the intended recipient. These values

can then be used to determine preferences for each party, and

can be extended to sets of parties by considering the difference

between the total values of incoming and outgoing assets. To

assure that their swap graphs have atomic protocols, restrictions

(similar in spirit to our Theorem 3) are placed on allowed swap

graphs. As we discussed in the introduction, such value-based

preferences cannot express dependencies between assets. So

the model in [21] would not capture some natural scenarios, for

example trades involving assets from an investment portfolio

with fixed proportions between different asset classes. Their

way of extending individual preferences to coalitions (sets of

parties) is different from our model, and it involves a tacit

assumption that the coalition members agree on these values.

Nevertheless, the approach in [21] is natural and worth studing,

and in particular it would be of interest to investigate the time

complexity to determine whether a swap graph has an atomic

protocol in that model. We suspect that this problem may be

computationally easier than for our swap systems.

Further, extensions to support off-chain steps [30] and reduce

the asset lock-up time [37] appeared. Others presented hardness

and impossibility results [39], [12] formal verification [25],

and protocols with all-or-nothing guarantees [38] and success

guarantees under synchrony assumptions [36]. Others proposed

moving assets [32] and smart contracts [17] across blockchains,

and executing code that spans multiple blockchains [28], and

presented implementations for industrial blockchains [3], [2],

[11], [33].

Payment channel networks process multi-hop payments in

the same blockchain through a sequence of channels using

Hash Timelock Contracts [27], [1] or adaptor signatures [22].

Recent protocols such as AMCU [15], Sprites [24] and Thora

[6] support more general topologies for transactions.

In contrast to previous work, this paper presented a gen-

eralized model of swaps where each party can specify a

personalized preference on their set of incoming and outgoing

assets in a finer manner, e.g. dependencies between subsets of

acquired and traded assets.

VIII. CONCLUSION

We presented a general swap model that allows each party

to specify their preference on their possible outcomes. We

saw that Herlihy’s pioneering protocol is a uniform and Nash

strategy in this model; however, it is not a strong Nash strategy.

We presented a characterization of the class of swap graphs

that have uniform and Strong Nash protocols. Interestingly,

Herlihy’s protocol is such a strategy when executed on a

particular subgraph of the swap graphs in this class. We

further presented reductions that shows the NP-harness and

ΣP

2
-completeness of the decision problem for this class.
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