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ABSTRACT: The excess free energy of mixing, parameterized by
the Flory−Huggins χ parameter, dictates polymer phase behavior.
We have developed a “push−pull” simulation method to measure
the mixing free energy, first applied to regular solutions of small
molecules. The method applies a spatially varying external potential
to the molecules; in response, the system adopts a spatially varying
concentration such that the total chemical potential is constant. In
this work, we extend the push−pull method to polymers. For long
polymers in push−pull simulations of manageable size, the square-
gradient term in the free energy density contributes significantly to
the local chemical potential. We develop a method to measure the
coefficient of the square-gradient term, which is a microscopic
length of order of the persistence length. We then validate the push−pull method by applying it to both bead-spring and chemically
realistic polymer blends and comparing to χ values from our previously developed “morphing” technique. The new push−pull
approach has two important advantages: (1) only one simulation is required, and (2) the chains need not be structurally similar,
which enables prediction of χ for polymer blends with any chemical structure.

■ INTRODUCTION
Polymer blends are widely used to achieve desirable properties
unobtainable in a pure material. Depending on the application,
either miscible or immiscible blends are employed. In the
commercial product family NORYL, which are polystyrene/
polyphenylene oxide miscible blends, mechanical properties
such as softness vary smoothly with composition.1 In rubber-
toughened plastics, brittle glassy polymers are toughened by a
nanoscale dispersion of rubber domains, which impede crack
propagation.2 Another emerging application of polymer blends
is in organic photovoltaic cells, where an immiscible blend of
donor polymers and small-molecule acceptors yields a bulk
heterojunction material, filled with donor−acceptor interfaces
at which excitons can dissociate.3−6

Entropy of mixing drives miscibility, but long polymer
molecules gain little entropy per monomer on mixing, so small
net repulsive interactions between monomers can overcome
the entropy and lead to demixing. As a consequence, most
blends of long polymers are immiscible, even when their
constituent monomers are quite similar in structure.7 The net
repulsive interaction between unlike monomers is represented
phenomenologically by the Flory−Huggins χ parameter.8−10

For an ideal mixture, in which monomers are in every way
identical except for labeling, χ equals zero. The Flory−Huggins
theory subsumes the effects of all local properties such as
composition, monomer architecture, and conformations that

contribute to the local mixing free energy into a single
parameter χ.
Experimentally, the χ parameter can be obtained in a variety

of ways.11 For binary blends of linear chains, χ can be
determined from small-angle scattering from composition
fluctuations in the miscible region, from analysis of the phase
boundary, or from the width of the interface between phases in
an immiscible blend. For diblock copolymers, χ can be
determined likewise from small-angle scattering from compo-
sition fluctuations in the miscible region, or from the location
of the order−disorder transition as a function of chain length.
All of these approaches rely on a comparison between

experimental results and a theory of fluctuations and phase
behavior. Simple mean-field theories treat fluctuations in
harmonic approximation and are not accurate in the critical
region. When χ is small as is commonly the case, miscible
blends of long chains can be studied, and mean-field theory
works tolerably well outside a narrow critical region. For
symmetric diblock copolymers, the second-order transition

Received: April 24, 2023
Revised: August 2, 2023
Published: August 28, 2023

Articlepubs.acs.org/Macromolecules

© 2023 American Chemical Society
6859

https://doi.org/10.1021/acs.macromol.3c00793
Macromolecules 2023, 56, 6859−6869

D
ow

nl
oa

de
d 

vi
a 

PE
N

N
SY

LV
A

N
IA

 S
TA

TE
 U

N
IV

 o
n 

Fe
br

ua
ry

 2
2,

 2
02

4 
at

 1
1:

53
:5

1 
(U

TC
).

Se
e 

ht
tp

s:
//p

ub
s.a

cs
.o

rg
/s

ha
rin

gg
ui

de
lin

es
 fo

r o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Puja+Agarwala"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Enrique+D.+Gomez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Scott+T.+Milner"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.macromol.3c00793&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c00793?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c00793?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c00793?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c00793?fig=abs1&ref=pdf
https://pubs.acs.org/toc/mamobx/56/17?ref=pdf
https://pubs.acs.org/toc/mamobx/56/17?ref=pdf
https://pubs.acs.org/toc/mamobx/56/17?ref=pdf
https://pubs.acs.org/toc/mamobx/56/17?ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.macromol.3c00793?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/Macromolecules?ref=pdf
https://pubs.acs.org/Macromolecules?ref=pdf


predicted by mean-field theory is driven first order by long-
wavelength fluctuations, for which a proper description
requires more sophisticated theory.12

Morse and co-workers have developed a sophisticated
approach to measuring χ in simulations, in which they simulate
a symmetric diblock copolymer melt, determine the structure
factor S(q), and infer χ by comparing S(q) to predictions of
their renormalized one-loop theory.13,14 They use symmetric
diblocks, in part because the critical χ is higher than for binary
linear blends, so larger χ values can be accessed within the
disordered phase for a given chain length.
While this approach has been successful,15,16 the analysis is

somewhat involved, and at present restricted to symmetric
systems (conformationally symmetric blocks with equal
lengths). This precludes its application to systems that break
these symmetries, including blends of unequal volume fractions
(necessary to treat compositional dependence of χ), as well as
chains with different monomer volumes or chain stiffness
(which are ubiquitous in chemically realistic polymers).
Multiple simulation techniques have been developed to

measure the mixing free energy and the Flory−Huggins
parameter χ. Gibbs ensemble Monte Carlo (GEMC)
simulation measures the concentration of coexisting phases,
which requires swapping of molecules from one phase to
another to equalize the chemical potential.17,18 For polymers,
the acceptance rate is very low and difficult to measure. Chen
et al. improved the GEMC method for polymers by enhancing
the low acceptance rate calculation using impurity molecule
and identity switch moves.19 But for complex polymer
architectures, acceptance rate calculations are difficult to
implement.20

Kirkwood−Buff theory has been used to compute χ
parameters, via a thermodynamic relation that connects excess
free energies to integrals of pair correlation functions.21,22

However, the practical application of Kirkwood−Buff theory
requires long simulations of large systems, to achieve pair
correlation functions of sufficient accuracy and extent that the
integrals converge well.
Our group has developed several methods to evaluate χ.

Kozuch et al. developed a “morphing” technique,23 which
computes the work to transform one kind of polymer (A) into
another (B). By comparing the work to transform A into B in
an A−B mixture to the work to transform pure A into pure B,
the mixing free energy can be determined. The morphing
method showed that bead-spring polymers with identical
interactions between beads nonetheless have a repulsive χ if
one chain species is stiffer than another, which increases with
stiffness mismatch.
Zhang et al. applied the morphing method to compute χ

between bead-spring polymers of identical stiffness, but with
different Lennard-Jones interactions.24 Shetty et al. extended
the morphing method to blends of chemically realistic
polymers, such as polyethylene/polyethylene oxide blends
and polyisoprene/saturated polyisoprene blends, by computing
the work to transform the atoms of one chain into those of
another.25 Because the morphing method requires one
polymer to morph into another, its application is limited to
polymers with similar architecture.
To extend morphing methods to structurally dissimilar

polymers, Shetty et al. developed the “mutual ghosting”
method.26 This method computes the thermodynamic work to
weaken the interaction between two components until they
phase-separate. The interfacial tension between the two

immiscible phases is then measured by standard techniques.
The mixing free energy is then the thermodynamic work minus
the interfacial free energy. This method gives results in good
agreement with morphing calculations on bead-spring chains,
as well as small molecules and polymers of similar structure, for
which morphing calculations can be performed. However,
mutual ghosting fails for mixtures of stiff polymers because the
interface between the demixed polymers leads to molecular
ordering.27,28

A more recent and robust method developed in our group is
the “push−pull” technique by Mkandawire et al.,29 first applied
to benzene−pyridine mixtures. In this method, a spatially
varying external potential applied to every molecule in a
mixture induces a varying concentration. The same external
potential applied to a repulsive nonideal mixture induces a
larger concentration variation than for an ideal mixture because
repulsions between molecules amplify the effect; a system
nearer to demixing has a larger susceptibility to potentials that
induce a concentration variation. By analyzing the resulting
concentration profile and fitting to standard free energy
models, χ parameters can be measured.
Compared to previous approaches, the push−pull method

has several advantages. It requires only one simulation in the
presence of an external potential, while the morphing and
mutual ghosting methods require an entire sequence of
simulations, along which some thermodynamic interaction
parameters are progressively varied. Like mutual ghosting, the
push−pull method does not require structural similarity of the
molecules in the mixture. But unlike mutual ghosting, the
push−pull method does not induce complete demixing, and so
avoids the formation of an interface that may cause molecular
ordering. Finally, the push−pull method appears to be less
sensitive to finite-size effects, compared to the Kirkwood−Buff
method.
In this work, we extend the push−pull method to polymers.

For polymers, we find that square-gradient terms in the free
energy density contribute significantly to the local chemical
potential, for the size of system we are conveniently able to
simulate, and the magnitude of χ parameters we are seeking.
Thus, we develop a method to measure the square-gradient
coefficient, by applying external potentials to various ideal
mixtures, for which the square-gradient term reveals itself as a
correction to simple ideal solution theory. We expect the
square-gradient coefficient should be a microscopic length, of
order to the persistence length of the chains. We explore this
dependence by measuring the square-gradient coefficient for
bead-spring polymers with varying stiffness.
We validate the push−pull method by measuring χ for

various polymer mixtures, including both bead-spring and
chemically realistic chains, for which we have obtained χ
previously with morphing and mutual ghosting. The systems
we investigate here are:

1. flexible bead-spring polymers with different Lennard-
Jones interactions;24

2. bead-spring polymers with identical Lennard-Jones
interactions but different stiffness;23 and

3. mixtures of oligomeric polyethylene (PE) and poly-
ethylene oxide (PEO),25 for which experimental χ values
are available.30

In all cases, results from the push−pull method agree well with
previous simulation and experimental results, suggesting that
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the push−pull method will be widely useful in determining
polymer χ parameters from simulation.

■ PUSH−PULL METHOD
In the push−pull method,29 equal and opposite external
potentials are applied to every molecule of species A and B in a
binary A-B blend. For polymers, we apply the external
potential to every monomer (Figure 1a). In the original
paper, harmonic potentials were used; here, we maintain
smooth behavior at the periodic boundary by using a cosine
potential

U z k z L( ) cos(2 / )= (1)

where L is the simulation box length. A positive k pulls a
molecule toward the middle, while a negative k pushes a
molecule toward the boundary, inducing a concentration
gradient as shown in Figure 1b. We choose k large enough that
the concentration varies over a substantial range, but not so
large that the system separates into pure phases.
In our investigations of bead-spring polymers and their

blends, we study three different kinds of chains: (1) flexible
bead-spring chains (“base”), (2) flexible bead-spring chains
with weakened attractive interactions (“weak”), and (3)
stiffened bead-spring chains (“stiff”). To apply the push−pull
method to chemically realistic polymer blends, we study a
mixture of polyethylene (PE) and polyethylene oxide (PEO).
The bead-spring chains are similar to those studied by

Kozuch et al.23 and Zhang et al.24 Each chain is 20 beads long.
Beads interact with Lennard-Jones (LJ) interactions

( )V r( ) 4 ( )LJ r r
12 6

= i
k
jjj y

{
zzz, with σ equal to 0.2 nm for all

beads. The LJ energy ϵ equals kT for the “base” and “stiff”
chains, and is reduced to 0.88 kT for the “weak” chains. For all
chains, bonded beads interact with a stiff harmonic spring
potential V b b( )b

k
2 0

2b= , with a constant kb equal to 400 kT/

b02 and a bond length b0 equal to 21/6 (i.e., the minimum in
the LJ potential). The cutoff distance for LJ interactions is
taken as twice the LJ minimum, i.e., 2b0. The “base” and
“weak” polymers have no angular spring potential
V ( )k

2 0
2= , while the “stiff” polymer has angular springs

acting on the bond angles, with a spring constant kθ of 2.5 kT.

All bead-spring simulations are performed at a temperature
of 300K, maintained by a velocity rescaling thermostat.
Equilibrations are performed with a pressure of 0.1 kT/σ3,
maintained by a Berendsen barostat. Push−pull simulations are
performed at constant volume, with the external potential
applied to every bead. The bead-spring simulations contain
600 chains (12000 beads) unless explicitly stated otherwise.
With a 2 fs timestep, equilibration simulations of 600 chains
run at 520 ns/day on 16 cores without GPU.
Push−pull simulations are substantially slower, presumably

because of the computational overhead in imposing potentials
as currently implemented in Gromacs. To investigate this
overhead, we performed a series of simulations on a system of
24000 beads, with fixed hardware (32 cores, 2 GPUs) with an
increasing number of external potentials imposed on individual
beads. We find that the total computational time scales linearly
with the number of imposed potentials as expected, but with a
surprisingly large slope: each potential term takes as much time
to evaluate as the force on 24 beads. This must reflect an
inefficiency in how Gromacs implements pull potentials;
possibly, the code “reinterprets” the pull commands at each
timestep. In an efficient implementation, imposing a cosine
potential on a particle should be computationally cheaper than
computing the total force on that particle; the present
inefficient implementation in Gromacs should not be regarded
as a fundamental limitation to our method.
The PE−PEO mixture simulated here is the same as studied

by Shetty et al.25 The PE and PEO chains consist of 15 and 10
monomers (so that a PE chain can be morphed into a PEO
chain by converting every third CH2 into an ether O). For the
PE−PEO system, we perform united atom (UA) simulations
using TraPPE potential parameters.31 To determine the
appropriate simulation volume for the mixture, we simulate
pure PE and pure PEO system at 500 K and 1 bar, and assume
zero volume change on mixing. We find 10.58 and 8.36
monomers per 0.1 nm3 volume for PE and PEO, respectively.
For PE−PEO, our system consists of 200 chains each and

totals 12000 atoms (see Figure 2). For the push−pull
simulations, we equilibrate at 500 K and 1 bar followed by
push−pull simulations at constant volume. To economize on
the overhead of imposing thousands of external potentials,
because PE and PEO chains are somewhat stiff, we pull on
groups of three successive atoms along each chain, for a total of
4000 external potential terms, with 2 fs timestep equilibration

Figure 1. (a) Schematic of external potential pushing polymer A to the boundary and pulling B to the center. (b) Induced concentration gradient in
polymer A (blue) and B (orange); right: single-chain configuration shown for size comparison.
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simulations run at 215 ns/day on 16 cores with one GPU and
push−pull simulations run at 110 ns/day on 32 cores with 4
GPUs.

■ MIXING FREE ENERGY
To extract χ parameters from push−pull simulations,
Mkandawire et al. fitted their results to predictions of a
regular-solution free energy under an applied external
potential, written as29

G Ulog (1/2)
i

i i
ij

ij i j
i

i i= + +
(2)

Here, ϕi is the mol fraction of component i, Ui is the external
potential applied to component i, and χij is the interaction
parameter between species i and j. The free energy is the sum

of ideal mixing (first term), interaction between species
(second term), and external potentials (third term).
At equilibrium, the free energy is minimized with respect to

the mole fractions ϕi. For a binary mixture, the resulting
relation between the external potential and concentration takes
the form

U( ) log
1

(1 2 )=
i
k
jjjj

y
{
zzzz

(3)

where U(ϕ) denotes the difference U1(ϕ) − U2(ϕ), ϕ is the
mole fraction of species 1, and χ equals χAB − (1/2)(χAA +
χBB). For an ideal mixture, χ vanishes.
To find out whether this simple description works for an

ideal polymer mixture, we perform push−pull simulations on
an ideal mixture of two components “base1” and “base2”, both
with the properties of the “base” chains, differing only in their
labels. We applied equal and opposite external potentials to
every bead, with k k kT

Nbase1 base2
0.75

2
= = (see Figure 3a). We

applied this same protocol to an ideal mixture of two
components “stiff1” and “stiff2”, both with the properties of
the “stiff” chains.
Figure 3b presents the resulting concentration profiles;

Figure 3c shows the simulated and predicted behavior (from
eq 3) of the external potential versus concentration. The
simulated ideal mixtures require a larger external potential to
induce a given concentration shift than the ideal solution
theory predicts. This discrepancy between simulation results
and ideal solution theory is evidently larger for stiff chains than
for flexible chains. Certainly, eq 3 does not describe our push−
pull simulation results for ideal polymer mixtures.

■ MEASURING SQUARE-GRADIENT TERMS
Ideal solution theory without a square-gradient contribution
does not agree with our push−pull simulation results for ideal

Figure 2. Simulation snapshot for PE−PEO mixture with applied
cosine potential; single PE and PEO configurations shown for size
comparison.

Figure 3. (a) External potential and (b) induced mol fraction versus z, for ideal flexible chain mixture of base1 (orange) and base2 (blue). (c)
Predicted external potential (black) from eq 3 versus push−pull results for ideal mixtures of base (blue) and stiff (orange) chains.
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chains, because for our polymer simulations, the system is
small enough that square-gradient terms are not negligible
compared to the ideal chain entropy of mixing. Thus, we write
the free energy including square-gradient terms, as

G A
N

U z
a

z

log (1/2)

( )
2

( ) d

i

i
i ij i j

i i
i

i

2
2

= +

+ +

i
k
jjjjj

y
{
zzzzz (4)

Here, A is the transverse area of the system; ϕi, Ni, and ai are
the volume fraction, number of monomers, and square-
gradient term coefficient of polymer i, respectively; and Ui is
the external potential applied on polymer i.
In principle, the full ideal single-chain structure function

F−1(q) (i.e., the reciprocal of the Debye function) should
appear in the effective Hamiltonian, not just a square-gradient
term.32 However, our systems are large enough so that q2Rg2 is
small (0.15 for bead-spring chains, about 0.5 for PE and PEO),
as is visually evident in Figures 1b and 2. Thus, F−1(q) is well
approximated by expanding to O(q2), with corrections at the
1% level. More generally, the Debye function itself is an
approximation for real chains (it assumes ideal Gaussian chains
at all scales). We prefer not to rely on its detailed validity, so
we ensure our system is large enough that a square-gradient
approximation is justified.
For a binary mixture of species A and B, minimizing the free

energy with respect to the concentration field results in

U
N N

a a
log( ) log(1 )

(1 2 ) ( )
A B

A B
2 2 2= + +

i
k
jjjjj

y
{
zzzzz

(5)

We can compare the contributions of square-gradient terms
and chain entropy of mixing by a scaling argument. The
square-gradient contribution is of order a2∇2ϕ, while the
entropy of mixing contribution is of order (1/N). Since the
gradient ∇ϕ is of order 1/L, where L is the simulation box
dimension, these terms are comparable when Na2 is
comparable to L2. Polymer simulations of manageable size
typically have box dimensions not too much larger than the
chain end-to-end distance, so square-gradient terms are never
negligibly small.
For an ideal polymer blend with χ = 0, the square-gradient

terms must make up the difference between the push−pull
simulation results for βU(ϕ) and the ideal solution prediction
without gradient terms (Figure 3c). We can therefore use ideal
solution results to measure the square-gradient coefficient a.
We can validate this approach to measuring square-gradient
coefficients by varying the box dimension, and verifying that
we get the same value of a for different box sizes. By measuring
a for flexible and stiff bead-spring chains, we can show that a is
related to the persistence length of the chains.
For a cosine external potential of moderate amplitude, the

concentration variation Δϕ(z) will likewise be cosinusoidal,
proportional to cos(2πz/L). Hence, ∇2ϕ will equal −(2π/
L)2ϕ so that

U
N

a
L

( )
1

log
1

2
2

( )2
2

=
i
k
jjjj

y
{
zzzz

i
k
jjj y

{
zzz

(6)

where ϕ̅ is the average concentration. Hence, the square-
gradient correction to the external potential versus concen-

tration βU(ϕ) will be linear in ϕ, with a slope −2a2(2π/L)2
that varies with the box dimension L as 1/L2. The linear
dependence on ϕ is evident in Figure 3c. To check the
dependence on L, we perform push−pull simulations with
different box sizes.
We simulate two ideal mixtures of base polymers: a larger

system of 1200 chains and a smaller system of 600 chains. The
equilibrated box lengths for the large and small systems are
6.35 and 5.04 nm, respectively. For both systems, we divide the
polymers into base1 and base2 species containing an equal
number of chains and apply the push−pull method (Figure 1a)
with kbase1 = −kbase2 = 0.047. We obtain induced concentration
profiles by averaging over simulations of 1000 ns duration.
We subtract the ideal-mixing contribution from the

measured βU(ϕ) to obtain the square-gradient term (SGT),
shown in Figure 4. For both the large and small systems, the

square-gradient contribution is linear in ϕ as expected.
Furthermore, the slopes scale as 1/L2; the slope for the small
system (orange) is 1.59 times that of the large system (blue),
which equals (L2/L1)2 = 22/3 as expected. Equating the slope of
the square-gradient contribution to 2a2(2π/L)2, we find a =
0.117 nm for our flexible bead-spring chains.

■ MEASURING A IN MIXTURES
To apply the push−pull method to nonideal mixtures, we need
square-gradient coefficients for mixtures as well as pure
components. One approach is to measure aA and aB for the
A and B components separately, and then to assume the
coefficients for each species are the same in the mixture as in
the pure phases.
Alternatively, we can measure the square-gradient terms for

both components in a mixture directly, by dividing the A and B
chains into two components differing only in their labels
(denoted A1 and A2 and B1 and B2), then applying the same
cosine potential to A1 and B1, and the opposite potential to A2
and B2 (see Figure 5). The physically relevant concentrations
of A and B remain spatially uniform when potentials are
applied to the “1” and “2” chains. Effectively, we are
performing simultaneous push−pull simulations on an ideal
A1−A2 mixture and an ideal B1−B2 mixture within the overall
A-B system. With these “split-component” push−pull simu-
lations, we can measure the square-gradient coefficients aA and
aB directly in the mixture, which allows us to check whether
the coefficients change when pure components are mixed.
We apply this method to our three blends of interest: base−

weak and base−stiff bead-spring chains, and chemically
realistic PE−PEO oligomers. In all cases, we equilibrate the

Figure 4. Square-gradient term (SGT) in βU(ϕ) for an ideal mixture
of flexible bead-spring chains, for large (orange) and small (blue)
simulation boxes.
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systems for 100 ns as previously described and then measure
the average concentration profiles over a 500 ns simulation.
Resulting concentration profiles for split-component push−
pull simulations of all three blends are shown in Figure 6a−c.
Figure 6d−f displays the same results plotted as applied
external potential U(ϕ) as a function of induced concentration
ϕ for each component.
For the base−weak polymer mixture, the concentration

profiles for base and weak chains are the same (see Figure 6a).
Because the external potentials applied to the base and weak
chains were the same, evidently the square-gradient coefficient
is the same for base and weak chains (see Table 1 for a values,
fitted from results in Figure 6d). Base and weak chains are
equally flexible, differing only in the strength of their
nonbonded interactions, suggesting that the value of a depends
mainly on persistence length.
To learn how a depends on persistence length, we examine

results for the base−stiff polymer mixture (Figure 6b).
Qualitatively, the stiff polymer exhibits a weaker concentration
variation than the base polymer, consistent with a stronger
square-gradient term that penalizes concentration gradients.

The fitted values of a for base and stiff polymers in the mixture
are consistent with this observation (see Table 1); we find abase
= 0.1254, versus astiff = 0.2095. The base and stiff chains have
identical nonbonded interactions, but the stiff chain has a
persistence 4 times that of the base chain (directly measured
from the decay of the tangent autocorrelation function).
The value of abase in the mixture is slightly larger than in a

pure base melt (a = 0.125 versus a = 0.117), presumably
because blending with the stiff polymer increases the
persistence length of the base polymer, which is 3% larger in
the base−stiff mixture than in the pure base melt. Thus, the
square-gradient coefficient for components in a mixture may
not be identical to the corresponding pure phase values,
although the effect in the present case is modest.
We use the same approach to evaluate the square-gradient

coefficients for PE and PEO oligomers in an equimolar blend.
In this case, we apply a cosine potential with amplitude k =
0.208 to successive groups of three atoms along each chain.
Figure 6c shows the induced concentration profiles, and Figure
6f shows the corresponding plot of external potential U(ϕ)
versus concentration. Table 1 reports the fitted values of aPE
and aPEO; note that PE, with a persistence length of 7 Å, has a
slightly larger coefficient than PEO, with a persistence length
of 5.06 Å.

■ MEASURING χ
With values for the square-gradient coefficients in hand, we can
perform and analyze push−pull simulations for base−weak,

Figure 5. Schematic of external potential applied to A chains (blue)
subdivided into A1 (solid) and A2 (dashed) and B chains (orange)
subdivided into B1 (solid) and B2 (dashed), for measuring square-
gradient term in mixtures.

Figure 6. Induced concentration variations versus z for “split-component” push−pull simulations of base−weak (a), base−stiff (b), and PE−PEO
(c) mixtures; (d−f) plots of these same results as U(ϕ), with fits (red lines) to determine square-gradient terms.

Table 1. Square-Gradient Coefficients a Measured by Split-
Component Push−Pull Method

system aA (nm) aB (nm)

base−weak 0.1163 0.1175
base−stiff 0.1254 0.2095
PE−PEO 0.2951 0.2696
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base−stiff, and PE−PEO polymer blends to measure the
Flory−Huggins χ parameters and compare our results to values
obtained previously using morphing simulations. For each
system, we pull one species toward the center and push the
other toward the boundaries, as shown in Figure 1a.
We measure the resulting concentration profiles ϕ(z);

Figure 7 presents the results for all three blends plotted as
external potential U(ϕ) versus ϕ. We focus on the central
portion of the concentration dependence, to obtain the χ
parameter relevant to small excursions of the concentration
from the average value.
For the bead-spring polymer blends, we report χ per bead.

For the PE−PEO blend, we follow experimental conventions
and report χ per volume V0, defined as 0.1 nm3. (In terms of
V0, the displaced volume per oligomer is 10.58 V0 for PE and
8.36 V0 for PEO.) Table 2 reports the results for χ.

We compare our push−pull results for χ of base−weak
blends to results obtained using morphing. A very similar
system was studied using morphing by Zhang et al.;24 however,
our potential parameters for the base and weak chains are
slightly different, so we repeat the morphing simulation using
the same method with 40 bead long polymer. In the morphing

method, we perform two series of simulations in which
potential parameters are systematically varied to transform one
type of chain into another. In the first series, we start from a
pure base melt and morph half the base chains into weak
chains; in the second series, we transform all of the base chains
into weak chains. From the difference in thermodynamic work
done to transform the mixed versus the pure phase, we can
infer the excess mixing free energy, and hence χ.
To transform base into weak chains, we change the Lennard-

Jones ϵ parameter from kT to 0.88 kT, defining λ such that
ϵ(λ) = λ kT. The free energy integrand ∂F/∂λ equals
simulation average ⟨∂E/∂λ⟩; the integrand varies smoothly
with λ (see Figure 8a). Using morphing, we find a base−weak
χ of 0.02 per bead, in good agreement with our push−pull
result of χ = 0.023.
We compare our push−pull results for χ of base−stiff

polymer blends to morphing simulations of Kozuch et al.,23

who investigated blends bead-spring polymers with varying
stiffness, with angular spring constant kθ ranging from 0 to 3
kT. In particular, they report χ for blends of flexible bead-
spring chains with kθ = 0 with chains having kθ = 2.4 kT, and
also with chains having kθ = 2.6 kT. We interpolate these
results to obtain χ = 0.022 per bead corresponding to our
base−stiff polymer mixture (stiff chains with kθ = 2.5 kT), in
good agreement with our push−pull result of χ = 0.024.
For the PE−PEO polymer blend, previous work using

morphing simulations25 reports χ = 0.169. However, this result
erroneously integrated the differential free energy with respect
to the morphing parameter λ from 0.05 to 1, rather than over
the entire range of 0−1. Correcting this error gives a χ = 0.209
per 0.1 nm3 for PE−PEO, in good agreement with our present
push−pull result of χ = 0.218.

Figure 7. External potential U(ϕ) versus concentration ϕ from simulation (blue) and fit (red) to eq 5 for (a) base−weak, (b) base−stiff, and (c)
PE−PEO polymers.

Table 2. Comparison of χ Estimated from Push−Pull and
Morphing Simulations.a

system push−pull morphing experiment

base−weak 0.023 0.020 N/A
base−stiff 0.024 0.022 N/A
PE−PEO 0.218 0.209 0.143

aFor bead-spring chains, χ per bead; for PE−PEO, χ per 0.1 nm3.

Figure 8. (a) Excess free energy integrand, (b) excess free energy, and (c) χ per bead versus morphing parameter λ, for base−weak blend.
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Experimental work by Almdal et al. obtains χ for PE−PEO
by measuring the order−disorder transition for diblock
copolymers and fitting it to mean-field theory predictions.33

They report χ for PE−PEO at 385 and 426 K as 0.352 and
0.269, respectively,30 for a reference volume of 0.126 nm3.34

We extrapolate their results to 500 K with a functional form χ
= A/T + B, which gives χ = 0.1224 for a reference volume of
0.1 nm3. Willis et al. improved the experimental predictions of
Almdal et al. and others by including corrections for
polydispersity and compositional asymmetry in diblock
polymers.15 Their correction to the renormalized one-loop
prediction of PE−PEO diblock polymer predicts a χ of 0.1432
per 0.1 nm3 volume.14 The results are comparable to our
push−pull simulation result.
Evidently, our results for χ from the push−pull method are

in good agreement with our earlier results using morphing,
both for bead-spring chains and for chemically realistic
polymers. This is reassuring since the two methods measure
the thermodynamic work to mix A and B chains in very
different ways. The quantitative disagreement between our
results for PE−PEO and the experimental value may reflect
shortcomings in the underlying atomistic potentials, which
would lead to errors in the results for both simulation methods.

■ DISCUSSION
Dependence of χ on System Parameters. For a binary

blend of a given polymer architecture, the adjustable system
parameters are the temperature, pressure, chain lengths NA and
NB, and volume fraction ϕ of the two species. Indeed, χ can
depend in principle on all of these parameters. In practice, χ
certainly depends on T, P, and ϕ, as has been extensively
reported by experimentalists.11 For weak monomer-scale
interactions characteristic of most polymers, we can consider
long enough chains such that dependence of χ on chain length
is small, as experimenters routinely do�otherwise, χ would
not be a very useful parameter.
Interpretation of Measured χ. Having described in detail

how we measure χ, we now reflect on its physical
interpretation. Fundamentally, we have measured an equili-
brium linear response function: we impose sinusoidal external
potentials Ui(z) that act on the position of each particle of
species i, and thus couple linearly to the concentrations ϕi(z)
(see eq 4); we measure the concentrations, which develop
sinusoidal perturbations in response to the potentials. The
induced concentration profile ϕi(z) minimizes the free energy,
which can be regarded at harmonic order as the sum of the free
energy cost of concentration perturbations in the absence of
any potential, plus the linear couplings to the external
potentials.
Effectively, we have measured the thermodynamic work

required to construct the sinusoidal concentration profile. The
χ parameter so determined can be understood as the quadratic
term in the expansion of the free energy itself in powers of the
concentration. As long as we are careful to simulate far from
the critical region, and limit the strength of the external
potentials so that the response is linear, a harmonic expansion
of the free energy is valid.
Practically speaking, we stay away from the critical region to

avoid needing (1) a larger system to represent a longer
correlation length, (2) a longer equilibration time because of
critical slowing down, and (3) a more sophisticated theory for
analysis. More generally, renormalized one-loop theory
accounts for long-wavelength fluctuations, which contribute

increasingly near the critical point. Fortunately, the critical
region is relatively narrow for weakly interacting polymer
blends, because for large N, the number of neighboring chains
for any given chain scales as N1/2, which tends toward mean-
field behavior since each chain interacts with many others.35

From our results, we know we are not in the critical region
because the measured behavior of U(ϕ) is linear (see Figure
7). If we were approaching the critical point, U(ϕ) would
become nonlinear, ultimately scaling as U ∝ ϕδ (with δ = 3 in
mean-field theory, and δ ≈ 4.789 for the 3d Ising model
appropriate to the binary blend critical point).36,37

Linear Response versus Fluctuations. The χ parameter
can also be determined by imitating experimentalists, who
measure the structure factor S(q), which reports the variance
of concentration fluctuations at wavenumber q. From S(q), χ
can be determined by fitting the results to the random phase
approximation (RPA). The linear response and fluctuation
approaches to measuring a response function are related by the
static limit of the fluctuation-dissipation theorem.
But the response function method has certain practical

advantages over its fluctuation counterpart. Because the
spatially varying potential is one-dimensional and time-
invariant, the concentration response can be averaged both
with respect to time and transverse spatial dimensions. If the
potential is taken to be a cosine, the linear concentration
response will likewise be a cosine, which enables Fourier
filtering to remove fluctuations at other wavenumbers, for a
greatly improved signal-to-noise ratio.
Both methods are subject to statistical error: both the

induced concentration profile and the structure factor are time-
averaged quantities and are affected by thermal fluctuations of
the concentration. The question arises: how do the statistical
errors for χ determined by the two methods scale with system
size and simulation time, and is there any reason to prefer one
method over the other? Naively, one might expect based on
the fluctuation-dissipation relation that the two methods would
be comparable in their efficiency, with comparable statistical
errors for the same computational resources. In Appendix, we
analyze this question in detail and present a scaling description
for the statistical error of both approaches.
It turns out that if the limit of linear response corresponded

to induced concentration profiles with amplitudes comparable
to thermal fluctuations, the two methods would indeed be
comparably efficient. Actually, linear response extends much
farther; nonlinear terms act to limit swings in the
concentration ϕ only near saturation i.e., (ϕ approaching
zero or unity). In Figure 6d−f, plots of external potential U
versus concentration ϕ are evidently linear, corresponding to a
pure cosine ϕ(z) in response to the cosine potential U(z). For
stronger potentials than we have employed, U versus ϕ
becomes steep at the ends, as ϕ(z) approaches the limits of its
range. Because of the wide range of linear response, we can
induce concentration profiles that are much stronger than
thermal fluctuations, which dramatically improves the signal-
to-noise ratio of χ from linear response compared to χ from
S(q) (see Appendix for details).

■ CONCLUSIONS
In this paper, we extend the push−pull method developed for
small molecules to polymers. The method applies spatially
varying external potential on each molecule of a given species
in a blend to induce a spatial variation in the concentration. By
comparing the measured relation between the applied potential
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and the resulting concentration to predictions of model free
energies, interaction parameters can be determined.
For polymers, square-gradient terms in the free energy

density contribute significantly to the local chemical potential,
tending to suppress spatially rapid concentration variations.
For sufficiently large simulations, the effect of square-gradient
terms can be made small. But chain entropy of mixing effects
scale as 1/N, while square-gradient terms scale as a2/L2, where
L is the system dimension and a is a microscopic length of
order the monomer size. So gradient terms are only small
compared to the entropy of mixing when L2 ≫ Na2. But in
polymer simulations of manageable size, the simulation box
dimension is often not many times larger than the mean-square
end-to-end distance of the chains.
Hence, in this work, we introduce methods to measure the

square-gradient coefficient a in simulations, by performing
push−pull simulations on ideal mixtures. For pure melts, we
can divide the chains into two groups, and pull with equal and
opposite potentials on groups 1 and 2, and fit the
concentration response to the prediction of ideal solution
theory plus square-gradient terms. For A-B blends, we can
divide both A and B chains into two groups and again pull
equally and oppositely on 1 and 2, effectively performing
push−pull simulations on two ideal mixtures at the same time.
We use this approach to measure the square-gradient
coefficient a for both bead-spring chains and chemically
realistic PE and PEO oligomers. As expected on physical
grounds, we find that a is a microscopic length scale,
depending mainly on the persistence length of the chains.
With square-gradient coefficients available, we apply the

push−pull method to compute χ for three polymer mixtures:
(1) flexible bead-spring chains in which one species has weaker
nonbonded interactions (“base”-“weak” blends); (2) bead-
spring chains in which one species is stiffer (“base”-“stiff”
blends); and (3) chemically realistic blends of PE and PEO
oligomers (each consisting of 30 main-chain atoms). For each
of these three systems, χ has been measured in simulations
using a previously developed, more cumbersome, and more
limited “morphing” method; we validate the push−pull
approach by comparing to these previous results, as well as
to the experimental value of χ for PE−PEO. In all cases, our
present results using the new push−pull method are in good
agreement with previous values.
The push−pull method has advantages over previously

developed methods for measuring χ in simulations, developed
by our group and by others:21−25

1. Unlike morphing and mutual ghosting, the push−pull
method requires only a single simulation, not an entire
series of simulations to which some thermodynamic
integration is applied.

2. Unlike morphing, the push−pull method does not
require that the chains under study be structurally
similar so that one species can somehow be transformed
into another.

3. Unlike Kirkwood−Buff, very large simulations are not
required to ensure good statistics and good convergence
of thermodynamic integrals of pair correlation functions.

We conclude that the polymer push−pull method is versatile
and widely applicable for calculating the mixing free energy
between polymer mixtures with differing chemical composition
and architecture; future work will leverage this versatility.

■ APPENDIX
Any linear response measurement in a fluctuating system at
equilibrium can be made in two ways: (1) apply a small
external field linearly coupled to the degree of freedom of
interest and measure the average response, or (2) observe the
fluctuations in the degree of freedom of interest and determine
the response function from the fluctuation-dissipation
theorem. This holds true for static as well as dynamic response
functions.
To measure χ in simulations, we can likewise proceed in two

ways. In the present work, we apply an external potential
linearly coupled to the degree of freedom of interest (namely, a
cosine potential coupled to the particle concentrations);
measure the average concentration response; and determine
χ by comparison to linear response theory. Alternatively, we
can imitate experimentalists and observe the thermal
fluctuations of the concentration without any external
potential; measure the average structure factor S(q); and
determine χ by fitting to the RPA (random phase
approximation).
Each procedure is subject to statistical error. In the first

method, the induced concentration profile fluctuates in time
because of thermal fluctuations in the concentration. In the
second method, the structure factor S(q) itself is a time-
averaged quantity and likewise subject to error arising from
thermal fluctuations. The question arises: for each method,
how do the statistical errors scale with system size and run
time? With a limited amount of computer time, which
approach delivers a value for χ with smaller error?
A natural guess is that the two methods should be

statistically comparable, with errors that scale in the same
way; intuitively, since the fluctuation-dissipation theorem
implies the two approaches are equivalent, neither should
provide an advantage over the other. (Even so, there may be
practical reasons to prefer one method over the other.) Since
the two methods are quite different, investigating this guess
requires a scaling argument for each, which we now provide.
(In the following, we assume that we are far from the critical
point in our simulations; otherwise, we will be plagued with
slow equilibration from critical slowing down of the
concentration order parameter.)
We write the concentration ϕ(r) as the sum of Fourier

modes ϕq

r V( ) (1/ ) e
q

q
iq r= ·

(7)

In terms of the Fourier modes, the spatial integral ∫ drϕ2(r)
becomes (1/V)∑q|ϕq|2, and at harmonic order, the free energy
becomes

F V a q(1/ ) (( ) )
q

c q
2 2 2= + | |

(8)

where χc = 2/N is the critical value of χ. (Here and throughout,
we are careless with factors of 2, which are not necessary for
scaling arguments).
The Fourier modes ϕq are therefore Gaussian random

variables with zero mean, and variance scaling as
V

N a q1/q
2

2 2| |
+ (9)

In writing the above, we assume we are far from the critical
point so that χc − χ scales as 1/N.
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In the fluctuation approach, we measure the structure factor
S(q), which is the variance of each Fourier mode of
concentration fluctuations ϕq, S(q) ∼ ⟨|ϕq|2⟩. We determine
χ by fitting S−1(q) to A + Bq2; the coefficient A is χc − χ. To
estimate the statistical error in χ by this method, we must
estimate the error in the measured variance of the Fourier
modes.
The variance of the variance of a Gaussian random variable

scales as the variance squared. (This can be shown by explicit
computation from the Gaussian distribution, or argued by
dimensional analysis, since the distribution is characterized by
a single parameter, its standard deviation σ.) Thus, the mean-
square error in the variance of a Gaussian random variable for
which we have M independent measurements scales as σ4/M.
Because we determine χ from the reciprocal of S(q), we note

that the error for the reciprocal 1/X of a quantity X scales as

X X X X/ (1/ ) /(1/ )2 2 2 2 (10)

(i.e., the relative errors scale the same way). Hence, we have

X X X(1/ ) /2 2 4 (11)

which may likewise be argued by dimensional analysis.
To estimate an error bar for χ determined from S(q), we

observe that the dominant contributions will come from q
values for which the square-gradient term in S−1(q) is smaller
than the constant term, i.e., for q such that 1/N is greater than
a2 q2, or equivalently for qRg < 1 (since Na2 scales as Rg

2). In a
scaling sense, χ can be estimated from the average of these
dominant terms. The number of such terms N* is given by the
volume in Fourier space (q*)3 ∼ 1/Rg

3, divided by the Fourier
space volume element dq3 ∼ 1/V, which yields N* ∼ V/Rg

3.
The number of independent measurements Mq of a given

Fourier mode q scales as the ratio T/τq of the total run time T
and the relaxation time τq of the mode. The relaxation time τq
scales as 1/(Dq2), where D is the diffusivity of the constituent
molecules. Evidently, the slowly relaxing low-q modes have
fewer independent measurements, and consequently larger
square error.
Assembling these arguments, all of the N* Fourier modes

dominantly contributing to χ have square errors scaling like χc2
divided by Mq; this leads to a square error for χ scaling as

q
DT

1/2
c
2

2

(12)

in which the average ⟨···⟩′ is carried out over the dominant
modes, |q| < 1/Rg. Evaluating the average leads finally to

R

DT
2 c

2
g
2

(13)

Now we develop an error estimate for the linear response
method, which is considerably simpler. We apply an external
potential linearly coupled to ϕ(r) to induce a sinusoidal
concentration profile. The response function is S(q), which for
long wavelengths (qRg < 1) scales as 1/(χc − χ), and far from
the critical point scales approximately as 1/χc (consistent with
our assumptions and arguments above).
The square error in the response measurement is

determined by the mean-square fluctuation of the induced
Fourier mode ϕq*, divided by the number of independent
measurements Mq*, where q* is the wavenumber of the applied
potential. For simplicity, we assume that q* and 1/Rg are
comparable; in practice, we have q* Rg < 1 but not ≪ 1,

because we want to minimize the effects of square-gradient
terms while keeping the total system size manageably small.
The mean-square mode amplitude σq*

2 scales as V/χc, and the
number of independent measurements Mq* scales as T/(Rg

2/
D). This leads to a square error estimate for the mode
amplitude scaling as

VR

DTq
2 g

2

c
*

(14)

The square error in our linear response measurement of χ is
then determined by the relative error in our value for the
induced Fourier mode

q

q

2

2

2

2
*

* (15)

Evidently, we want to apply as large an external potential as we
can within the limits of linear response so that the induced
⟨ϕq*⟩ is as large as possible relative to the magnitude of
thermal fluctuations.
Naively, we might expect that the limit of linear response for

a Fourier mode ϕq would have an amplitude comparable to the
root-mean-square thermal fluctuation, i.e., ϕq

2 scaling as V/χc. If
this were the case, the square error for χ measured by linear
response would scale the same as for χ measured from S(q).
Actually, the limit of linear response extends much further

than the typical magnitude of thermal fluctuations. Nonlinear
terms in the effective Hamiltonian only begin to act on the
concentration profile when the amplitude of the cosine
becomes of order unity, which corresponds to a Fourier
mode of amplitude V. This means the square amplitude of the
mode at the limit of linear response is larger than the naive
limit by a factor Vχc, or equivalently V/N, which is the number
of chains in the system. Correspondingly, the relative square
error in χ measured at the limit of linear response scales as a
factor of N/V smaller than the corresponding relative square
error in χ determined from S(q).
In summary, the wide range of linear response allows us to

induce a perturbation of the concentration with an amplitude
much larger than typical fluctuations, with corresponding
improvements in the signal-to-noise ratio. We verify that our
pulling simulations are within linear response because plots of
external potential U versus concentration ϕ are in fact linear.
When nonlinear terms begin to contribute, the graph of U(ϕ)
begins to saturate, becoming steeper on the ends as ϕ
approaches the limits of its range.
We speculate without proof that linear response measure-

ments in simulation may be preferable to fluctuation
measurements more generally because the limits of linear
response may for various reasons exceed the range of typical
fluctuations but will likely never be smaller than typical
fluctuations.
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