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A B S T R A C T   

Listeners attend to variation in segmental and prosodic cues when judging accent strength. The relative con
tributions of these cues to perceptions of accentedness in English remains open for investigation, although 
objective accent distance measures (such as Levenshtein distance) appear to be reliable tools for predicting 
perceptual distance. Levenshtein distance, however, only accounts for phonemic information in the signal. The 
purpose of the current study was to examine the relative contributions of phonemic (Levenshtein) and holistic 
acoustic (dynamic time warping) distances from the local accent to listeners’ accent rankings for nine non-local 
native and nonnative accents. Listeners (n = 52) ranked talkers on perceived distance from the local accent 
(Midland American English) using a ladder task for three sentence-length stimuli. Phonemic and holistic acoustic 
distances between Midland American English and the other accents were quantified using both weighted and 
unweighted Levenshtein distance measures, and dynamic time warping (DTW). Results reveal that all three 
metrics contribute to perceived accent distance, with the weighted Levenshtein slightly outperforming the other 
measures. Moreover, the relative contribution of phonemic and holistic acoustic cues was driven by the speaker’s 
accent. Both nonnative and non-local native accents were included in this study, and the benefits of considering 
both of these accent groups in studying phonemic and acoustic cues used by listeners is discussed.   

1. Introduction 

Speech signals provide indexical information about a speaker’s 
gender, race, age, region of origin, and native language status, among 
others (Abercrombie, 1967; Bent and Holt, 2017). One indexical 
dimension to which listeners are highly sensitive is a speaker’s status as 
a native or nonnative speaker of a language (Flege, 1984; Park, 2013). 
Listeners can recognize speakers as native or nonnative with samples as 
short as 30 ms (Flege, 1984), in monosyllables (Park, 2013), in lan
guages to which listeners have no prior exposure (Major, 2007), and for 
stimuli that have been substantially altered (e.g., played backwards; 
Munro et al., 2010). Listeners are also highly sensitive to the strength of 
accents (e.g., Flege et al., 1995). Factors such as speaking rate (Bent 
et al., 2016) and type and number of segmental deviations from the 
listener’s local accent (e.g., substitutions, adding and omitting 

phonemes; Gooskens and Heeringa, 2004) affect judgments of accent 
strength. Correlations between objective accent distance measures and 
perceptual judgments give insight into how these various cues influence 
perceived “accentedness” (Wieling et al., 2014a). However, studies that 
have attempted to reconcile objective distance measures with subjective 
listener perceptions have yielded inconsistent results (e.g., Ander
son-Hsieh et al., 1992; Sereno et al., 2016, Gooskens and Heeringa, 
2004), particularly across both non-local native (i.e., other dialects 
within the same language but distinct from the listener’s own dialect) 
and nonnative accents (e.g., Bent et al., 2016, 2021). The present study 
assessed the relation between perceptual judgments of accent distance 
and both acoustic and phonemic measures of accent distance across 
native and nonnative accents. 
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1.1. Perceptual accent judgments 

Perception of accentedness has been quantified in numerous ways, 
including rating scales, ladder tasks, and free classification. Likert scales 
– a type of rating scale – quantify listeners’ judgments on a numeric scale 
with researcher-established qualitative labels (Munro and Derwing, 
1995). Accent strength (Anderson-Hsieh et al., 1992; Riney et al., 2005), 
similarity to a listener’s own accent (Gooskens and Heeringa, 2004), and 
native-likeness (Bartelds et al., 2020; Wieling et al., 2014b) have all 
been measured using Likert scales. Another less common rating scale 
that has been used in accent perception studies is a magnitude estima
tion scale (Brennan et al., 1975; Southwood and Flege, 1999), in which 
listeners are asked to rate accents compared to reference stimuli on 
perceived differences of magnitude. Southwood and Flege (1999) found 
that magnitude estimation – and not linear measurement – leaves ample 
room for response bias, as listeners seem to consistently compare the 
stimuli to the one previously heard (instead of to the reference stimulus 
they are provided). 

The ladder task, introduced by Bradlow et al. (2010), is a more 
recently developed tool in which listeners organize speakers on a ladder 
structure, from closest to a dialect/language (usually the listener’s 
native dialect/language) at the base, to farthest at the top rung. An 
advantage of this task is that the experimenter may establish a baseline 
(e.g., proximity to the local accent) without a label for the upper 
extreme. This feature is particularly useful for tasks in which both native 
and nonnative talkers are included, such that there is not an intuitive 
“end” to the scale (i.e., there is no objective farthest distance). An 
additional advantage is that the listener is provided with access to all 
stimuli throughout the task and can listen to each item multiple times 
with no restrictions on the order in which they are heard, which is 
helpful when drawing comparisons among numerous stimuli. Similar 
advantages are seen with the free classification task, in which partici
pants group talkers in a two-dimensional matrix based on perceptual 
similarities (Clopper, 2008). However, the free classification task does 
not provide any sort of examiner-set baseline or predetermined number 
of groups. 

Bent et al. (2016) compared the utility of the ladder task (in which 
listeners were asked to rank accents based on perceptual distance from 
Standard American English) to a free classification task (in which lis
teners were asked to group speakers by perceived region of origin). The 
ladder task was scored based on the average distance accents were 
placed from the baseline; in other words, how many “ladder rungs” away 
from Standard American English the accent was placed. Scoring of the 
free classification task used additive clustering analysis of a similarity 
matrix, in which each matrix cell represented the number of times 
specific pairs of accents were grouped together. The authors found 
complementary results between the tasks, in that listeners’ sensitivity to 
nonnative accents was observed in both tasks, and listeners perceptually 
distinguished between non-local native and nonnative accents. 

Both the ladder and free classification tasks allow researchers to 
identify how listeners organize stimuli, potentially revealing specific 
characteristics of the speech to which listeners are attending. While 
perceived distance could be extracted from a free classification task, this 
information is more implicit in participant responses, whereas indi
cating distance is explicitly required in completion of a ladder task. The 
current study utilized the ladder task, as the research question aimed to 
compare perceived distance with established objective distance 
measures. 

1.2. Objective distance measures 

Objective distance measures provide estimates of distance from a 
reference accent. The resulting measurements can then be compared to 
subjective accent distance judgments, with the goal of identifying the 
segmental or acoustic aspects of accented speech that contribute to 
perceptual judgments. Many researchers have begun using these 

objective distance measures in recent years (e.g., Gooskens and Heer
inga, 2004; Wieling et al., 2014a, 2014b; Bartelds et al., 2020), but the 
nature of the relationship between objective and perceptual measures is 
complex and ripe for exploration. 

1.2.1. Segmental measures 
The Levenshtein Distance algorithm (Levenshtein, 1966) measures 

the distance between two sequences (such as phonemes). Its application 
to dialect distances began with Kessler’s (1995) measurements of dis
tance among Irish dialects. This measure finds an optimal phonemic 
alignment between target and reference stimuli and assigns an equal 
penalty to any phonemic deviation (i.e., substitution, omission, insertion 
of a phoneme) from the reference speaker (Kessler, 1995). In other 
words, the production of a word by one speaker is compared against the 
phonemic realization of that word by a comparison speaker. For each 
phoneme that differs, one point is assigned; points are summed across 
the word, with greater summed values reflecting a greater distance be
tween the two productions of the stimulus. Therefore, the larger the 
Levenshtein distance, the more the target utterance deviates phonemi
cally from the same utterance as produced by the reference speaker. The 
original Levenshtein algorithm operated on a binary system in which 
any change, regardless of the type, resulted in a single point penalty. 
Slight adaptations were made to this original algorithm by Gooskens and 
Heeringa (2004) by dividing the summed score by the total possible 
number of phonemes, to account for word length. 

The original Levenshtein algorithm has also been adapted to better 
reflect how certain phonemic changes impact listeners’ perceptions 
(Bent et al., 2021; Levy et al., 2019). These adaptations are based on 
theoretical assumptions from the literature that some phonemic changes 
impact listener perception more than others. Vieru et al. (2011) revealed 
that certain phonemic changes differentially predict accent identifica
tion by French listeners (e.g., French listeners use the phonemic change 
of /b/ → /v/ as a cue to identify a native Spanish speaker of French). 
Furthermore, the relative importance of these phonemic substitutions 
for accent identification was impacted by the speaker’s native language. 
Flege (1984) found no evidence that a nonnative accent is more 
detectable in vowels versus consonants, but more recent results from 
Gao (2019) suggest that consonant changes may be more impactful than 
vowel changes in perceptions of nonnative accented speech. The Lev
enshtein adaptation proposed by Levy et al. (2019) follows Gao’s (2019) 
results, with consonant substitutions carrying a heavier penalty than 
vowel substitutions. Levy et al. (2019) used their Levenshtein distance 
measure to broadly characterize phonemic differences among three 
speakers, with one speaker each representing Standard German, 
non-local native (Palatinate German), and nonnative (Korean-accented 
German) accents. They found that the non-local talker had greater dis
tances from Standard German compared to the nonnative talker and 
showed the lowest intelligibility of the three talkers. Both the adapted 
Levenshtein distance measure proposed by Levy et al. (2019) and the 
traditional Levenshtein measure have been shown to predict accent 
perception (e.g., Bent et al., 2021 and Gooskens and Heeringa, 2004, 
respectively). 

Additional adaptations and alternatives to the traditional Lev
enshtein measure have been proposed. Wieling et al. (2014a, 2014b) 
tested cognitively-based extensions and alternatives to the original 
Levenshtein distance including the pointwise mutual information (PMI). 
PMI-based Levenshtein distance attempts to account for listeners’ lan
guage exposure. Using corpus data, this process compared pro
nunciations of the same word from various accents of English using 
Levenshtein distances calculated from logical segmental alignments of 
words (i.e., only aligning vowels with vowels; Wieling et al., 2014b). 
This method calculates the distance between two segments, based on the 
relative frequency of their alignment (Wieling et al., 2014b). More 
frequently “misaligned” segments may have a lesser impact on listeners 
in the context of judging “native-likeness,” as these are misalignments 
that listeners hear frequently. For example, if [ɑ] → [o] is a more 
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frequently occurring substitution than [ʊ] → ∅ (a deletion of [ʊ]), the 
PMI score for the first change would be lower than for the second. 
Wieling et al. (2014b) found significant negative correlations between 
the PMI-based Levenshtein distance scores and perceptual ratings of 
“native-likeness,” consistent with the prediction that more frequently 
misaligned segments have a smaller impact on listener judgments. 

Another cognitively-based measure utilized by Wieling et al. (2014a) 
involves naive discriminative learning (NDL), based on a theory from 
human and animal behavioral learning (Rescorla and Wagner, 1972) 
that suggests that learners make predictions based on available cues. 
Depending on the outcome of these predictions, associated connection 
strengths between the cues and the predicted outcome are adjusted to 
improve the accuracy of future predictions. In this case, listeners make 
predictions about word meaning based on the sounds they hear. The 
cognitive basis of applying this theory to dialect distances is that typi
cally listeners are most often exposed to talkers who sound similar to 
themselves, and this exposure shapes the association strengths between 
input and outcomes (i.e., between phonetic cues and word meaning). 
Corpus data were analyzed to determine the frequency with which the 
association between phonetic cues and word meanings (i.e., outcomes) 
are likely to be encountered. Summing the association strengths be
tween the cues and outcomes results in activations for the accented 
speech. A difference score was calculated between the activations of 
each speaker and the “average” speaker (of American English, in this 
case, averaged across speakers within the study) to create the NDL-based 
pronunciation distance. NDL correlates highly with both the traditional 
Levenshtein measure and perceptual ratings of accentedness (Wieling 
et al., 2014a). 

A limitation of both the PMI and NDL measures is their reliance on 
large amounts of speaker data. Because both measures account for the 
frequency with which certain segmental alignments occur, large 
amounts of data are required to ensure these frequencies appropriately 
reflect the speech of speakers outside of the dataset. For example, 395 
transcribed speech samples of the Please Call Stella passage from the 
Speech Accent Archive1 (Weinberger and Kunath, 2011) were used in 
Wieling et al. (2014a, 2014b) studies, representing native speakers from 
99 different languages, to measure the frequency of possible segmental 
changes. The value of PMI and NDL as adaptations to the traditional 
Levenshtein is that they are grounded in cognition, accounting for lis
teners’ language experiences and exposure, rather than assuming that all 
phonemic changes are (perceptually) created equal. Although (to these 
authors’ knowledge) the PMI-based Levenshtein has not been directly 
compared to the traditional Levenshtein measure, Wieling et al. (2014a) 
demonstrated a strong correlation between NDL and the traditional 
Levenshtein measure, providing support for a cognitive basis for the 
traditional Levenshtein. Further, the traditional Levenshtein has greater 
feasibility, and may be better suited for use in experimentation than 
NDL. 

1.2.2. Acoustic measures 
A significant limitation of all of the previously mentioned measures 

of phonemic distance is their inability to account for acoustic variation 
beyond the phoneme level that may contribute to accent distance 
perception (e.g., Gooskens, 2005). This sort of acoustic variation in
cludes both subphonemic (e.g., reduction, lengthening, etc.) and pro
sodic (e.g., stress, intonation, rhythm, etc.) information. The role of 
prosody in predicting accent perception in English has yielded mixed 
results. Munro (1995) revealed that untrained native English listeners 
could identify native versus nonnative speaker status from unintelligi
ble, low-pass filtered speech, relying only on rhythm, stress, and 

intonation instead of segmental information. Likewise, Anderson-Hsieh 
et al. (1992) reported a stronger correlation between overall pronunci
ation ratings and impressionistic ratings of nonnative speakers’ prosodic 
deviance, than pronunciation ratings and segmental or syllable-level 
changes. On the other hand, Sereno et al. (2016) found that segmental 
changes influenced accentedness, comprehensibility, and intelligibility 
ratings, while prosody influenced intelligibility ratings only. Sereno 
et al. (2016) and Anderson-Hsieh et al. (1992) both investigated the 
relative contributions of prosodic and segmental cues to listeners’ 
judgments. Differences in methodologies among these studies (e.g., 
impressionistic judgments of prosody: Anderson-Hsieh et al., 1992 and 
Munro, 1995; versus more objective measures of prosodic differences 
such as F0 contours: Sereno et al., 2016) could at least partially explain 
these discrepant findings. 

In studies of accent perception with a non-English target language, 
durational cues (German: Kolly et al., 2017), intonation (Norwegian: 
Holm, 2008; Italian: Vitale et al., 2014), and spectral cues (Thai: 
Wayland, 1997) have all been shown to play a significant role in pre
dicting accent judgments. The majority of these studies used acoustic 
manipulations of speech stimuli to identify the relative contributions of 
prosodic versus segmental changes to accent perception. For example, 
Holm (2008) reported a significant reduction in ratings of accentedness 
when intonational manipulations (F0 slope and direction) were applied 
to stimuli in Norwegian, and Vitale et al. (2014) transplanted yes/no 
question and declarative sentence F0 trajectories between native and 
non-native speakers of Italian, finding that native prosody with 
non-native segments yielded lower accentedness ratings than the 
reverse. On the other hand, Vieru et al. (2011) revealed that prosody 
(quantified by rhythmic measures including proportion of vocalic in
tervals, pairwise variability index, and word-final schwa duration) only 
modestly contributed to accent classification by French speakers, in 
comparison to segmental contributions. These studies demonstrate that 
in addition to differing methodologies and outcome measures affecting 
findings, the target language under investigation is likely a significant 
predictor of the extent to which prosody influences accent judgments. 

Investigations of the influence of prosody on listeners’ within- 
language accent judgments (i.e., identifying dialect regions) show 
similarly mixed results (e.g., English: Alcorn et al. (2020), van Bezooijen 
and Gooskens (1999); Norwegian: Gooskens (2005); and Dutch: van 
Bezooijen and Gooskens (1999)). Alcorn et al. (2020) observed that 
while listeners use prosodic cues to make judgments about English 
speakers’ region of origin within the United States (e.g., Southern, 
Midwestern), there is a greater detriment to listeners’ accuracy when 
segmental information is removed than when prosodic information is 
removed. Prosodic cues similarly play only a minor role in 
within-language dialect identification in both British English and Dutch 
(van Bezooijen and Gooskens, 1999). The authors found a minimal effect 
on accuracy when prosodic cues were removed (monotonized speech), 
yet a large impact on accuracy when segmental content was removed 
(low-pass filtered speech). In contrast, prosodic cues play an integral 
role in distinguishing among Norwegian dialects: native listeners had 
much more difficulty identifying Norwegian dialects from monotonized 
recordings (i.e., intonation information removed) than when listening to 
original recordings (Gooskens, 2005). It is likely that phonemic and 
prosodic information are intertwined and are uniquely important factors 
considered by listeners in accent judgments, although their relative 
importance in accent perception may be language- or dialect-dependent. 

To account for both the phonemic and non-phonemic (sub-phone
mic, prosody, etc.) aspects of speech, dynamic time warping (DTW) has 
recently been used in accent perception research to quantify the acoustic 
distance between two speech signals. Instead of focusing only on the 
phonemes produced, this procedure optimizes alignment between nu
merical feature representations (e.g., Mel frequency cepstral co
efficients: Bartelds et al., 2020; fundamental frequency: Gao, 2019), 
allowing for additional acoustic information to be captured beyond the 
phoneme level. From this alignment, the shortest path through a cost 

1 The Speech Accent Archive is a digitally available archive of more than 
1000 transcriptions and audio files of speakers from various language back
grounds reading the Please Call Stella passage. Some demographic information 
for each speaker is also available (e.g., native language, gender, age, etc.). 
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matrix is calculated, ultimately resulting in a distance score that cap
tures pertinent acoustic information in the signal. This automated pro
cedure does not rely on listener judgments of phoneme production (i.e., 
transcription) and DTW therefore could be a faster and more reliable 
alternative to Levenshtein distance measures, which require manual 
phonemic transcription, while also accounting for differences in 
sub-phonemic or prosodic aspects of the speech signals. The acoustic 
information captured by DTW includes phonemic, subphonemic, and 
prosodic information, and will therefore be referred to as a holistic 
acoustic distance measure. 

Bartelds et al. (2020) compared DTW output scores (of Mel fre
quency cepstral coefficients) with perceptual ratings of native-likeness 
on a 7-point Likert scale and with segmental deviations (PMI-based 
Levenshtein distance) of nonnative English speakers from 99 different 
L1 backgrounds. Results from a multiple regression model including the 
PMI-based Levenshtein distance measure, DTW, and number of mis
pronunciations (manually counted), revealed that both the Levenshtein 
distances and DTW scores significantly predicted perceptual judgments, 
while number of mispronunciations did not. The DTW variable 
contributed 5 % of the model variance. Although this contribution is 
modest, Bartelds et al. (2020) suggested that DTW captures some aspects 
of the signal beyond what phonemic measures (e.g., Levenshtein) cap
ture. An additional experiment from their study included DTW analyses 
of MFCCs generated from a single speaker’s repeated token but with 
prosodic manipulations (i.e., normal pronunciation, rising intonation, 
lengthened first syllable) and recorded with two different devices 
simultaneously. The purpose of this final experiment from Bartelds et al. 
(2020) was to both highlight the role of prosody in MFCC calculations, 
and to show that different recording devices of the same stimuli from the 
same speaker can have different DTW values. The authors posit that 
MFCC’s sensitivity to differences in recording devices and procedures 
could explain the less-than-optimal performance of the DTW measure. In 
their experiment predicting human perceptual ratings of native-likeness 
from the acoustic and phonemic measures, Bartelds et al. (2020) used 
recordings from the Speech Accent Archive (Weinberger and Kunath, 
2011), which they report could have impacted their DTW results given 
the wide range of recording conditions and quality. Speakers record and 
upload audio files from their own personal devices to the Speech Accent 
Archive (Weinberger and Kunath, 2011), eliminating the possibility of 
consistency in recording protocols. This recording sensitivity issue could 
be mitigated by using consistent recording conditions across stimuli, 
such as recording all stimuli using high-quality equipment in a 
sound-attenuated booth. In sum, this study shows that DTW may capture 
important acoustic information that segmental measures alone cannot, 
but suggests that consistency in recording conditions could improve its 
reliability. More recently, Bartelds et al. (2022) demonstrated that a 
self-supervised Transformer-based neural model of acoustic distance 
significantly predicted human accent perception – outperforming the 
segmental measure; however, the generalizability of the results were 
limited by the fact that the model required language-specific training for 
success, which is both costly and time-intensive. 

1.3. Current study 

The purpose of the current study was to examine the relative con
tributions of phonemic and holistic acoustic distance from the local 
accent to listeners’ accent rankings for multiple non-local native and 
nonnative accents. The study compared the unweighted (original Lev
enshtein measure) and weighted (the adapted measure from Levy et al., 
2019) Levenshtein distance measures against one another and analyzed 
how these phonemic measures compare to a holistic acoustic distance 
measure (DTW) in predicting perceptual accent judgments. Bartelds 
et al. (2020) also used a similar multi-method approach, preliminarily 
revealing promising results. The current study aimed to build upon that 
work by using: (1) both non-local native and nonnative accents; (2) a 
ladder task to allow for explicit perceptual comparison among accents 

by the listeners; (3) multiple sentence stimuli per talker, including a 
condition in which each talker produced a different sentence; and (4) 
shorter stimuli (1 sentence). The inclusion of non-local native and 
nonnative accents in the same perceptual ranking task represents a 
unique contribution of the current study, as the majority of research 
focuses on only one group (i.e., either native or nonnative accents, 
compared to a reference stimulus; see, for example: Flege et al., 1995; 
Wieling et al., 2014a, 2014b; Bradlow et al., 2010). The use of an in
terval scale in the ladder task on which accents can be compared pro
vides a perceptual measure of accent distance (as opposed to strength), 
which may serve as a better theoretical match to the objective phonemic 
and holistic acoustic distance measures under investigation in the cur
rent study, as opposed to other perceptual measures (e.g., free classifi
cation, Likert scales of accent strength). Using multiple sentence stimuli 
per talker, one of which is different for each talker, allows for the ex
amination of performance consistency of the distance measures across 
sentences with varied content. The presence of an interaction between 
sentences and one or both of the acoustic distance measures would 
suggest a dependence on linguistic content, which could speak to the 
usefulness of the distance measures. Finally, limiting the stimuli to one 
sentence allows for an acoustic or phonetic “first impression.” Many 
studies (including Bartelds et al., 2020) use the Please Call Stella passage 
from the Speech Accent Archive (Weinberger and Kunath, 2011). The 
advantage of using this passage is in its representation of common En
glish words and nearly the full spectrum of English consonants and 
vowels. However, the length of the passage increases the cognitive load, 
requiring the listener to hold more linguistic content in their working 
memory when making their perceptual judgments (cf. Alcorn et al., 
2020). The inclusion of stimuli that vary in both length and content from 
the Stella passage can provide a more robust understanding of the 
contribution of segmental and acoustic cues on accent judgments. 
Further, by using stimuli recorded in sound-attenuated booths with 
consistent procedures and high-quality equipment, we mitigate the 
negative effects of recording inconsistencies on DTW outcomes noted by 
Bartelds et al. (2020). 

2. Method 

2.1. Participants 

Fifty-two adult monolingual speakers of American English (M = 21.2 
years; 16 males, 36 females) participated in this study. One additional 
participant was tested but excluded for exceeding the criterion set for 
time spent abroad (i.e., under 10 months). Listeners were recruited from 
Indiana University and the surrounding Bloomington, Indiana, com
munity. Participants demonstrated hearing within normal limits by 
passing a pure-tone hearing screening at 25 dB HL at 250 Hz and at 20 
dB HL for octave frequencies between and including 500 and 8000 Hz 
(re: ANSI, 2004). A majority listed Indiana as their home state (n = 35) 
with the remaining from the following states: Illinois (n = 6), Missouri 
(n = 2), New Jersey (n = 2), Florida (n = 1), Michigan (n = 1), Mis
sissippi (n = 1), New York (n = 1), Ohio (n = 1), Pennsylvania (n = 1), 
and West Virginia (n = 1). Listeners were paid $10 for their participa
tion. All research was approved by the local Institutional Review Board. 

2.2. Stimuli 

Stimuli were produced by 37 adult talkers (M = 28 years; 17 males, 
20 females) from three native English accents (Midland American, 
Standard Southern British,2 Scottish), six nonnative accents (Japanese-, 
Mandarin-, Korean-, Spanish-, French-, and German-accented), and one 
bilingual accent (Hindi-English). All nonnative speakers reported having 

2 Standard Southern British English will be referred to as “British” throughout 
the manuscript. 
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lived in the United States for no more than 4 years at the time of the 
recordings. Nonnative accents and native dialects were chosen to 
represent a variety of accent variation and geographic locations. Each 
accent was produced by four speakers (2 male and 2 female), except for 
British English (2 male, 1 female) and Scottish English (2 female). 
Speaker gender was nearly balanced to preclude gender from acting as a 
potential confounding variable in perceptual distance from Standard 
American English. Each talker contributed three sentences, two of which 
were the same across all talkers (“The cow was milked every day” and 
“Father forgot the bread”) and one of which was unique for each talker 
(see Appendix A). The first two sentences were selected because they 
included phonemes that represent a variety of English consonants and 
vowels. The unique sentence was included with the goal of reducing 
listeners’ reliance on specific sentence content when determining accent 
distance. The stimuli were selected from sentences in the Hearing in 
Noise Test-Children (HINT-C; Nilsson et al., 1994). Speech samples were 
either recorded at Indiana University’s Speech Perception Lab, Ohio 
State University’s Developmental Speech Research Lab, or obtained 
through the SpeechBox, ALLSSTAR Corpus from Northwestern Uni
versity’s Department of Linguistics (Bradlow, n.d.). All recordings were 
made in sound-attenuated booths with digital recorders and 
high-quality microphones. The RMS amplitude of all samples was 
normalized in Praat (Boersma, 2001). 

Familiarity ratings were obtained for all of the non-local native and 
nonnative accents used in the study, except for the reference accent 
(Midland American English). The Midland accent was assumed to be 
highly familiar to all listeners because it is the local variety of the testing 
location. Listeners provided ratings of the amount of interaction with 
speakers from the various accent backgrounds on a scale of 0–10 with 
0 indicating “never interacted” and 10 indicating “interact with daily.” 
Results from the familiarity ratings were averaged across participants. 
An ANOVA was run to assess differences among accents in degree of 
familiarity, with accent as the predictor variable and familiarity rating 
as the outcome variable. The ANOVA was significant, indicating that 
familiarity ratings for certain accents were higher, on average, than 
others, F(8, 459) = 6.76, p < .001. Spanish- and Mandarin-accented 
English had the highest degree of familiarity (2.6 and 2.4, respec
tively), and Japanese- and Scottish-accented English represented the 
least familiar accents to listeners (0.6 and 0.3, respectively). Although 
there was a significant difference in familiarity of accents, all of the 
average familiarity ratings were at or below 2.6 (out of 10), indicating a 
low degree of experience with these accents. 

2.3. Levenshtein distance measures 

2.3.1. Unweighted 
The unweighted Levenshtein distance is based on the traditional 

algorithm (Levenshtein, 1966), and compares a target stimulus to a 
reference, assigning one point per change, regardless of type (i.e., sub
stitutions, omissions, additions, etc.) across all consonants and vowels 
(Kessler, 1995). The total number of penalties are summed at the word 
level, and then divided by the total possible number of phonemes 
(Gooskens and Heeringa, 2004). The total possible number of phonemes 
is not the number of phonemes produced by the reference speaker, but 
rather comes from the most logical alignment between the target and 
reference stimuli. If a non-local/nonnative speaker inserts a phoneme 
into the word, this increases the total possible number of phonemes by 
one. For example, if a nonnative speaker inserts a schwa in a target word 
‘milked’ (e.g., /mɪlkət/) and the reference speaker does not (e.g., 
/mɪlkt/), the total possible number of phonemes increases from five to 
six. See Table 1 for a visualization of this alignment, and calculation of 
the total possible number of phonemes. Word level scores are summed 
across the sentence and divided by the total number of words in the 
sentence. 

2.3.2. Weighted 
An adapted version of the Levenshtein distance algorithm provides 

for more score variation depending on the type of error (see Table 2). 
This scoring method was adapted for intelligibility tasks by Levy et al. 
(2019) and is based on the assumption that not all phonemic changes 
carry equal weight in perception. As with the unweighted Levenshtein, 
the most logical alignment was used when comparing the reference and 
target stimuli using the weighted Levenshtein (see Table 1). Penalties 
were assigned per phoneme deviation (substitution, omission, or addi
tion) as shown in Table 2, and then summed for each word. For example, 
substitution of one consonant for another received a 0.75-point penalty, 
while one vowel for another received a 0.5-point penalty. Unlike the 
unweighted Levenshtein measure, word-level scores in the weighted 
Levenshtein are not divided by the total possible number of phonemes in 
the target word, but instead summed at the word-level. Word length 
itself is not accounted for in this version. However, the word-length 
change penalty accounts for changes to word length. Both the un
weighted and weighted Levenshtein are averaged at the sentence level. 
See Table 3 for example scoring for both unweighted and weighted 
Levenshtein. 

To complete this analysis, the two sentences from each of the 37 
speakers (the four Midland and all non-local speakers) used in the same 
sentence conditions were phonemically transcribed. In addition, all 
sentences for the unique sentence condition (Appendix A) were tran
scribed for all 37 speakers. Two research assistants trained in the use of 
IPA conventions independently transcribed each sentence, using broad 
(i.e., phonemic) transcription using a consistent set of symbols (e.g., the 
diphthong in the word ‘same’ always transcribed as /eɪ/ and not /εj/, if 
produced in a native-like manner). The transcriptions were compared, 
and any discrepancies between transcriptions were resolved by a third 
research assistant. In the case of ambiguities that could not be resolved 
among the three research assistants, the second author [TB] resolved 
disagreements. Therefore, the final version of each transcription was 
agreed upon by 3 to 4 researchers. 

Each sentence was manually divided at word boundaries and 
compared to the local (Midland American English) dialect on the word 
level. The alignment of the reference and target phonemes was 
completed manually by research assistants, using the most logical 
alignment. For example, as seen in Table 1, all of the corresponding 
phonemes produced by the local native and non-local native/nonnative 
speaker were aligned, with the inserted schwa from the nonnative 
speaker aligned with a corresponding empty position in the local native 
speaker’s production. All alignments were reviewed by the first author 
[HLC] to ensure use of the most logical and optimal alignment. The 

Table 1 
Calculating total possible phonemes from most logical alignment using the un
weighted Levenshtein distance.  

Reference speaker m ɪ l k ∅ t Total possible 
phonemes = 6 

Non-local/nonnative 
speaker 

| | | | | |   

m ɪ l k ə t   

Table 2 
Weighted Levenshtein penalties for phonemic changes.  

Change Point Penalty 

Vowel substituted by another vowel 0.5 
Consonant substituted by another consonant 0.75 
Insertion 1.0 
Change to length* 1/log10(max(length(word1), 

length(word2))) 
Other (deletions, vowel to consonant, 

consonant to vowel, etc.) 
0.4 

Note. *word1 = number of phonemes in the non-local accent speaker’s pro
duction; word2 = number of phonemes for the local accent production. 
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transcription for each non-Midland speaker was compared to the tran
scription of each of the four Midland American English speakers 
included in this study. When a phoneme in one of the non-Midland 
speakers did not match any of the Midland speakers, a penalty from 
Table 2 was applied. Phonemes that matched at least one of the Midland 
speakers were not assigned a penalty (see Table 4). Not all productions 
of the stimuli were phonemically realized identically among the 
Midland speakers, and comparison of each stimulus to all four Midland 
speakers allowed for some flexibility in scoring to account for natural 
variability in production. Also note in Table 4 that the production of the 
target word “slept” by the Korean speaker received four penalties: two 
for deleting phonemes, one for a consonant change, and one for a change 
in word length. Higher penalties indicate larger phonemic differences 
between the Midland and non-Midland productions. No penalties were 
issued for changes in stress. A substitution of /ə/ for /ɚ/ was treated as a 
vowel change. Productions that lengthened consonants from one word 
to the next (e.g., ‘bus stopped’ was transcribed as [bʌsːtɑpt] for one 
Midland speaker) were calculated as though there were two separate 
consonants. For both unweighted and weighted Levenshtein measures, 
Midland speakers served as the comparison, and therefore all Midland 
speakers had scores of zero (as they could not receive penalties for 
phonemically deviating from themselves). 

2.4. Dynamic time warping 

Dynamic time warping computes the shortest distance through a cost 
matrix, typically generated from two vectors. In speech recognition, 
these vectors come from feature representations of the signals being 
compared. Mel frequency cepstral coefficients (MFCCs) are often used as 
feature representations in audio signal comparison, because they pro
vide a more reliable representation of the phonetic content of the signal 
in automatic speech recognition compared to other feature representa
tions (e.g., linear frequency cepstrum, among others; Davis and Mer
melstein, 1980). MFCCs were calculated for 74 sentences (37 talkers x 2 
sentences) for the same sentence conditions and 37 sentences for the 
unique sentence conditions, such that each Midland and non-local 
talker’s production of each of the three sentences was measured. The 

process for calculating MFCCs in the current study was guided by the 
process outlined in detail by Bartelds et al. (2020), with a key difference 
being that the MFCCs in the current study were calculated over the 
entire sentence for each stimulus, instead of for each individual word 
from a paragraph. In the current study, MFCC calculations and subse
quent DTW analyses were performed using a Python script (written by 
author HLC and shared in the OSF repository), incorporating the ‘mfcc’ 
function in the ‘librosa’ package (McFee et al., 2015). 

To calculate the MFCCs, the signal was separated into 25-ms over
lapping frames with a 10-ms step size, with 12 cepstral coefficients 
capturing the overall power of the signal in that window and accounting 
for variation in the signal intensity. The “0th” coefficient was included 
as a representation of the overall energy of each 25-ms frame, resulting 
in a total of 13 coefficients per frame. The first- and second-order de
rivatives were calculated for each of the 12 cepstral coefficients and 
energy representations for each 10-ms step, to account for the temporal 
changes between frames. This resulted in 39 coefficients for each 10-ms 
step. The concatenation of the vectors of 39 coefficients over the entire 
sample resulted in the MFCC feature representation for each speech 
stimulus item. The final step in obtaining the MFCCs was to normalize 
the coefficients, by applying a z-transform to each vector of MFCCs per 
windowed frame. Bartelds et al. (2020) demonstrated the importance of 
normalization of MFCCs in DTW to reduce the “noise” in the signal (i.e., 
less relevant acoustic information). Correlation of the acoustic distance 
measure with human judgments of accent distance increased in 
magnitude from r = -0.27 to r = -0.71 when the normalization procedure 
was used in processing the stimuli in Bartelds et al. (2020). 

DTW between MFCC vectors from the non-Midland (non-local native 
and nonnative) accents and the reference stimuli (Midland, the local 
accent) was performed to provide a holistic acoustic-based distance 
measure. DTW scores were calculated as the shortest distance through a 
cost matrix consisting of MFCCs between a non-local native or nonnative 
accent (target) and reference (Midland) stimulus, with a higher DTW 
score representing a greater deviation from the reference stimulus. Each 
non-Midland stimulus was compared to the four reference stimuli (i.e., 
two male and two female Midland speakers), resulting in four acoustic 
distance scores per sentence. The lowest of the four scores was selected 
to represent the acoustic distance between that target speaker and the 
reference Midland dialect, to most closely match the procedure for the 
Levenshtein comparisons. Because three different sentences were used 
(two consistent, one unique), each speaker had three associated distance 
scores. Out of 111 possible comparisons, 107 of the lowest scores were 
between same-gender talker pairs. 

Midland speakers received non-zero DTW scores (unlike for the 
Levenshtein scores, where all Midland speakers received zeros), as the 
MFCCs for each Midland stimulus was compared to the other three 
Midland stimuli. Following the same procedure as the non-Midland 
stimuli, the lowest of the three scores were selected to represent the 
acoustic distance between that target Midland speaker and the other 
three Midland dialects for each sentence stimulus. The choice to 
compare the Midland speakers to one another for the DTW measure and 
not the Levenshtein measure was based on the fact that there were 
substantial differences among DTW scores, while the Levenshtein dif
ferences were negligible (i.e., there were only occasional differences, 
such as flap (/ɾ/) for /d/). 

Table 3 
Examples of sentence-level score calculations using the weighted and unweighted Levenshtein algorithm.   

Unweighted Levenshtein Weighted Levenshtein 

Target sentence Father forgot the bread Father forgot the bread 

Midland accent fɑðɚ fɔɹgɑt ðə bɹεd fɑðɚ fɔɹgɑt ðə bɹεd 
French-accented English fæðɚ fɔɹgɑt də bɹεd fæðɚ fɔɹgɑt də bɹεd 

Penalties 1/4 0/6 1/2 0/4 .5 0 .75 0 
Levenshtein Score .25 0 .5 0 = 0.188 .5 0 .75 0 = 0.313  

Table 4 
Examples of transcriptions, penalties and overall score using the weighted 
Levenshtein measure.  

Sentence The baby slept all night Average 

Midland 
1 

ðə beibi slεpt ɔl naɪt  

Midland 
2 

ðə beɪbi sləpt ɔl naɪt  

Midland 
3 

ðə beɪbi slεpd ɔl naɪt  

Midland 
4 

ðə beɪbi slεpt ɔl naɪt  

Korean ðə beɪbi sεv ɑl naɪt  

Score 0 0 (0.4 + 0.4 + 0.75 +
(1/LOG10(MAX((3), 
(5)))) = 2.981 

0.5 0 (2.981 +
0.5)/5 =
0.696  
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2.5. Procedure 

Participants were tested in one 60-minute session. Prior to the onset 
of testing, participants completed the consent process, hearing 
screening, and language background questionnaire. The experiment, 
conducted in a sound-attenuated booth, consisted of three ladder tasks 
with one-minute breaks between ladders. The two ladders in which each 
talker produced the same sentence were counterbalanced across par
ticipants and the ladder in which each talker produced a unique sen
tence was presented last. Verbal instructions were given to participants 
prior to the start of the experiment and on-screen instructions were 
provided at the start of each ladder. The experiment was created with 
custom software written in Python and run on a MacMini. Stimuli were 
presented binaurally through Sennheiser HD280 Pro-headphones at an 
average RMS amplitude of 65 dB SPL. 

Each ladder had 20 rungs, with space for up to four speakers on each 
rung. While the choice of four spaces on each rung is somewhat arbi
trary, imposing a limit is necessary to ensure that listeners rank some 
accents above/below others, thereby forcing them to make decisions 
about accent distance, while still allowing them to indicate that some 
accents are equally distant from the reference. A set of 37 rectangular 
icons appeared to the left of the ladder (an example of a starting ladder is 
displayed in the upper panel of Fig. 1). The bottom-most rung of the 
ladder was labeled “Standard American English” (i.e., the lay term for 
the Midland American English accent used by the local population). 

Participants clicked on one of the talker icons to hear that sentence. 
Participants were instructed to rank the talkers on the ladder according 
to how similar the talker sounded to the local accent, with talkers whose 
productions sounded most like the local accent placed near the bottom 
and those furthest from the local accent at the top (an example of a 
completed ladder is displayed in the bottom panel of Fig. 1). No model of 
the target dialect was provided to participants; rather, their knowledge 
and interpretation of the local dialect served as the reference stimulus. 
Providing more spaces than talkers allowed for variety in participants’ 
representation of distance. 

Midland American English speaker stimuli were included in the 
ladder task. The purpose of including Midland speakers as an accent 
variety in this study was to allow for the perceptual ranking of both 
native and nonnative accents of varying familiarity to the listeners. 
Although this Midland accent did not serve as the baseline in the ladder 
task, including the Midland variety added to the gradient of perceptual 
distances. Inclusion of this highly familiar variety served to situate the 
listener on a scale of perceptual distances and avoid lumping all varieties 
into a homogenous “other” group. 

2.6. Data analysis 

Statistical analyses were performed using R version 4.0.4 (R Core 
Team, 2021). Data and R code are available in the OSF repository. A 
linear mixed effects model was run to predict perceptual distance 

Fig. 1. Examples of an empty ladder (top panel) and completed sample ladder (bottom panel).  
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(ladder rankings) from DTW, weighted and unweighted Levenshtein 
distance, and sentence condition (i.e., the 3-level factor of the sentence 
variable). Continuous variables were standardized (z-transformed), both 
to support convergence of the mixed effects models, and to allow for 
direct comparison of these variables’ contributions to explaining vari
ability in the outcome variable. A step-down approach was used to 
identify the random effect structure for the linear mixed effects model, 
beginning with the maximal design-driven random effects, including: a 
by-listener intercept, and by-listener slopes for each distance measure, 
the sentence variable, and their interactions; and a by-speaker intercept, 
and by-speaker slope for the sentence variable. This maximally 
design-driven model was over-specified, as expected, and resulted in a 
singular fit which did not converge. The model was then stepped down 
incrementally, removing one random effect term at a time (beginning 
with the random effects with the highest correlations with other vari
ables in the random effects structure) until convergence was achieved. 
The model which ultimately achieved convergence included a 
by-listener random intercept and slopes for sentence and weighted 
Levenshtein, and a by-speaker random intercept and sentence slope. The 
lmerTest package was used in R to obtain p-values for fixed effects in the 
mixed effects model, and the criterion for significance was set at p < .05. 

The variance inflation factor (VIF) function in R was used to identify 
the potential presence of unacceptable (multi)collinearity among the 
predictor variables. Using the heuristic that a VIF score greater than 10 

indicates unacceptable collinearity, it was determined that the two 
Levenshtein predictor variables shared sufficient variance to inhibit 
interpretability (unweighted Levenshtein: 14.11; weighted Levenshtein: 
13.52; DTW: 2.21). To address this collinearity, two separate models 
were constructed: one model with the unweighted Levenshtein measure 
and DTW, and the other with the weighted Levenshtein and DTW. The 
two models were then compared to determine which pair of acoustic 
distance measures resulted in the best-fitting model. The random effects 
structure for these two models was determined using the same methods 
described above, beginning with the maximal design-driven random 
effects (by-listener intercept, and by-listener slopes for each distance 
measure, the sentence variable, and their interactions; and by-speaker 
intercept and slope for the sentence variable). This model did not ach
ieve convergence, and the models were stepped down by incrementally 
removing the variable or interaction with the highest degree of corre
lation to others in the random effects structure. The structures that 
achieved convergence were the same for the two models: both by- 
listener and by-speaker random intercepts and sentence slopes. 

3. Results 

Fig. 2 displays mean scores for each accent variety on the perceptual 
ladder task and the three objective distance measures. For the ladder 
task, scores represent the average ladder ranking by all listeners across 

Fig. 2. Mean perceptual and objective accent distance measurements by accent for each speaker 
Note. Vertical axes are measured in units unique to each distance measure. Horizontal axes represent accent groups. Means and error bars (+/- 1 standard error) are 
displayed for each speaker. Squares represent local and non-local native accents, and triangles represent nonnative accents. Large bold symbol for each accent 
represents the mean for all speakers of each accent; small gray symbols represent the average score per speaker. 
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all three sentences, per accent group. The DTW and Levenshtein distance 
scores represent the average score for each speaker across all three 
sentence stimuli. Lower scores on the ladder task represent greater 
perceived proximity to Midland American English. Similarly, lower 
scores on the Levenshtein and DTW distances represent greater prox
imity to the Midland speakers. 

An inspection of Fig. 2 suggests a similar general pattern of accent 
distance across the four measures, with some variability present. An 
expected finding evident in the ladder ranking data (top left) is the 
tendency for increased variability among accent rankings for speakers 
with nonnative accents compared to non-local native ones. The Midland 
and British accents (and to a slightly lesser extent, the Scottish accent) 
show all of the speakers clustering around the group mean. The 
nonnative accents, on the other hand, tend to demonstrate more variable 
ladder rankings among speakers, with some well above or below the 
group mean. The error bars represent the within-speaker variability in 
ladder ranking for the three sentences, with the local and non-local 
native tending to demonstrate the least amount of variability in ladder 
rankings among the sentences. Thus, there is a trend for listeners, as a 
group, to rank the native accented speakers (both non-local and local) 
consistently with one another and show more variability in their rank
ings of the nonnative accents. Comparing among the objective measures 
of distance, the within-speaker variability tended to be small when 
measured using DTW; in other words, speakers’ DTW scores tended to be 
relatively consistent across sentences. In contrast, both weighted and 
unweighted Levenshtein scores tended to be more variable across sen
tences for each speaker, as evidenced by the tendency for larger error 
bars around the speakers’ mean scores. 

3.1. Linear mixed effects models 

Weighted and unweighted Levenshtein measures and DTW all 
independently predicted ladder task results (see Fig. 3). The simple 
correlations between the three distance measures and ladder rankings 
are all significant, though the relationship is stronger in both of the 
Levenshtein measures compared to the DTW measure, as visualized in 
Fig. 3. Results from the two linear mixed effects models are shown in 
Table 5. The sentence variable was not a significant predictor in either 
model, suggesting that the phonemic content of the sentences did not 
independently contribute to the ladder rankings by listeners. However, 
the interaction between sentence 2 and the unweighted Levenshtein 
measure in the first model was significant. Follow-up log-likelihood 
comparisons between nested models with and without the interaction 
between the sentence variable and unweighted Levenshtein distance 
revealed a significant interaction between the variables, χ2(2) = 7.44, p 
= .024. The interaction between the sentence variable and the weighted 

Levenshtein measure was not significant, nor was the interaction be
tween DTW and sentence in either model. These findings suggest that 
the relative contribution of the unweighted Levenshtein measure to 
listeners’ perceptual accent distance ratings may be at least partially 
dependent upon sentence content. In this case, the unweighted Lev
enshtein distance was a better fit to the ladder rankings for Sentence 1 
than for Sentence 2. 

The intercepts in both models 1 and 2 represent the group average 
ladder ranking for the first sentence. The coefficients for each predictor 
variable (unweighted Levenshtein and DTW in model 1, and weighted 
Levenshtein and DTW in model 2) represent the change in ladder 
ranking when the predictor variable increases by one standard devia
tion. The coefficients for both distance measures in each model were 
positive, indicating that, as expected, a 1-SD increase in the distance 
measure (i.e., getting farther from the reference Midland stimuli) results 
in an increase in ladder rankings. Although all of the distance measures 
were significant predictors of perceptual distance ratings, the un
weighted and weighted Levenshtein’s larger coefficient (as compared to 
DTW in each model) suggests that a 1-SD increase in this measure results 
in a larger impact on ladder rankings than a 1-SD increase in DTW. It is 
worth noting that the difference in coefficient size in model 1 between 
the unweighted Levenshtein and DTW predictors is minimal. Still, the 
weighted Levenshtein measure was a stronger predictor of perceptual 

Fig. 3. Scatterplots displaying ladder task results correlated with unweighted Levenshtein distances (Left), weighted Levenshtein distances (Center), and dynamic 
time warping (Right) 
Note. Individual points represent the average ladder rankings and distance values per speaker (averaged over the three sentences). 

Table 5 
Results from two linear mixed effects models predicting ladder task results.  

Model 1: Unweighted Levenshtein & DTW Estimate t value p value 

Intercept (Sentence 1) 9.24 16.74 < 0.001 
Sentence 2 0.47 0.95 .347 
Sentence 3 0.95 1.99 .051 
Unweighted Levenshtein 1.34 3.27 .002 
DTW 1.32 3.36 .002 
Interaction: Unweighted Levenshtein by Sentence 

2 
−1.24 −2.16 .034 

Interaction: Unweighted Levenshtein by Sentence 
3 

0.65 1.18 .245 

Interaction: DTW by Sentence 2 −0.11 −0.22 .831 
Interaction: DTW by Sentence 3 −0.45 −0.95 .347  

Model 2: Weighted Levenshtein & DTW Estimate t value p value 

Intercept (Sentence 1) 9.38 17.87 < 0.001 
Sentence 2 0.15 0.38 .745 
Sentence 3 0.40 0.95 .347 
Weighted Levenshtein 1.72 4.62 < 0.001 
DTW 1.13 3.37 .002 
Interaction: Weighted Levenshtein by Sentence 2 −0.64 −1.21 .230 
Interaction: Weighted Levenshtein by Sentence 3 −0.51 −1.13 .263 
Interaction: DTW by Sentence 2 −0.29 −0.59 .556 
Interaction: DTW by Sentence 3 −0.31 −0.72 .478  
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accent distance than DTW in model 2, indicating that the weighted 
Levenshtein measure was the strongest predictor of perceptual accent 
distance. 

To address the research question of which measure serves as a better 
predictor of accent judgments, Akaike’s Information Criterion (AIC) and 
log likelihood ratios for the two models were compared. Both AIC and 
log likelihoods are measures of model fit and can be used to compare 
models that are not nested, but that are modeled on the same data and 
for the same outcome variable (Akaike, 1974). AIC and log-likelihood 
values tend to covary, as they attempt to capture the same construct 
(that is, model fit), and models with lower AIC values tend to have 
higher log-likelihood ratios. As seen in Table 6, the model predicting 
ladder task results from the weighted Levenshtein measure and DTW 
had a lower AIC and higher, less-negative log-likelihood than the model 
using the unweighted Levenshtein measure and DTW as predictor var
iables. Although the difference between fit in these models is slight, the 
weighted Levenshtein and DTW is the best-fitting model given the data 
used in the present experiment. 

4. Discussion 

The purpose of the current study was to examine the relative con
tributions of phonemic (weighted and unweighted Levenshtein) and 
holistic acoustic (DTW) distances from the local accent to listeners’ ac
cent rankings for multiple non-local native and nonnative accents. 
Although these measures have been used in previous research, the 
current study is the first to compare their effectiveness in predicting 
accent judgments using a ladder task for short stimuli from both non- 
local native and nonnative talkers. Results from the current study sug
gest that the weighted Levenshtein distance measure is the strongest 
predictor of perceptual accent distance, although the differences in 
performance among the three distance measures were small. 

4.1. Comparisons among the objective distance measures 

4.1.1. Levenshtein distances 
Both weighted and unweighted Levenshtein distances accounted for 

significant variability in accent rankings, with the weighted Levenshtein 
only slightly outperforming the unweighted. Given previous demon
strations of the impact of segmental deviations on perceptions of accent 
strength (Brennan et al., 1975; Derwing and Munro, 1997; Magen, 
1998), the utility of Levenshtein measures as objective quantifications of 
segmental changes that can be consistently applied across studies is 
evident. The original, unweighted Levenshtein is highly correlated with 
perceptual judgments of accent distance (Gooskens and Heeringa, 2004; 
Wieling et al., 2014a). The weighted Levenshtein measure, introduced 
by Levy et al. (2019) was validated for use in predicting intelligibility by 
Bent et al. (2021). Although the weighted Levenshtein measure was 
designed to account for the assumed impact of varying types of pro
nunciation differences on intelligibility, there is limited evidence for a 
strong advantage of the weighted over the unweighted Levenshtein 
measure in this study. The current results indicate that the addition of 
deviation weights may not add enough explained variability in accent 
judgments over the unweighted Levenshtein measure to warrant its 
replacement. To our knowledge, no other studies have compared this 
weighted Levenshtein measure to the original, unweighted Levenshtein 
measure. However, Wieling et al. (2014a) compared the Native 
Discrimination Learning (NDL) Levenshtein measure – a cognitively 

based Levenshtein adaptation that takes into account listeners’ famil
iarity with certain segmental deviations – to the traditional Levenshtein 
distance measure. The NDL Levenshtein adaptation and the original 
Levenshtein correlated very highly (r = 0.89). Therefore, the results 
from both Wieling et al. (2014a) and the current study suggest that the 
unweighted Levenshtein measure is likely sufficient for quantifying ac
cent distance compared with various weighted measures for most pur
poses and situations. 

Observing an advantage of the weighted Levenshtein measure over 
an unweighted counterpart could depend on the tasks used, the specific 
language under study, or the varieties included in the task. For example, 
(Pettersson et al., 2013), who proposed the specific assignments of 
weights which Levy et al. (2019) used, formulated these weights to 
normalize historic text to a more modern spelling for natural language 
processing of text in Swedish. Thus, this specific weighted Levenshtein 
metric could be better suited for text-based (versus speech-based) tasks. 
Consonant-to-consonant and vowel-to-vowel changes may differentially 
affect readers and listeners, based on the cognitive processes recruited 
for each task. How well these penalties predict perceptual accent judg
ments could also be related to the language under investigation. It is 
possible that the effect of certain deviations on intelligibility for a 
Swedish listener (or reader; Pettersson et al., 2013) would be different 
than the effect on German (Levy et al., 2019) or English (Bent et al., 
2021) listeners. Further, consonants and vowels may differentially 
impact perceived accentedness among varieties, with consonant 
changes factoring in more heavily for nonnative varieties (Gao, 2019) 
and vowel changes better distinguishing among non-local native vari
eties (Clopper et al., 2005). 

Although the current study compared two different Levenshtein 
calculations, there are many ways to calculate segmental changes that 
could possibly capture more of the variability in accent rankings. The 
impact of vowel versus consonant changes; use of phonetic-level tran
scription and scoring (i.e., inclusion of diacritics); or an alternative 
weighting system are all examples of possible ways in which segmental 
changes could be quantified and compared to perceptual accent rank
ings. For example, Vieru et al. (2011) revealed certain segmental 
changes could be used as cues to accent identification by French lis
teners, such as /b/ → /v/ indicating a native Spanish versus native 
Italian speaker of French. Though these changes were dependent upon 
speakers’ native language, results demonstrate that generalizations 
regarding the relative importance of certain segmental changes could be 
made across varieties. In the current study, the relative difference in the 
predictive value of unweighted and weighted Levenshtein metrics to 
accent rankings was fairly minimal, suggesting that differences in Lev
enshtein calculations may be relatively minor. However, the way in 
which the segmental changes are calculated may differentially correlate 
with accent perception based on the type or length of stimuli (i.e., 
sentences versus words). Future work could investigate the utility of 
various segmental calculations in predicting stimuli of differing lengths. 

4.1.2. Dynamic time warping 
DTW was a significant predictor of ladder rankings, even when 

controlling for Levenshtein distance, indicating that holistic acoustic 
distance significantly explains variability in perceptual judgments of 
accent distance beyond phonemic distance alone. That being said, DTW 
contributed slightly less to perceptual accent rankings than did either 
Levenshtein measure. This result supports the findings of Bartelds et al. 
(2020) who similarly found a unique but modest contribution of DTW in 
explaining variability in accent judgments. Bartelds et al. (2020) sug
gested that recording inconsistencies may have influenced their find
ings. In the current study, all of the stimuli were recorded under similar 
high-quality conditions. The similar findings between Bartelds et al. 
(2020) study and the current study suggest that recording in
consistencies are not likely the primary source of the relatively small 
contribution of DTW measures to accent judgments. 

There are several other possible explanations for the relatively 

Table 6 
AIC and Log-likelihood values for models predicting ladder results from un
weighted and weighted Levenshtein and dynamic time warping.   

AIC Log-likelihood 

Unweighted Levenshtein + DTW 29,316.7 −14,636.3 
Weighted Levenshtein + DTW 29,306.9 −14,631.5  
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modest independent contribution of DTW to variability in perceptual 
accent judgments: (1) its importance may be dependent on the language 
background of the speaker and/or the listener; and (2) it does not 
discriminate between linguistic and non-linguistic acoustic information. 
Fig. 2 shows that the holistic acoustic distance of certain accents (e.g., 
German, Scottish) played a larger role in listeners’ perceptions of accent 
distance than other accents (e.g., Korean). The Levenshtein scores of the 
German and Scottish speakers were relatively high and low, respec
tively, compared to their ladder rankings, and the pattern of ladder 
rankings more closely matched the DTW scores for these two accents. 
This pattern of results suggests that the holistic acoustic distances be
tween Midland American- and both Scottish- and German-accented 
English are driving listeners’ perceptions of accent distance of these 
accents, more so than phonemic differences. On the other hand, Korean- 
accented speakers had a relatively low holistic acoustic distance 
(ranking only slightly above the British-accented speakers) and yet their 
ladder ranking seems to correlate more with their relatively high Lev
enshtein scores. For this accent, phonemic changes seem to contribute 
more heavily than holistic acoustic distance to listeners’ decision to rank 
them as relatively farther from Midland American English. Thus, lis
teners’ reliance on phonemic versus holistic acoustic distance to make 
their accent distance judgments may relate to the language background 
of the speaker. There are likely to be other factors that impact perceived 
distance that were not measured in this study, including attitudes about 
particular accents along dimensions related to solidarity and status. 

Likewise, the utility of the DTW measure in explaining accent 
judgments may be dependent upon the listener’s language background. 
Results from the current study suggest that native, monolingual Amer
ican English listeners attend to cues that are not fully captured by 
phoneme deviations – such as prosodic or subphonemic cues – as evi
denced by the significance of DTW in predicting judgments of accent 
distance. However, phonemic cues (i.e., Levenshtein distances) were 
more important than DTW in predicting ladder rankings for these 
monolingual American English listeners. This finding is consistent with 
previous research that found a relatively minimal benefit from prosodic 
information in distinguishing among English dialects (van Bezooijen and 
Gooskens, 1999; Alcorn et al., 2020) or when identifying the native 
language status of a French or English speaker (Grover et al., 1987; 
Vieru et al., 2011). On the other hand, prosodic information is important 
for distinguishing among Norwegian dialects (Gooskens, 2005). Nor
wegian listeners may therefore rely more heavily than American English 
listeners on prosodic cues in making accent strength or distance judg
ments. Further cross-linguistic support for this interpretation comes 
from Boula de Mareüil and Vieru-Dimulescu’s (2006) study, which 
demonstrated a significant role of prosody in identifying both 
Spanish-accented Italian and Italian-accented Spanish. A comparison of 
the effectiveness of DTW in predicting accent judgments using the same 
task but with varied target languages (and listeners who are native 
speakers of those target languages) could provide insight into how DTW 
performs in predicting judgments as a function of talker and listener 
language background. For example, Bradlow et al. (2010) compared 
perceived distance from English (using ladder rankings) of 17 languages 
by listeners of 5 different native language backgrounds, revealing sig
nificant correlations among the ladder rankings based on native lan
guage background. Identifying the relative contributions of phonemic 
cues versus holistic acoustic cues in these perceptual distances from 
English as a function of listeners’ native languages would reveal how 
native language background shapes which cues listeners attend to in 
making accent judgments. 

Another possible explanation for the modest contribution of the DTW 
variable in predicting perceptual accent judgments could be related to 
extra, non-linguistic acoustic information captured by MFCCs that might 
obscure what listeners use to make accent judgments. MFCCs capture a 
global acoustic picture of the signal but are not able to differentiate 
between linguistic and non-linguistic content. Thus, this measure is 
likely capturing acoustic information that is not relevant to accent 

judgments. Bartelds et al. (2020) noted that the difficulty in generating 
computational representations of phonetic information is in the ability 
to capture only what is important, without superfluous acoustic infor
mation that may not contribute to accent judgments. Further, MFCCs are 
impacted by speaker-level variability, such as vocal tract anatomy. In 
fact, out of the 111 sentences analyzed (37 speakers, 3 sentences per 
speaker), the lowest DTW distance between the target and reference 
(Midland) speakers were speakers of the same gender in 107 instances, 
suggesting that vocal tract anatomy may play a substantial role in DTW 
scores. Even within genders, there is likely a fair amount of variability in 
vocal tract length (and anatomy in general) that could influence MFCC 
calculations. Including this sort of idiolectal information that varies 
from speaker to speaker in MFCC calculations represents a limitation of 
the DTW variable. Although DTW captures sub-phonemic, phonemic, 
and prosodic cues, the relative importance of each of these cues as well 
as the addition of other non-linguistic acoustic information captured by 
DTW make it difficult to discern what non-phonemic information is truly 
important in perceptual accent judgments. 

One clear advantage DTW demonstrates over the phonemic measures 
is in its indifference to context. In the current study, DTW did not 
significantly interact with the sentence variable in either of the mixed 
effects models. Further, the relatively small error bars around the indi
vidual speaker means for the DTW scores compared to the Levenshtein 
scores (see Fig. 2) indicate that the DTW scores were less variable across 
sentences than the Levenshtein scores. This finding is expected, given 
that the Levenshtein measure is phoneme-based and therefore will vary 
depending upon which phonemes are present in a given sentence. Thus, 
DTW can provide an acoustic distance measure that is more impervious 
to sentence content than the Levenshtein distance, despite being out
performed by the Levenshtein distance in predicting accent distance 
judgments. 

Levenshtein distances and DTW represent imperfect but perhaps 
complementary distance measures. One advantage of the Levenshtein 
distance is its ability to quantify changes in the speech signal (specif
ically, segmental changes) that may reflect how listeners perceptually 
weigh these changes. Limitations of this measure include the introduc
tion of human bias when manually transcribing speech stimuli, and its 
inability to capture anything beyond the phoneme (at least in its 
instantiation in the current study). DTW (in this case, MFCCs), on the 
other hand, is an objective measure (and therefore, more resistant to 
human-level error in its calculation) and is able to capture a wide range 
of acoustic information. However, it captures only the general shape of 
the spectrum (Ryant et al., 2014), and weighs all of the acoustic infor
mation equally, which provides a poor representation of the cognitive 
underpinnings of accent perception. Human listeners take in the entire 
acoustic signal – not just the phonemes – but place more weight on 
linguistic information and are able to ignore irrelevant acoustic infor
mation when making accent judgments. 

In summary, all three objective distance measures contributed to 
perceptual judgments of accent distance, as measured by the ladder task. 
Comparisons across models revealed the weighted Levenshtein distance 
as the best predictor of the perceptual accent distance rankings, 
although the differences were modest. However, these objective dis
tance measures do not account for all of the variability in perceptions of 
accent distance. Fig. 3 demonstrates that although the distance measures 
perform fairly well in predicting accent judgments, there are clearly 
unaccounted for factors that contribute to listeners’ accent rankings. 
Listeners could be using metalinguistic cues, social knowledge or as
sumptions, or information relating to intelligibility or comprehensibility 
to make accent judgments. These factors were outside of the scope of the 
current study, and therefore unaccounted for, but could have exerted 
influence on listeners’ judgments. 

The next steps in identifying the cues that contribute to listeners’ 
perceptual judgments of both non-local native and nonnative accents 
include disentangling what non-phonemic cues (as captured by DTW) 
listeners are using that contribute to perceptual judgments beyond the 
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phoneme level (as captured by the Levenshtein distances). Objectively 
quantifying prosodic information (such as rhythm, F0 changes, and 
intonation, among others) is an important next step in determining the 
presence and relative importance of these cues in making perceptual 
judgments. Although DTW provides a good first step in capturing some 
of this information, this holistic acoustic distance measure casts a rela
tively wide net, making it difficult to draw conclusions about which cues 
are most important in accent judgments. Further, some acoustic infor
mation that was controlled for by the DTW measure in the current study 
– such as speaking rate – could also add to the understanding of how 
non-segmental information affects accent judgments. Pursuing self- 
trained neural models to predict accent distance (from Bartelds et al., 
2022) is another potentially worthwhile future direction, if the cost- and 
time-related barriers to training these models could be addressed. 

4.2. Non-local native versus nonnative accent rankings 

The present study included a variety of non-local native and 
nonnative accents. A few studies have included both nonnative and 
native accents (Adank et al., 2009; Bent et al., 2016; Goslin et al., 2012, 
2021; Floccia et al., 2009), yielding mixed results. Results from some 
studies have indicated that accent judgments are consistent with a 
native vs. nonnative distinction (i.e., all non-local native accents are 
rated as closer or less strong than nonnative; see Adank et al., 2009; 
Bent et al., 2016; Goslin et al., 2012), while others have demonstrated 
that listeners are not classifying accents based on native-status (Bent 
et al., 2021; Floccia et al., 2009; Levy et al., 2019). Adank et al. (2009) 
assessed reaction times of listeners to true/false questions presented in 
noise and in quiet with speakers of familiar and unfamiliar native and 
nonnative accents. Overall, a greater processing cost was seen for the 
nonnative than native accents. Floccia et al. (2009) investigated differ
ences in adaptation to accent changes when the accents were nonnative 
versus non-local native, using reaction times to identify processing ef
fects based on native language status. Diverging from Adank et al. 
(2009), they found a significant increase in reaction time when accent 
stimuli changed from baseline (local Plymouth English) to both 
non-local native and nonnative accents; still, the effect was stronger for 
the change to the nonnative accent than to the non-local native accent, 
suggesting some degree of processing differences of these two accent 
groups. It is worth noting that only one nonnative and one non-local 
native accent were included as stimuli in both Floccia et al.’s and 
Adank et al.’s studies, limiting the generalizability of this finding. In 
contrast, Bent et al. (2021) included one local native, three non-local 
native, and three nonnative accents in an intelligibility task (in quiet 
and noise), and reported that although performance by both children 
and adults was overall better for native and non-local native compared 
to nonnative stimuli, there was variability at the speaker-level. In other 
words, certain nonnative speakers’ stimuli (e.g., German, Mandarin) 
yielded better intelligibility scores than non-local native stimuli. The 
results of the current study are consistent with Bent et al.’s (2021) 
findings in revealing variability in accent distance both within and be
tween non-local native and nonnative accents, reflecting speaker-level 
variability. Although inclusion criteria for the non-native speakers of 
having lived in the United States for no more than 4 years attempted to 
control for accent strength, the overall strength of the accents (both 
non-local and nonnative) was not explicitly assessed. Certainly, different 
language learning profiles and residential histories contributed to the 
observed speaker-level variability in the current study. 

Cristia et al. (2012) questioned the importance of the distinction 
between native and nonnative accents, particularly in how listeners 
interpret or consider these accents in their judgments of strength or 
distance. They challenged the notion that native dialects differ at the 
segmental level only, citing White et al. (2012) study demonstrating 
more prosodic similarity between Dutch and Standard Southern British 
English than between Standard Southern British and Glaswegian En
glish. The inclusion of both non-local native and nonnative accents in 

the current study cannot speak to the question of perceptual distinction 
in processing of these accents. Although the present study included a 
relatively larger number of both accents and speakers from each accent 
(as compared to Floccia et al. (2009), for instance), suggestions of dif
ferences in strength, distance, or variability between non-local native 
and nonnative are limited by speaker-level variability, the small number 
of talkers included for each variety, and the relatively limited number of 
phonemes in various word-level positions. Still, investigating both 
non-local native and nonnative accents together in one study can pro
vide a broader view of perception, as it provides a greater breadth of 
both acoustic and phonemic cues in the speech signal. 

Future work could also include less-often studied native and 
nonnative accents (e.g., speakers from countries in Kachru’s (2006) 
“outer circle,” such as Pakistan or South Africa), to improve the gener
alizability of the findings of what contributes to perceptual judgments of 
accent distance. Including diverse and less often studied non-local native 
and nonnative accents would help expand the current understanding of 
what phonemic and non-phonemic cues are important for accent dis
tance judgments. 

Conclusion 

Both phonemic and holistic acoustic distance cues are used by 
American English-speaking listeners when making judgments of accent 
distance for both non-local native and nonnative accents, with phonemic 
cues contributing more to accent rankings than holistic acoustic distance 
cues. The unweighted and weighted Levenshtein distances both signif
icantly predicted accent distance judgments, with the weighted slightly 
outperforming the unweighted. The holistic acoustic distance measure is 
agnostic to the nature of the content it is analyzing (i.e., whether or not it 
is linguistically relevant), and may include extra, non-linguistic acoustic 
information that dampens its predictive performance. The significance 
of the phonemic versus the holistic acoustic distance measures in pre
dicting perceptual accent judgments may be partially due to the native 
variety of the speaker. However, both phonemic and acoustic distance 
measures have limitations that are somewhat mitigated by using both to 
assess the potential cues used by listeners to make accent distance 
judgments. For the purposes of investigating cues used by listeners when 
making accent distance judgments, analyzing only non-local native or 
nonnative accents–as opposed to considering both of these accent 
groups–may be unnecessarily restrictive, when both accent groups 
provide significant information about how phonemic and acoustic cues 
are used in accent judgments. 
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Appendix A  

Accent Gender Sentence 

British Female The clown has a funny face. 
Male The boy fell from the window 

A lady went to the store. 
French Male The dishcloth is soaking wet. 

The oven door is open. 
Female They had some chocolate pudding. 

The bus stopped suddenly. 
German Female She’s paying for her bread. 

The dinner plate was hot. 
Male He broke his leg again. 

The lady wore a coat. 
Hindi Female The baby has blue eyes. 

They’re shopping for school clothes. 
Male They have two empty bottles. 

The kitchen window is clean. 
Japanese Male They are coming for dinner. 

The table has three legs. 
Female A child ripped open the bag. 

The sun melted the snow. 
Korean Female The baby slept all night. 

There was a bad train wreck. 
Male The puppy played with the ball. 

The old woman was at home. 
Mandarin Male They’re watching the train go by. 

The woman cleaned her house. 
Female The oven was too hot. 

A girl came into the room. 
Scottish Female They had a wonderful day. 

They finished dinner on time. 
Spanish Male The big boy kicked the ball. 

A dog was eating some meat. 
Female He’s washing his face with soap. 

They are drinking coffee.  
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