
DOI: 10.1002/cpa.22124

RESEARCH ARTICLE

Global well-posedness for the one-phase Muskat
problem

Hongjie Dong1 Francisco Gancedo2 Huy Q. Nguyen3

1Division of Applied Mathematics, Brown
University, Providence, Rhode Island,
USA
2Departamento de Análisis Matemático &
IMUS, Universidad de Sevilla, Seville,
Andalucia, Spain
3Department of Mathematics, University
of Maryland, College Park, Maryland,
USA

Correspondence
Hongjie Dong, Division of Applied
Mathematics, Brown University,
Providence, RI 02912, USA.
Email: hongjie_dong@brown.edu

Abstract
The free boundary problem for a two-dimensional fluid
permeating a porous medium is studied. This is known
as the one-phase Muskat problem and is mathematically
equivalent to the vertical Hele-Shaw problem driven by
gravity force.Weprove that if the initial free boundary is the
graph of a periodic Lipschitz function, then there exists a
global-in-time Lipschitz solution in the strong 𝐿∞𝑡 𝐿2𝑥 sense
and it is the unique viscosity solution. The proof requires
quantitative estimates for layer potentials and pointwise
elliptic regularity in Lipschitz domains. This is the first con-
struction of unique global strong solutions for the Muskat
problem with initial data of arbitrary size.

1 INTRODUCTION

In this paper we study the dynamics of a two-dimensional incompressible fluid permeating a
homogeneous porous medium. This physical phenomenon is modeled by the classical Darcy law
[37]

𝜇𝑢(𝑥, 𝑦, 𝑡) = −∇𝑥,𝑦𝑝(𝑥, 𝑦, 𝑡) − 𝜌(0, 1),

∇𝑥,𝑦 ⋅ 𝑢(𝑥, 𝑦, 𝑡) = 0, (𝑥, 𝑦) ∈ Ω𝑡 ⊂ ℝ2, 𝑡 ∈ ℝ+.
(1.1)

Here 𝑢 is the fluid velocity, 𝑝 is the fluid pressure, and the positive constants 𝜇 and 𝜌 are respec-
tively the dynamic viscosity and fluid density. The permeability of themedia and the gravitational
acceleration have been normalized for the sake of notational simplicity. This problem is known
as the one-phase Muskat problem [63] and, interestingly, is mathematically equivalent to the ver-
tical Hele-Shaw problem driven by gravity. It is a fundamental parabolic free boundary problem
in fluid mechanics. We should point out that the horizontal Hele-Shaw problem driven by fluid
injection or suction has a different nature and has been studied extensively.
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The fluid occupies a time-dependent domainΩ𝑡 ⊂ ℝ2 whose boundary Σ𝑡 moves with the fluid

(Σ𝑡) = 𝑢 ⋅ 𝑛 on Σ𝑡 = 𝜕Ω𝑡, (1.2)

where 𝑛 is the outward pointing unit normal to Σ𝑡. Neglecting surface tension, the pressure is
continuous across the free boundary

𝑝|Σ𝑡 = 0. (1.3)

One is interested in the geometry and regularity of the free boundary Σ𝑡 as time evolves. Regarding
the geometry, there are two distinguished cases: graph and non-graph boundary. For both kinds of
geometry, the existence and uniqueness of strong solution for a short time have been established
even for much more general settings, including multi-phase, with rigid boundaries, with surface
tension, nonconstant permeability. See for example [20, 42, 45], and more recent developments
in [2–7, 21, 28–30, 47, 61, 64, 65].
In this paper we are concerned with long-term dynamics of the Muskat problem. Global exis-

tence and uniqueness of solutions have been obtained either when the initial free boundary is
the graph of a small function (in certain function spaces) [21, 26, 30, 44, 66] or is close to a circle
[20, 27, 49]. There are many recent developments for the former in the direction of low regularity
solutions. These include “medium data” in the Wiener algebra [24, 25, 50, 51], “medium data”
in the Lipschitz norm [12, 13], small data in critical Sobolev spaces allowing for arbitrarily large
slopes [4, 33, 52] and even infinite slope [5]. We note that these norms are scaling invariant for the
setting considered.
The geometry has an interesting interplay with the regularity. It is known that for the two-

phase problem (two fluids separated by a free interface), some initial graph interfaces with large
slopes can turn over, passing from a stable regime to an unstable one [16]. Subsequently the solu-
tions lose regularity in finite time [14]. On the other hand, there exist solutions that shift stability
regime from stable to unstable and then return back to stable [32]. Particles on the free boundary
cannot collide along a smooth curve (splat singularity) for both the two-phase [31] and one-phase
problems [34]. However, the one-phase problem is more singular in the sense that it can develop
splash singularity [15] from some non-graph initial boundary, while the two-phase problem can-
not [53]. Here, splash singularity occurs when two particles collide at a single point on the free
boundary while the boundary remains regular. The remaining less well-understood scenario is
the one-phase problem starting from graph initial boundaries. Then, it is known that in stark con-
trast to its two-phase counterpart, the free boundary of the one-phase problem cannot turn over.
Two fundamental questions for this scenario are: (1) Does there exist a unique global solution? (2)
If yes, what is its long-term regularity?
In this paper we affirmatively answer the first question. More precisely, we prove that if the

initial free boundary is the graph of a periodic Lipschitz function, then there exists a global Lips-
chitz solution in the strong 𝐿∞𝑡 𝐿2𝑥 sense, and hence almost everywhere. Moreover, it is the unique
viscosity solution [36]. In order to establish this result, we first show that the graph free boundary
of the one-phase Muskat problem obeys a nonlinear integro-differential equation.

Proposition 1.1. Assume that the fluid domain is given by

Ω𝑡 = {(𝑥, 𝑦) ∈ ℝ2, 𝑦 < 𝑓(𝑥, 𝑡)}
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3914 DONG et al.

for some function 𝑓(𝑥, 𝑡) ∶ ℝ × [0, 𝑇] → ℝ that is 2𝜋 periodic in 𝑥. Then, 𝑓 obeys the equation

𝜕𝑡𝑓 = −𝜅𝐺(𝑓)𝑓, 𝜅 =
𝜌

𝜇
. (1.4)

Here, for 𝑓, 𝑔 ∶ 𝕋 ≡ ℝ∕2𝜋ℤ → ℝ the Dirichlet-Neumann operator 𝐺(𝑓)𝑔 is given by

𝐺(𝑓)𝑔(𝑥) =
1

4𝜋
𝑝.𝑣.∫

𝕋

sin(𝑥−𝑥′)+sinh(𝑓(𝑥)−𝑓(𝑥′))𝜕𝑥𝑓(𝑥)

cosh(𝑓(𝑥)−𝑓(𝑥′))−cos(𝑥−𝑥′)
𝜃(𝑥′)𝑑𝑥′, (1.5)

where 𝜃 ∶ 𝕋 → ℝ satisfies

1

2
𝜃(𝑥) +

1

2𝜋
𝑝.𝑣.∫

𝕋

sinh(𝑓(𝑥)−𝑓(𝑥′))−sin(𝑥−𝑥′)𝜕𝑥𝑓(𝑥)

cosh(𝑓(𝑥)−𝑓(𝑥′))−cos(𝑥−𝑥′)
𝜃(𝑥′)𝑑𝑥′ = 𝜕𝑥𝑔(𝑥). (1.6)

We shall prove using deep results from layer potential theory for 𝐶1 and Lipschitz domains [46,
68] that𝐺(𝑓)𝑔 is well-defined in 𝐿2(𝕋)with a quantitative bound, provided that 𝑓 ∈ 𝑊1,∞(𝕋) and
𝑔 ∈ 𝐻1(𝕋). Our main result is stated as follows.

Theorem 1.2. For all 𝑓0 ∈ 𝑊1,∞(𝕋), there exists

𝑓 ∈ 𝐶(𝕋 × [0,∞)) ∩ 𝐿∞([0,∞);𝑊1,∞(𝕋)), 𝜕𝑡𝑓 ∈ 𝐿∞([0,∞); 𝐿2(𝕋))

such that 𝑓|𝑡=0 = 𝑓0, 𝑓 satisfies (1.4) in 𝐿∞𝑡 𝐿2𝑥 , and

‖𝑓(𝑡)‖𝑊1,∞(𝕋) ≤ ‖𝑓0‖𝑊1,∞(𝕋) a.e. 𝑡 > 0.

Moreover, 𝑓 is the unique viscosity solution of (1.4) and is stable in 𝐿∞(𝕋).

We note that the stability in the theorem above is in the sense of Corollary 6.4. See also
Proposition 5.2.

Remark 1.3. We shall prove in Theorem 6.3 that viscosity solutions of (1.4) obey the comparison
principle. Consequently, every modulus of continuity of 𝑓0 is preserved by 𝑓(𝑡) for all 𝑡 > 0.

It turns out that sufficiently smooth solutions of the one-phase Muskat problem obey the com-
parison principle. See Proposition 5.1 and [3]. As a consequence, so long as the free boundary
remains to be a graph, its slope is bounded by the initial slope. Thus starting from a Lipschitz
graph, any sufficiently smooth solution must be a graph.
The comparison principle has been discovered for other free boundary problems including the

Stefan problem [8, 58, 59] and the horizontal Hele-Shaw problem [11, 19, 58]. Motivated by the
fact that these models may develop singularities in finite time, the notion of viscosity solutions,
introduced by Crandall and Lions [36], has been employed to construct global solutions past sin-
gularities. In the aforementioned works, viscosity solutions for the unknown scalars are merely
continuous and so are their zero level sets–the free boundary. Consequently, the dynamics of the
free boundary is not satisfied in the classical sense (pointwise). This is also the case for varia-
tional weak solutions constructed in [43, 57]. Higher regularity of weak (viscosity or variational)
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3915

solutions to these problems has been studied in [8, 22, 23]. In particular, for the horizontal one-
phase Hele-Shaw problem, the authors in [22] proved that if the initial Lipschitz norm of the free
boundary is small, then for a short time the unique viscosity solution satisfies the equations point-
wise. We also mention that by using the methodology of convex integration, non-unique weak
solutions have been constructed in the purely unstable [17, 48, 62] and partially unstable scenarios
[18].
As far as theMuskat problem is concerned, to the best of our knowledge there has not been any

global well-posedness result for initial data of arbitrary size, either for weak or strong solutions.
We should point out that for the two-phase problem, the authors in [39] proved the existence
(without uniqueness) of global weak solutions that aremonotone inℝ. In order to obtain viscosity
solutions that satisfy the equation almost everywhere, one cannot appeal to the Perronmethod as
in the aforementionedworks. Instead, we construct solutions by the vanishing viscosity approach.
More precisely, for small 𝜀 > 0 we consider the approximate equation

𝜕𝑡𝑓
𝜀 = −𝜅𝐺(𝑓𝜀)𝑓𝜀 + 𝜀𝜕2𝑥𝑓

𝜀. (1.7)

The added viscous term 𝜀𝜕2𝑥𝑓
𝜀 retains the comparison principle for smooth solutions. The first

difficulty is to establish global regularity for (1.7) with large data. This is done in Proposition 5.3
via the layer potential representation (1.5)–(1.6) of the Dirichlet-Neumann operator 𝐺(𝑓)𝑔 and a
careful decomposition of its singular and non-singular parts. An important ingredient in its proof
is the 𝐿2 bound

‖𝐺(𝑓)𝑔‖𝐿2(𝕋) ≤ 𝐶(1 + ‖𝑓‖Lip(𝕋))2‖𝜕𝑥𝑔‖𝐿2(𝕋), (1.8)

where the slope ‖𝑓‖Lip(𝕋) is controlled for all time. The proof of (1.8) relies on a quantitative bound
for the inverse

(
1

2
𝐼 − 𝐾∗[𝑓]

)−1

, where 𝐾[𝑓] is the boundary double layer potential for the fluid
domain {𝑦 < 𝑓(𝑥)}. This is established in Section 4. Under the 𝐶2,𝛼 regularity condition for the
boundary, a similar boundwas obtained [28]. The quantitative bound is also crucial to the uniform
𝐿2 bound for the solution 𝜃𝜀 of (1.6) with 𝑓 = 𝑓𝜀. Finally, from the uniform Lipschitz bound for
𝑓𝜀 and the uniform 𝐿2 bound for 𝜃𝜀, we are able to pass to the limit 𝜀 → 0 in Equations (1.4)–(1.5)
and (1.6) using a decomposition into small and large scales inspired by [24, 25]. We thus obtain a
global Lipschitz solution in the strong 𝐿∞𝑡 𝐿2𝑥 sense.
An advantage of the viscosity regularization (1.7) is that one can show, in a direct manner, that

the constructed solution 𝑓 is also a viscosity solution (see Definition 6.1). The proof of this makes
use of the contraction estimate for the Dirichlet-Neumann operator associated to two different
domains [65]. In order to obtain the uniqueness of viscosity solutions we prove that they obey
the comparison principle. By the sup and inf-convolution technique, this reduces to proving the
consistency of viscosity solutions. That is, if a viscosity solution is smooth (𝐶1,1) at a point (𝑥0, 𝑡0)
then it satisfies Equation (1.4) classically at the same point. It is known that the harmonic exten-
sion 𝜙 of 𝑓 to the domain {𝑦 < 𝑓(𝑥)} is 𝐶1 at the boundary point (𝑥0, 𝑓(𝑥0)) in all nontangential
directions (see, for instance, [9, Lemma 11.17]), so that 𝐺(𝑓)𝑓 is classically well-defined at 𝑥0.
However, without min-max formulas available at hand as in [10, 19, 67], the 𝐶1 regularity seems
insufficient. Here, we prove that in two dimensions, the harmonic extension 𝜙 is in fact 𝐶1,𝛼 at
(𝑥0, 𝑓(𝑥0))with quantitative estimates (see Theorem 2.12 and Corollary 2.14). This pointwise 𝐶1,𝛼

regularity for harmonic functions in Lipschitz domains is of independent interest. It allows us to
reduce to the Dirichlet-Neumann operator for an interior disk tangent to {𝑦 = 𝑓(𝑥)} at (𝑥0, 𝑓(𝑥0)),
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3916 DONG et al.

so that an explicit integral formula can be used (see Proposition B.1) to conclude the consistency
of viscosity solutions.

2 THE DIRICHLET-NEUMANN OPERATOR

Notation 2.1. For any set  ∈ ℝ𝑑, we denote

Lip() =
{

𝑔 ∶  → ℝ ∶ ‖𝑔‖Lip() ∶= sup
𝑥,𝑦∈,𝑥≠𝑦

|𝑔(𝑥) − 𝑔(𝑦)||𝑥 − 𝑦| < ∞

}
.

For 𝛼 ∈ (0, 1] we say that 𝑔 is 𝐶1,𝛼 at 𝑥0 ∈  if there exists 𝑣 ∈ ℝ𝑑 and positive numbers𝑀 and 𝛾
such that

|𝑔(𝑥) − 𝑔(𝑥0) − 𝑣 ⋅ (𝑥 − 𝑥0)| ≤ 𝑀|𝑥 − 𝑥0|1+𝛼 ∀𝑥 ∈ Ω, |𝑥 − 𝑥0| < 𝛾. (2.1)

If 𝑥0 is an interior point of  then (2.1) implies that ∇𝑔(𝑥) exists and equals 𝑣.

Notation 2.2. For 𝑓 ∶ 𝕋𝑑 → ℝ we denote

Ω𝑓 = {(𝑥, 𝑓(𝑥)) ∶ 𝑥 ∈ 𝕋𝑑, 𝑦 < 𝑓(𝑥)}, Σ = {(𝑥, 𝑓(𝑥)) ∶ 𝑥 ∈ 𝕋𝑑}, (2.2)

𝑁(𝑥) = (−𝜕𝑥𝑓(𝑥), 1), 𝑛(𝑥) =
𝑁(𝑥)|𝑁(𝑥)| . (2.3)

For 𝜙 ∶ Ω𝑓 → ℝ and 𝑧0 ∈ Σ we denote by

lim
𝑧→𝑁𝑧0

𝜙(𝑧) (2.4)

the limit of 𝜙 when Ω𝑓 ∋ 𝑧 → 𝑧0 in the direction of 𝑁.

Notation 2.3. For 𝑥0 ∈ ℝ𝑚, 𝑚 ≥ 1 we denote the ball of radius 𝑟 centered at 𝑥0 by 𝐵𝑟(𝑥0). When
𝑥0 = 0, we shall write 𝐵𝑟 = 𝐵𝑟(0).

2.1 Definition and global properties

Definition 2.4. For 𝑓 ∶ 𝕋𝑑 → ℝ, the Dirichlet-Neumann operator 𝐺(𝑓) is defined by

(𝐺(𝑓)𝑔)(𝑥) = 𝜕𝑁𝜙(𝑥, 𝑓(𝑥)) ∶= lim
ℎ→0−

1

ℎ
[𝜙((𝑥, 𝑓(𝑥)) + ℎ𝑁(𝑥)) − 𝜙(𝑥, 𝑓(𝑥))], (2.5)

where 𝜙(𝑥, 𝑦) solves the elliptic problem{
Δ𝑥,𝑦𝜙 = 0 in Ω𝑓,

𝜙(𝑥, 𝑓(𝑥)) = 𝑔(𝑥), ∇𝑥,𝑦𝜙 ∈ 𝐿2(Ω𝑓).
(2.6)
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3917

When 𝑓 and 𝑔 are time-dependent, we write

(𝐺(𝑓)𝑔) (𝑥, 𝑡) ≡ (𝐺(𝑓(𝑡)) 𝑔 (𝑡)) (𝑥). (2.7)

The one-phase Muskat problem has a compact reformulation in terms of the Dirichlet-Neumann
operator.

Proposition 2.5. If the fluid domain is given byΩ𝑓 for some 𝑓 ∶ ℝ × (0, 𝑇) → ℝ such that

𝑓 ∈ 𝐶(𝕋 × [0,∞)) ∩ 𝐿∞([0,∞);𝑊1,∞(𝕋)), 𝜕𝑡𝑓 ∈ 𝐿∞([0,∞); 𝐿2(𝕋)),

then 𝑓 satisfies
𝜕𝑡𝑓 = −𝜅𝐺(𝑓)𝑓 on (0, 𝑇), (2.8)

where 𝜅 = 𝜌∕𝜇.

This reformulation has been exploited in [3, 47, 64, 65]. We recall its proof for completeness.

Proof. Let 𝑞 = 𝑝 + 𝜌𝑦 denote the ‘hydraulic head’. From Darcy’s law (1.1) we have 𝜇𝑢 = −∇𝑥,𝑦𝑞

andΔ𝑥,𝑦𝑞 = 0 inΩ𝑓 . Moreover, (1.3) implies 𝑞(𝑥, 𝑓(𝑥)) = 𝜌𝑓(𝑥). By the definition of theDirichlet-
Neumann operator, at any fixed time we have

𝜌(𝐺(𝑓)𝑓)(𝑥) = (𝐺(𝑓)(𝜌𝑓))(𝑥) = 𝑁(𝑥) ⋅ ∇𝑥,𝑦𝑞(𝑥, 𝑓(𝑥)) = −𝜇𝑁(𝑥) ⋅ 𝑢(𝑥, 𝑓(𝑥)).

For graph boundary, (1.2) yields

𝜕𝑡𝑓(𝑥, 𝑡) = 𝑁(𝑥, 𝑡) ⋅ 𝑢(𝑓(𝑥, 𝑡), 𝑡) = −
𝜌

𝜇
(𝐺(𝑓)𝑓)(𝑥, 𝑡),

which finishes the proof of (2.8). □

In order to define 𝐺(𝑓)𝑔 we first study the well-posedness of the elliptic problem (2.6). It was
proved in Proposition 3.6 [65] that (2.6) has a unique variational solution when 𝑓 ∈ Lip(ℝ𝑑) and

𝑔 ∈ 𝐻̇
1

2 (ℝ𝑑). Of course, this is only nonstandard when the domain is unbounded. Adaption to
horizontally periodic domains is straightforward. To fix notation for later purposes, we prove

Proposition 2.6. Let 𝑓 ∈ Lip(𝕋𝑑) and 𝑔 ∈ 𝐻̇
1

2 (𝕋𝑑). Then there exists a unique variational solution
𝜙 ∈ 𝐻̇1(Ω𝑓) to (2.6), where

𝐻̇1(Ω𝑓) = {𝑢 ∈ 𝐿1loc(Ω𝑓) ∶ ∇𝑥,𝑦𝑢 ∈ 𝐿2(Ω𝑓)}∕ℝ (2.9)

is endowed with the norm ‖𝑢‖𝐻̇1(Ω𝑓)
= ‖∇𝑢‖𝐿2(Ω𝑓). Moreover, 𝜙 satisfies

‖𝜙‖𝐻̇1(Ω𝑓)
≤ 𝐶(1 + ‖𝑓‖Lip(𝕋𝑑))‖𝑔‖

𝐻̇
1
2 (𝕋𝑑)

. (2.10)

We shall refer to the solution 𝜙 of (2.6) as the harmonic extension of 𝑔 toΩ𝑓 .
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3918 DONG et al.

Proof. According to Theorem A.2, there exists 𝑔 ∈ 𝐻̇1(Ω𝑓) such that Tr(𝑔) = 𝑔 and

‖𝑔‖𝐻̇1(Ω𝑓)
≤ 𝐶(1 + ‖𝑓‖Lip(𝕋𝑑))‖𝑔‖

𝐻̇
1
2 (𝕋𝑑)

. (2.11)

Denote

𝐻̇1
0(Ω𝑓) = {𝑢 ∈ 𝐻̇1(Ω𝑓) ∶ Tr(𝑢) = 0}, (2.12)

where the trace operator Tr ∶ 𝐻̇1(Ω𝑓) → 𝐻̇
1

2 (𝕋) is given in Theorem A.1. We then define 𝜙

solution to (2.6) to be

𝜙 = 𝑢 + 𝑔, (2.13)

where 𝑢 is the unique variational solution in 𝐻̇1
0(Ω𝑓) of the equation −Δ𝑥,𝑦𝑢 = Δ𝑥,𝑦𝑔. That is,

𝑢 ∈ 𝐻̇1
0(Ω𝑓) satisfies

∫
Ω𝑓

∇𝑥,𝑦𝑢 ⋅ ∇𝑥,𝑦𝜑𝑑𝑥𝑑𝑦 = −∫
Ω𝑓

∇𝑥,𝑦𝑔 ⋅ ∇𝑥,𝑦𝜑𝑑𝑥𝑑𝑦 ∀𝜑 ∈ 𝐻̇1
0(Ω𝑓). (2.14)

Since 𝐻̇1
0(Ω𝑓) is a Hilbert space, the existence and uniqueness of 𝑢 is guaranteed by the Lax-

Milgram theorem. From (2.14) we have

∫
Ω𝑓

∇𝑥,𝑦𝜙 ⋅ ∇𝑥,𝑦𝜑𝑑𝑥𝑑𝑦 = 0 ∀𝜑 ∈ 𝐻̇1
0(Ω𝑓). (2.15)

Moreover, inserting 𝜑 = 𝑢 in (2.14) we obtain (2.10) from (2.11). We note that the solution
constructed by (2.13) and (2.14) is independent of the choice of 𝑔. □

With Proposition 2.6 at hand, a straightforward adaptation of the results in [1, 38, 65], which
hold for the non-periodic setting, yields

Proposition 2.7 [1, Theorem 3.8] and [65, Proposition 3.7]. If 𝑓 ∈ Lip(𝕋𝑑) and 𝑔 ∈ 𝐻̇
1

2 (𝕋𝑑), then

𝐺(𝑓)𝑔 is well-defined in𝐻
−

1

2 (𝕋𝑑) and there exists a universal constant 𝐶 such that

‖𝐺(𝑓)𝑔‖
𝐻

−
1
2 (𝕋𝑑)

≤ 𝐶(1 + ‖𝑓‖Lip(𝕋𝑑))
2‖𝑔‖

𝐻̇
1
2 (𝕋𝑑)

. (2.16)

In higher Sobolev spaces, the Dirichlet-Neumann operator obeys the following tame estimate.

Proposition 2.8 [38, Proposition 2.13]. Let 𝑠0 > 1 +
𝑑

2
and 𝜎 ≥ 1

2
. Then there exists a nondecreasing

function  ∶ ℝ+ → ℝ+ such that

‖𝐺(𝑓)𝑔‖𝐻𝜎−1(𝕋𝑑) ≤ (‖𝑓‖𝐻𝑠0 (𝕋𝑑))
(‖𝑔‖𝐻𝜎(𝕋𝑑) + ‖𝑓‖𝐻𝜎(𝕋𝑑)‖𝑔‖𝐻𝑠0 (𝕋𝑑)

)
(2.17)

for all 𝑓, 𝑔 ∈ 𝐻max{𝑠0,𝜎}(𝕋𝑑).
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3919

Despite its nonlocality with respect to the boundary, the Dirichlet-Neumann operator has the
contraction property given in the next result.

Proposition 2.9 [65, Corollary 3.25]. Let 𝑠0 > 1 +
𝑑

2
and 𝜎 ∈ [

1

2
, 𝑠0]. Then there exists a nondecreas-

ing function  ∶ ℝ+ → ℝ+ such that

‖𝐺(𝑓1)𝑔 − 𝐺(𝑓2)𝑔‖𝐻𝜎−1(𝕋𝑑) ≤ (‖(𝑓1, 𝑓2)‖𝐻𝑠0 (𝕋𝑑))‖𝑓1 − 𝑓2‖𝐻𝜎(𝕋𝑑)‖𝑔‖𝐻𝑠0 (𝕋𝑑)

for all 𝑓𝑗, 𝑔 ∈ 𝐻𝑠0(𝕋𝑑).

2.2 Pointwise properties in two dimensions

2.2.1 Pointwise 𝐶1,𝛼 estimate for harmonic functions

Suppose that 𝑈 is a Lipschitz domain in ℝ2. For (𝑥0, 𝑦0) ∈ ℝ2 and 𝑟 > 0, we denote 𝑈𝑟(𝑥0, 𝑦0) =

𝐵𝑟(𝑥0, 𝑦0) ∩ 𝑈 and 𝑈𝑟 = 𝑈𝑟(0). We also define the half ball as

𝐵+
𝑟 (𝑥0, 𝑦0) = {(𝑥, 𝑦) ∈ 𝐵𝑟(𝑥0, 𝑦0) ∶ 𝑦 > 𝑦0}.

We assume that 0 ∈ 𝜕𝑈. Suppose that there exists some 𝑟0 > 0 such that in a coordinate system,
𝜕𝑈 ∩ 𝐵2𝑟0 can be represented by a Lipschitz graph with Lipschitz constant 𝐿 > 0.
Let 𝑢 be a harmonic function in 𝑈, which vanishes on 𝜕𝑈.

Lemma2.10. Under the conditions above, there exist 𝜀0 = 𝜀0(𝐿) > 0 and𝑀1 = 𝑀1(𝐿) > 0 such that

𝑢 ∈ 𝐶
1

2
+𝜀0(𝑈𝑟0) and

‖𝑢‖
𝐶

1
2
+𝜀0 (𝑈𝑟0

)
≤ 𝑀1𝑟

−
3

2
−𝜀0

0 ‖𝑢‖𝐿2(𝑈2𝑟0
). (2.18)

Proof. By scaling, wemay assume that 𝑟0 = 1 and ‖𝑢‖𝐿2(𝑈2) = 1. By the boundaryDeGiorgi-Nash-
Moser estimate, we know that

‖𝑢‖𝐿∞(𝑈3∕2) ≤ 𝑀(𝐿). (2.19)

Now we fix a point (𝑥0, 𝑦0) ∈ 𝜕𝑈 ∩ 𝐵1. Since 𝜕𝑈 ∩ 𝐵2 can be represented by a Lipschitz graph
with Lipschitz constant 𝐿 > 0, we may assume that

𝑈1∕2(𝑥0, 𝑦0) ⊂
{
(𝑥, 𝑦) ∈ 𝐵1∕2(𝑥0, 𝑦0) ∶ 𝑦 − 𝑦0 > −𝐿|𝑥 − 𝑥0|}. (2.20)

Let 𝛽 = tan−1(1∕𝐿) ∈ (0,
𝜋

2
), 𝛾 = 𝜋∕(2𝜋 − 𝛽) ∈ (

1

2
, 1), and define

𝑣(𝑥, 𝑦) = ‖𝑢‖𝐿∞(𝑈3∕2)Re(−2𝑖[𝑥 − 𝑥0 + 𝑖(𝑦 − 𝑦0)])
𝛾
(cos((𝜋 − 𝛽)𝛾))

−1
.

In view of (2.20), it is also easily seen that 𝑣 is a harmonic function in𝑈1∕2(𝑥0, 𝑦0). Moreover, 𝑣 ≥ 0

on 𝜕𝑈 ∩ 𝐵1∕2(𝑥0, 𝑦0) and 𝑣 ≥ ‖𝑢‖𝐿∞(𝑈3∕2) on 𝑈 ∩ 𝜕𝐵1∕2(𝑥0, 𝑦0). By the comparison principle, we
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3920 DONG et al.

have |𝑢| ≤ 𝑣 in 𝑈1∕2(𝑥0, 𝑦0), which implies that

|𝑢(𝑥, 𝑦)| ≤ 𝑀|(𝑥 − 𝑥0)
2
+ (𝑦 − 𝑦0)

2| 𝛾2 ‖𝑢‖𝐿∞(𝑈3∕2)

in 𝑈1∕2(𝑥0, 𝑦0). This together with (2.19) and the interior regularity of harmonic functions
complete the proof with 𝜀0 = 𝛾 −

1

2
. □

We remark that alternatively the above Hölder estimate can be obtained by using the 𝑊1,4+𝜀

estimate by Jerison-Kenig [56] and the Morrey embedding.

Assumption 2.11. There exist constants 𝑀0, 𝑟0 > 0 and function 𝜓 in (−𝑟0, 𝑟0) such that in a
coordinate system

𝜓(0) = 𝜓′(0) = 0, 𝑈𝑟0 = {(𝑥, 𝑦) ∈ 𝐵𝑟0 ∶ 𝑦 > 𝜓(𝑥)},

and for any 𝑟 ∈ (0, 𝑟0),
{(𝑥, 𝑦) ∈ 𝐵𝑟 ∶ 𝑦 > 𝑀0𝑟

2} ⊂ 𝑈𝑟. (2.21)

Moreover, 𝑈 satisfies the exterior ball condition at 0 with radius 1∕𝑀0.

Note that if 𝜕𝑈 is 𝐶1,1 at 0 ∈ 𝜕𝑈, then Assumption 2.11 is satisfied.

Theorem 2.12. Under the conditions above, 𝑢 is 𝐶1,𝛼 at 0, that is, for any (𝑥, 𝑦) ∈ 𝑈 such that√
𝑥2 + 𝑦2 < 𝑟0, we have

|𝑢(𝑥, 𝑦) − (𝑥, 𝑦) ⋅ ∇𝑥,𝑦𝑢(0)| ≤ 𝑀|𝑥2 + 𝑦2| 1+𝛼2 𝑟−2−𝛼0 ‖𝑢‖𝐿2(𝑈2𝑟0
), (2.22)

where 𝑀 > 0 is a constant depending only on 𝑀0𝑟0, and 𝐿, and 𝛼 ∈ (0, 1) is a small constant
depending only on 𝐿.

First, by scaling we may assume that 𝑟0 = 1, so that the new 𝑀0 becomes𝑀0𝑟0, and 𝜀0 and 𝐿

remain the same. Moreover, by dividing 𝑢 by a constant we may also assume that ‖𝑢‖𝐿2(𝑈2) = 1.
Since 𝜕𝑈 satisfies an exterior ball condition, by using a barrier argument, we know that 𝑢 is

Lipschitz at 0 and

|𝑢(𝑥, 𝑦)| ≤ 𝑀(𝑥2 + 𝑦2)
1

2 in 𝑈2. (2.23)

By the Caccioppoli inequality, it is easily seen that for 𝑟 ∈ (0, 1),

‖∇𝑥,𝑦𝑢‖𝐿2(𝑈3𝑟∕2) ≤ 𝑀𝑟−1‖𝑢‖𝐿2(𝑈2𝑟) ≤ 𝑀𝑟, (2.24)

where we used (2.23) in the second inequality. It follows from the reverse Hölder’s inequality (see,
for instance, [54, Ch. V]) and (2.24) that there exists 𝑝0 = 𝑝0(𝐿) > 2 such that

‖∇𝑥,𝑦𝑢‖𝐿𝑝0 (𝑈𝑟) ≤ 𝑀𝑟
2

𝑝0 . (2.25)
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3921

Now we take a smooth domain 𝐸 such that 𝐵+
2∕3

⊂ 𝐸 ⊂ 𝐵+
3∕4
. For any (𝑥0, 𝑦0) ∈ ℝ2 and 𝑟 > 0,

denote
𝐸𝑟(𝑥0, 𝑦0) = {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑟−1(𝑥 − 𝑥0, 𝑦 − 𝑦0) ∈ 𝐸},

Γ𝑟(𝑥0, 𝑦0) = {(𝑥, 𝑦) ∈ 𝜕𝐸𝑟(𝑥0, 𝑦0) ∶ 𝑦 = 𝑦0}.

Clearly, for 𝑟 sufficiently small, by (2.21) we have 𝐸𝑟(0,𝑀0𝑟
2) ⊂ 𝑈𝑟.

Take a smooth function 𝜂 = 𝜂(𝑠) on ℝ such that 𝜂(𝑠) = 0 in (−∞, 1) and 𝜂(𝑠) = 1 in (2,∞).
Denote 𝜂𝑟(𝑠) = 𝜂(𝑠∕(𝑀0𝑟

2)). A simple calculation reveals that 𝑢(𝑥, 𝑦)𝜂𝑟(𝑦) satisfies

Δ𝑥,𝑦(𝑢(𝑥, 𝑦)𝜂𝑟(𝑦)) = 𝜕𝑦(𝑢𝜂
′
𝑟) + 𝜕𝑦𝑢𝜂

′
𝑟 in 𝐸𝑟(0,𝑀0𝑟

2)

and 𝑢(𝑥, 𝑦)𝜂𝑟(𝑦) = 0 on Γ𝑟(0,𝑀0𝑟
2). Note that the right-hand side is supported in a narrow strip

{(𝑥, 𝑦) ∈ 𝑈𝑟 ∶ 𝑀0𝑟
2 < 𝑦 < 2𝑀0𝑟

2}.
We decompose 𝑢𝜂𝑟 in 𝐸𝑟(0,𝑀0𝑟

2) as follows. Let 𝑤 = 𝑤𝑟 be a weak solution to

Δ𝑥,𝑦𝑤 = 𝜕𝑦(𝑢𝜂
′
𝑟) + 𝜕𝑦𝑢𝜂

′
𝑟 in 𝐸𝑟(0,𝑀0𝑟

2)

with the zero Dirichlet boundary condition on 𝜕𝐸𝑟(0,𝑀0𝑟
2). Then 𝑣 = 𝑣𝑟 = 𝑢𝜂𝑟 − 𝑤 satisfies

Δ𝑥,𝑦𝑣 = 0 in 𝐸𝑟(0,𝑀0𝑟
2)

and 𝑣 = 0 on Γ𝑟(0,𝑀0𝑟
2).

Estimates of 𝑤. Since 𝐸𝑟(0,𝑀0𝑟
2) is smooth, by the 𝑊1,𝑝 estimate, we know that for any 𝑝 <

∞,𝑤 ∈ 𝑊1,𝑝(𝐸𝑟(0,𝑀0𝑟
2)). Notice that 𝜂′𝑟(𝑦) ≤ 𝑀|𝑦 − 𝜓(𝑥)|−1. By using Hardy’s inequality and a

duality argument (see the proof of [41, Theorem 3.5]), we have

‖∇𝑥,𝑦𝑤‖𝐿𝑝(𝐸𝑟(0,𝑀0𝑟2)) ≤ 𝑀‖∇𝑥,𝑦𝑢‖𝐿𝑝(𝑈𝑟∩{𝑦<2𝑀0𝑟2}). (2.26)

Now we fix 𝑝 =
(2+𝑝0)

2
and let 𝑞 > 1 be such that 1

𝑞
=

1

𝑝
−

1

𝑝0
. Using (2.26), Hölder’s inequality,

and (2.25), we get

‖∇𝑥,𝑦𝑤‖𝐿𝑝(𝐸𝑟(0,𝑀0𝑟2)) ≤ 𝑀‖∇𝑥,𝑦𝑢‖𝐿𝑝0 (𝑈𝑟∩{𝑦<2𝑀0𝑟2})𝑟
3

𝑞 ≤ 𝑀𝑟
2

𝑝0
+

3

𝑞 . (2.27)

By the zero boundary condition and the Morrey embedding, from (2.27) we obtain

‖𝑤‖𝐿∞(𝐸𝑟(0,𝑀0𝑟2)) ≤ 𝑀𝑟
1−

2

𝑝 ‖𝑤‖
𝐶
1−

2
𝑝 (𝐸𝑟(0,𝑀0𝑟2))

≤ 𝑀𝑟
1−

2

𝑝 ‖∇𝑤‖𝐿𝑝(𝐸𝑟(0,𝑀0𝑟2))

≤ 𝑀𝑟
1−

2

𝑝
+

2

𝑝0
+

3

𝑞 = 𝑀𝑟
1+

1

𝑞 . (2.28)

Estimates of 𝑣. Since 𝐵+
𝑟∕2

(0,𝑀0𝑟
2) ⊂ 𝐸𝑟(0,𝑀0𝑟

2), we know that 𝑣 is harmonic in 𝐵+
𝑟∕2

(0,𝑀0𝑟
2)

and vanishes on the flat boundary. By the boundary estimate for harmonic functions,

‖∇𝑥,𝑦𝑣‖𝐿∞(𝐵+
𝑟∕4

(0,𝑀0𝑟2))
≤ 𝑀𝑟−1‖𝑣‖𝐿∞(𝐵+

𝑟∕2
(0,𝑀0𝑟2))

,
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3922 DONG et al.

which together with (2.28) and the Lipschitz regularity of 𝑢 at 0 implies that

‖∇𝑥,𝑦𝑣‖𝐿∞(𝐵+
𝑟∕4

(0,𝑀0𝑟2))
≤ 𝑀. (2.29)

Moreover, by [40, Lemma 2.5], for any linear function 𝓁 of 𝑦,

‖∇2
𝑥,𝑦𝑣‖𝐿∞(𝐵+

𝑟∕4
(0,𝑀0𝑟2))

≤ 𝑀𝑟−2‖𝑣 − 𝓁‖𝐿∞(𝐵+
𝑟∕2

(0,𝑀0𝑟2))
.

Thus by themean value theorem and because 𝑣(0,𝑀0𝑟
2) = 𝜕𝑥𝑣(0,𝑀0𝑟

2) = 0, for any 𝜅 ∈ (0, 1∕4),

‖𝑣 − (𝑦 −𝑀0𝑟
2)𝜕𝑦𝑣(0,𝑀0𝑟

2)‖𝐿∞(𝐵+
𝜅𝑟(0,𝑀0𝑟2))

≤ 𝑀𝜅2‖𝑣 − 𝓁‖𝐿∞(𝐵+
𝑟∕2

(0,𝑀0𝑟2))
. (2.30)

Estimates of 𝑢. Recall that 𝑢𝜂𝑟 = 𝑤 + 𝑣 in 𝐸𝑟(0,𝑀0𝑟
2). Combining (2.28) and (2.30) gives

‖𝑢𝜂𝑟 − (𝑦 −𝑀0𝑟
2)𝜕𝑦𝑣(0,𝑀0𝑟

2)‖𝐿∞(𝐵+
𝜅𝑟(0,𝑀0𝑟2))

≤ 𝑀𝜅2 inf
𝑎,𝑏∈ℝ

‖𝑢𝜂𝑟 − (𝑎 + 𝑏𝑦)‖𝐿∞(𝐵+
𝑟∕2

(0,𝑀0𝑟2))
+ 𝑀𝑟

1+
1

𝑞 . (2.31)

By the 𝐶
1

2
+𝜀0 estimate (2.18), we also have

‖𝑢(1 − 𝜂𝑟)‖𝐿∞(𝑈𝑟) ≤ sup
𝑈𝑟∩{𝑦<2𝑀0𝑟2}

|𝑢(𝑥, 𝑦)|
= sup

𝑈𝑟∩{𝑦<2𝑀0𝑟2}
|𝑢(𝑥, 𝑦) − 𝑢(𝑥, 𝜓(𝑥))| ≤ 𝑀𝑟1+2𝜀0 .

Combining the above inequality, (2.29), and (2.31) yields that for any 𝜅 ∈ (0,
1

8
),

inf
𝑎,𝑏∈ℝ

‖𝑢 − (𝑎 + 𝑏𝑦)‖𝐿∞(𝑈𝜅𝑟) ≤ 𝑀𝜅2 inf
𝑎,𝑏∈ℝ

‖𝑢 − (𝑎 + 𝑏𝑦)‖𝐿∞(𝑈𝑟) + 𝑀𝑟1+𝛼,

where 𝛼 = min{2𝜀0,
1

𝑞
}. By a standard iteration argument, we then get

inf
𝑎,𝑏∈ℝ

‖𝑢 − (𝑎 + 𝑏𝑦)‖𝐿∞(𝑈𝑟) ≤ 𝑀𝑟1+𝛼,

that is, for any 𝑟 ∈ (0, 1), there exist constants 𝑎𝑟 and 𝑏𝑟 such that

‖𝑢 − (𝑎𝑟 + 𝑏𝑟𝑦)‖𝐿∞(𝑈𝑟) ≤ 𝑀𝑟1+𝛼. (2.32)

Lemma 2.13. We have

|𝑢(0) − 𝑎𝑟| ≤ 𝑀𝑟1+𝛼 (2.33)
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3923

and for any 𝑟

2
≤ 𝑠 ≤ 𝑟 < 1,

|𝑏𝑠 − 𝑏𝑟| ≤ 𝑀𝑟𝛼. (2.34)

Proof. The inequality (2.33) follows directly from (2.32). For (2.34), by the triangle inequality, for
any (𝑥, 𝑦) ∈ 𝑈𝑠,

|(𝑎𝑠 + 𝑏𝑠𝑦) − (𝑎𝑟 + 𝑏𝑟𝑦)|
≤ |𝑢(𝑥, 𝑦) − (𝑎𝑠 + 𝑏𝑠𝑦)| + |𝑢(𝑥, 𝑦) − (𝑎𝑟 + 𝑏𝑟𝑦)| ≤ 𝑀𝑟1+𝛼.

This together with (2.33) implies (2.34). The lemma is proved. □

Proof of Theorem 2.12. From (2.34) we see that 𝑏𝑟 is convergent as 𝑟 → 0. Let 𝑏∗ be the limit. Then
again from (2.34), we have

|𝑏∗ − 𝑏𝑟| ≤ 𝑀𝑟𝛼. (2.35)

Combining (2.32), (2.33), and (2.35), we reach

|𝑢(𝑥, 𝑦) − 𝑏∗𝑦| ≤ 𝑀|𝑥2 + 𝑦2| 1+𝛼2 ,

which gives (2.22) with 𝜕𝑥𝑢(0) = 0 and 𝜕𝑦𝑢(0) = 𝑏∗. The theorem is proved. □

Corollary 2.14. Assume that 𝑓 ∈ 𝑊1,∞(𝕋) is 𝐶1,1 at 𝑥0 ∈ 𝕋. Then the harmonic extension 𝜙 of 𝑓 to
Ω𝑓 is 𝐶1,𝛼 at (𝑥0, 𝑓(𝑥0)) in the following quantitative sense. Let 𝛾 ∈ (0, 1) and𝑀0 > 0 be such that

|𝑓(𝑥) − 𝑓(𝑥0) − 𝜕𝑥𝑓(𝑥0)(𝑥 − 𝑥0)| ≤ 𝑀0|𝑥 − 𝑥0|2 ∀|𝑥 − 𝑥0| < 𝛾.

Then there exists 𝛼 ∈ (0, 1) depending only on ‖𝑓‖𝑊1,∞(𝕋), and there exists 𝑀 > 0 depending only
on ‖𝑓‖𝑊1,∞(𝕋) and𝑀0𝛾, such that

|𝜙(𝑥, 𝑦) − 𝑓(𝑥0)−(𝑥 − 𝑥0, 𝑦 − 𝑓(𝑥0)) ⋅ ∇𝜙(𝑥0, 𝑓(𝑥0))|
≤ 𝑀𝛾−1−𝛼

|||(𝑥 − 𝑥0)
2
+ (𝑦 − 𝑓(𝑥0))

2||| 1+𝛼2
for all (𝑥, 𝑦) ∈ Ω𝑓 satisfying (|𝑥 − 𝑥0|2 + |𝑦 − 𝑓(𝑥0)|2) 12 < 𝛾.

Proof. Assume without loss of generality that (𝑥0, 𝑓(𝑥0)) = (0, 0). Let 𝑝 = 𝜙 − 𝑦 so that 𝑝 is har-
monic inΩ𝑓 and vanishes on 𝜕Ω𝑓 . Since 𝜕Ω𝑓 is a Lipschitz graph globally, Theorem 2.12 implies
that

|𝑝(𝑥, 𝑦) − (𝑥, 𝑦) ⋅ ∇𝑥,𝑦𝑝(0)| ≤ 𝑀|𝑥2 + 𝑦2| 1+𝛼2 𝛾−2−𝛼‖𝑝‖𝐿2(Ω𝑓∩𝐵2𝛾),
√
𝑥2 + 𝑦2 < 𝛾, (2.36)
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3924 DONG et al.

where 𝛼 and 𝑀 are as in the statement. Since 𝑓 ∈ 𝑊1,∞(𝕋), in (2.13) we can take 𝑔(𝑥, 𝑦) =

𝑓(𝑥)𝜒(𝑦 − 𝑓(𝑥)), where the cutoff 𝜒 is supported on [−1, 0] and identically 1 on [−
1

2
, 0]. Then

𝜙 = 𝑢 + 𝑔, where 𝑢 ∈ 𝐻̇1
0(Ω𝑓) and ‖𝑔‖𝐻1(Ω𝑓) ≤ 𝐶(‖𝑓‖𝑊1,∞). In the bounded stripΩ𝑓,𝛾 = {𝑓(𝑥) −

2𝛾 < 𝑦 < 𝑓(𝑥)}, Poincaré’s inequality yields

‖𝑢‖𝐿2(Ω𝑓,𝛾) ≤ 2𝛾‖∇𝑥,𝑦𝑢‖𝐿2(Ω𝑓,𝛾) ≤ 2𝛾‖∇𝑥,𝑦𝑔‖𝐿2(Ω𝑓) ≤ 𝛾𝐶(‖𝑓‖𝑊1,∞)

upon recalling (2.14). In addition, ‖𝑔‖𝐿2(Ω𝑓∩𝐵2𝛾) ≤ 𝐶0𝛾‖𝑓‖𝐿∞(𝕋), where 𝐶0 is an absolute constant.
It follows that ‖𝜙‖𝐿2(Ω𝑓∩𝐵2𝛾) ≤ 𝛾𝐶(‖𝑓‖𝑊1,∞). Finally, inserting 𝑝 = 𝜙 − 𝑦 into (2.36) we conclude
the proof. □

2.2.2 Pointwise comparison principle for Dirichlet-Neumann

Proposition 2.15. Let 𝑓1, 𝑓2 ∈ 𝑊1,∞(𝕋) be 𝐶1,1 at 𝑥0. If 𝑓1(𝑥) ≤ 𝑓2(𝑥) for all 𝑥 ∈ 𝕋 and 𝑓1(𝑥0) =
𝑓2(𝑥0), then 𝐺(𝑓𝑗)𝑓𝑗 are classically well-defined at 𝑥0 and

(𝐺(𝑓1)𝑓1)(𝑥0) ≥ (𝐺(𝑓2)𝑓2)(𝑥0). (2.37)

Proof. Let 𝜙𝑗 be the harmonic extension of 𝑓𝑗 to Ω𝑗 ≡ Ω𝑓𝑗 as given by Proposition 2.6. Then
𝑝𝑗 ∶= 𝜙𝑗 − 𝑦 are harmonic in Ω𝑗 and identically vanish on 𝜕Ω𝑗 = {(𝑥, 𝑦) ∶ 𝑦 = 𝑓𝑗(𝑥)}. Since 𝑥0
is a 𝐶1,1 boundary point, Theorem 2.12 implies that the normal derivatives 𝜕𝑁𝑗

𝑝𝑗 , where𝑁𝑗(𝑥) =

(−𝜕𝑥𝑓𝑗(𝑥), 1), are classically well-defined at 𝑥0. Consequently, in view of the definition (2.5), we
have (

𝐺(𝑓𝑗)𝑓𝑗
)
(𝑥0) = 𝜕𝑁𝑗(𝑥0)(𝑝𝑗 + 𝑦)(𝑥0, 𝑓𝑗(𝑥0)) = 𝜕𝑁𝑗(𝑥0)𝑝𝑗(𝑥0, 𝑓𝑗(𝑥0)) + 1 (2.38)

are classically well-defined at (𝑥0, 𝑓(𝑥0)). We first claim that

𝑝𝑗(𝑥, 𝑦) ≥ 0 𝑎.𝑒. Ω𝑗. (2.39)

If 𝜙𝑗 are smooth then so do 𝑝𝑗 and (2.39) is a consequence of themaximumprinciple for harmonic
functions. Here, following Proposition 4.3 [65] we prove (2.39) for variational solutions. Indeed,
recall from (2.15) that

∫
Ω𝑗

∇𝑥,𝑦𝜙 ⋅ ∇𝑥,𝑦𝜑𝑑𝑥𝑑𝑦 = 0 ∀𝜑 ∈ 𝐻̇1
0(Ω𝑗). (2.40)

Inserting 𝜑 = min{𝜙 − inf𝕋𝑑 𝑓𝑗, 0} ∈ 𝐻̇1
0(Ω𝑗) into (2.40) gives

inf
Ω𝑗

𝜙𝑗 ≥ inf
𝕋𝑑

𝑓𝑗. (2.41)

On the other hand, by choosing 𝜑 = max{𝜙 − sup𝕋𝑑 𝑓𝑗, 0} we obtain

sup
Ω𝑗

𝜙𝑗 ≤ sup
𝕋𝑑

𝑓𝑗. (2.42)
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3925

It follows from (2.41) that 𝑝𝑗 ≥ 0 for 𝑦 ≤ inf𝕋𝑑 𝑓𝑗 . Hence, 𝑝−
𝑗
= min{𝑝𝑗, 0} identically vanishes in

{(𝑥, 𝑦) ∶ 𝑦 ≤ inf𝕋𝑑 𝑓𝑗} and 𝑝−
𝑗
∈ 𝐻̇1

0(Ω𝑗). Thus inserting 𝜑 = 𝑝−
𝑗
into (2.40) and replacing 𝜙𝑗 =

𝑝𝑗 + 𝑦 we obtain

∫
Ω𝑗

∇𝑥,𝑦𝑝𝑗 ⋅ ∇𝑥,𝑦𝑝
−
𝑗
𝑑𝑥𝑑𝑦 = −∫

Ω𝑗

𝜕𝑦𝑝
−
𝑗
𝑑𝑥𝑑𝑦

= −∫
inf𝕋𝑑 𝑓𝑗<𝑦<𝑓𝑗(𝑥)

𝜕𝑦𝑝
−
𝑗
𝑑𝑥𝑑𝑦 = 𝑝−

𝑗
(𝑥, inf

𝕋𝑑
𝑓𝑗) = 0.

This implies ∫
Ω𝑗

|∇𝑥,𝑦𝑝
−
𝑗
|2 = 0 and thus 𝑝𝑗 ≥ 0 a.e. Ω𝑗 . We obtain the claim (2.39).

Since 𝑓1 ≤ 𝑓2, we have Ω1 ⊂ Ω2 and 𝑝 ∶= 𝑝1 − 𝑝2 satisfies

𝑝(𝑥, 𝑓1(𝑥)) = −𝑝2(𝑥, 𝑓1(𝑥)) ≤ 0

by virtue of (2.39). In addition, noticing 𝑝 = 𝜙1 − 𝜙2 we find from (2.40) that

∫
Ω1

∇𝑥,𝑦𝑝 ⋅ ∇𝑥,𝑦𝜑𝑑𝑥𝑑𝑦 = 0 ∀𝜑 ∈ 𝐻̇1
0(Ω1).

Then as for (2.42), upon choosing 𝜑 = max{𝑝 − sup𝑥∈𝕋𝑑(𝑝(𝑥, 𝑓1(𝑥))), 0} we obtain

sup
Ω1

𝑝 ≤ sup
𝑥∈𝕋𝑑

(𝑝(𝑥, 𝑓1(𝑥))) ≤ 0.

Therefore, 𝑝 attains the zero maximum at the boundary point (𝑥0, 𝑓1(𝑥0)). In addition, we have
𝑁1(𝑥0) = 𝑁2(𝑥0) since 𝜕𝑥𝑓1(𝑥0) = 𝜕𝑥𝑓2(𝑥0) at the maximum point 𝑥0 of 𝑓1 − 𝑓2. We deduce
that

0 ≤ 𝜕𝑁1(𝑥0)𝑝(𝑥0, 𝑓1(𝑥0)) = 𝜕𝑁1(𝑥0)𝑝1(𝑥0, 𝑓1(𝑥0)) − 𝜕𝑁2(𝑥0)𝑝2(𝑥0, 𝑓2(𝑥0)).

Then (2.37) follows from this and (2.38). □

Remark 2.16. Proposition 2.15 is valid in all dimensions. Indeed, Theorem 2.12 was only used to
conclude that the normal derivatives 𝜕𝑁𝑗

𝑝𝑗 are classically well-defined at (𝑥0, 𝑓𝑗(𝑥0)). However,
the same conclusion can be deduced from [9, Lemma 11.17] which is valid in all dimensions. On
the other hand, the stronger 𝐶1,𝛼 regularity obtained in Theorem 2.12 will be crucial in the proof
of the comparison principle for viscosity solutions in Section 6.

3 CONTOUR DYNAMICS

In this section, we use potential theory to express the Dirichlet-Neumann operator, thereby
obtaining a contour dynamics reformulation of the Muskat problem.
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3926 DONG et al.

The Newtonian kernel for 𝕋 × ℝ is

 (𝑧) =
1

4𝜋
ln (cosh 𝑦 − cos 𝑥), 𝑧 = (𝑥, 𝑦) ∈ 𝕋 × ℝ. (3.1)

We shall identify functions defined on𝕋 to functions defined on the graphΣ = {(𝑥, 𝑓(𝑥)) ∶ 𝑥 ∈ 𝕋}.
Precisely, ℎ ∶ 𝕋 → ℝ is identified to ℎ̃ ∶ Σ → ℝ defined by ℎ̃(𝑥, 𝑓(𝑥)) = ℎ(𝑥). The double layer
potential associated to Ω𝑓 for a function ℎ ∶ 𝕋 → ℝ is

[𝑓]ℎ(𝑧) ∶= −∫
Σ

(𝜕𝑛(𝑥′) )(𝑧 − 𝑧′)ℎ̃(𝑧′)𝑑𝑧′

=
1

4𝜋 ∫
𝕋

sin(𝑥 − 𝑥′)𝜕𝑥𝑓(𝑥
′) − sinh(𝑦 − 𝑓(𝑥′))

cosh(𝑦 − 𝑓(𝑥′)) − cos(𝑥 − 𝑥′)
ℎ(𝑥′)𝑑𝑥′,

(3.2)

where 𝑧 = (𝑥, 𝑦) ∈ (𝕋 × ℝ) ⧵ Σ and 𝑧′ = (𝑥′, 𝑓(𝑥′)) ∈ Σ. Clearly, [𝑓]ℎ(𝑧) is harmonic on (𝕋 ×

ℝ) ⧵ Σ. A direct calculation using (hyperbolic) trigonometric identities gives

𝜕𝑥′

⎛⎜⎜⎜⎝arctan
tanh

(
𝑦−𝑓(𝑥′)

2

)
tan

(
𝑥−𝑥′

2

) ⎞⎟⎟⎟⎠ = −
1

2

sin
(
𝑥 − 𝑥′

)
𝜕𝑥𝑓

(
𝑥′

)
− sinh

(
𝑦 − 𝑓(𝑥′)

)
cosh(𝑦 − 𝑓(𝑥′)) − cos(𝑥 − 𝑥′)

,

where in the above and throughout the paper, we assume that the range of arctan is [0, 𝜋), instead
of the usual range (−𝜋∕2, 𝜋∕2). Hence,

[𝑓]ℎ(𝑧) = −
1

2𝜋 ∫
𝕋

𝜕𝑥′

⎛⎜⎜⎜⎝arctan
tanh

(
𝑦−𝑓(𝑥′)

2

)
tan

(
𝑥−𝑥′

2

) ⎞⎟⎟⎟⎠ℎ(𝑥
′)𝑑𝑥′. (3.3)

The single layer potential is

𝑆[𝑓]ℎ(𝑥, 𝑦) =
1

4𝜋 ∫
𝕋

ln
(
cosh(𝑦 − 𝑓(𝑥′)) − cos(𝑥 − 𝑥′)

)
ℎ(𝑥′)𝑑𝑥′, (𝑥, 𝑦) ∈ 𝕋 × ℝ. (3.4)

Note that the preceding single layer potential differs from the one in [46, 68] by the arc length
element

√
1 + |𝜕𝑥𝑓(𝑥′)|2.

The boundary double layer potential is

𝐾[𝑓]ℎ(𝑥) =∶ 𝑝.𝑣.
1

4𝜋 ∫
𝕋

sin(𝑥 − 𝑥′)𝜕𝑥𝑓(𝑥
′) − sinh(𝑓(𝑥) − 𝑓(𝑥′))

cosh(𝑓(𝑥) − 𝑓(𝑥′)) − cos(𝑥 − 𝑥′)
ℎ(𝑥′)𝑑𝑥′

= −𝑝.𝑣.
1

2𝜋 ∫
𝕋

𝜕𝑥′

⎛⎜⎜⎜⎝arctan
tanh

(
𝑓(𝑥)−𝑓(𝑥′)

2

)
tan

(
𝑥−𝑥′

2

) ⎞⎟⎟⎟⎠ℎ(𝑥
′)𝑑𝑥′,

(3.5)

where 𝑧 = (𝑥, 𝑓(𝑥)) and 𝑧′ = (𝑥′, 𝑓(𝑥′)).
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3927

The adjoint of 𝐾[𝑓] is

𝐾∗[𝑓]ℎ(𝑥) = −𝑝.𝑣.
1

2𝜋 ∫
𝕋

𝜕𝑥

⎛⎜⎜⎜⎝arctan
tanh

(
𝑓(𝑥)−𝑓(𝑥′)

2

)
tan

(
𝑥−𝑥′

2

) ⎞⎟⎟⎟⎠ℎ(𝑥
′)𝑑𝑥′

= 𝑝.𝑣.
1

4𝜋 ∫
𝕋

sinh(𝑓(𝑥) − 𝑓(𝑥′)) − sin(𝑥 − 𝑥′)𝜕𝑥𝑓(𝑥)

cosh(𝑓(𝑥) − 𝑓(𝑥′)) − cos(𝑥 − 𝑥′)
ℎ(𝑥′)𝑑𝑥′.

(3.6)

If 𝑓 ∈ Lip(𝕋) and ℎ ∈ 𝐿𝑝(𝕋) for some 𝑝 ∈ (1,∞) then the nontangential limit

lim
Ω∋𝑧′→𝑧

[𝑓]ℎ(𝑧′) =

(
1

2
𝐼 + 𝐾[𝑓]

)
ℎ(𝑧) (3.7)

holds a.e. 𝑧 ∈ 𝕋 (see Theorem 1.10 [68]). Consequently, the unique solution 𝜙 of the Dirichlet
problem (2.6) is given by

𝜙 = [𝑓]

(
1

2
𝐼 + 𝐾[𝑓]

)−1

𝑔. (3.8)

It was proved in Section 4 [68] that for Lipschitz domains, the mappings

1

2
𝐼 + 𝐾[𝑓] ∶ 𝐿𝑝(𝕋) → 𝐿𝑝(𝕋), 𝑝 ∈ [2,∞), (3.9)

1

2
𝐼 + 𝐾[𝑓] ∶ 𝑊1,𝑝(𝕋) → 𝑊1,𝑝(𝕋), 𝑝 ∈ (1, 2], (3.10)

1

2
𝐼 − 𝐾∗[𝑓] ∶ 𝐿

𝑝
0 (𝕋) → 𝐿

𝑝
0 (𝕋), 𝑝 ∈ (1, 2] (3.11)

are invertible. Here, 𝐿𝑝0 (𝕋) denotes the space of zero mean functions in 𝐿𝑝(𝕋).

Proposition 3.1. For 𝑓 ∈ Lip(𝕋) and 𝑔 ∈ 𝐻1(𝕋), we have for a.e. 𝑥 ∈ 𝕋 that

(𝐺(𝑓)𝑔)(𝑥) =
1

4𝜋
𝑝.𝑣.∫

𝕋

sin(𝑥 − 𝑥′) + sinh(𝑓(𝑥) − 𝑓(𝑥′))𝜕𝑥𝑓(𝑥)

cosh(𝑓(𝑥) − 𝑓(𝑥′)) − cos(𝑥 − 𝑥′)
𝜃(𝑥′)𝑑𝑥′ (3.12)

=
1

4𝜋
𝑝.𝑣.∫

𝕋

𝜕𝑥 ln
(
cosh(𝑓(𝑥) − 𝑓(𝑥′)) − cos(𝑥 − 𝑥′)

)
𝜃(𝑥′)𝑑𝑥′, (3.13)

where

𝜃 =

(
1

2
𝐼 − 𝐾∗[𝑓]

)−1

(𝜕𝑥𝑔). (3.14)

Proof. Applying (3.8) we have that the unique solution 𝜙 to (2.6) is 𝜙 = [𝑓]Θ with Θ =(
1

2
𝐼 + 𝐾[𝑓]

)−1

𝑔. Note thatΘ ∈ 𝐻1(𝕋) in view of (3.10). Setting 𝜃 = 𝜕𝑥Θ ∈ 𝐿2(𝕋)we deduce from
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3928 DONG et al.

(3.3) that

𝜙(𝑥, 𝑦) =
1

2𝜋 ∫
𝕋

arctan
tanh

(
𝑦−𝑓(𝑥′)

2

)
tan

(
𝑥−𝑥′

2

) 𝜃(𝑥′)𝑑𝑥′, (𝑥, 𝑦) ∈ 𝕋 × ℝ.

It follows from (3.5) and (3.6) that

𝜕𝑥𝐾[𝑓]Θ(𝑥) = 𝑝.𝑣.
1

2𝜋 ∫
𝕋

𝜕𝑥

⎛⎜⎜⎜⎝arctan
tanh

(
𝑓(𝑥)−𝑓(𝑥′)

2

)
tan

(
𝑥−𝑥′

2

) ⎞⎟⎟⎟⎠𝜕𝑥Θ(𝑥
′)𝑑𝑥′ = −𝐾∗[𝑓]𝜃(𝑥),

whence 𝜃 = 𝜕𝑥

(
1

2
𝐼 + 𝐾[𝑓]

)−1

𝑔 =
(
1

2
𝐼 − 𝐾∗[𝑓]

)−1

𝜕𝑥𝑔.
For (𝑥, 𝑦) ∈ (𝕋 × ℝ) ⧵ Σ, we compute

𝜕𝑥𝜙(𝑥, 𝑦) = −
1

4𝜋 ∫
𝕋

sinh(𝑦 − 𝑓(𝑥′))

cosh(𝑦 − 𝑓(𝑥′)) − cos(𝑥 − 𝑥′)
𝜃(𝑥′)𝑑𝑥′,

𝜕𝑦𝜙(𝑥, 𝑦) =
1

4𝜋 ∫
𝕋

sin(𝑥 − 𝑥′)

cosh(𝑦 − 𝑓(𝑥′)) − cos(𝑥 − 𝑥′)
𝜃(𝑥′)𝑑𝑥′.

Set 𝑇(𝑥) = (1, 𝜕𝑥𝑓(𝑥)) to be the tangent to Σ. ForΩ𝑓 ∋ (𝑥, 𝑦) →𝑁 (𝑥, 𝑓(𝑥)), by the definition (2.5)
and the mean-value theorem, we have

(𝐺(𝑓)𝑔)(𝑥) = lim
(𝑥,𝑦)→𝑁(𝑥,𝑓(𝑥))

𝑁(𝑥) ⋅ (∇𝑥,𝑦𝜙)(𝑥, 𝑦)

= lim
(𝑥,𝑦)→𝑁(𝑥,𝑓(𝑥))

1

4𝜋 ∫
𝕋

sinh(𝑦 − 𝑓(𝑥′))𝜕𝑥𝑓(𝑥) + sin(𝑥 − 𝑥′)

cosh(𝑦 − 𝑓(𝑥′)) − cos(𝑥 − 𝑥′)
𝜃(𝑥′)𝑑𝑥′

= lim
(𝑥,𝑦)→𝑁(𝑥,𝑓(𝑥))

𝑇(𝑥) ⋅ ∇𝑆[𝑓]𝜃(𝑥, 𝑦).

Since 𝑓 ∈ Lip(𝕋) and 𝜃 ∈ 𝐿2(𝕋), Theorem 1.6 [68] asserts that the tangential derivative of 𝑆[𝑓]𝜃
is continuous up to the boundary. That is,

lim
(𝑥,𝑦)→𝑁(𝑥,𝑓(𝑥))

𝑇(𝑥) ⋅ ∇𝑆[𝑓]𝜃(𝑥, 𝑦) = 𝑇(𝑥) ⋅ ∇𝑆[𝑓]𝜃(𝑥, 𝑓(𝑥))

for a.e. 𝑥 ∈ 𝕋. Therefore, for a.e. 𝑥 ∈ 𝕋 we obtain

(𝐺(𝑓)𝑔)(𝑥) = 𝑇(𝑥) ⋅ ∇𝑆[𝑓]𝜃(𝑥, 𝑓(𝑥))

=
1

4𝜋
𝑝.𝑣.∫

𝕋

sinh(𝑓(𝑥) − 𝑓(𝑥′))𝜕𝑥𝑓(𝑥) + sin(𝑥 − 𝑥′)

cosh(𝑓(𝑥) − 𝑓(𝑥′)) − cos(𝑥 − 𝑥′)
𝜃(𝑥′)𝑑𝑥′,

(3.15)
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3929

proving (3.12). Finally, since

sin(𝑥 − 𝑥′) + sinh(𝑓(𝑥) − 𝑓(𝑥′))𝜕𝑥𝑓(𝑥)

cosh(𝑓(𝑥) − 𝑓(𝑥′)) − cos(𝑥 − 𝑥′)

= 𝜕𝑥 ln
(
cosh(𝑓(𝑥) − 𝑓(𝑥′)) − cos(𝑥 − 𝑥′)

)
,

(3.16)

we obtain (3.13). □

Proposition 1.1 follows at once from Propositions 2.5 and 3.1.

4 QUANTITATIVE BOUND FOR INVERSE OF DOUBLE LAYER
POTENTIAL

According to (3.11), 1
2
𝐼 − 𝐾∗[𝑓] ∶ 𝐿20(𝕋) → 𝐿20(𝕋) is invertible provided that the boundary 𝑓 ofΩ𝑓

is Lipschitz. This is sufficient to deduce the unique solvability of the Neumann problem in Lip-
schitz domain with 𝐿2 data [68]. However, in order to obtain uniform bounds for approximate
solutions of theMuskat problemwe shall need a quantitative bound for the inverse of 1

2
𝐼 − 𝐾∗[𝑓].

This is the content of the next proposition.

Proposition 4.1. Let 𝑓 ∈ Lip(𝕋). There exists a universal constant 𝐶 > 0 such that‖‖‖‖‖‖
(
1

2
𝐼 ± 𝐾∗

)−1‖‖‖‖‖‖𝐿20(𝕋)→𝐿20(𝕋)

≤ 𝐶
(
1 + ‖𝑓‖Lip(𝕋)) 5

2 . (4.1)

Proof. In order to get this result, we will show that there exists a constant 𝑀 =

𝐶̄(1 + ‖𝜕𝑥𝑓‖𝐿∞(𝕋))
5∕2 with 𝐶̄ > 1 such that

1

𝑀
≤

‖‖‖‖( 1

2
𝐼 − 𝐾∗[𝑓]

)
(𝜂)

‖‖‖‖𝐿20(𝕋)‖‖‖‖( 1

2
𝐼 + 𝐾∗[𝑓]

)
(𝜂)

‖‖‖‖𝐿20(𝕋)
≤ 𝑀 ∀𝜂 ∈ 𝐿20(𝕋). (4.2)

We claim that (4.2) yields

‖𝜂‖𝐿20(𝕋) ≤ 2𝑀
‖‖‖‖‖
(
1

2
𝐼 − 𝐾∗[𝑓]

)
(𝜂)

‖‖‖‖‖𝐿20(𝕋) ∀𝜂 ∈ 𝐿20(𝕋). (4.3)

This in turn implies the desired bound (4.1). Indeed, by the triangle inequality, we have

‖𝜂‖𝐿20(𝕋) ≤ ‖(1

2
𝐼 − 𝐾∗[𝑓]

)
(𝜂)‖𝐿20(𝕋) + ‖(1

2
𝐼 + 𝐾∗[𝑓]

)
(𝜂)‖𝐿20(𝕋)

≤ (1 + 𝑀)‖(1

2
𝐼 − 𝐾∗[𝑓]

)
(𝜂)‖𝐿20(𝕋) ≤ 2𝑀‖(1

2
𝐼 − 𝐾∗[𝑓]

)
(𝜂)‖𝐿20(𝕋),

where in the last inequality we used the fact that𝑀 ≥ 1. This finishes the proof of (4.3).
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3930 DONG et al.

Now we prove that

‖(1

2
𝐼 − 𝐾∗[𝑓]

)
(𝜂)‖𝐿20(𝕋) ≤ 𝑀‖(1

2
𝐼 + 𝐾∗[𝑓]

)
(𝜂)‖𝐿20(𝕋) ∀𝜂 ∈ 𝐿20(𝕋). (4.4)

Recall that the single layer potential given by

𝑆[𝑓](𝜂)(𝑥, 𝑦) =
1

4𝜋 ∫
𝜋

−𝜋

ln
(
cosh(𝑦 − 𝑓(𝑥′)) − cos(𝑥 − 𝑥′)

)
𝜂(𝑥′)𝑑𝑥′ = 𝐻(𝑥, 𝑦). (4.5)

With Ω = {(𝑥, 𝑦) ∶ 𝑥 ∈ 𝕋, 𝑦 < 𝑓(𝑥)},𝐻 satisfies (see [68])

⎧⎪⎪⎨⎪⎪⎩

Δ𝑥,𝑦𝐻(𝑥, 𝑦) = 0, (𝑥, 𝑦) ∈ Ω ∪ (ℝ2 ⧵ Ω),

𝜕𝑁𝐻(𝑥, 𝑓(𝑥)) =
(
−

1

2
𝐼 + 𝐾∗[𝑓]

)
(𝜂)(𝑥) a.e. 𝑥 ∈ 𝕋,

𝜕𝑐𝑁𝐻(𝑥, 𝑓(𝑥)) =
(
1

2
𝐼 + 𝐾∗[𝑓]

)
(𝜂)(𝑥) a.e. 𝑥 ∈ 𝕋,

(4.6)

where 𝜕𝑁 is the normal derivative from inside the domain Ω and 𝜕𝑐𝑁 is to the normal derivative
from inside the complementary set Ω𝑐 = ℝ2 ⧵ Ω. By Theorem 1.6 [68], the tangential derivative
𝜕𝜏𝐻 is continuous across the 𝜕Ω. Thus we shall not distinguish the tangential derivative of 𝐻
when approaching 𝜕Ω from either side. Since ∫

𝕋
𝜂𝑑𝑥 = 0 we can write

𝐻(𝑥, 𝑦) = ∫
𝕋

ln

(
cosh(𝑦 − 𝑓(𝑥′)) − cos(𝑥 − 𝑥′)

cosh 𝑦 − cos 𝑥

)
𝜂(𝑥′)𝑑𝑥′

= ∫
𝕋

ln
⎛⎜⎜⎝
sinh

2
(
𝑦−𝑓(𝑥′)

2
) + sin

2
(
𝑥−𝑥′

2
)

sinh
2 𝑦

2
+ sin

2 𝑥

2

⎞⎟⎟⎠𝜂(𝑥′)𝑑𝑥′
and deduce that as |𝑦| → ∞,𝐻(𝑥, 𝑦) is bounded and ∇𝐻 decay uniformly in 𝑥 ∈ 𝕋.
We consider a compactly supported vector field 𝑉(𝑥, 𝑦) given by

𝑉(𝑥, 𝑦) = (Γ𝛿 ∗ 𝐺)(𝑥, 𝑦), (4.7)

where the function 𝐺(𝑥, 𝑦) is given by

𝐺(𝑥, 𝑦) =

{
𝑛(𝑥), 𝑥 ∈ 𝕋, |𝑦| ≤ 2‖𝑓‖𝐿∞(𝕋) + 2,

0 elsewhere,
(4.8)

andΓ𝛿(𝑥, 𝑦) is a smooth approximation of the identitywith compact support. The parameter 𝛿 > 0

is taken small enough so that

𝑉(𝑥, 𝑓(𝑥)) ⋅ 𝑛(𝑥) ≥ 1

2
∀𝑥 ∈ 𝕋. (4.9)

One could check that ‖𝑉‖𝐿∞ ≤ 1 and ‖∇𝑉‖𝐿∞ ≤ 𝐶 = 𝑂
(
𝛿−1

)
, (4.10)

where 𝐶 is independent of 𝑓.
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3931

Let us recall the Rellich identity for 𝑉 and𝐻:

∫
𝜕Ω

𝑉 ⋅ 𝑛|∇𝐻|2𝑑𝜎 = ∫
𝜕Ω

2𝜕𝑛𝐻(𝑉 ⋅ ∇𝐻)𝑑𝜎 + ∫
Ω

(∇ ⋅ 𝑉)|∇𝐻|2𝑑𝑋
− ∫

Ω

2(∇𝑉∇𝐻) ⋅ ∇𝐻𝑑𝑋,

(4.11)

where ∇𝑉 is a 2 × 2 matrix acting on ∇𝐻. Using this together with the normal and tangential
decomposition for ∇𝐻 = (𝜕𝑛𝐻)𝑛 + (𝜕𝜏𝐻)𝜏 gives

∫
𝜕Ω

𝑉 ⋅ 𝑛|𝜕𝑛𝐻|2𝑑𝜎 = − ∫
𝜕Ω

2𝜕𝑛𝐻𝜕𝜏𝐻𝑉 ⋅ 𝜏𝑑𝜎 + ∫
𝜕Ω

𝑉 ⋅ 𝑛|𝜕𝜏𝐻|2𝑑𝜎
− ∫

Ω

(∇ ⋅ 𝑉)|∇𝐻|2𝑑𝑋 + ∫
Ω

2(∇𝑉∇𝐻) ⋅ ∇𝐻𝑑𝑋.

Condition (4.9), Cauchy-Schwarz and Young’s inequalities yield

1

4 ∫
𝜕Ω

|𝜕𝑛𝐻|2𝑑𝜎 ≤ (1 + 8‖𝑉‖𝐿∞)‖𝑉‖𝐿∞ ∫
𝜕Ω

|𝜕𝜏𝐻|2𝑑𝜎 + 3‖∇𝑉‖𝐿∞ ∫
Ω

|∇𝐻|2𝑑𝑋.
Plugging in the bounds for 𝑉 in (4.10) we find that

∫
𝜕Ω

|𝜕𝑛𝐻|2𝑑𝜎 ≤ 36∫
𝜕Ω

|𝜕𝜏𝐻|2𝑑𝜎 + 12𝐶 ∫
Ω

|∇𝐻|2𝑑𝑋. (4.12)

Using the boundedness of𝐻 and the decay of∇𝐻 as |𝑦| → ∞, we can integrate by parts to obtain

∫
Ω

|∇𝐻|2𝑑𝑋 = ∫
Ω

∇𝐻 ⋅ ∇[𝐻 − 𝐻(−𝜋, 𝑓(−𝜋))]𝑑𝑋

= ∫
𝜕Ω

[𝐻 − 𝐻(−𝜋, 𝑓(−𝜋))]𝜕𝑛𝐻𝑑𝜎.

(4.13)

By the fundamental theorem of calculus and Cauchy-Schwarz’s inequality,

|𝐻(𝑥, 𝑓(𝑥)) − 𝐻(−𝜋, 𝑓(−𝜋))| = |||||∫
𝑥

−𝜋

𝜕𝜏𝐻(𝑥′, 𝑓(𝑥′))
√
1 + |𝜕𝑥𝑓(𝑥′)|2𝑑𝑥′|||||

≤
(
∫

𝑥

−𝜋

|𝜕𝜏𝐻(𝑥′, 𝑓(𝑥′))|2√1 + |𝜕𝑥𝑓(𝑥′)|2𝑑𝑥′)
1

2
(
∫

𝑥

−𝜋

√
1 + |𝜕𝑥𝑓(𝑥′)|2𝑑𝑥′)

1

2

≤ √
2𝜋‖𝑁‖𝐿∞(𝕋)

(
∫
𝜕Ω

|𝜕𝜏𝐻|2𝑑𝜎) 1

2

.

It follows from this and Cauchy-Schwarz’s inequality for (4.13) that

∫
Ω

|∇𝐻|2𝑑𝑋 ≤ 2𝜋‖𝑁‖𝐿∞(𝕋)

(
∫
𝜕Ω

|𝜕𝜏𝐻|2𝑑𝜎) 1

2
(
∫
𝜕Ω

|𝜕𝑛𝐻|2𝑑𝜎) 1

2

. (4.14)
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3932 DONG et al.

Plugging above inequality into (4.12) and using Young’s inequality we get

∫
𝜕Ω

|𝜕𝑛𝐻|2𝑑𝜎 ≤ 2(12𝐶𝜋)2‖𝑁‖2
𝐿∞(𝕋) ∫

𝜕Ω

|𝜕𝜏𝐻|2𝑑𝜎. (4.15)

Next, we employ the Rellich identity (4.11) for 𝑉 and𝐻 in Ω𝑐 = ℝ2 ⧵ Ω to get

1

2 ∫
𝜕Ω

|∇𝐻|2𝑑𝜎
≤ ∫

𝜕Ω

2𝜕𝑐𝑛𝐻(𝑉 ⋅ ∇𝐻)𝑑𝜎 + ∫
Ω𝑐

(∇ ⋅ 𝑉)|∇𝐻|2𝑑𝑋 − ∫
Ω𝑐

2(∇𝑉∇𝐻) ⋅ ∇𝐻𝑑𝑋

≤ 2

(
∫
𝜕Ω

|𝜕𝑐𝑛𝐻|2𝑑𝜎) 1

2
(
∫
𝜕Ω

|∇𝐻|2𝑑𝜎) 1

2

+ 3𝐶 ∫
Ω𝑐

|∇𝐻|2𝑑𝑋.
As before, using Young’s inequality and (4.14) for Ω𝑐 we obtain

1

4 ∫
𝜕Ω

|∇𝐻|2𝑑𝜎
≤ 4∫

𝜕Ω

|𝜕𝑐𝑛𝐻|2𝑑𝜎 + 6𝐶𝜋‖𝑁‖𝐿∞(𝕋)

(
∫
𝜕Ω

|𝜕𝜏𝐻|2𝑑𝜎) 1

2
(
∫
𝜕Ω

|𝜕𝑐𝑛𝐻|2𝑑𝜎) 1

2

.

The obvious bound |𝜕𝜏𝐻|2 ≤ |∇𝐻|2 combined with Young’s inequality yields
∫
𝜕Ω

|𝜕𝜏𝐻|2𝑑𝜎 ≤ 2(12𝐶𝜋)2‖𝑁‖2
𝐿∞(𝕋) ∫

𝜕Ω

|𝜕𝑐𝑛𝐻|2𝑑𝜎. (4.16)

The above argument when applied to Ω gives

∫
𝜕Ω

|𝜕𝜏𝐻|2𝑑𝜎 ≤ 2(12𝐶𝜋)2‖𝑁‖2
𝐿∞(𝕋) ∫

𝜕Ω

|𝜕𝑛𝐻|2𝑑𝜎. (4.17)

Combining (4.15) and (4.16) allows us to relate both normal derivatives due to the continuity of
the tangential derivative:

∫
𝜕Ω

|𝜕𝑛𝐻|2𝑑𝜎 ≤ 4(12𝐶𝜋)
4‖𝑁‖4

𝐿∞(𝕋) ∫
𝜕Ω

|𝜕𝑐𝑛𝐻|2𝑑𝜎, 𝐶 = 𝑂(𝛿−1).

Thus we obtain (4.4) with𝑀 = 2(12𝐶𝜋)2(1 + ‖𝑓‖Lip(𝕋))5∕2. The opposite inequality
‖(1

2
𝐼 + 𝐾∗[𝑓]

)
(𝜂)‖𝐿20 ≤ 𝑀‖(1

2
𝐼 − 𝐾∗[𝑓]

)
(𝜂)‖𝐿20

follows by the same argument, completing the proof. □
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3933

Remark 4.2. The invertibility of ( 1
2
𝐼 − 𝐾∗) on 𝐿20 was proved in [68] using the inequalities

‖(1

2
𝐼 ± 𝐾∗

)
(𝜂)‖𝐿2(𝕋) ≤ 𝐶‖(1

2
𝐼 ∓ 𝐾∗

)
(𝜂)‖𝐿2(𝕋) + 𝐶

|||||∫𝕋 𝑆[𝑓](𝜂)𝑑𝑥
|||||. (4.18)

The inequalities in (4.2) dispense with the second term on the right-hand of (4.18) and hence
allowed us to obtain the quantitative bound (4.1).

As an interesting corollary of the proof of Proposition 4.1, we deduce a quantitative bound for
the tangential derivative of the single layer potential in terms of the double layer potential. This
in turn yields the continuity of 𝐺(𝑔) ∶ 𝐻̇1 → 𝐿2 assuming only that the boundary is Lipschitz.

Corollary 4.3. Let 𝑓 ∈ Lip(𝕋). There exists an absolute constant 𝐶 > 0 such that for all 𝜂 ∈ 𝐿20(𝕋),
we have

‖∇𝑆[𝑓](𝜂) ⋅ (1, 𝜕𝑥𝑓)‖𝐿2(𝕋) ≤ 𝐶(1 + ‖𝑓‖Lip(𝕋))2‖(1

2
𝐼 − 𝐾∗[𝑓]

)
(𝜂)‖𝐿2 . (4.19)

Consequently, ‖𝐺(𝑓)𝑔‖𝐿2(𝕋) ≤ 𝐶(1 + ‖𝑓‖Lip(𝕋))2‖𝜕𝑥𝑔‖𝐿2(𝕋) (4.20)

for all 𝑔 ∈ 𝐻̇1(𝕋).

Proof. Denote𝐻(𝑥, 𝑦) = 𝑆[𝑓](𝜂)(𝑥, 𝑦) the single layer potential as given by (4.5). Now (4.17) allows
us to bound 𝜕𝜏𝐻 by 𝜕𝑛𝐻 as

‖∇𝑆[𝑓](𝜂) ⋅ (1, 𝜕𝑥𝑓)‖𝐿2(𝕋) ≤ (1 + ‖𝑓‖Lip(𝕋))‖𝜕𝜏𝐻‖𝐿2(𝕋)
≤ 𝐶(1 + ‖𝑓‖Lip(𝕋))2‖𝜕𝑛𝐻‖𝐿2(𝕋),

wherewe recall that 𝜏 and𝑛 are respectively the unit tangent and normal to the surface {𝑦 = 𝑓(𝑥)}.
On the other hand, it follows from the second equation in (4.6) that

‖𝜕𝑛𝐻‖𝐿2(𝕋) ≤ ‖𝜕𝑁𝐻‖𝐿2(𝕋) = ‖(−
1

2
𝐼 + 𝐾∗[𝑓]

)
(𝜂)‖𝐿2 ,

from which (4.19) follows.
By the density of 𝐻̇1(𝕋) in 𝐻1(𝕋), it suffices to prove (4.20) for 𝑔 ∈ 𝐻1(𝕋). Set 𝜃 =(
1

2
𝐼 − 𝐾∗[𝑓]

)−1

(𝜕𝑥𝑔). Recall from (3.15) that 𝐺(𝑓)𝑔 is a tangential derivative of 𝑆[𝑓]𝜃:

(𝐺(𝑓)𝑔)(𝑥) = ∇𝑆[𝑓](𝜃)(𝑥, 𝑓(𝑥)) ⋅ (1, 𝜕𝑥𝑓(𝑥)).

Thus (4.20) follows at once from (4.19) and the fact that ( 1
2
𝐼 − 𝐾∗[𝑓])𝜃 = 𝜕𝑥𝑔. □

Remark 4.4. The inequality (4.20) upgrades the continuity (2.16) by half a derivative without
any additional regularity assumption on the surface 𝑓. By interpolating (2.16) and (4.20), we
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3934 DONG et al.

obtain

‖𝐺(𝑓)𝑔‖𝐻𝜎−1(𝕋) ≤ 𝐶(1 + ‖𝑓‖Lip(𝕋))2‖𝑔‖𝐻̇𝜎(𝕋) (4.21)

for all 𝜎 ∈ [
1

2
, 1]. For the same range of 𝜎, this is an improvement over (2.17) which requires in

addition that 𝑓 ∈ 𝐻𝑠0(𝕋) for some 𝑠0 >
3

2
.

Remark 4.5. Proposition 4.1 and Corollary 4.3 are valid for general bounded domains ofℝ𝑛, 𝑛 ≥ 2

with Lipschitz boundary.

5 VISCOSITY REGULARIZATION

We consider the viscosity regularization of the Muskat problem:

𝜕𝑡𝑓
𝜀 = −𝜅𝐺(𝑓𝜀)𝑓𝜀 + 𝜀𝜕2𝑥𝑓

𝜀, 𝜀 ≥ 0. (5.1)

5.1 Comparison principle for smooth solutions

Proposition 5.1 (Comparison principle). Assume that 𝑓𝑗 ∈ 𝐶([0, 𝑇]; 𝐶2(𝕋)), 𝑗 = 1, 2 are smooth
solutions of (5.1) with 𝜀 ≥ 0. If 𝑓1(⋅, 0) ≤ 𝑓2(⋅, 0) then

𝑓1(𝑥, 𝑡) ≤ 𝑓2(𝑥, 𝑡) ∀(𝑥, 𝑡) ∈ 𝕋 × [0, 𝑇]. (5.2)

Proof. Assume by contradiction that𝑀0 = max𝕋×[0,𝑇](𝑓1 − 𝑓2) = (𝑓1 − 𝑓2)(𝑥0, 𝑡0) > 0. We have
𝑡0 > 0 since 𝑓1(⋅, 0) ≤ 𝑓2(⋅, 0). Choose 𝜂 > 0 sufficiently small so that (𝑓1 − 𝑓2 − 𝜂𝑡)(𝑥0, 𝑡0) =

𝑀0 − 𝜂𝑡0 > 0, and thus 𝑀∗ = max𝕋×[0,𝑇](𝑓1 − 𝑓2 − 𝜂𝑡) > 0. Moreover, 𝑀∗ is attained at some
point (𝑥∗, 𝑡∗) with 𝑡∗ > 0 because (𝑓1 − 𝑓2 − 𝜂𝑡)|𝑡=0 ≤ 0. Then

max
𝕋×[0,𝑇]

(𝑓1 − 𝑓2 − 𝜂𝑡 −𝑀∗) = 0

and is attained at (𝑥∗, 𝑡∗). Applying Proposition 2.15 gives

(𝐺(𝑓1)𝑓1)(𝑥∗, 𝑡∗) ≥ (𝐺(𝑓2 + 𝜂𝑡 +𝑀∗)(𝑓2 + 𝜂𝑡 +𝑀∗))(𝑥∗, 𝑡∗).

In addition, at the maximum point (𝑥∗, 𝑡∗) with 𝑡∗ > 0 we have

𝜕𝑡𝑓1(𝑥∗, 𝑡∗) ≥ 𝜕𝑡(𝑓2 + 𝜂𝑡 +𝑀∗)(𝑥∗, 𝑡∗), 𝜕2𝑥𝑓1(𝑥∗, 𝑡∗) ≤ 𝜕2𝑥(𝑓2 + 𝜂𝑡 +𝑀∗)(𝑥∗, 𝑡∗).

It follows that

𝜕𝑡(𝑓2 + 𝜂𝑡 +𝑀∗) ≤ 𝜕𝑡𝑓1 = −𝜅𝐺(𝑓1)𝑓1 + 𝜀𝜕2𝑥𝑓1

≤ −𝜅𝐺(𝑓2 + 𝜂𝑡 +𝑀∗)(𝑓2 + 𝜂𝑡 +𝑀∗) + 𝜀𝜕2𝑥𝑓2

= −𝜅𝐺(𝑓2)(𝑓2) + 𝜀𝜕2𝑥𝑓2 = 𝜕𝑡𝑓2

at (𝑥∗, 𝑡∗). But this implies 𝜂 ≤ 0 which is contradictory. □
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3935

Owing to the translation invariance of (5.1), comparison principle implies maximum principles
for the amplitude and the slope of solutions.

Corollary 5.2 (Maximum principles). Let 𝑓 ∈ 𝐶([0, 𝑇]; 𝐶2(𝕋)) be a smooth solution of (5.1) with
𝜀 ≥ 0. If 𝑓(⋅, 0) has the modulus of continuity 𝛾 ∶ ℝ+ → ℝ+ then so does 𝑓(⋅, 𝑡) for all 𝑡 ∈ [0, 𝑇].
That is, |𝑓(𝑥, 𝑡) − 𝑓(𝑦, 𝑡)| ≤ 𝛾(|𝑥 − 𝑦|) ∀(𝑥, 𝑦, 𝑡) ∈ 𝕋2 × [0, 𝑇]. (5.3)

In particular, for 𝛾(𝑧) = 𝑧‖𝑓(⋅, 0)‖Lip(𝕋) we have
‖𝑓(⋅, 𝑡)‖Lip(𝕋) ≤ ‖𝑓(⋅, 0)‖Lip(𝕋) ∀𝑡 ∈ [0, 𝑇]. (5.4)

If 𝑓1 and 𝑓2 are smooth solutions in 𝐶([0, 𝑇]; 𝐶2(𝕋)) of (5.1) with 𝜀 ≥ 0, then

‖𝑓1(⋅, 𝑡) − 𝑓2(⋅, 𝑡)‖𝐿∞(𝕋) ≤ ‖𝑓1(⋅, 0) − 𝑓2(⋅, 0)‖𝐿∞(𝕋) ∀𝑡 ∈ [0, 𝑇]. (5.5)

Proof. The modulus of continuity 𝛾 of 𝑓(⋅, 0) is equivalent to

𝑓(𝑥, 0) ≤ 𝑓(𝑥 + 𝑦, 0) + 𝛾(|𝑦|)
for all 𝑥, 𝑦 ∈ 𝕋. For every fixed 𝑦, the function 𝑓(𝑥 + 𝑦, 𝑡) + 𝛾(|𝑦|) is a smooth solution of (5.1)
with initial data 𝑓(𝑥 + 𝑦, 0) + 𝛾(|𝑦|). The comparison principle in Proposition 5.1 implies that
𝑓(𝑥, 𝑡) ≤ 𝑓(𝑥 + 𝑦, 𝑡) + 𝛾(|𝑦|) for all 𝑥, 𝑦 ∈ 𝕋 and 𝑡 ∈ [0, 𝑇]. Therefore, |𝑓(𝑥, 𝑡) − 𝑓(𝑥 + 𝑦, 𝑡)| ≤
𝛾(|𝑦|), proving (5.3).
We turn to prove (5.5). We have 𝑓1(⋅, 0) ≤ 𝑓2(⋅, 0) + ‖𝑓1(⋅, 0) − 𝑓2(⋅, 0)‖𝐿∞(𝕋) and 𝑓2(⋅, 𝑡) +‖𝑓1(⋅, 0) − 𝑓2(⋅, 0)‖𝐿∞(𝕋) is a smooth solution of (5.1). By the comparison principle in Proposi-

tion 5.1,

𝑓1(𝑥, 𝑡) ≤ 𝑓2(𝑥, 𝑡) + ‖𝑓1(⋅, 0) − 𝑓2(⋅, 0)‖𝐿∞(𝕋) ∀(𝑥, 𝑡) ∈ 𝕋 × [0, 𝑇].

Thus we can interchange the role of 𝑓1 and 𝑓2 to obtain (5.5). □

5.2 Global well-posedness of smooth solutions

By virtue of Proposition 3.1, in the class of Lipschitz solutions, (5.1) is equivalent to the system

𝜕𝑡𝑓
𝜀(𝑥) =

1

4𝜋
𝑝.𝑣.∫

𝜋

−𝜋

sin 𝑥′ + sinh(𝑓𝜀(𝑥) − 𝑓𝜀(𝑥 − 𝑥′))𝜕𝑥𝑓
𝜀(𝑥)

cosh(𝑓𝜀(𝑥) − 𝑓𝜀(𝑥 − 𝑥′)) − cos 𝑥′
𝜃𝜀(𝑥 − 𝑥′)𝑑𝑥′

+ 𝜀𝜕2𝑥𝑓
𝜀(𝑥),

1

2
𝜃𝜀(𝑥) −

1

4𝜋 ∫
𝜋

−𝜋

sinh(𝑓𝜀(𝑥) − 𝑓𝜀(𝑥 − 𝑥′)) − sin 𝑥′𝜕𝑥𝑓
𝜀(𝑥)

cosh(𝑓𝜀(𝑥) − 𝑓𝜀(𝑥 − 𝑥′)) − cos 𝑥′
𝜃𝜀(𝑥 − 𝑥′)𝑑𝑥′

= −𝜅𝜕𝑥𝑓
𝜀(𝑥).

(5.6)

We prove that (5.6) is globally well-posed for any smooth initial data in Sobolev spaces.
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3936 DONG et al.

Proposition 5.3. Let 𝜀 > 0 and 𝑠 ≥ 2. For each 𝑓𝜀
0 ∈ 𝐻𝑠(𝕋), there exists a unique solution 𝑓𝜀 ∈

𝐶([0, 𝑇];𝐻𝑠(𝕋)) ∩ 𝐿2([0, 𝑇];𝐻𝑠+1(𝕋)) a solution to (5.1) for any time 𝑇 > 0 with initial data 𝑓𝜀
0. In

particular, 𝑓𝜀 obeys the maximum principles

‖𝑓𝜀(𝑡)‖𝐿∞(𝕋) ≤ ‖𝑓𝜀
0‖𝐿∞(𝕋), ‖𝑓𝜀(𝑡)‖Lip(𝕋) ≤ ‖𝑓𝜀

0‖Lip(𝕋) ∀𝑡 ≥ 0. (5.7)

Proof. We first note that the dissipative term 𝜀𝜕2𝑥𝑓
𝜀 makes the regularized Muskat problem (5.1)

semilinear. Then by the contraction mapping method, it was proved in Section 4.1.5 [65] that for
any 𝑠 > 3

2
, (5.1) has a unique solution

𝑓𝜀 ∈ 𝐶([0, 𝑇𝜀); 𝐻
𝑠) ∩ 𝐿2loc([0, 𝑇𝜀); 𝐻

𝑠+1),

where 𝑇𝜀 is the maximal time. Moreover, if 𝑇𝜀 < ∞ then

lim sup
𝑡→𝑇𝜀

‖𝑓𝜀(⋅, 𝑡)‖𝐻𝑠 = ∞.

Therefore, to conclude that 𝑓𝜀 is global in time, it suffices to prove that the 𝐻𝑠 norm of 𝑓𝜀 is
bounded on [0, 𝑇𝜀). To this end, we shall prove that for any 𝑇 < 𝑇𝜀, the 𝐶([0, 𝑇];𝐻𝑠) norm of 𝑓𝜀

can be controlled by ‖𝑓𝜀
0‖𝐻𝑠 and the 𝐿∞([0, 𝑇];𝑊1,∞) norm of 𝑓𝜀, where the latter is uniformly

bounded in time owing to the maximum principles (5.4) and (5.5).
For notational simplicity we shall write 𝑓𝜀 = 𝑓. In what follows,  ∶ ℝ+ → ℝ+ denotes

continuous nondecreasing functions that may change from line to line but only depend on 𝜅.
𝐿2 estimate. Using (𝐺(𝑓)𝑓, 𝑓) ≥ 0 and (𝜕2𝑥𝑓, 𝑓) ≤ 0, we find at once that

‖𝑓(𝑡)‖𝐿2 ≤ ‖𝑓0‖𝐿2 ∀𝑡 > 0. (5.8)

𝐻̇1 estimate. Multiplying (5.1) by −𝜕2𝑥𝑓, then integrating by parts and using the estimate (4.20),
we obtain

1

2

𝑑

𝑑𝑡
‖𝜕𝑥𝑓‖2

𝐿2
≤ 𝜅‖𝜕2𝑥𝑓‖𝐿2‖𝐺(𝑓)𝑓‖𝐿2 − 𝜀‖𝜕2𝑥𝑓‖2

𝐿2

≤ (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖𝐿2‖𝜕𝑥𝑓‖𝐿2 − 𝜀‖𝜕2𝑥𝑓‖2
𝐿2

≤ 𝜀−1(‖𝑓‖𝑊1,∞)‖𝜕𝑥𝑓‖2
𝐿2

−
𝜀

2
‖𝜕2𝑥𝑓‖2

𝐿2
.

By a Grönwall argument we find that

‖𝜕𝑥𝑓‖2
𝐿2
(𝑡) + 𝜀 ∫

𝑡

0

‖𝜕2𝑥𝑓‖2
𝐿2
(𝑡′)𝑑𝑡′ ≤ ‖𝜕𝑥𝑓‖2

𝐿2
(0) exp

(
𝜀−1(‖𝑓‖𝑊1,∞)𝑡

)
. (5.9)

𝐻̇2 estimate. We differentiate (5.1) in 𝑥, then multiply by −𝜕3𝑥𝑓 and integrate by parts to obtain

1

2

𝑑

𝑑𝑡
‖𝜕2𝑥𝑓‖2

𝐿2
= 𝜅(𝜕𝑥[𝐺(𝑓)𝑓], 𝜕

3
𝑥𝑓)𝐿2,𝐿2 − 𝜀‖𝜕3𝑥𝑓‖2

𝐿2
,

where by Cauchy-Schwarz and Young’s inequalities

𝜅(𝜕𝑥𝐺(𝑓)𝑓, 𝜕
3
𝑥𝑓)𝐿2,𝐿2 ≤ 𝜀

4
‖𝜕3𝑥𝑓‖2

𝐿2
+

𝜅2

𝜀
‖𝜕𝑥[𝐺(𝑓)𝑓]‖2𝐿2 .
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3937

We claim that for any 𝜈 ∈ (0, 1),

‖𝜕𝑥[𝐺(𝑓)𝑓]‖𝐿2 ≤ 𝜈‖𝜕3𝑥𝑓‖𝐿2 + 1

𝜈
(‖𝑓‖𝑊1,∞)(‖𝜕2𝑥𝑓‖𝐿2 + ‖𝜕2𝑥𝑓‖2

𝐿2
). (5.10)

Taking (5.10) for granted, we choose 𝜈 =
𝜀

4𝜅
so that the above estimates yield

1

2

𝑑

𝑑𝑡
‖𝜕2𝑥𝑓‖2

𝐿2
≤ 𝜀−3(‖𝑓‖𝑊1,∞)(1 + ‖𝜕2𝑥𝑓‖2

𝐿2
)‖𝜕2𝑥𝑓‖2

𝐿2
−

𝜀

2
‖𝜕3𝑥𝑓‖2

𝐿2
. (5.11)

Then applying Grönwall’s lemma and (5.9) to bound

∫
𝑡

0

(1 + ‖𝜕2𝑥𝑓‖2
𝐿2
(𝑡′))𝑑𝑡′ ≤ 𝑡 + 𝜀−1‖𝜕𝑥𝑓‖2

𝐿2
(0) exp

(
𝜀−1(‖𝑓‖𝑊1,∞)𝑡

)
,

we arrive at the 𝐻̇2 estimate

‖𝜕2𝑥𝑓‖2
𝐿2
(𝑡)+𝜀∫

𝑡

0

‖𝜕3𝑥𝑓‖2
𝐿2
(𝑠)𝑑𝑠 ≤ 𝐶(‖𝑓0‖𝐻2, ‖𝑓‖𝑊1,∞, 𝑡, 𝜀). (5.12)

The proof of (5.10) requires a careful decomposition of the singular integral representation (3.12)–
(3.14) of 𝐺(𝑓)𝑓 and is postponed to Lemma 5.4 below.
Higher regularity. In this step we prove that 𝐻𝑠 regularity with 𝑠 > 2 can be propagated. To

this end, we use Sobolev estimates for the Dirichlet-Neumann operator with the control norm in

𝐿∞𝑡 𝐻
3

2
+

𝑥 provided by (5.12). Indeed, fixing 𝑠0 ∈ (
3

2
, 2) and applying (2.17) with 𝑔 = 𝑓 and 𝜎 = 𝑠, we

have

‖𝐺(𝑓)𝑓‖𝐻𝑠−1 ≤ (‖𝑓‖𝐻𝑠0 )‖𝑓‖𝐻𝑠 . (5.13)

Then an𝐻𝑠 energy estimate for (5.1) gives

1

2

𝑑

𝑑𝑡
‖𝑓‖2𝐻𝑠 ≤ 𝜅(𝐺(𝑓)𝑓, 𝑓)𝐻𝑠−1,𝐻𝑠+1 − 𝜀‖𝜕𝑥𝑓‖2𝐻𝑠

≤ 𝜅(‖𝑓(𝑡)‖𝐻𝑠0 )‖𝑓(𝑡)‖𝐻𝑠‖𝑓(𝑡)‖𝐻𝑠+1 − 𝜀‖𝑓(𝑡)‖2
𝐻𝑠+1 + 𝜀‖𝑓(𝑡)‖2

𝐿2

≤ 𝜅2

2𝜀
2(‖𝑓(𝑡)‖𝐻𝑠0 )‖𝑓(𝑡)‖2𝐻𝑠 −

𝜀

2
‖𝑓(𝑡)‖2

𝐻𝑠+1 + 𝜀‖𝑓0‖2𝐿2 ,
(5.14)

where in the last inequality we used Young’s inequality and the maximum principle for the 𝐿2
norm of 𝑓. By Grönwall’s lemma, we obtain

‖𝑓(𝑡)‖2𝐻𝑠 + 𝜀‖𝑓‖2
𝐿2([0,𝑡];𝐻𝑠+1)

≤ (1 + 𝜀𝑡)‖𝑓0‖2𝐻𝑠 exp

(
𝑡
𝜅2

𝜀
2

(‖𝑓‖𝐿∞([0,𝑡];𝐻𝑠0 )

))
.

(5.15)
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3938 DONG et al.

Then using the 𝐻̇2 estimate (5.12) together with (5.8), (5.5) and (5.4), we arrive at

‖𝑓‖𝐿∞([0,𝑇];𝐻𝑠) ≤ 𝐶(‖𝑓0‖𝐻𝑠 , 𝑇, 𝜀) ∀𝑇 < 𝑇𝜀. (5.16)

This concludes the proof of global regularity for (5.1). □

We now prove the claim (5.10).

Lemma 5.4. There exists  ∶ ℝ+ → ℝ+ nondecreasing such that for any 𝜈 ∈ (0, 1),

‖𝜕𝑥[𝐺(𝑓𝜀)𝑓𝜀]‖𝐿2 ≤ 𝜈‖𝜕3𝑥𝑓𝜀‖𝐿2(𝕋) + 1

𝜈
(‖𝑓𝜀‖𝑊1,∞(𝕋))(‖𝜕2𝑥𝑓𝜀‖𝐿2 + ‖𝜕2𝑥𝑓𝜀‖2

𝐿2(𝕋)
). (5.17)

Proof. We shall write 𝑓𝜀 = 𝑓, 𝜃𝜀 = 𝜃, and 𝛿𝑥′𝑓(𝑥) = 𝑓(𝑥) − 𝑓(𝑥 − 𝑥′). Recall that 𝐺(𝑓)𝑓 can

be written as on the right-hand side of the first equation in (5.6) with 𝜃 =
(
1

2
𝐼 − 𝐾∗

)−1

(−𝜕𝑥𝑓).
Moreover, by virtue of Proposition 4.1,

‖𝜃‖𝐿2 ≤ 𝐶(1 + ‖𝜕𝑥𝑓‖𝐿∞) 52 ‖𝜕𝑥𝑓‖𝐿2 ≤ √
2𝜋𝐶(1 + ‖𝜕𝑥𝑓‖𝐿∞) 72 . (5.18)

We decompose 4𝜋𝜕𝑥[𝐺(𝑓)𝑓](𝑥) =
∑4

𝑗=1 𝐺𝑗(𝑥) where

𝐺1(𝑥) = 𝜕𝑥𝑓(𝑥)∫
cosh(𝛿𝑥′𝑓(𝑥))𝛿𝑥′(𝜕𝑥𝑓)(𝑥)

cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′
𝜃(𝑥 − 𝑥′)𝑑𝑥′,

𝐺2(𝑥) = 𝜕2𝑥𝑓(𝑥)∫
sinh(𝛿𝑥′𝑓(𝑥))

cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′
𝜃(𝑥 − 𝑥′)𝑑𝑥′,

𝐺3(𝑥) = −∫
[sin 𝑥′ + sinh(𝛿𝑥′𝑓(𝑥))𝜕𝑥𝑓(𝑥)] sinh(𝛿𝑥′𝑓(𝑥))𝛿𝑥′(𝜕𝑥𝑓)(𝑥)

(cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′)

2

𝜃(𝑥 − 𝑥′)𝑑𝑥′,

and

𝐺4(𝑥) = ∫
sin 𝑥′ + sinh(𝛿𝑥′𝑓(𝑥))𝜕𝑥𝑓(𝑥)

cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′
𝜕𝑥𝜃(𝑥 − 𝑥′)𝑑𝑥′𝑑𝑥.

Here and throughout this proof we write ∫ = ∫ 𝜋

−𝜋
.

Control of 𝐺1. We split 𝐺1 =
∑5

𝑗=1 𝐺1,𝑗 where, for 𝛿 < 1 to be chosen,

𝐺1,1(𝑥) = 𝜕𝑥𝑓(𝑥)∫
(cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′ + cos 𝑥′ − 1)𝛿𝑥′(𝜕𝑥𝑓)(𝑥)

cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′
𝜃(𝑥 − 𝑥′)𝑑𝑥′,

𝐺1,2(𝑥) = 𝜕𝑥𝑓(𝑥)∫|𝑥′|>𝛿
𝛿𝑥′(𝜕𝑥𝑓)(𝑥)

cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′
𝜃(𝑥 − 𝑥′)𝑑𝑥′,

𝐺1,3(𝑥) = 𝜕𝑥𝑓(𝑥)∫|𝑥′|<𝛿
𝛿𝑥′(𝜕𝑥𝑓)(𝑥) − 𝑥′𝜕2𝑥𝑓(𝑥)

cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′
𝜃(𝑥 − 𝑥′)𝑑𝑥′,
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3939

𝐺1,4(𝑥) = 𝜕𝑥𝑓(𝑥)𝜕
2
𝑥𝑓(𝑥)

⋅ ∫|𝑥′|<𝛿
(

1

cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′
−

2

(1 + (𝜕𝑥𝑓(𝑥))2)(𝑥′)
2

)
𝑥′𝜃(𝑥 − 𝑥′)𝑑𝑥′,

and

𝐺1,5(𝑥) =
2𝜕𝑥𝑓(𝑥)𝜕

2
𝑥𝑓(𝑥)

1 + (𝜕𝑥𝑓(𝑥))2 ∫|𝑥′|<𝛿
𝜃(𝑥 − 𝑥′)

𝑥′
𝑑𝑥′.

We shall use frequently the facts that

cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′ = 2 sinh
2
(
𝛿𝑥′𝑓(𝑥)

2

)
+ 2 sin

2
(
𝑥′

2

)
(5.19)

and |𝑥′|
2

≤ 𝜋

2

||||sin 𝑥′

2

|||| ∀𝑥′ ∈ [−𝜋, 𝜋]. (5.20)

Here and in what follows, 𝐶 denotes a universal constant that may change from line to line. Then
the integral kernel in 𝐺1,1 is bounded by 𝐶‖𝜕𝑥𝑓‖𝐿∞ , giving

‖𝐺1,1‖𝐿2 ≤ 𝐶‖𝜕𝑥𝑓‖2𝐿∞‖∫ |𝜃(⋅ − 𝑥′)|𝑑𝑥′‖𝐿2
≤ 2𝜋𝐶‖𝜕𝑥𝑓‖2𝐿∞‖𝜃‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜕𝑥𝑓‖𝐿2 .

Using Young’s inequality for convolutions, we bound

‖𝐺1,2‖𝐿2 ≤ 𝐶‖𝜕𝑥𝑓‖𝐿∞‖𝜕𝑥𝑓‖
𝐶

1
2

‖‖‖‖‖‖∫|𝑥′|>𝛿
|𝜃(⋅ − 𝑥′)|

|𝑥′| 32 𝑑𝑥′
‖‖‖‖‖‖𝐿2

≤ (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖𝐿2 ‖𝜃‖𝐿2
𝛿

1

2

≤ (‖𝑓‖𝑊1,∞)
‖𝜕2𝑥𝑓‖𝐿2

𝛿
1

2

.

Next in view of the inequalities

|𝛿𝑥′(𝜕𝑥𝑓)(𝑥) − 𝑥′𝜕2𝑥𝑓(𝑥)| ≤ |𝑥′| 32 ‖𝜕2𝑥𝑓‖
𝐶

1
2 (𝕋)

≤ 𝐶|𝑥′| 32 ‖𝜕2𝑥𝑓‖𝐻̇1(𝕋) ≤ 𝐶|𝑥′| 32 ‖𝜕3𝑥𝑓‖𝐿2(𝕋),
we deduce that

‖𝐺1,3‖𝐿2 ≤ 𝐶‖𝜕𝑥𝑓‖𝐿∞‖𝜕3𝑥𝑓‖𝐿2‖‖‖‖‖‖∫|𝑥′|<𝛿
|𝜃(⋅ − 𝑥′)|

|𝑥′| 12 𝑑𝑥′
‖‖‖‖‖‖𝐿2

≤ (‖𝑓‖𝑊1,∞)‖𝜕3𝑥𝑓‖𝐿2𝛿 1

2 .
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3940 DONG et al.

To control 𝐺1,4, we use Taylor’s expansion to have

‖𝐺1,4‖𝐿2 ≤ 𝐶(1 + ‖𝜕𝑥𝑓‖𝐿∞)2‖𝜕2𝑥𝑓‖𝐿∞(‖𝜕2𝑥𝑓‖𝐿∞ + 1)
‖‖‖‖‖∫|𝑥′|<𝛿 |𝜃(⋅ − 𝑥′)|𝑑𝑥′‖‖‖‖‖𝐿2

≤ (‖𝑓‖𝑊1,∞)(‖𝜕2𝑥𝑓‖2𝐿∞𝛿 + ‖𝜕𝑥𝑓‖𝐿2𝛿),
which in conjunction with Gagliardo-Nirenberg’s inequality implies

‖𝐺1,4‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)(‖𝜕2𝑥𝑓‖𝐿2‖𝜕3𝑥𝑓‖𝐿2𝛿 + ‖𝜕𝑥𝑓‖𝐿2).
The integral in 𝐺1,5 has a Calderón-Zygmund type kernel, whence

‖𝐺1,5‖𝐿2 ≤ 𝐶‖𝜕2𝑥𝑓‖𝐿∞‖𝜃‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖ 1

2

𝐿2
‖𝜕3𝑥𝑓‖ 1

2

𝐿2
.

Gathering the above estimates yields

‖𝐺1‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)

(‖𝜕2𝑥𝑓‖𝐿2‖𝜕3𝑥𝑓‖𝐿2𝛿 + ‖𝜕3𝑥𝑓‖𝐿2𝛿 1

2

+‖𝜕2𝑥𝑓‖𝐿2𝛿− 1

2 + ‖𝜕2𝑥𝑓‖ 1

2

𝐿2
‖𝜕3𝑥𝑓‖ 1

2

𝐿2

)
,

where we bounded the ‖𝜕𝑥𝑓‖𝐿2 term in the estimates for 𝐺1,1 and 𝐺1,4 by

𝐶‖𝜕2𝑥𝑓‖ 1

2

𝐿2
‖𝜕3𝑥𝑓‖ 1

2

𝐿2
.

For any 𝜈 ∈ (0, 1), we choose

𝛿 =
𝜈2

211(‖𝑓‖𝑊1,∞)(1 + ‖𝜕2𝑥𝑓‖𝐿2)
with  sufficiently large so that

‖𝐺1‖𝐿2 ≤ 2−10𝜈‖𝜕3𝑥𝑓‖𝐿2 + 1

𝜈
(‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖𝐿2(1 + ‖𝜕2𝑥𝑓‖𝐿2) 12 . (5.21)

Control of 𝐺2. We decompose 𝐺2 =
∑4

𝑗=1 𝐺2,𝑗 where

𝐺2,1(𝑥) = 𝜕2𝑥𝑓(𝑥)∫
sinh(𝛿𝑥′𝑓(𝑥)) − 𝛿𝑥′𝑓(𝑥)

cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′
𝜃(𝑥 − 𝑥′)𝑑𝑥′,

𝐺2,2(𝑥) = 𝜕2𝑥𝑓(𝑥)∫
𝛿𝑥′𝑓(𝑥) − 𝑥′𝜕𝑥𝑓(𝑥)

cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′
𝜃(𝑥 − 𝑥′)𝑑𝑥′,
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3941

𝐺2,3(𝑥) = 𝜕2𝑥𝑓(𝑥)𝜕𝑥𝑓(𝑥)

⋅ ∫
(

1

cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′
−

2

(1 + (𝜕𝑥𝑓(𝑥))2)(𝑥′)2

)
𝑥′𝜃(𝑥 − 𝑥′)𝑑𝑥′,

and

𝐺2,4(𝑥) =
2𝜕2𝑥𝑓(𝑥)𝜕𝑥𝑓(𝑥)

1 + (𝜕𝑥𝑓(𝑥))2 ∫
𝜃(𝑥 − 𝑥′)

𝑥′
𝑑𝑥′.

The integral kernel in 𝐺2,1 is bounded by an absolute constant so that

‖𝐺2,1‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖𝐿2‖‖‖‖∫ |𝜃(⋅ − 𝑥′)|𝑑𝑥′‖‖‖‖𝐿∞ ≤ (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖𝐿2 .
The identity

𝑥′𝜕𝑥𝑓(𝑥) − 𝛿𝑥′𝑓(𝑥) = (𝑥′)2 ∫
1

0

𝑠𝜕2𝑥𝑓(𝑥 + (𝑠 − 1)𝑥′)𝑑𝑠 (5.22)

allows us to get

‖𝐺2,2‖𝐿2 ≤ ‖𝜕2𝑥𝑓‖𝐿2‖‖‖‖‖∫
1

0

𝑠 ∫ |𝜕2𝑥𝑓(⋅ + (𝑠 − 1)𝑥′)||𝜃(⋅ − 𝑥′)|𝑑𝑥′𝑑𝑠‖‖‖‖‖𝐿∞
≤ ‖𝜕2𝑥𝑓‖𝐿2 ∫ 1

0

𝑠𝑑𝑠√
1 − 𝑠

‖𝜕2𝑥𝑓‖𝐿2‖𝜃‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖2
𝐿2
,

where we applied Cauchy-Schwarz’s inequality for the integral in 𝑥′.
Using the inequality

|𝛿𝑥′𝑓(𝑥) − 𝑥′𝜕𝑥𝑓(𝑥)| ≤ |𝑥′| 32 ‖𝜕𝑥𝑓‖
𝐶

1
2
≤ 𝐶|𝑥′| 32 ‖𝜕2𝑥𝑓‖𝐿2 ,

we can bound 𝐺2,3 as

‖𝐺2,3‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖2
𝐿2

‖∫ |𝜃(⋅ − 𝑥′)|𝑑𝑥′‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖2
𝐿2
.

Finally, 𝐺2,4 obeys the same bound as 𝐺1,5:

‖𝐺2,4‖𝐿2 ≤ ‖𝜕2𝑥𝑓‖𝐿∞‖𝜃‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖ 1

2

𝐿2
‖𝜕3𝑥𝑓‖ 1

2

𝐿2
.

Gathering all the above estimates leads to

‖𝐺2‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)

(‖𝜕2𝑥𝑓‖ 1

2

𝐿2
‖𝜕3𝑥𝑓‖ 1

2

𝐿2
+ ‖𝜕2𝑥𝑓‖2

𝐿2
+ ‖𝜕2𝑥𝑓‖𝐿2)
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3942 DONG et al.

and thus, for any 𝜈 ∈ (0, 1), we have

‖𝐺2‖𝐿2 ≤ 2−10𝜈‖𝜕3𝑥𝑓‖𝐿2 + 1

𝜈
(‖𝑓‖𝑊1,∞)(‖𝜕2𝑥𝑓‖𝐿2 + ‖𝜕2𝑥𝑓‖2

𝐿2
). (5.23)

Control of 𝐺3. We split 𝐺3 =
∑7

𝑗=1 𝐺3,𝑗 where

𝐺3,1(𝑥) = ∫
(sinh(𝛿𝑥′𝑓(𝑥)) − 𝛿𝑥′𝑓(𝑥))𝜕𝑥𝑓(𝑥) sinh(𝛿𝑥′𝑓(𝑥))𝛿𝑥′(𝜕𝑥𝑓)(𝑥)

(cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′)2
𝜃(𝑥 − 𝑥′)𝑑𝑥′

+ ∫
𝛿𝑥′𝑓(𝑥)𝜕𝑥𝑓(𝑥)(sinh(𝛿𝑥′𝑓(𝑥)) − 𝛿𝑥′𝑓(𝑥))𝛿𝑥′(𝜕𝑥𝑓)(𝑥)

(cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′)2
𝜃(𝑥 − 𝑥′)𝑑𝑥′,

𝐺3,2(𝑥) = ∫|𝑥′|>𝛿
(sin 𝑥′ + 𝛿𝑥′𝑓(𝑥)𝜕𝑥𝑓(𝑥))𝛿𝑥′𝑓(𝑥)𝛿𝑥′(𝜕𝑥𝑓)(𝑥)

(cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′)2
𝜃(𝑥 − 𝑥′)𝑑𝑥′,

𝐺3,3(𝑥) = ∫|𝑥′|<𝛿
(sin 𝑥′ + 𝛿𝑥′𝑓(𝑥)𝜕𝑥𝑓(𝑥))(𝛿𝑥′𝑓(𝑥) − 𝜕𝑥𝑓(𝑥)𝑥

′)𝛿𝑥′(𝜕𝑥𝑓)(𝑥)

(cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′)2
𝜃(𝑥 − 𝑥′)𝑑𝑥′,

𝐺3,4(𝑥) = 𝜕𝑥𝑓(𝑥)∫|𝑥′|<𝛿
(𝛿𝑥′𝑓(𝑥) − 𝜕𝑥𝑓(𝑥)𝑥

′)𝑥′𝛿𝑥′(𝜕𝑥𝑓)(𝑥)

(cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′)2
𝜃(𝑥 − 𝑥′)𝑑𝑥′,

𝐺3,5(𝑥) = 𝜕𝑥𝑓(𝑥)∫|𝑥′|<𝛿
(sin 𝑥′ + (𝜕𝑥𝑓(𝑥))

2𝑥′)𝑥′(𝛿𝑥′(𝜕𝑥𝑓)(𝑥) − 𝜕2𝑥𝑓(𝑥)𝑥
′)

(cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′)2
𝜃(𝑥 − 𝑥′)𝑑𝑥′,

𝐺3,6(𝑥) = 𝜕𝑥𝑓(𝑥)𝜕
2
𝑥𝑓(𝑥)∫|𝑥′|<𝛿(sin 𝑥′ + (𝜕𝑥𝑓(𝑥))

2𝑥′)(𝑥′)2𝐴(𝑥, 𝑥′)𝜃(𝑥 − 𝑥′)𝑑𝑥′

with 𝐴(𝑥, 𝑥′) =

(
1

(cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′)2
−

4

(1 + (𝜕𝑥𝑓(𝑥))2)2(𝑥′)4

)
,

and

𝐺3,7(𝑥) =
4𝜕𝑥𝑓(𝑥)𝜕

2
𝑥𝑓(𝑥)

(1 + (𝜕𝑥𝑓(𝑥))2)2 ∫|𝑥′|<𝛿
sin 𝑥′ + (𝜕𝑥𝑓(𝑥))

2𝑥′

(𝑥′)2
𝜃(𝑥 − 𝑥′)𝑑𝑥′.

The integral kernel in 𝐺3,1 is smooth enough so that

‖𝐺3,1‖𝐿2 ≤ 𝐶‖𝜕𝑥𝑓‖2𝐿∞‖𝜃‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜕𝑥𝑓‖𝐿2 .
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3943

By brutal force we have

‖𝐺3,2‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜕𝑥𝑓‖
𝐶

1
2

‖‖‖‖‖‖∫|𝑥′|>𝛿
|𝜃(⋅ − 𝑥′)|

|𝑥′| 32 𝑑𝑥′
‖‖‖‖‖‖𝐿2

≤ (‖𝑓‖𝑊1,∞)
‖𝜕2𝑥𝑓‖𝐿2

𝛿
1

2

.

For the next two terms, Gagliardo-Nirenberg’s inequality gives

‖𝐺3,3‖𝐿2 + ‖𝐺3,4‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖2𝐿∞‖‖‖‖‖∫|𝑥′|<𝛿 |𝜃(⋅ − 𝑥′)|𝑑𝑥′‖‖‖‖‖𝐿2
≤ (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖𝐿2‖𝜕3𝑥𝑓‖𝐿2𝛿.

The term 𝐺3,5 is bounded by

‖𝐺3,5‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖
𝐶̇

1
2

‖‖‖‖‖‖∫|𝑥′|<𝛿
|𝜃(⋅ − 𝑥′)|

|𝑥′| 12 𝑑𝑥′
‖‖‖‖‖‖𝐿2

≤ (‖𝑓‖𝑊1,∞)‖𝜕3𝑥𝑓‖𝐿2𝛿 1

2 .

As for 𝐺1,4, we have

‖𝐺3,6‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖2𝐿∞‖‖‖‖‖∫|𝑥′|<𝛿 |𝜃(⋅ − 𝑥′)|𝑑𝑥′‖‖‖‖‖𝐿2
≤ (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖𝐿2‖𝜕3𝑥𝑓‖𝐿2𝛿.

Finally, the kernels in 𝐺3,7 are of Calderón-Zygmund type in such a way that

‖𝐺3,7‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖ 1

2

𝐿2
‖𝜕3𝑥𝑓‖ 1

2

𝐿2
.

Gathering the above estimates we find that

‖𝐺3‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)

(‖𝜕2𝑥𝑓‖ 1

2

𝐿2
‖𝜕3𝑥𝑓‖ 1

2

𝐿2
+ ‖𝜕2𝑥𝑓‖𝐿2‖𝜕3𝑥𝑓‖𝐿2𝛿

+‖𝜕3𝑥𝑓‖𝐿2𝛿 1

2 + ‖𝜕2𝑥𝑓‖𝐿2𝛿− 1

2

)
.

For any 𝜈 ∈ (0, 1), using Young’s inequality for the first term and choosing

𝛿
1

2 =
𝜈

211(‖𝑓‖𝑊1,∞)(1 + ‖𝜕2𝑥𝑓‖𝐿2) ,
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3944 DONG et al.

we obtain

‖𝐺3‖𝐿2 ≤ 2−10𝜈‖𝜕3𝑥𝑓‖𝐿2 + 1

𝜈
(‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖𝐿2 . (5.24)

Control of 𝐺4. We first note that

𝐺4(𝑥) = 4𝜋∇(𝑆[𝑓](𝜕𝑥𝜃))(𝑥, 𝑓(𝑥)) ⋅ (1, 𝜕𝑥𝑓(𝑥)).

In view of the bound (4.19) for tangential derivative of 𝑆[𝑓], we have

‖𝐺4‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖(
1

2
𝐼 − 𝐾∗

)
(𝜕𝑥𝜃)‖𝐿2 .

To proceed, we differentiate the second equation in (5.6) with respect to 𝑥 to have(
1

2
𝐼 − 𝐾∗

)
(𝜕𝑥𝜃)(𝑥) = −𝜅𝜕2𝑥𝑓(𝑥) + 𝐺4,1 + 𝐺4,2 (5.25)

where

𝐺4,1(𝑥) =
1

4𝜋 ∫
cosh(𝛿𝑥′𝑓(𝑥))𝛿𝑥′(𝜕𝑥𝑓)(𝑥) − sin 𝑥′𝜕2𝑥𝑓(𝑥)

cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′
𝜃(𝑥 − 𝑥′)𝑑𝑥′,

and

𝐺4,2(𝑥) =
−1

4𝜋 ∫
(sinh(𝛿𝑥′𝑓(𝑥)) − sin 𝑥′𝜕𝑥𝑓(𝑥)) sinh(𝛿𝑥′𝑓(𝑥))𝛿𝑥′(𝜕𝑥𝑓)(𝑥)

(cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′)2
𝜃(𝑥 − 𝑥′)𝑑𝑥′. (5.26)

Therefore,

‖𝐺4‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)(‖𝜕2𝑥𝑓‖𝐿2 + ‖𝐺4,1‖𝐿2 + ‖𝐺4,2‖𝐿2) (5.27)

and it remains to bound 𝐺4,1 and 𝐺4,2. A further splitting gives

𝐺4,1 = 𝐺1
4,1 + 𝐺2

4,1 + 𝐺3
4,1 + 𝐺4

4,1,

where

𝐺1
4,1(𝑥) =

1

4𝜋 ∫
(cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′ + cos 𝑥′ − 1)𝛿𝑥′(𝜕𝑥𝑓)(𝑥)

cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′
𝜃(𝑥 − 𝑥′)𝑑𝑥′,

𝐺2
4,1(𝑥) =

𝜕2𝑥𝑓(𝑥)

4𝜋 ∫
𝑥′ − sin 𝑥′

cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′
𝜃(𝑥 − 𝑥′)𝑑𝑥′,

𝐺3
4,1(𝑥) =

1

4𝜋 ∫|𝑥′|>𝛿
𝛿𝑥′(𝜕𝑥𝑓)(𝑥) − 𝑥′𝜕2𝑥𝑓(𝑥)

cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′
𝜃(𝑥 − 𝑥′)𝑑𝑥′,
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3945

and

𝐺4
4,1(𝑥) =

1

4𝜋 ∫|𝑥′|<𝛿
𝛿𝑥′(𝜕𝑥𝑓)(𝑥) − 𝑥′𝜕2𝑥𝑓(𝑥)

cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′
𝜃(𝑥 − 𝑥′)𝑑𝑥′.

Since the kernel integral in 𝐺1
4,1 is bounded by 𝐶‖𝜕𝑥𝑓‖𝐿∞ , we have

‖𝐺1
4,1‖𝐿2 ≤ 𝐶‖𝜕𝑥𝑓‖𝐿∞‖𝜃‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜕𝑥𝑓‖𝐿2 .

Similarly, the kernel integral in 𝐺2
4,2 is bounded by an absolute constant, yielding

‖𝐺2
4,1‖𝐿2 ≤ 𝐶‖𝜕2𝑥𝑓‖𝐿2‖𝜃‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖𝐿2 .

Using convolution properties, we bound

‖𝐺3
4,1‖𝐿2

≤ 𝐶‖𝜕𝑥𝑓‖
𝐶̇

1
2

‖‖‖‖‖‖∫|𝑥′|>𝛿
|𝜃(⋅ − 𝑥′)|

|𝑥′| 32 𝑑𝑥′
‖‖‖‖‖‖𝐿2 + 𝐶‖𝜕2𝑥𝑓‖𝐿2‖‖‖‖‖∫|𝑥′|>𝛿

|𝜃(⋅ − 𝑥′)||𝑥′| 𝑑𝑥′
‖‖‖‖‖𝐿∞

≤ 𝐶

‖𝜕𝑥𝑓‖
𝐶̇

1
2
‖𝜃‖𝐿2

𝛿
1

2

+ 𝐶
‖𝜕2𝑥𝑓‖𝐿2‖𝜃‖𝐿2

𝛿
1

2

≤ (‖𝑓‖𝑊1,∞)
‖𝜕2𝑥𝑓‖𝐿2

𝛿
1

2

.

Similarly, 𝐺4
4,1 can be controlled as

‖𝐺4
4,1‖𝐿2 ≤ ‖𝜕2𝑥𝑓‖

𝐶̇
1
2

‖‖‖‖‖‖∫|𝑥′|<𝛿
|𝜃(⋅ − 𝑥′)|

|𝑥′| 12 𝑑𝑥′
‖‖‖‖‖‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜕3𝑥𝑓‖𝐿2𝛿 1

2 .

We have proved that

(‖𝑓‖𝑊1,∞)‖𝐺4,1‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜕3𝑥𝑓‖𝐿2𝛿 1

2 + (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖𝐿2(𝛿
−

1

2 + 1

)
.

For any 𝜈 ∈ (0, 1), choosing

𝛿
1

2 =
𝜈

210(‖𝑓‖𝑊1,∞)(1 + ‖𝜕2𝑥𝑓‖𝐿2) ,
we obtain

(‖𝑓‖𝑊1,∞)‖𝐺4,1‖𝐿2 ≤ 2−10𝜈‖𝜕3𝑥𝑓‖𝐿2 + 1

𝜈
(‖𝑓‖𝑊1,∞)

(‖𝜕2𝑥𝑓‖𝐿2 + ‖𝜕2𝑥𝑓‖2
𝐿2

)
. (5.28)
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3946 DONG et al.

As for 𝐺4,2, we decompose 𝐺4,2 =
∑4

𝑗=1 𝐺
𝑗
4,2 where

𝐺1
4,2(𝑥) =

−1

4𝜋 ∫
(sinh(𝛿𝑥′𝑓(𝑥)) − 𝛿𝑥′𝑓(𝑥)) sinh(𝛿𝑥′𝑓(𝑥))𝛿𝑥′(𝜕𝑥𝑓)(𝑥)

(cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′)2
𝜃(𝑥 − 𝑥′)𝑑𝑥′,

𝐺2
4,2(𝑥) =

−𝜕𝑥𝑓(𝑥)

4𝜋 ∫
(𝑥′ − sin 𝑥′) sinh(𝛿𝑥′𝑓(𝑥))𝛿𝑥′(𝜕𝑥𝑓)(𝑥)

(cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′)2
𝜃(𝑥 − 𝑥′)𝑑𝑥′,

𝐺3
4,2(𝑥) =

−1

4𝜋 ∫|𝑥′|>𝛿
(𝛿𝑥′𝑓(𝑥) − 𝑥′𝜕𝑥𝑓(𝑥)) sinh(𝛿𝑥′𝑓(𝑥))𝛿𝑥′(𝜕𝑥𝑓)(𝑥)

(cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′)2
𝜃(𝑥 − 𝑥′)𝑑𝑥′,

and

𝐺4
4,2(𝑥) =

−1

4𝜋 ∫|𝑥′|<𝛿
(𝛿𝑥′𝑓(𝑥) − 𝑥′𝜕𝑥𝑓(𝑥)) sinh(𝛿𝑥′𝑓(𝑥))𝛿𝑥′(𝜕𝑥𝑓)(𝑥)

(cosh(𝛿𝑥′𝑓(𝑥)) − cos 𝑥′)2
𝜃(𝑥 − 𝑥′)𝑑𝑥′.

Since the integral kernel in 𝐺1
4,2 is bounded by (‖𝑓‖𝑊1,∞), it follows that

‖𝐺1
4,2‖𝐿2 + ‖𝐺2

4,2‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜃‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜕𝑥𝑓‖𝐿2 .
Next we estimate 𝐺3

4,2 and 𝐺
4
4,2 as

‖𝐺3
4,2‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)

‖‖‖‖‖∫|𝑥′|>𝛿
|𝜃(⋅ − 𝑥′)||𝑥′|2 𝑑𝑥′

‖‖‖‖‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)
‖𝜕𝑥𝑓‖𝐿2

𝛿

and

‖𝐺4
4,2‖𝐿2 ≤ (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖2𝐿∞‖‖‖‖‖∫|𝑥′|<𝛿 |𝜃(⋅ − 𝑥′)|𝑑𝑥′‖‖‖‖‖𝐿2

≤ (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖𝐿2‖𝜕3𝑥𝑓‖𝐿2𝛿.
We thus obtain

(‖𝑓‖𝑊1,∞)‖𝐺4,2‖𝐿2
≤ (‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖𝐿2‖𝜕3𝑥𝑓‖𝐿2𝛿 + (‖𝑓‖𝑊1,∞)‖𝜕𝑥𝑓‖𝐿2(𝛿−1 + 1).

For any 𝜈 ∈ (0, 1), choosing

𝛿 =
𝜈

210(‖𝑓‖𝑊1,∞)(1 + ‖𝜕2𝑥𝑓‖𝐿2)
gives

(‖𝑓‖𝑊1,∞)‖𝐺4,2‖𝐿2 ≤ 2−10𝜈‖𝜕3𝑥𝑓‖𝐿2 + 1

𝜈
(‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖𝐿2 . (5.29)
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3947

Then plugging (5.28) and (5.29) into (5.27) we obtain

‖𝐺4‖𝐿2 ≤ 2−9𝜈‖𝜕3𝑥𝑓‖𝐿2 + 1

𝜈
(‖𝑓‖𝑊1,∞)‖𝜕2𝑥𝑓‖𝐿2 . (5.30)

Finally, combining (5.21), (5.23), (5.24) and (5.30) we conclude that

‖𝜕𝑥[𝐺(𝑓)𝑓]‖𝐿2 ≤ 𝜈‖𝜕3𝑥𝑓‖𝐿2 + 1

𝜈
(‖𝑓‖𝑊1,∞)(‖𝜕2𝑥𝑓‖𝐿2 + ‖𝜕2𝑥𝑓‖2

𝐿2
),

which finishes the proof. □

6 VISCOSITY SOLUTIONS AND COMPARISON PRINCIPLE

By virtue of the comparison principle for the Dirichlet-Neumann operator given by Proposi-
tion 2.15 and the fact that 𝐺(𝑓 + 𝐶)(𝑓 + 𝐶) = 𝐺(𝑓)𝑓 for any constant 𝐶, we have the following
natural definition of viscosity solutions for the Muskat problem (2.8).

Definition 6.1 (Viscosity solutions). A function 𝑓 ∶ 𝕋 × [0, 𝑇] is called a viscosity subsolution
(resp. supersolution) of (2.8) on (0, 𝑇) provided that

(i) 𝑓 is upper semicontinuous (resp. lower semicontinuous) on 𝕋 × [0, 𝑇], and
(ii) for every 𝜓 ∶ 𝕋 × (0, 𝑇) → ℝ with

𝜕𝑡𝜓 ∈ 𝐶(𝕋 × (0, 𝑇)) and 𝜓 ∈ 𝐶((0, 𝑇); 𝐶1,1(𝕋)),

if𝑓 − 𝜓 attains a globalmaximum(resp.minimum)over𝕋 × [𝑡0 − 𝑟, 𝑡0] at (𝑥0, 𝑡0) ∈ 𝕋 × (0, 𝑇)

for some 𝑟 > 0, then

𝜕𝑡𝜓(𝑥0, 𝑡0) ≤ −𝜅(𝐺(𝜓)𝜓)(𝑥0, 𝑡0) (resp. ≥). (6.1)

A viscosity solution is both a viscosity subsolution and viscosity supersolution.

The next proposition shows that if a viscosity solution is regular (𝐶1,1) at a point (𝑥0, 𝑡0) then it
satisfies the equation classically at the same point.

Proposition 6.2 (Consistency). Let 𝑓 be a viscosity subsolution of (2.8) on (0, 𝑇). Assume that
𝑓 ∈ 𝑊1,∞(𝕋 × (0, 𝑇)) and 𝑓 is 𝐶1,1 at (𝑥0, 𝑡0) ∈ 𝕋 × (0, 𝑇). Then 𝐺(𝑓)𝑓 is classically well-defined
at (𝑥0, 𝑡0) and

𝜕𝑡𝑓(𝑥0, 𝑡0) ≤ −𝜅(𝐺(𝑓)𝑓)(𝑥0, 𝑡0). (6.2)

The corresponding statement for viscosity supersolutions holds true.

Proof. According to Proposition 2.15, 𝐺(𝑓)𝑓 is classically well-defined at (𝑥0, 𝑡0). We shall write
𝑋 = (𝑥, 𝑡) and𝑋0 = (𝑥0, 𝑡0). Since𝑓 is𝐶1,1 at𝑋0, for some 𝑟0 ∈ (0,

1

10
min{𝜋, 𝑡0, 𝑇 − 𝑡0}) and𝐶 > 0,
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3948 DONG et al.

we have

𝑓(𝑋) ≤ 𝑓(𝑋0) + ∇𝑋𝑓(𝑋0) ⋅ (𝑋 − 𝑋0) +
𝐶

2
|𝑋 − 𝑋0|2 ∶= 𝜓(𝑋), |𝑋 − 𝑋0| < 𝑟0. (6.3)

Let 𝜓 be the tangent parabola with double opening:

𝜓(𝑋) = 𝑓(𝑋0) + ∇𝑋𝑓(𝑋0) ⋅ (𝑋 − 𝑋0) + 𝐶|𝑋 − 𝑋0|2. (6.4)

We can find a family of functions 𝜓𝑟 ∈ 𝐶∞(𝕋 × ℝ), 𝑟 ∈ (0, 𝑟0) satisfying

𝜓𝑟 ≤ 𝜓 in 𝐵𝑟0(𝑋0),

𝜓𝑟 ≥ 𝑓 on 𝕋 × [0, 𝑇],

∀𝛿 ∈ (0, 𝑟20), 𝜓𝑟 → 𝑓 in 𝐶(𝕋 × [𝛿, 𝑇 − 𝛿]),

∀𝛿 ∈ (0, 𝑟20), sup
𝑟∈(0,

√
𝛿)

‖𝜓𝑟‖𝑊1,∞(𝕋×[𝛿,𝑇−𝛿]) < ∞.

(6.5)

The construction of 𝜓𝑟 is postponed to Appendix C. The properties in (6.5) imply that 𝜓𝑟(𝑡0)’s are
uniformly 𝐶1,1 at 𝑥0, that is, there exists𝑀0 > 0 independent of 𝑟 ∈ (0, 𝑟0) such that

|𝜓𝑟(𝑥0 + 𝑥, 𝑡0) + 𝜓𝑟(𝑥0 − 𝑥, 𝑡0) − 2𝜓𝑟(𝑥0, 𝑡0)| ≤ 𝑀|𝑥|2 ∀|𝑥| < 𝑟0. (6.6)

Since each 𝜓𝑟 is a valid test function for the viscosity subsolution 𝑓, we have

𝜕𝑡𝜓𝑟(𝑋0) ≤ −𝜅(𝐺(𝜓𝑟)𝜓𝑟)(𝑋0). (6.7)

At the maximum point𝑋0 of 𝑓 − 𝜓𝑟, we have 𝜕𝑡𝑓 = 𝜕𝑡𝜓𝑟. Thus (6.2) will be a consequence of (6.7)
and

lim
𝑟→0

(𝐺(𝜓𝑟)𝜓𝑟)(𝑋0) = (𝐺(𝑓)𝑓)(𝑋0). (6.8)

We shall skip the time variable in the remainder of the proof because 𝑡 = 𝑡0 is fixed in (6.8). The
proof of (6.8) proceeds in two steps.
Step 1. Let 𝜙𝑟 (resp. 𝜙) be the harmonic extension of 𝜓𝑟 to Ω𝑟 ≡ Ω𝜓𝑟 (resp. Ω𝑓).
We claim that

lim
𝑟→0

𝜙𝑟(𝑥, 𝑦) = 𝜙(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ Ω𝑓, (6.9)

where we note that Ω𝑓 ⊂ Ω𝑟 for all 𝑟. From (2.41), (2.42) and the uniform boundedness of‖𝜓𝑟‖𝑊1,∞(𝕋), we have

‖𝜙𝑟‖𝐿∞(Ω𝑟) ≤ ‖𝜓𝑟‖𝐿∞(𝕋) ≤ 𝑀. (6.10)

Fix a sequence of bounded subsets Ω𝑗 ⋐ Ω𝑓 satisfying Ω𝑗 ⊂ Ω𝑗+1 and ∪𝑗≥1Ω𝑗 = Ω𝑓 . Let 𝑟𝑛 be
an arbitrary sequence of positive numbers converging to 0. We relabel 𝜙𝑛 = 𝜙𝑟𝑛 and Ω𝑛 ≡ Ω𝑟𝑛 .
The uniform bound (6.10) implies that every subsequence of 𝜙𝑛 has a subsequence converging
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3949

weakly-* in 𝐿∞(Ω𝑓). For notational simplicity, we write 𝜙𝑛 → 𝜙∞ weakly-* in 𝐿∞(Ω𝑓). We have
the gradient estimate for the harmonic functions 𝜙𝑗

‖∇𝑥,𝑦𝜙𝑛‖𝐿∞(Ω𝑗) ≤ 𝐶𝑗‖𝜙𝑛‖𝐿∞(Ω𝑓) ≤ 𝐶𝑗𝑀.

By virtue of the Arzelà-Ascoli theorem, for every 𝑗 there exists a subsequence of 𝜙𝑛 converging
to 𝜙∞ in 𝐶(Ω𝑗). Using the Cantor diagonal argument, we can find a subsequence 𝜙𝑛𝑘 → 𝜙∞ in
𝐶(Ω𝑗) for all 𝑗. Thus (6.9) will follow once we can prove that

𝜙∞ = 𝜙. (6.11)

This can be achieved by using the variational characterization of 𝜙𝑛𝑘 and 𝜙. Indeed, we recall from
(2.13) and (2.14) that 𝜙𝑛 = 𝑢𝑛 + 𝜓𝑛, where 𝜓𝑛 ∈ 𝐻̇1(Ω𝑛) with 𝜓𝑛(𝑥, 𝜓𝑛(𝑥)) = 𝜓𝑛(𝑥) (in the trace
sense) and 𝑢𝑛 ∈ 𝐻̇1

0(Ω𝑛) satisfies

∫
Ω𝑛

∇𝑥,𝑦𝑢𝑛 ⋅ ∇𝑥,𝑦𝜑𝑑𝑥𝑑𝑦 = −∫
Ω𝑛

∇𝑥,𝑦𝜓𝑛 ⋅ ∇𝑥,𝑦𝜑𝑑𝑥𝑑𝑦 ∀𝜑 ∈ 𝐻̇1
0(Ω𝑛). (6.12)

In particular, the uniform bounds

‖𝑢𝑛‖𝐻̇1(Ω𝑛)
≤ ‖𝜓𝑛‖𝐻̇1(Ω𝑛)

≤ 𝐶(1 + ‖𝜓𝑛‖Lip(𝕋𝑑))‖𝜓𝑛‖
𝐻̇

1
2 (𝕋𝑑)

≤ 𝐶,

‖𝜙𝑛‖𝐻̇1(Ω𝑛)
≤ 2‖𝜓𝑛‖𝐻̇1(Ω𝑛)

≤ 2𝐶

hold. Since Ω𝑓 ⊂ Ω𝑛, upon passing to a subsequence of 𝑛𝑘, we have

𝑢𝑛𝑘 ⇀ 𝑢∞ in 𝐻̇1(Ω𝑓), 𝜙𝑛𝑘 ⇀ 𝜙∞ in 𝐻̇1(Ω𝑓). (6.13)

As for the convergence of𝜓𝑛, we recall fromTheoremA.2 that we can choose𝜓𝑛(𝑥, 𝑦) = 𝜓𝑛
♯
(𝑥, 𝑦 −

𝜓𝑛(𝑥)), where𝜓𝑛
♯
(𝑥, 𝑧) = 𝑒𝑧|𝐷𝑥|𝜓𝑛(𝑥) for (𝑥, 𝑧) ∈ 𝕋 × ℝ−. Since𝜓𝑛 → 𝑓 in𝐶𝛼(𝕋) for all 𝛼 ∈ (0, 1),

𝜓𝑛
♯
→ 𝑓♯ ∶= 𝑒𝑧|𝐷𝑥|𝑓(𝑥) in 𝐿∞(𝕋 × ℝ−). Consequently, 𝜓𝑛(𝑥, 𝑦) → 𝑓(𝑥, 𝑦) ∶= 𝑓♯(𝑥, 𝑦 − 𝑓(𝑥)) in

𝐿∞(Ω𝑓). Then for all 𝜃 ∈ 𝐶∞
𝑐 (Ω𝑓), using integration by parts and the dominated convergence

theorem gives

∫
Ω𝑓

∇𝑥,𝑦𝜓𝑛 ⋅ ∇𝑥,𝑦𝜃𝑑𝑥𝑑𝑦 = ∫
𝕋

𝜓𝑛(𝑥)𝜕𝑁𝜃(𝑥, 𝑓(𝑥))𝑑𝑥 − ∫
Ω𝑓

𝜓𝑛Δ𝑥,𝑦𝜃𝑑𝑥𝑑𝑦

→ ∫
𝕋

𝑓(𝑥)𝜕𝑁𝜃(𝑥, 𝑓(𝑥))𝑑𝑥 − ∫
Ω𝑓

𝑓Δ𝑥,𝑦𝜃𝑑𝑥𝑑𝑦

= ∫
Ω𝑓

∇𝑥,𝑦𝑓 ⋅ ∇𝑥,𝑦𝜃𝑑𝑥𝑑𝑦,

where 𝑁 = (−𝜕𝑥𝑓, 1). As 𝐶∞
𝑐 (Ω𝑓) is dense in 𝐻̇1(Ω𝑓), it follows that

𝜓𝑛 ⇀ 𝑓 𝐻̇1(Ω𝑓). (6.14)
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3950 DONG et al.

Recalling that 𝜙𝑛𝑘 = 𝑢𝑛𝑘 + 𝜓𝑛𝑘 , we deduce from (6.13) and (6.14) that

𝜙∞ = 𝑢∞ + 𝑓. (6.15)

On the other hand, since 𝐻̇1
0(Ω𝑓) ⊂ 𝐻̇1

0(Ω𝑛), (6.12) implies

∫
Ω𝑓

∇𝑥,𝑦𝑢𝑛 ⋅ ∇𝑥,𝑦𝜑𝑑𝑥𝑑𝑦 = −∫
Ω𝑓

∇𝑥,𝑦𝜓𝑛 ⋅ ∇𝑥,𝑦𝜑𝑑𝑥𝑑𝑦 ∀𝜑 ∈ 𝐻̇1
0(Ω𝑓).

By virtue of (6.13) and (6.14), letting 𝑛 = 𝑛𝑘 → ∞ in the preceding equality we obtain

∫
Ω𝑓

∇𝑥,𝑦𝑢∞ ⋅ ∇𝑥,𝑦𝜑𝑑𝑥𝑑𝑦 = −∫
Ω𝑓

∇𝑥,𝑦𝑓 ⋅ ∇𝑥,𝑦𝜑𝑑𝑥𝑑𝑦 ∀𝜑 ∈ 𝐻̇1
0(Ω𝑓).

This together with (6.15) proves that 𝜙∞ is the harmonic extension of 𝑓 to Ω𝑓 in the variational
sense. By the uniqueness of variational solutions we conclude that 𝜙∞ = 𝜙, proving (6.11).
Step 2. Recall that𝑓 ∈ 𝑊1,∞(𝕋) is𝐶1,1 at 𝑥0. In addition,𝜓𝑟 ∈ 𝐶∞(𝕋) is tangent to𝑓 fromabove

at 𝑥0, so that𝑁𝑟(𝑥0) = 𝑁(𝑥0) and there exists an interior disk 𝐵 tangent toΩ𝑓 at 𝑧0 = (𝑥0, 𝑓(𝑥0)).
Clearly, 𝐵 is also tangent to allΩ𝑟. Assume without loss of generality that 𝐵 = 𝐵1(0). In addition,
in view of the uniform 𝐶1,1 property (6.6), Corollary 2.14 implies that 𝜙𝑟’s are uniformly 𝐶1,𝛼 at
(𝑥0, 𝑓(𝑥0)). In particular, there exists𝑀 > 0 such that for all 𝑟 < 𝑟0, the trace 𝑔𝑟 = 𝜙𝑟|𝐵 satisfies

|𝑔𝑟(𝑥0 + 𝑥) + 𝑔𝑟(𝑥0 − 𝑥) − 2𝑔𝑟(𝑥0)| ≤ 𝑀|𝑥|1+𝛼 ∀|𝑥| < 𝑟0. (6.16)

Let 𝑔 = 𝜙|𝐵. Proposition B.1 then gives
(𝐺(𝜓𝑟)𝜓𝑟)(𝑥0) = −

|𝑁(𝑥0)|
8𝜋 ∫

𝜋

−𝜋

𝑔𝑟(𝑥0 + 𝑥) + 𝑔𝑟(𝑥0 − 𝑥) − 2𝑔𝑟(𝑥0)

sin
2
(
𝑥

2
)

𝑑𝑥,

(𝐺(𝜓)𝜓)(𝑥0) = −
|𝑁(𝑥0)|
8𝜋 ∫

𝜋

−𝜋

𝑔(𝑥0 + 𝑥) + 𝑔(𝑥0 − 𝑥) − 2𝑔(𝑥0)

sin
2
(
𝑥

2
)

𝑑𝑥.

The convergence (6.9) implies that 𝑔𝑟(𝑥) → 𝑔(𝑥) for all 𝑥 ∈ 𝐵. The uniform bounds (6.10) and
(6.16) then allow us to apply the dominated convergence theorem to conclude the claim (6.8). □

Using Proposition 6.2, we prove that viscosity solutions obey the comparison principle. An
immediate consequence is the uniqueness of viscosity solutions.

Theorem 6.3 (Comparison principle). Assume that 𝑓, 𝑔 ∶ 𝕋 × [0, 𝑇] → ℝ are respectively a
bounded viscosity subsolution and supersolution of (2.8) on (0, 𝑇). If 𝑓(𝑥, 0) ≤ 𝑔(𝑥, 0) for all 𝑥 ∈ 𝕋,
then 𝑓(𝑥, 𝑡) ≤ 𝑔(𝑥, 𝑡) for all (𝑥, 𝑡) ∈ 𝕋 × [0, 𝑇].

Proof. For classical sub and supersolutions, one can follow the proof of Proposition 5.1. Here the
source difficulty comes from the low regularity of 𝑓 and 𝑔. We employ the regularization using
sup- and inf-convolutions. For small 𝛿 > 0, let 𝑓𝛿 and 𝑔𝜀 be respectively the sup-convolution and

 10970312, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22124 by U

niversity O
f M

aryland, W
iley O

nline Library on [22/02/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3951

inf-convolution of 𝑓 and 𝑔:

𝑓𝛿(𝑥, 𝑡) = sup
(𝑦,𝑠)∈𝕋×[0,𝑇]

𝑓(𝑦, 𝑠) −
1

2𝛿

(|𝑥 − 𝑦|2 + |𝑡 − 𝑠|2),
𝑔𝛿(𝑥, 𝑡) = inf

(𝑦,𝑠)∈𝕋×[0,𝑇]
𝑔(𝑦, 𝑠) +

1

2𝛿

(|𝑥 − 𝑦|2 + |𝑡 − 𝑠|2)
for (𝑥, 𝑡) ∈ 𝕋 × [0, 𝑇]. Since𝑓 (resp. 𝑔) is upper (resp. lower) semicontinuous, the supremum(resp.
infimum) in the definition of 𝑓𝛿 (resp. 𝑔𝛿) is in fact a maximum (resp. minimum). Clearly, 𝑓𝛿 and
𝑔𝛿 are 2𝜋-periodic in 𝑥. We record the following standard properties of sup- and inf-convolution
(see e.g., [35]).

(i) 𝑓𝛿, 𝑔𝛿 ∈ Lip(𝕋 × [0, 𝑇]).
(ii) 𝑓𝛿 (resp. 𝑔𝛿) is semiconvex (resp. semiconcave) in the senses that each point has a tangent

paraboloid from below (resp. above) with opening 𝛿−1.
(iii) The half-relaxed limits

lim sup
𝛿→0

(𝑦,𝑠)→(𝑥,𝑡)

𝑓𝛿(𝑦, 𝑠) = 𝑓(𝑥, 𝑡), lim inf
𝛿→0$𝑦,𝑠)→(𝑥,𝑡)

𝑔𝛿(𝑦, 𝑠) = 𝑔(𝑥, 𝑡) (6.17)

hold for all (𝑥, 𝑡) ∈ 𝕋 × [0, 𝑇].

The boundedness of 𝑓 and 𝑔 is only used in (i).
Nextwe prove that each𝑓𝛿 (resp. 𝑔𝛿) is a viscosity subsolution (resp. supersolution) of (2.8). This

follows from the translation invariance of (2.8). Indeed, let 𝜓 be a test function as in Definition 6.1
such that𝑓𝛿 − 𝜓 has a globalmaximumover𝕋 × [𝑡0 − 𝑟, 𝑡0] at (𝑥0, 𝑡0) for some 𝑟 > 0. Let (𝑦0, 𝑠0) ∈
𝕋 × [0, 𝑇] be the point where themaximum in the definition of 𝑓𝛿(𝑥0, 𝑡0) is attained.We have that

𝑓𝛿(𝑥0, 𝑡0) = 𝑓(𝑦0, 𝑠0) −
1

2𝛿

(|𝑥0 − 𝑦0|2 + |𝑡0 − 𝑠0|2),
𝑓𝛿(𝑥, 𝑡) ≥ 𝑓(𝑥 − 𝑥0 + 𝑦0, 𝑡 − 𝑡0 + 𝑠0) −

1

2𝛿

(|𝑥0 − 𝑦0|2 + |𝑡0 − 𝑠0|2).
Therefore, the function

𝜓(𝑥, 𝑡) = 𝜓(𝑥 + 𝑥0 − 𝑦0, 𝑡 + 𝑡0 − 𝑠0) +
1

2𝛿

(|𝑥0 − 𝑦0|2 + |𝑡0 − 𝑠0|2)
is a valid test function for which 𝑓 − 𝜓 has a global maximum over 𝕋 × [𝑠0 − 𝑟, 𝑠0] at (𝑦0, 𝑠0).
Therefore, 𝜕𝑡𝜓(𝑦0, 𝑠0) ≤ −𝜅(𝐺(𝜓)𝜓)(𝑦0, 𝑠0), and hence 𝜕𝑡𝜓(𝑥0, 𝑡0) ≤ −𝜅(𝐺(𝜓)𝜓)(𝑥0, 𝑡0). Thus each
𝑓𝛿 is viscosity subsolution of (2.8). By an analogous argument, each 𝑔𝛿 is viscosity supersolution
of (2.8).
We claim that for very 𝜀 > 0, there exists 𝛿(𝜀) > 0 such that for all 𝛿 ≤ 𝛿(𝜀),

𝑓𝛿(𝑥, 𝑡) ≤ 𝑔𝛿(𝑥, 𝑡) + 𝜀 ∀(𝑥, 𝑡) ∈ 𝕋 × [0, 𝑇]. (6.18)

Taking this for granted, the half-relaxed limits in (6.17) yield 𝑓(𝑥, 𝑡) ≤ 𝑔(𝑥, 𝑡) for all (𝑥, 𝑡) ∈ 𝕋 ×

[0, 𝑇], proving the comparison principle. To prove (6.18), we assume by contradiction that for some
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3952 DONG et al.

𝜀0 > 0, there exists a sequence 𝛿𝑛 → 0 such that for all 𝑛,

𝑀𝑛 ∶= max
𝕋×[0,𝑇]

(𝑓𝛿𝑛 − 𝑔𝛿𝑛) = (𝑓𝛿𝑛 − 𝑔𝛿𝑛)(𝑥𝑛, 𝑡𝑛) > 𝜀0.

Because

lim
𝑛→∞

(𝑓𝛿𝑛(𝑥, 0) − 𝑔𝛿𝑛(𝑥, 0)) ≤ 𝑓(𝑥, 0) − 𝑔(𝑥, 0) ≤ 0,

we have 𝑓𝛿𝑛(𝑥, 0) − 𝑔𝛿𝑛(𝑥, 0) <
𝜀0

2
for all 𝑛 ≥ 𝑛0. This implies in particular that 𝑡𝑛 > 0 for all 𝑛 ≥

𝑛0. Choose 𝜂 > 0 sufficiently small so that

(𝑓𝛿𝑛0 − 𝑔𝛿𝑛0
− 𝜂𝑡)(𝑥𝑛0 , 𝑡𝑛0) = 𝑀𝑛0 − 𝜂𝑡𝑛0 >

2𝜀0
3

,

and hence

𝑀∗ ∶= max
𝕋×[0,𝑇]

(𝑓𝛿𝑛0 − 𝑔𝛿𝑛0
− 𝜂𝑡) >

2𝜀0
3

.

Moreover,𝑀∗ is attained at some point (𝑥∗, 𝑡∗) with 𝑡∗ > 0 since

max
𝕋

(𝑓𝛿 − 𝑔𝛿 − 𝜂𝑡)|𝑡=0 ≤ 𝜀0
2
.

Consequently,

max
𝕋×[0,𝑇]

(𝑓𝛿𝑛0 − 𝑔𝛿𝑛0
− 𝜂𝑡 − 𝑀∗) = 0

and is attained at (𝑥∗, 𝑡∗). In what follows we shall write 𝛿𝑛0 = 𝛿 to alleviate the notation. Then
the smooth function 𝜂𝑡 + 𝑀∗ touches 𝑓𝛿 − 𝑔𝛿 from above at (𝑥∗, 𝑡∗), so that 𝑓𝛿 − 𝑔𝛿 has a tangent
paraboloid from above at (𝑥∗, 𝑡∗). On the other hand, both 𝑓𝛿 and −𝑔𝛿 have a tangent paraboloid
from below at (𝑥∗, 𝑡∗), hence they are 𝐶1,1 at (𝑥∗, 𝑡∗). Then we can apply Proposition 6.2 to have
that 𝑓𝛿 and 𝑔𝛿 are classical sub and supersolutions at (𝑥∗, 𝑡∗):

𝜕𝑡𝑓
𝛿(𝑥∗, 𝑡∗) ≤ −𝜅

(
𝐺(𝑓𝛿)𝑓𝛿

)
(𝑥∗, 𝑡∗), 𝜕𝑡𝑔𝛿(𝑥∗, 𝑡∗) ≥ −𝜅(𝐺(𝑔𝛿)𝑔𝛿)(𝑥∗, 𝑡∗).

By virtue of Proposition 2.15,

𝐺(𝑓𝛿)𝑓𝛿(𝑥∗, 𝑡∗) ≥ 𝐺(𝑔𝛿 + 𝜂𝑡 +𝑀∗)(𝑔𝛿 + 𝜂𝑡 +𝑀∗)(𝑥∗, 𝑡∗).

In addition, since 𝑡∗ > 0 we have

𝜕𝑡(𝑔𝛿 + 𝜂𝑡 +𝑀∗)(𝑥∗, 𝑡∗) ≤ 𝜕𝑡𝑓
𝛿(𝑥∗, 𝑡∗).

It follows that

𝜕𝑡(𝑔𝛿 + 𝜂𝑡 +𝑀∗) ≤ 𝜕𝑡𝑓
𝛿 ≤ −𝜅𝐺(𝑓𝛿)𝑓𝛿
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3953

≤ −𝜅𝐺(𝑔𝛿 + 𝜂𝑡 +𝑀∗)(𝑔𝛿 + 𝜂𝑡 +𝑀∗)

= −𝜅𝐺(𝑔𝛿)𝑔𝛿 ≤ 𝜕𝑡𝑔𝛿

at (𝑥∗, 𝑡∗). This leads to the contradiction 𝜂 ≤ 0. □

By virtue of Theorem 6.3, we have

Corollary 6.4. Proposition 5.2 is valid for viscosity solutions.

7 PROOF OF Theorem 1.2

Let 𝑓0 be an arbitrary initial surface in 𝑊1,∞(𝕋). We construct a global solution to the contour
dynamics formulation (1.4)–(1.6) by regularizing initial data and the Muskat problem. Precisely,
for 𝜀 ∈ (0, 1), let 𝑓𝜀

0 = Γ𝜀 ∗ 𝑓0(𝑥) be the mollification of 𝑓0 where Γ𝜀 is an approximation of the
identity. Since 𝑓𝜀

0 ∈ 𝐻𝑠(𝕋) for any 𝑠 > 0, Proposition 5.3 yields the unique global solution 𝑓𝜀 to
the regularized Muskat Equation (5.1) with initial data 𝑓𝜀

0. Moreover, 𝑓
𝜀 is smooth and in view of

(5.7),

‖𝑓𝜀(𝑡)‖𝐿∞(𝕋) ≤ ‖𝑓𝜀
0‖𝐿∞(𝕋) ≤ ‖𝑓0‖𝐿∞(𝕋),‖𝑓𝜀(𝑡)‖Lip(𝕋) ≤ ‖𝑓𝜀
0‖Lip(𝕋) ≤ ‖𝑓0‖Lip(𝕋). (7.1)

Setting 𝜃𝜀 = (
1

2
𝐼 − 𝐾∗[𝑓𝜀])(−𝜅𝑓𝜀), we deduce from Proposition 4.1 and (7.1) that

‖𝜃𝜀(𝑡)‖𝐿2(𝕋) ≤ 𝐶(1 + ‖𝑓(𝑡)‖Lip(𝕋)) 52 ‖𝜕𝑥𝑓(𝑡)‖𝐿2(𝕋) ≤ 𝐶(1 + ‖𝑓0‖Lip(𝕋)) 72 ∀𝑡 ≥ 0. (7.2)

Let 𝜀𝑛 → 0 and relabel 𝑓𝑛 = 𝑓𝜀𝑛 and 𝜃𝑛 = 𝜃𝜀𝑛 . From the uniform bounds (7.1) and (7.2), we obtain
the weak* convergences (upon extracting subsequences)

𝑓𝑛
∗
⇀ 𝑓 in 𝐿∞([0,∞);𝑊1,∞(𝕋)), 𝜃𝑛

∗
⇀ 𝜃 in 𝐿∞([0,∞); 𝐿2(𝕋)). (7.3)

In particular, (7.1) implies that

‖𝑓(𝑡)‖𝐿∞(𝕋) ≤ ‖𝑓0‖𝐿∞(𝕋), ‖𝑓(𝑡)‖Lip(𝕋) ≤ ‖𝑓0‖Lip(𝕋). (7.4)

We now prove that 𝑓 and 𝜃 satisfy (1.4)–(1.6) for all 𝑡 > 0. Fix an arbitrary time 𝑇 > 0.
Step 1: Strong convergence in 𝐶(𝕋 × [0, 𝑇]). Combining the 𝐿2 estimate (4.20) for 𝐺(𝑓)𝑔 and

the uniform Lipschitz bound (7.1), we have

‖𝐺(𝑓𝑛)𝑓𝑛‖𝐿∞([0,𝑇];𝐿2(𝕋)) ≤ 𝐶(1 + ‖𝑓0‖Lip(𝕋))2‖𝑓0‖Lip(𝕋)
and

‖𝜕2𝑥𝑓𝑛‖𝐿∞([0,𝑇];𝐻−1) ≤ ‖𝜕𝑥𝑓𝑛‖𝐿∞([0,𝑇];𝐿2) ≤ 𝐶‖𝑓𝑛‖𝐿∞([0,𝑇];Lip(𝕋)) ≤ 𝐶‖𝑓0‖Lip(𝕋).
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3954 DONG et al.

It then follows from (5.1) that 𝜕𝑡𝑓𝜀 is uniformly bounded in 𝐿∞([0, 𝑇];𝐻−1(𝕋)). We have the con-
tinuous embedding𝑊1,∞(𝕋) ⊂ 𝐶(𝕋) ⊂ 𝐻−1(𝕋)where the first one is compact by theAzelà-Ascoli
theorem. Thus the Aubin-Lions Lemma [60] implies that

𝑓𝑛 → 𝑓 in 𝐶(𝕋 × [0, 𝑇]). (7.5)

In particular, lim𝑡→0+ 𝑓(⋅, 𝑡) = 𝑓0(⋅).
Step 2: 𝑓 is the unique viscosity solution. It suffices to prove that 𝑓 is a viscosity sub-

solution since its uniqueness then follows at once from Theorem 6.3. Indeed, assume that for
𝜓 ∶ 𝕋 × (0, 𝑇) → ℝ with 𝜕𝑡𝜓 ∈ 𝐶(𝕋 × (0, 𝑇)) and 𝜓 ∈ 𝐶((0, 𝑇); 𝐶1,1(𝕋)), 𝑓 − 𝜓 attains a global
maximum over 𝕋 × [𝑡0 − 𝑟, 𝑡0] at (𝑥0, 𝑡0) ∈ 𝕋 × (0, 𝑇) for some 𝑟 > 0. Setting 𝜓(𝑥, 𝑡) = 𝜓(𝑥, 𝑡) +|𝑡 − 𝑡0|2 we have that 𝑓 − 𝜓 attains a strict global maximum over 𝕋 × [𝑡0 − 𝑟, 𝑡0] at (𝑥0, 𝑡0).
By the uniform convergence (7.5), there exists for each sufficiently large 𝑛 a point (𝑥𝑛, 𝑡𝑛) ∈
𝕋 × [𝑡0 − 𝑟, 𝑡0] such that 𝑓𝑛 − 𝜓 attains a global maximum at (𝑥𝑛, 𝑡𝑛) and (𝑥𝑛, 𝑡𝑛) → (𝑥0, 𝑡0).
Set

𝜓𝑛 = 𝜓 +𝑀𝑛, 𝑀𝑛 ∶= max
𝕋×[𝑡0−𝑟,𝑡0]

(𝑓𝑛 − 𝜓)

so that 𝑓𝑛 − 𝜓𝑛 attains a zero global maximum over 𝕋 × [𝑡0 − 𝑟, 𝑡0] at (𝑥𝑛, 𝑡𝑛). It follows that

𝜕𝑡𝜓𝑛(𝑥𝑛, 𝑡𝑛) ≤ 𝜕𝑡𝑓𝑛(𝑥𝑛, 𝑡𝑛), 𝜕𝑥𝜓𝑛(𝑥𝑛, 𝑡𝑛) = 𝜕𝑥𝑓𝑛(𝑥𝑛, 𝑡𝑛). (7.6)

The comparison principle in Proposition 2.15 gives

(𝐺(𝑓𝑛)𝑓𝑛)(𝑥𝑛, 𝑡𝑛) ≥ (
𝐺(𝜓𝑛)𝜓𝑛

)
(𝑥𝑛, 𝑡𝑛). (7.7)

For any function 𝑔 ∈ 𝐶1,1(𝕋), we denote the generalized second order derivative of 𝑔 at 𝑥 by

𝜕2,∗𝑔(𝑥) = {𝑎 ∶ ∃𝑥𝑗 → 𝑥 with 𝑔 twice differentiable at 𝑥𝑗 and 𝑔′′(𝑥𝑗) → 𝑎}.

Since 𝑔 ∈ 𝐶1,1(𝕋), 𝑔′′(𝑥) exists for almost every 𝑥 ∈ 𝕋 and |𝑔′′(𝑥)| ≤ ‖𝑔′‖Lip(𝕋). Consequently,
𝜕2,∗𝑔(𝑥) is nonempty for all 𝑥 ∈ 𝕋 and |𝑎| ≤ ‖𝑔′‖Lip for all 𝑎 ∈ 𝜕2,∗𝑔(𝑥). If in addition 𝑔 is twice
differentiable near 𝑥 and 𝑔′′ is continuous at 𝑥 then 𝜕2,∗𝑔(𝑥) = {𝑔′′(𝑥)}. According to the sec-
ond order optimality condition proved in [55], if 𝑔 ∈ 𝐶1,1(𝕋) has a local maximum at 𝑥 then
there exists 𝑎 ∈ 𝜕2,∗𝑔(𝑥) such that 𝑎 ≤ 0. Applying this with 𝑔(𝑥) = 𝑓𝑛(𝑥, 𝑡𝑛) − 𝜓𝑛(𝑥, 𝑡𝑛) we find
that

𝜕2𝑥𝑓𝑛(𝑥𝑛, 𝑡𝑛) ≤ 𝑎𝑛 for some 𝑎𝑛 ∈ 𝜕2,∗𝑥 𝜓𝑛(𝑥𝑛, 𝑡𝑛).

Combining this with (7.6) and (7.7) yields

𝜕𝑡𝜓𝑛(𝑥𝑛, 𝑡𝑛) ≤ 𝜕𝑡𝑓𝑛(𝑥𝑛, 𝑡𝑛) = −𝜅(𝐺(𝑓𝑛)𝑓𝑛)(𝑥𝑛, 𝑡𝑛) +
1

𝑛
𝜕2𝑥𝑓𝑛(𝑥𝑛, 𝑡𝑛)

≤ −𝜅
(
𝐺(𝜓𝑛)𝜓𝑛

)
(𝑥𝑛, 𝑡𝑛) +

1

𝑛
𝑎𝑛.
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3955

Consequently,

𝜕𝑡𝜓(𝑥𝑛, 𝑡𝑛) ≤ −𝜅
(
𝐺(𝜓)𝜓

)
(𝑥𝑛, 𝑡𝑛) +

1

𝑛
𝑎𝑛.

Since

sup
𝑛∈ℕ

|𝑎𝑛| ≤ sup
𝑛∈ℕ

‖𝜕𝑥𝜓𝑛‖𝐿∞([𝑡0−𝑟,𝑡0];Lip(𝕋)) = ‖𝜕𝑥𝜓‖𝐿∞([𝑡0−𝑟,𝑡0];Lip(𝕋))

and 𝜕𝑡𝜓 ∈ 𝐶(𝕋 × (0, 𝑇)), letting 𝑛 → ∞ in the preceding inequality yields

𝜕𝑡𝜓(𝑥0, 𝑡0) ≤ −𝜅 lim
𝑛→∞

(𝐺(𝜓)𝜓)(𝑥𝑛, 𝑡𝑛),

where we used the fact that 𝐺(𝜓)𝜓 = 𝐺(𝜓)𝜓. We claim that

lim
𝑛→∞

(𝐺(𝜓)𝜓)(𝑥𝑛, 𝑡𝑛) = (𝐺(𝜓)𝜓)(𝑥0, 𝑡0). (7.8)

Taking this for granted and noticing that 𝜕𝑡𝜓(𝑥0, 𝑡0) = 𝜕𝑡𝜓(𝑥0, 𝑡0) we obtain

𝜕𝑡𝜓(𝑥0, 𝑡0) ≤ −𝜅(𝐺(𝜓)𝜓)(𝑥0, 𝑡0),

whence 𝑓 is a viscosity subsolution. Analogously, 𝑓 is also a viscosity supersolution. To prove the
claim (7.8) we write

(𝐺(𝜓)𝜓)(𝑥𝑛, 𝑡𝑛) − (𝐺(𝜓)𝜓)(𝑥0, 𝑡0)

= (𝐺(𝜓(𝑡𝑛))𝜓(𝑡𝑛))(𝑥𝑛) − (𝐺(𝜓(𝑡0))𝜓(𝑡0))(𝑥𝑛)

+ (𝐺(𝜓(𝑡0))𝜓(𝑡0))(𝑥𝑛) − (𝐺(𝜓(𝑡0))𝜓(𝑡0))(𝑥0)

= 𝑁𝑛
1 + 𝑁𝑛

2 .

For 𝜓(𝑡0) ∈ 𝐶1,1(𝕋),𝐺(𝜓(𝑡0))𝜓(𝑡0) ∈ 𝐶𝛼(𝕋) for all 𝛼 ∈ (0, 1) and thus𝑁𝑛
2 → 0. As for𝑁𝑛

1 we apply
the continuity and contraction estimates in Propositions 2.8 and 2.9 to have

|𝑁𝑛
1 | ≤ ‖𝐺(𝜓(𝑡𝑛))𝜓(𝑡𝑛) − 𝐺(𝜓(𝑡0))𝜓(𝑡0)‖𝐶(𝕋)

≤ ‖𝐺(𝜓(𝑡𝑛))𝜓(𝑡𝑛) − 𝐺(𝜓(𝑡0))𝜓(𝑡0)‖𝐻1(𝕋)

≤ ‖𝐺(𝜓(𝑡𝑛))[𝜓(𝑡𝑛) − 𝜓(𝑡0)]‖𝐻1(𝕋) + ‖𝐺(𝜓(𝑡𝑛))𝜓(𝑡0) − 𝐺(𝜓(𝑡0))𝜓(𝑡0)‖𝐻1(𝕋)

≤ (‖(𝜓(𝑡𝑛), 𝜓(𝑡0))‖𝐻2(𝕋)

)‖𝜓(𝑡𝑛) − 𝜓(𝑡0)‖𝐻2(𝕋) → 0.

since 𝜓 ∈ 𝐶((0, 𝑇); 𝐶1,1(𝕋)). This finishes the proof of (7.8).
We shall prove in the following steps that 𝑓 and 𝜃 solve (1.4)–(1.6) by passing to the limit in the

equivalent formulation (5.6) of (5.1).
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3956 DONG et al.

Step 3: Equation (1.6). For any 𝜑 ∈ 𝐶∞
𝑐 (𝕋 × [0, 𝑇)), the second equation in (5.6) together with

(3.6) gives

1

2 ∫
𝑇

0
∫
𝕋

𝜑(𝑥, 𝑡)𝜃𝑛(𝑥, 𝑡)𝑑𝑥𝑑𝑡 − 𝐼𝑛1 = −𝜅 ∫
𝑇

0
∫
𝕋

𝜑(𝑥, 𝑡)𝜕𝑥𝑓𝑛(𝑥, 𝑡)𝑑𝑥𝑑𝑡, (7.9)

where

𝐼𝑛1 = ∫
𝑇

0
∫
𝕋
∫
𝕋

𝜕𝑥𝜑(𝑥, 𝑡)
1

2𝜋
arctan

⎛⎜⎜⎝
tanh(

𝑓𝑛(𝑥,𝑡)−𝑓𝑛(𝑥
′,𝑡)

2
)

tan(
𝑥−𝑥′

2
)

⎞⎟⎟⎠𝜃𝑛(𝑥′, 𝑡)𝑑𝑥′𝑑𝑥𝑑𝑡.
The first and the last integrals in (7.9) converge to their corresponding limit in view of the weak*
convergences in (7.3). We show now that as 𝑛 → ∞,

𝐼𝑛1 → 𝐼1 = ∫
𝑇

0
∫
𝕋
∫
𝕋

𝜕𝑥𝜑(𝑥, 𝑡)
1

2𝜋
arctan

⎛⎜⎜⎝
tanh(

𝑓(𝑥,𝑡)−𝑓(𝑥′,𝑡)

2
)

tan(
𝑥−𝑥′

2
)

⎞⎟⎟⎠𝜃𝑛(𝑥′, 𝑡)𝑑𝑥′𝑑𝑥𝑑𝑡.
We split 𝐼𝑛1 − 𝐼1 = 𝐷𝑛

1 + 𝐷𝑛
2 , where

𝐷𝑛
1

=∫
𝑇

0
∫
𝕋

𝜃𝑛(𝑥
′, 𝑡)∫

𝕋∩{|𝑥|>𝛿} 𝜕𝑥𝜑(𝑥+𝑥′, 𝑡)
1

2𝜋
arctan

⎛⎜⎜⎝
tanh(

𝑓𝑛(𝑥+𝑥
′,𝑡)−𝑓𝑛(𝑥

′,𝑡)

2
)

tan(
𝑥

2
)

⎞⎟⎟⎠𝑑𝑥𝑑𝑥′𝑑𝑡
− ∫

𝑇

0
∫
𝕋

𝜃(𝑥′, 𝑡)∫
𝕋∩{|𝑥|>𝛿} 𝜕𝑥𝜑(𝑥+𝑥′, 𝑡)

1

2𝜋
arctan

⎛⎜⎜⎝
tanh(

𝑓(𝑥+𝑥′,𝑡)−𝑓(𝑥′,𝑡)

2
)

tan(
𝑥

2
)

⎞⎟⎟⎠𝑑𝑥𝑑𝑥′𝑑𝑡
and

𝐷𝑛
2

=∫
𝑇

0
∫
𝕋

𝜃𝑛(𝑥
′, 𝑡)∫

𝕋∩{|𝑥|<𝛿} 𝜕𝑥𝜑(𝑥+𝑥′, 𝑡)
1

2𝜋
arctan

⎛⎜⎜⎝
tanh(

𝑓𝑛(𝑥+𝑥
′,𝑡)−𝑓𝑛(𝑥

′,𝑡)

2
)

tan(
𝑥

2
)

⎞⎟⎟⎠𝑑𝑥𝑑𝑥′𝑑𝑡
− ∫

𝑇

0
∫
𝕋

𝜃(𝑥′, 𝑡)∫
𝕋∩{|𝑥|<𝛿} 𝜕𝑥𝜑(𝑥+𝑥′, 𝑡)

1

2𝜋
arctan

⎛⎜⎜⎝
tanh(

𝑓(𝑥+𝑥′,𝑡)−𝑓(𝑥′,𝑡)

2
)

tan(
𝑥

2
)

⎞⎟⎟⎠𝑑𝑥𝑑𝑥′𝑑𝑡.
From the uniform bound (7.2) and the obvious inequality | arctan(⋅)| ≤ 𝜋

2
, it is readily seen that

|𝐷𝑛
2 | ≤ 𝛿𝐶‖𝜕𝑥𝜑‖𝐿∞(1 + ‖𝑓0‖Lip(𝕋)) 72 .
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3957

The strong convergence (7.5) of 𝑓𝑛 combined with the weak* convergence of 𝜃𝑛 implies that for
any 𝛿 ∈ (0, 1),

lim
𝑛→∞

|𝐷𝑛
1 | = 0.

Thus by sending 𝑛 → ∞ and subsequently 𝛿 → 0, we conclude that 𝐼𝑛1 → 𝐼1. Consequently,

1

2 ∫
𝑇

0
∫
𝕋

𝜃(𝑥, 𝑡)𝜑(𝑥, 𝑡)𝑑𝑥𝑑𝑡

− 𝑝.𝑣.
1

2𝜋 ∫
𝑇

0
∫
𝕋

𝜕𝑥𝜑(𝑥, 𝑡)∫
𝕋

arctan
⎛⎜⎜⎝
tanh(

𝑓(𝑥,𝑡)−𝑓(𝑥′,𝑡)

2
)

tan(
𝑥−𝑥′

2
)

⎞⎟⎟⎠𝜃(𝑥′, 𝑡)𝑑𝑥′
= −𝜅 ∫

𝑇

0
∫
𝕋

𝜑(𝑥, 𝑡)𝜕𝑥𝑓(𝑥, 𝑡)𝑑𝑥𝑑𝑡.

For 𝑓 ∈ 𝑊1,∞(𝕋) and 𝜃 ∈ 𝐿2(𝕋), we have 𝐾∗[𝑓](𝜃) ∈ 𝐿2(𝕋) and hence integrating by parts in the
second integral yields (1.6) in 𝐿∞𝑡 𝐿2𝑥.
Step 4: Equation (1.4). We proceed analogously for the 𝑓𝑛 equation in (5.6). We multiply (5.6)

by 𝜑 ∈ 𝐶∞(𝕋 × [0, 𝑇)) and use (3.13) to integrate by parts, leading to

∫
𝑇

0
∫
𝕋

𝜕𝑡𝜑(𝑥, 𝑡)𝑓𝑛(𝑥, 𝑡)𝑑𝑥𝑑𝑡 + ∫
𝕋

𝜑(𝑥, 0)(Γ𝜀𝑛 ∗ 𝑓0)(𝑥)𝑑𝑥

= 𝐼𝑛2 − 𝜀𝑛 ∫
𝑇

0
∫
𝕋

𝜕𝑥𝜑(𝑥, 𝑡)𝜕𝑥𝑓𝑛(𝑥, 𝑡)𝑑𝑥𝑑𝑡,

(7.10)

where

𝐼𝑛2

=
1

4𝜋 ∫
𝑇

0
∫
𝕋

𝜕𝑥𝜑(𝑥, 𝑡)∫
𝕋

ln
(
cosh(𝑓𝑛(𝑥, 𝑡)−𝑓𝑛(𝑥

′, 𝑡))−cos(𝑥−𝑥′)
)
𝜃𝑛(𝑥

′, 𝑡)𝑑𝑥′𝑑𝑥𝑑𝑡.

By (7.3), the first integral in (7.10) converges to the same integral with 𝑓 in place of 𝑓𝑛. Since Γ𝜀𝑛 ∗

𝑓0 → 𝑓0 in 𝐶(𝕋), the second integral in (7.10) converges to ∫
𝕋
𝜑(𝑥, 0)𝑓0(𝑥)𝑑𝑥. The last integral

tends to zero owing to the uniform Lipschitz bound (7.1). Thus it remains to analyze the nonlinear
term 𝐼𝑛2 . Using identity (5.19), Fubini theoremand the change of variable in𝑥 ↦ 𝑥 + 𝑥′, we rewrite
𝐼𝑛2 as

𝐼𝑛2 =
1

4𝜋 ∫
𝑇

0
∫
𝕋

𝜃𝑛(𝑥
′, 𝑡)∫

𝕋

𝜕𝑥𝜑(𝑥+𝑥′, 𝑡) ln

(
2 sinh

2
(
𝑓𝑛(𝑥+𝑥′, 𝑡)−𝑓𝑛(𝑥

′, 𝑡)

2

)
+2sin

2
(𝑥
2

))
𝑑𝑥𝑑𝑥′𝑑𝑡.
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3958 DONG et al.

Then we split 𝐼𝑛2 = 𝐽𝑛1 + 𝐽𝑛2 , where

𝐽𝑛1 =
1

4𝜋 ∫
𝑇

0
∫
𝕋

𝜃𝑛(𝑥
′, 𝑡)∫

𝕋

𝜕𝑥𝜑(𝑥+𝑥′, 𝑡) ln

⎛⎜⎜⎜⎝1 +
sinh

2
(
𝑓𝑛(𝑥+𝑥

′,𝑡)−𝑓𝑛(𝑥
′,𝑡)

2

)
sin

2
(
𝑥

2
)

⎞⎟⎟⎟⎠𝑑𝑥𝑑𝑥
′𝑑𝑡

and

𝐽𝑛2 =
1

4𝜋 ∫
𝑇

0
∫
𝕋

𝜃𝑛(𝑥
′, 𝑡)∫

𝕋

𝜕𝑥𝜑(𝑥+𝑥′, 𝑡) ln
(
2 sin

2
(𝑥
2

))
𝑑𝑥𝑑𝑥′𝑑𝑡

= −
1

4𝜋 ∫
𝑇

0
∫
𝕋

𝜃𝑛(𝑥
′, 𝑡)∫

𝕋

𝜑(𝑥+𝑥′, 𝑡) cot
(𝑥
2

)
𝑑𝑥𝑑𝑥′𝑑𝑡

=
1

2 ∫
𝑇

0
∫
𝕋

𝜃𝑛(𝑥
′, 𝑡)𝐻(𝜑)(𝑥′, 𝑡)𝑑𝑥′𝑑𝑡.

Here 𝐻 denotes the Hilbert transform on 𝕋. The weak* convergence of 𝜃𝑛 in (7.3) implies the
convergence for 𝐽𝑛2 . The estimate

|||||||
sinh

(
𝑓𝑛(𝑥+𝑥

′,𝑡)−𝑓𝑛(𝑥
′,𝑡)

2

)
sin(

𝑥

2
)

||||||| ≤
𝜋

2
‖𝑓′

0‖𝐿∞ cosh(‖𝑓0‖𝐿∞)
allows to bound the ln function in 𝐽𝑛1 . Then the convergence for 𝐽

𝑛
1 follows along the same lines

as for 𝐼𝑛1 . Therefore, taking 𝑛 → ∞ in (7.10) yields

∫
𝑇

0
∫
𝕋

𝜕𝑡𝜑(𝑥, 𝑡)𝑓(𝑥, 𝑡)𝑑𝑥𝑑𝑡 + ∫
𝕋

𝜑(𝑥, 0)𝑓0(𝑥)𝑑𝑥

=
1

4𝜋 ∫
𝑇

0
∫
𝕋

𝜕𝑥𝜑(𝑥, 𝑡)∫
𝕋

ln
(
cosh(𝑓(𝑥, 𝑡)−𝑓(𝑥′, 𝑡))−cos(𝑥−𝑥′)

)
𝜃(𝑥′, 𝑡)𝑑𝑥′𝑑𝑥𝑑𝑡.

Finally, the regularity of 𝑓 and 𝜃 together with integration by parts provide the evolution Equation
(1.4) for 𝑓 in the 𝐿∞𝑡 𝐿2𝑥 sense. The proof of Theorem 1.2 is complete.
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APPENDIX A: TRACES FOR HOMOGENEOUS SOBOLEV SPACES
Let 𝑓 ∈ Lip(𝕋𝑑) and recall the notation Ω𝑓 = {(𝑥, 𝑦) ∈ 𝕋𝑑 × ℝ ∶ 𝑦 < 𝑓(𝑥)}. Let 𝐻̇1(Ω𝑓) denote
the homogeneous Sobolev space defined by (2.9). We prove the trace and lifting theorems for
functions in 𝐻̇1(Ω𝑓).

Theorem A.1. There exists a unique bounded linear trace operator Tr ∶ 𝐻̇1(Ω𝑓) → 𝐻̇
1

2 (𝕋𝑑) such
that the following hold.

(1) Tr(𝑢)(𝑥) = 𝑢(𝑥, 𝑓(𝑥)) for all 𝑢 ∈ 𝐻̇1(Ω𝑓) ∩ 𝐶(Ω𝑓).
(2) For some constant 𝐶 = 𝐶(𝑑),

‖Tr(𝑢)‖
𝐻̇

1
2 (𝕋𝑑)

≤ 𝐶(1 + ‖𝑓‖Lip(𝕋𝑑))‖𝑢‖𝐻̇1(Ω𝑓)
. (A.1)
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Proof. By the density of𝐶∞
𝑐 (Ω𝑓) in 𝐻̇1(Ω𝑓), it suffices to prove the estimate (A.1) for 𝑢 ∈ 𝐶∞

𝑐 (Ω𝑓).
Step 1: 𝑓 = 0, that is, Ω𝑓 = Ω0 = 𝕋𝑑 × ℝ−. We extend 𝑢 to 𝕋𝑑 × ℝ by even reflection. That is,

𝑢(𝑥, 𝑦) = 𝑢(𝑥, −𝑦) for 𝑦 > 0. Clearly, ‖𝑢‖𝐻̇1(𝕋𝑑×ℝ) ≤ 2‖𝑢‖𝐻̇1(𝕋𝑑×ℝ−)
. We have Tr(𝑢)(𝑥) = 𝑢(𝑥, 0)

and

T̂r(𝑢)(𝑘) =
1

2𝜋 ∫
ℝ

𝑢(𝑘, 𝜉)𝑑𝜉, 𝑢(𝑘, 𝜉) = ∫
𝕋𝑑×ℝ

𝑢(𝑥, 𝑦)𝑒−𝑖𝑥𝑘−𝑖𝑦𝜉𝑑𝑦𝑑𝑥.

By the Cauchy-Schwartz inequality, for 𝑘 ∈ ℤ𝑑 ⧵ {0},

|||||∫ℝ 𝑢(𝑘, 𝜉)𝑑𝜉
|||||
2

≤ ∫
ℝ

(𝑘2 + 𝜉2)|𝑢(𝑘, 𝜉)|2𝑑𝜉 ∫
ℝ

1

𝑘2 + 𝜉2
𝑑𝜉

≤ 𝜋|𝑘| ∫ℝ(𝑘2 + 𝜉2)|𝑢(𝑘, 𝜉)|2𝑑𝜉,
so ‖Tr(𝑢)‖2

𝐻̇
1
2 (𝕋𝑑)

=
∑

𝑘∈ℤ𝑑⧵{0}

|𝑘||T̂r(𝑢)(𝑘)|2 ≤ 1

4𝜋

∑
𝑘∈ℤ𝑑

∫
ℝ

(𝑘2 + 𝜉2)|𝑢(𝑘, 𝜉)|2𝑑𝜉
= 𝐶(𝑑)‖∇𝑥,𝑦𝑢‖2𝐿2(𝕋𝑑×ℝ)

≤ 2𝐶(𝑑)‖𝑢‖2
𝐻̇1(𝕋𝑑×ℝ−)

.

Step 2: 𝑓 ∈ Lip(𝕋𝑑). Setting 𝑣(𝑥, 𝑧) = 𝑢(𝑥, 𝑧 + 𝑓(𝑥)) for (𝑥, 𝑧) ∈ 𝕋𝑑 × ℝ−, we have Tr(𝑢)(𝑥) =

𝑣(𝑥, 0) and 𝑣 ∈ 𝐻̇1(𝕋𝑑 × ℝ−) with

‖𝑣‖𝐻̇1(𝕋𝑑×ℝ−)
≤ (1 + ‖𝑓‖Lip(𝕋𝑑))‖𝑢‖𝐻̇1(Ω𝑓)

.

Using Step 1 we deduce that

‖Tr(𝑢)‖
𝐻̇

1
2 (𝕋𝑑)

= ‖𝑣(⋅, 0)‖
𝐻̇

1
2 (𝕋𝑑)

≤ 𝐶(𝑑)‖𝑣‖𝐻1(𝕋𝑑×ℝ−)
≤ 𝐶(𝑑)(1 + ‖𝑓‖Lip(𝕋𝑑))‖𝑢‖𝐻̇1(Ω𝑓)

,

thereby finishing the proof. □

Theorem A.2. For every 𝑔 ∈ 𝐻̇
1

2 (𝕋𝑑), there exists 𝑢 ∈ 𝐻̇1(Ω𝑓) such that Tr(𝑢) = 𝑔 and for some
universal constant 𝐶 = 𝐶(𝑑),

‖𝑢‖𝐻̇1(Ω𝑓)
≤ 𝐶(1 + ‖𝑓‖Lip(𝕋𝑑))‖𝑔‖

𝐻̇
1
2 (𝕋𝑑)

. (A.2)

Moreover, we can choose 𝑢(𝑥, 𝑦) = 𝑢♯(𝑥, 𝑦 − 𝑓(𝑥)), where 𝑢♯(𝑥, 𝑌) = 𝑒𝑌|𝐷𝑥|𝑔(𝑥) for (𝑥, 𝑌) ∈ 𝕋𝑑 ×

ℝ−.

Proof. Clearly, with the given function 𝑢 we have 𝑢(𝑥, 𝑓(𝑥)) = 𝑢♯(𝑥, 0) = 𝑔(𝑥). Since

𝜕𝑥𝑗𝑢♯(𝑥, 𝑌) = 𝑒𝑌|𝐷𝑥|𝜕𝑥𝑗𝑔(𝑥) and 𝜕𝑌𝑢♯(𝑥, 𝑌) = 𝑒𝑌|𝐷𝑥||𝐷𝑥|𝑔(𝑥),
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3963

using the Plancherel Theorem for the 𝑥 variable one can easily prove that

𝑑∑
𝑗=1

‖𝜕𝑥𝑗𝑢♯‖2𝐿2(𝕋𝑑×ℝ−)
= 𝐶1(𝑑)‖𝑔‖2

𝐻̇
1
2 (𝕋𝑑)

, ‖𝜕𝑌𝑢♯‖𝐿2(𝕋𝑑×ℝ−)
= 𝐶2(𝑑)‖𝑔‖

𝐻̇
1
2 (𝕋𝑑)

.

Consequently,

‖𝑢‖𝐻̇1(Ω𝑓)
≤ 2(1 + ‖𝑓‖Lip(𝕋𝑑))‖𝑢♯‖𝐻̇1(𝕋𝑑×ℝ−)

≤ 𝐶(𝑑)(1 + ‖𝑓‖Lip(𝕋𝑑))‖𝑔‖
𝐻̇

1
2 (𝕋𝑑)

,

which finishes the proof. □

APPENDIX B: THE DIRICHLET-NEUMANN OPERATOR FOR THE DISK

Proposition B.1. Let 𝑔 ∈ 𝐶(𝕋) be 𝐶1,𝛼 at 𝑥 ∈ 𝕋. Let 𝑢 ∈ 𝐶(𝐵1) be the unique solution of the
Dirichlet problem

Δ𝑢 = 0 in 𝐵1(0), 𝑢|𝜕𝐵1(0) = 𝑔,

where 𝑒𝑖𝑥 ≡ (cos 𝑥, sin 𝑥). Then the normal derivative

𝜕𝑛𝑢(𝑒
𝑖𝑥) ∶= lim

𝑟→1−
𝑒𝑖𝑥 ⋅ ∇𝑢(𝑟𝑒𝑖𝑥)

is well-defined and

𝜕𝑛𝑢(𝑒
𝑖𝑥) = −

1

8𝜋 ∫
𝜋

−𝜋

𝑔(𝑥 + 𝑥′) + 𝑔(𝑥 − 𝑥′) − 2𝑔(𝑥)

sin
2
(
𝑥′

2
)

𝑑𝑥′. (B.1)

Proof. Since 𝑔 is 𝐶1,𝛼 at 𝑥, there exist𝑀 > 0 and 𝛾 > 0 such that

|𝑔(𝑥 + 𝑥′) − 𝑔(𝑥) − 𝑔′(𝑥)𝑥′| ≤ 𝑀|𝑥′|1+𝛼 ∀|𝑥′| < 𝛾. (B.2)

Since 𝑔 ∈ 𝐶(𝕋), 𝑢 is given by the Poisson formula

𝑢(𝑧) = ∫
𝜕𝐵1(0)

𝐾(𝑧, 𝑧′)𝑔(𝑧′)𝑑𝑆(𝑧′), 𝐾(𝑧, 𝑧′) =
1 − |𝑧|2

2𝜋

1|𝑧 − 𝑧′|2
for 𝑧 ∈ 𝐵1(0). Consequently,

𝑧 ⋅ ∇𝑢(𝑧) = ∫
𝜕𝐵1(0)

𝑧 ⋅ ∇𝑧𝐾(𝑧, 𝑧
′)𝑔(𝑧′)𝑑𝑆(𝑧′), (B.3)

where

𝑧 ⋅ ∇𝑧𝐾(𝑧, 𝑧
′) = −

|𝑧|2
𝜋|𝑧 − 𝑧′|2 − (1 − |𝑧|2)𝑧 ⋅ (𝑧 − 𝑧′)

𝜋|𝑧 − 𝑧′|4 . (B.4)
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3964 DONG et al.

When 𝑔 ≡ 1 we have 𝑢 ≡ 1 and thus (B.3) yields

∫
𝜕𝐵1(0)

𝑧 ⋅ ∇𝑧𝐾(𝑧, 𝑧
′)𝑑𝑆(𝑧′) = 0, 𝑧 ∈ 𝐵1(0). (B.5)

Denoting 𝑧∗ = 𝑒𝑖𝑥 and using (B.5), we write

𝑧 ⋅ ∇𝑢(𝑧) = ∫
𝜕𝐵1(0)

𝑧 ⋅ ∇𝑧𝐾(𝑧, 𝑧
′)[𝑔(𝑧′) − 𝑔(𝑧∗)]𝑑𝑆(𝑧

′)

=
|𝑧|2
𝜋 ∫

𝜕𝐵1(0)

1|𝑧 − 𝑧′|2 [𝑔(𝑧∗) − 𝑔(𝑧′)]𝑑𝑆(𝑧′)

+
1 − |𝑧|2

𝜋 ∫
𝜕𝐵1(0)

𝑧 ⋅ (𝑧 − 𝑧′)|𝑧 − 𝑧′|4 [𝑔(𝑧∗) − 𝑔(𝑧′)]𝑑𝑆(𝑧′)

= 𝐽1 + 𝐽2, 𝑧 ∈ 𝐵1(0).

(B.6)

Step 1. In this step we shall prove that
lim
𝑟→1−

𝐽2 = 0. (B.7)

Indeed, we first use the equality 𝑟2 + 1 − 2𝑟 cos 𝑥 = (𝑟 − cos 𝑥)2 + sin
2
𝑥 to have

𝐽2 =
1 − 𝑟2

𝜋 ∫
𝜋

−𝜋

𝑟2 − 𝑟 cos(𝑥 − 𝑥′)

(𝑟2 + 1 − 2𝑟 cos(𝑥 − 𝑥′))2
[𝑔(𝑥) − 𝑔(𝑥′)]𝑑𝑥′

=
(1 − 𝑟2)𝑟

2𝜋 ∫
𝜋

−𝜋

𝑟 − 1 + 2 sin
2 𝑥′

2

[(𝑟 − cos 𝑥′)2 + sin
2
𝑥′]2

[2𝑔(𝑥) − 𝑔(𝑥 + 𝑥′) − 𝑔(𝑥 − 𝑥′)]𝑑𝑥′.

In the integral defining 𝐽2, it suffices to consider 𝑥′ near 0 because away from 0 the integrand is
uniformly bounded as 𝑟 → 1. For sufficiently small𝑎 ∈ (0, 𝛾), let 𝐽02 be the contribution of |𝑥′| < 𝑎.
In view of (B.2), we have

|𝐽02| ≤ (1 − 𝑟2)𝑟

2𝜋 ∫
𝑎

−𝑎

(1 − 𝑟)𝑀|𝑥′|1+𝛼
[(𝑟 − cos 𝑥′)2 + sin

2
𝑥′]2

𝑑𝑥′

+
(1 − 𝑟2)𝑟

2𝜋 ∫
𝑎

−𝑎

2(sin
2 𝑥′

2
)𝑀|𝑥′|1+𝛼

[(𝑟 − cos 𝑥′)2 + sin
2
𝑥′]2

𝑑𝑥′ ∶= I + II.

Using the inequalities

| sin 𝑥′| ≤ |𝑥′| ∀𝑥′ and | sin 𝑥′| ≥ 𝑐|𝑥′| ∀𝑥′ ∈ (−𝑎, 𝑎)

we estimate

|II| ≤ (1 − 𝑟2)𝑟

2𝜋 ∫
𝑎

−𝑎

2(sin
2 𝑥′

2
)𝑀|𝑥′|1+𝛼

sin
4
𝑥′

𝑑𝑥′

≤ (1 − 𝑟2)𝑟𝑀

4𝜋𝑐4 ∫
𝑎

−𝑎

1|𝑥′|1−𝛼 𝑑𝑥′ ≤ (1 − 𝑟2)𝑟𝑀𝑎𝛼

2𝜋𝛼𝑐4
.
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3965

Hence, II → 0 as 𝑟 → 1−. On the other hand,

|I| ≤ (1 − 𝑟2)𝑟

2𝜋 ∫
𝑎

−𝑎

(1 − 𝑟)𝑀|𝑥′|1+𝛼
[(𝑟 − cos 𝑥′)2 + sin

2
𝑥′] sin

2
𝑥′

𝑑𝑥′

≤ (1 − 𝑟2)𝑟

2𝜋

𝑀

𝑐2 ∫
𝑎

−𝑎

1 − 𝑟

[(𝑟 − cos 𝑥′)2 + sin
2
𝑥′]|𝑥′|1−𝛼 𝑑𝑥′.

(B.8)

Writing (𝑟 − cos 𝑥′)2 + sin
2
𝑥′ = (1 − 𝑟)2 + 4𝑟 sin

2 𝑥′

2
, we deduce that

|I| ≤ (1 − 𝑟2)𝑟

2𝜋

𝑀

𝑐2 ∫
𝑎

−𝑎

1 − 𝑟

[(1 − 𝑟)2 + 𝑟𝑐2|𝑥′|2]|𝑥′|1−𝛼 𝑑𝑥′ ≤ 𝐶(1 − 𝑟)𝛼
𝑀(1 + 𝑟)𝑟

2𝑐2(
√
𝑟𝑐)𝛼

.

This concludes the proof of (B.7).
Step 2. Combining (B.6) and (B.7) yields

𝜕𝑛𝑢(𝑒
𝑖𝑥) = lim

𝑟→1−
𝑧 ⋅ ∇𝑢(𝑧) = lim

𝑟→1−
𝐽1(𝑧)

= lim
𝑟→1−

1

𝜋 ∫
𝜕𝐵1(0)

1|𝑧 − 𝑧′|2 [𝑔(𝑧) − 𝑔(𝑧′)]𝑑𝑆(𝑧′)

= lim
𝑟→1−

1

2𝜋 ∫
𝜋

−𝜋

2𝑔(𝑥) − 𝑔(𝑥 + 𝑥′) − 𝑔(𝑥 − 𝑥′)

(𝑟 − cos 𝑥′)2 + sin
2
𝑥′

𝑑𝑥′.

In order to obtain (B.1) we compute

𝐿 ∶ = ∫
𝜋

−𝜋

2𝑔(𝑥) − 𝑔(𝑥 + 𝑥′) − 𝑔(𝑥 − 𝑥′)

(𝑟 − cos 𝑥′)2 + sin
2
𝑥′

𝑑𝑥′ −
1

4 ∫
2𝜋

0

2𝑔(𝑥) − 𝑔(𝑥 + 𝑥′) − 𝑔(𝑥 − 𝑥′)

sin
2 𝑥′

2

𝑑𝑥′

=
1 − 𝑟

4 ∫
𝜋

−𝜋

2𝑔(𝑥) − 𝑔(𝑥 + 𝑥′) − 𝑔(𝑥 − 𝑥′)

[(𝑟 − cos 𝑥′)2 + sin
2
𝑥′] sin

2 𝑥′

2

(1 + 𝑟 − 2 cos 𝑥′)𝑑𝑥′.

As before it suffices to consider |𝑥′| < 𝑎 for small 𝑎. Writing

1 + 𝑟 − 2 cos 𝑥′ = (𝑟 − 1) + 4 sin
2
(
𝑥′

2
),

we split

𝐿 = (1 − 𝑟)∫
𝑎

−𝑎

2𝑔(𝑥) − 𝑔(𝑥 + 𝑥′) − 𝑔(𝑥 − 𝑥′)

(𝑟 − cos 𝑥′)2 + sin
2
𝑥′

𝑑𝑥′

+
1 − 𝑟

4 ∫
𝑎

−𝑎

2𝑔(𝑥) − 𝑔(𝑥 + 𝑥′) − 𝑔(𝑥 − 𝑥′)

[(𝑟 − cos 𝑥′)2 + sin
2
𝑥′] sin

2 𝑥′

2

(𝑟 − 1)𝑑𝑥′ ∶= 𝐿1 + 𝐿2.
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3966 DONG et al.

Clearly,

|𝐿1| ≤ (1 − 𝑟)𝑀 ∫
𝑎

−𝑎

|𝑥′|1+𝛼
sin

2
𝑥′

𝑑𝑥′ ≤ (1 − 𝑟)
2𝑀𝑎𝛼

𝑐2𝛼
.

On the other hand, 𝐿2 can be treated as in (B.8). The proof is complete. □

APPENDIX C: CONSTRUCTION OF 𝝍𝒓

Let 𝑓 ∈ 𝑊1,∞(𝕋 × (0, 𝑇)) be𝐶1,1 at𝑋0 = (𝑥0, 𝑡0) ∈ 𝕋 × (0, 𝑇). Recall the definitions (6.3) and (6.4)
of the parabolas 𝜓 and 𝜓 tangent to the graph {𝑦 = 𝑓(𝑥, 𝑡)} from above at (𝑥0, 𝑓(𝑥0, 𝑡0)). We con-
struct a family of functions 𝜓𝑟 ∈ 𝐶∞(𝕋 × ℝ), 𝑟 ∈ (0, 𝑟0) satisfying the properties in (6.5). Assume
without loss of generality that 𝑓(𝑋0) = 0 so that

𝜓(𝑋) = ∇𝑋𝑓(𝑋0)(𝑋 − 𝑋0) +
𝐶

2
|𝑋 − 𝑋0|2,

𝜓(𝑋) = ∇𝑋𝑓(𝑋0)(𝑋 − 𝑋0) + 𝐶|𝑋 − 𝑋0|2,
and 𝑓(𝑋) ≤ 𝜓(𝑋) for |𝑋 − 𝑋0| < 𝑟0 <

1

10
min{𝜋, 𝑡0, 𝑇 − 𝑡0}. We extend 𝑓 to 0 outside (0, 𝑇) and set

𝑀 = ‖𝑓‖Lip(𝕋×(0,𝑇)).
Let Γ𝑟 be an approximation of the identity in ℝ2 as 𝑟 → 0 and denote ℎ(𝑟) = ℎ ∗ Γ𝑟 for any

ℎ ∶ ℝ2 → ℝ. For any 𝑈 ⊂ ℝ2,

‖ℎ(𝑟) − ℎ‖𝐿∞(𝑈) ≤ 𝑟‖ℎ‖Lip(𝑈+𝐵𝑟(0)).

For 𝑟 ∈ (0, 𝑟0), let 𝑔𝑟 = 𝑓(𝑟2) + (𝑀 + 2)𝑟2, so that 𝑔𝑟 − 𝑓 ≥ 2𝑟2. By increasing 𝐶 if necessary, we
can assume 𝐶 > 4(𝑀 + 2). Then for |𝑋 − 𝑋0| ∈ [𝑟, 𝑟0), we have

𝜓(𝑥) − 𝑔𝑟(𝑥) ≥ ∇𝑋𝑓(𝑋0)(𝑋 − 𝑋0) + 𝐶|𝑋 − 𝑋0|2 − [
𝑓(𝑋) +𝑀𝑟2 + (𝑀 + 2)𝑟2

]
≥ 𝜓(𝑋) − 𝑓(𝑋) +

𝐶

2
𝑟2 − 2(𝑀 + 1)𝑟2 ≥ 2𝑟2.

(C.1)

Let 𝐹(𝑎, 𝑏) = min{𝑎, 𝑏}. Note that ‖𝐹‖Lip(ℝ2) = 1 and 𝐹(𝛿)(𝑎, 𝑏) = 𝑎 if 𝑎 < 𝑏 − 𝛿. In addition,
𝐹(𝛿)(𝑎, 𝑏) ≤ 𝑎(𝛿) = 𝑎 and likewise 𝐹(𝛿)(𝑎, 𝑏) ≤ 𝑏.
Define 𝜓𝑟 = 𝐹(𝑟2)(𝑔𝑟, 𝜓) in 𝐵𝑟(𝑋0) and 𝜓𝑟 = 𝑔𝑟 in ℝ2 ⧵ 𝐵𝑟(𝑋0). In fact, (C.1) shows that 𝜓(𝑋) −

𝑔𝑟(𝑋) ≥ 𝑟2 in an open neighborhood of 𝜕𝐵𝑟(𝑋0), so that 𝜓𝑟 = 𝑔𝑟 in the same neighborhood. It
follows that𝜓𝑟 is a smooth function onℝ2. We have 𝜓𝑟 ≤ 𝜓 in 𝐵𝑟(𝑋0) and in view of (C.1), 𝜓𝑟(𝑋) ≤
𝜓(𝑋) for |𝑋 − 𝑋0| ∈ [𝑟, 𝑟0). Consequently, 𝜓𝑟 ≤ 𝜓 in 𝐵𝑟0(𝑋0). In 𝐵𝑟(𝑋0), when 𝜓𝑟(𝑋) < 𝜓(𝑋), we
must have 𝜓(𝑋) ≥ 𝑔𝑟(𝑋) − 𝑟2, whence

𝜓𝑟(𝑋) ≥ min{𝑔𝑟(𝑋), 𝜓(𝑋)} − 𝑟2 ≥ 𝑔𝑟(𝑋) − 2𝑟2 ≥ 𝑓(𝑋).

Therefore, 𝜓𝑟 ≥ 𝑓 in 𝐵𝑟(𝑋0).
Let 𝛿 ∈ (0, 𝑟20) be arbitrarily small. Clearly,

lim
𝑟→0

𝑓(𝑟2) = 𝑓 in 𝐶(𝕋 × [𝛿, 𝑇 − 𝛿]), sup
𝑟2∈(0,𝛿)

‖𝑓(𝑟2)‖Lip(𝕋×[𝛿,𝑇−𝛿]) ≤ 𝑀.
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GLOBALWELL-POSEDNESS FOR THE ONE-PHASE MUSKAT PROBLEM 3967

This together with the definition of 𝜓𝑟 yields

lim
𝑟→0

𝜓𝑟 = 𝑓 in 𝐶(𝐼 × [𝛿, 𝑇 − 𝛿]), sup
𝑟2∈(0,𝛿)

‖𝜓𝑟‖Lip(𝐼×[𝛿,𝑇−𝛿]) < ∞,

where 𝐼 = [𝑥0 − 𝜋, 𝑥0 + 𝜋] and 𝑋0 = (𝑥0, 𝑡0).
We have proved that 𝜓𝑟 satisfies all the properties in (6.5) but with 𝕋 replaced by 𝐼. To finish

the proof, we note that 𝑥0 is the midpoint of 𝐼 and 𝜓𝑟 = 𝑔𝑟 for |𝑋 − 𝑋0| > 𝑟. Therefore, since
𝑔𝑟 ∈ 𝐶∞(𝕋 × ℝ) and 𝐼 has length 2𝜋, we can periodize 𝜓𝑟 as

𝜓𝑟(𝑥 + 𝑘2𝜋, 𝑡) = 𝜓𝑟(𝑥, 𝑡) ∀(𝑥, 𝑡) ∈ 𝐼 × ℝ, ∀𝑘 ∈ ℤ

and obtain 𝜓𝑟 ∈ 𝐶∞(𝕋 × ℝ).
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