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Listeners attend to variation in segmental and prosodic cues when judging accent strength. The relative con-
tributions of these cues to perceptions of accentedness in English remains open for investigation, although
objective accent distance measures (such as Levenshtein distance) appear to be reliable tools for predicting
perceptual distance. Levenshtein distance, however, only accounts for phonemic information in the signal. The
purpose of the current study was to examine the relative contributions of phonemic (Levenshtein) and holistic
acoustic (dynamic time warping) distances from the local accent to listeners’ accent rankings for nine non-local
native and nonnative accents. Listeners (n = 52) ranked talkers on perceived distance from the local accent
(Midland American English) using a ladder task for three sentence-length stimuli. Phonemic and holistic acoustic
distances between Midland American English and the other accents were quantified using both weighted and
unweighted Levenshtein distance measures, and dynamic time warping (DTW). Results reveal that all three
metrics contribute to perceived accent distance, with the weighted Levenshtein slightly outperforming the other
measures. Moreover, the relative contribution of phonemic and holistic acoustic cues was driven by the speaker’s
accent. Both nonnative and non-local native accents were included in this study, and the benefits of considering
both of these accent groups in studying phonemic and acoustic cues used by listeners is discussed.

1. Introduction phonemes; Gooskens and Heeringa, 2004) affect judgments of accent

strength. Correlations between objective accent distance measures and

Speech signals provide indexical information about a speaker’s
gender, race, age, region of origin, and native language status, among
others (Abercrombie, 1967; Bent and Holt, 2017). One indexical
dimension to which listeners are highly sensitive is a speaker’s status as
a native or nonnative speaker of a language (Flege, 1984; Park, 2013).
Listeners can recognize speakers as native or nonnative with samples as
short as 30 ms (Flege, 1984), in monosyllables (Park, 2013), in lan-
guages to which listeners have no prior exposure (Major, 2007), and for
stimuli that have been substantially altered (e.g., played backwards;
Munro et al., 2010). Listeners are also highly sensitive to the strength of
accents (e.g., Flege et al., 1995). Factors such as speaking rate (Bent
et al.,, 2016) and type and number of segmental deviations from the
listener’s local accent (e.g., substitutions, adding and omitting

perceptual judgments give insight into how these various cues influence
perceived “accentedness” (Wieling et al., 2014a). However, studies that
have attempted to reconcile objective distance measures with subjective
listener perceptions have yielded inconsistent results (e.g., Ander-
son-Hsieh et al., 1992; Sereno et al., 2016, Gooskens and Heeringa,
2004), particularly across both non-local native (i.e., other dialects
within the same language but distinct from the listener’s own dialect)
and nonnative accents (e.g., Bent et al., 2016, 2021). The present study
assessed the relation between perceptual judgments of accent distance
and both acoustic and phonemic measures of accent distance across
native and nonnative accents.
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1.1. Perceptual accent judgments

Perception of accentedness has been quantified in numerous ways,
including rating scales, ladder tasks, and free classification. Likert scales
- a type of rating scale — quantify listeners’ judgments on a numeric scale
with researcher-established qualitative labels (Munro and Derwing,
1995). Accent strength (Anderson-Hsieh et al., 1992; Riney et al., 2005),
similarity to a listener’s own accent (Gooskens and Heeringa, 2004), and
native-likeness (Bartelds et al., 2020; Wieling et al., 2014b) have all
been measured using Likert scales. Another less common rating scale
that has been used in accent perception studies is a magnitude estima-
tion scale (Brennan et al., 1975; Southwood and Flege, 1999), in which
listeners are asked to rate accents compared to reference stimuli on
perceived differences of magnitude. Southwood and Flege (1999) found
that magnitude estimation — and not linear measurement — leaves ample
room for response bias, as listeners seem to consistently compare the
stimuli to the one previously heard (instead of to the reference stimulus
they are provided).

The ladder task, introduced by Bradlow et al. (2010), is a more
recently developed tool in which listeners organize speakers on a ladder
structure, from closest to a dialect/language (usually the listener’s
native dialect/language) at the base, to farthest at the top rung. An
advantage of this task is that the experimenter may establish a baseline
(e.g., proximity to the local accent) without a label for the upper
extreme. This feature is particularly useful for tasks in which both native
and nonnative talkers are included, such that there is not an intuitive
“end” to the scale (i.e., there is no objective farthest distance). An
additional advantage is that the listener is provided with access to all
stimuli throughout the task and can listen to each item multiple times
with no restrictions on the order in which they are heard, which is
helpful when drawing comparisons among numerous stimuli. Similar
advantages are seen with the free classification task, in which partici-
pants group talkers in a two-dimensional matrix based on perceptual
similarities (Clopper, 2008). However, the free classification task does
not provide any sort of examiner-set baseline or predetermined number
of groups.

Bent et al. (2016) compared the utility of the ladder task (in which
listeners were asked to rank accents based on perceptual distance from
Standard American English) to a free classification task (in which lis-
teners were asked to group speakers by perceived region of origin). The
ladder task was scored based on the average distance accents were
placed from the baseline; in other words, how many “ladder rungs” away
from Standard American English the accent was placed. Scoring of the
free classification task used additive clustering analysis of a similarity
matrix, in which each matrix cell represented the number of times
specific pairs of accents were grouped together. The authors found
complementary results between the tasks, in that listeners’ sensitivity to
nonnative accents was observed in both tasks, and listeners perceptually
distinguished between non-local native and nonnative accents.

Both the ladder and free classification tasks allow researchers to
identify how listeners organize stimuli, potentially revealing specific
characteristics of the speech to which listeners are attending. While
perceived distance could be extracted from a free classification task, this
information is more implicit in participant responses, whereas indi-
cating distance is explicitly required in completion of a ladder task. The
current study utilized the ladder task, as the research question aimed to
compare perceived distance with established objective distance
measures.

1.2. Objective distance measures

Objective distance measures provide estimates of distance from a
reference accent. The resulting measurements can then be compared to
subjective accent distance judgments, with the goal of identifying the
segmental or acoustic aspects of accented speech that contribute to
perceptual judgments. Many researchers have begun using these
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objective distance measures in recent years (e.g., Gooskens and Heer-
inga, 2004; Wieling et al., 2014a, 2014b; Bartelds et al., 2020), but the
nature of the relationship between objective and perceptual measures is
complex and ripe for exploration.

1.2.1. Segmental measures

The Levenshtein Distance algorithm (Levenshtein, 1966) measures
the distance between two sequences (such as phonemes). Its application
to dialect distances began with Kessler’s (1995) measurements of dis-
tance among Irish dialects. This measure finds an optimal phonemic
alignment between target and reference stimuli and assigns an equal
penalty to any phonemic deviation (i.e., substitution, omission, insertion
of a phoneme) from the reference speaker (Kessler, 1995). In other
words, the production of a word by one speaker is compared against the
phonemic realization of that word by a comparison speaker. For each
phoneme that differs, one point is assigned; points are summed across
the word, with greater summed values reflecting a greater distance be-
tween the two productions of the stimulus. Therefore, the larger the
Levenshtein distance, the more the target utterance deviates phonemi-
cally from the same utterance as produced by the reference speaker. The
original Levenshtein algorithm operated on a binary system in which
any change, regardless of the type, resulted in a single point penalty.
Slight adaptations were made to this original algorithm by Gooskens and
Heeringa (2004) by dividing the summed score by the total possible
number of phonemes, to account for word length.

The original Levenshtein algorithm has also been adapted to better
reflect how certain phonemic changes impact listeners’ perceptions
(Bent et al., 2021; Levy et al., 2019). These adaptations are based on
theoretical assumptions from the literature that some phonemic changes
impact listener perception more than others. Vieru et al. (2011) revealed
that certain phonemic changes differentially predict accent identifica-
tion by French listeners (e.g., French listeners use the phonemic change
of /b/ — /v/ as a cue to identify a native Spanish speaker of French).
Furthermore, the relative importance of these phonemic substitutions
for accent identification was impacted by the speaker’s native language.
Flege (1984) found no evidence that a nonnative accent is more
detectable in vowels versus consonants, but more recent results from
Gao (2019) suggest that consonant changes may be more impactful than
vowel changes in perceptions of nonnative accented speech. The Lev-
enshtein adaptation proposed by Levy et al. (2019) follows Gao’s (2019)
results, with consonant substitutions carrying a heavier penalty than
vowel substitutions. Levy et al. (2019) used their Levenshtein distance
measure to broadly characterize phonemic differences among three
speakers, with one speaker each representing Standard German,
non-local native (Palatinate German), and nonnative (Korean-accented
German) accents. They found that the non-local talker had greater dis-
tances from Standard German compared to the nonnative talker and
showed the lowest intelligibility of the three talkers. Both the adapted
Levenshtein distance measure proposed by Levy et al. (2019) and the
traditional Levenshtein measure have been shown to predict accent
perception (e.g., Bent et al., 2021 and Gooskens and Heeringa, 2004,
respectively).

Additional adaptations and alternatives to the traditional Lev-
enshtein measure have been proposed. Wieling et al. (2014a, 2014b)
tested cognitively-based extensions and alternatives to the original
Levenshtein distance including the pointwise mutual information (PMI).
PMI-based Levenshtein distance attempts to account for listeners’ lan-
guage exposure. Using corpus data, this process compared pro-
nunciations of the same word from various accents of English using
Levenshtein distances calculated from logical segmental alignments of
words (i.e., only aligning vowels with vowels; Wieling et al., 2014b).
This method calculates the distance between two segments, based on the
relative frequency of their alignment (Wieling et al., 2014b). More
frequently “misaligned” segments may have a lesser impact on listeners
in the context of judging “native-likeness,” as these are misalignments
that listeners hear frequently. For example, if [a] — [o] is a more
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frequently occurring substitution than [uv] — @ (a deletion of [u]), the
PMI score for the first change would be lower than for the second.
Wieling et al. (2014b) found significant negative correlations between
the PMI-based Levenshtein distance scores and perceptual ratings of
“native-likeness,” consistent with the prediction that more frequently
misaligned segments have a smaller impact on listener judgments.

Another cognitively-based measure utilized by Wieling et al. (2014a)
involves naive discriminative learning (NDL), based on a theory from
human and animal behavioral learning (Rescorla and Wagner, 1972)
that suggests that learners make predictions based on available cues.
Depending on the outcome of these predictions, associated connection
strengths between the cues and the predicted outcome are adjusted to
improve the accuracy of future predictions. In this case, listeners make
predictions about word meaning based on the sounds they hear. The
cognitive basis of applying this theory to dialect distances is that typi-
cally listeners are most often exposed to talkers who sound similar to
themselves, and this exposure shapes the association strengths between
input and outcomes (i.e., between phonetic cues and word meaning).
Corpus data were analyzed to determine the frequency with which the
association between phonetic cues and word meanings (i.e., outcomes)
are likely to be encountered. Summing the association strengths be-
tween the cues and outcomes results in activations for the accented
speech. A difference score was calculated between the activations of
each speaker and the “average” speaker (of American English, in this
case, averaged across speakers within the study) to create the NDL-based
pronunciation distance. NDL correlates highly with both the traditional
Levenshtein measure and perceptual ratings of accentedness (Wieling
et al., 2014a).

A limitation of both the PMI and NDL measures is their reliance on
large amounts of speaker data. Because both measures account for the
frequency with which certain segmental alignments occur, large
amounts of data are required to ensure these frequencies appropriately
reflect the speech of speakers outside of the dataset. For example, 395
transcribed speech samples of the Please Call Stella passage from the
Speech Accent Archive' (Weinberger and Kunath, 2011) were used in
Wieling et al. (2014a, 2014b) studies, representing native speakers from
99 different languages, to measure the frequency of possible segmental
changes. The value of PMI and NDL as adaptations to the traditional
Levenshtein is that they are grounded in cognition, accounting for lis-
teners’ language experiences and exposure, rather than assuming that all
phonemic changes are (perceptually) created equal. Although (to these
authors’ knowledge) the PMI-based Levenshtein has not been directly
compared to the traditional Levenshtein measure, Wieling et al. (2014a)
demonstrated a strong correlation between NDL and the traditional
Levenshtein measure, providing support for a cognitive basis for the
traditional Levenshtein. Further, the traditional Levenshtein has greater
feasibility, and may be better suited for use in experimentation than
NDL.

1.2.2. Acoustic measures

A significant limitation of all of the previously mentioned measures
of phonemic distance is their inability to account for acoustic variation
beyond the phoneme level that may contribute to accent distance
perception (e.g., Gooskens, 2005). This sort of acoustic variation in-
cludes both subphonemic (e.g., reduction, lengthening, etc.) and pro-
sodic (e.g., stress, intonation, rhythm, etc.) information. The role of
prosody in predicting accent perception in English has yielded mixed
results. Munro (1995) revealed that untrained native English listeners
could identify native versus nonnative speaker status from unintelligi-
ble, low-pass filtered speech, relying only on rhythm, stress, and

! The Speech Accent Archive is a digitally available archive of more than
1000 transcriptions and audio files of speakers from various language back-
grounds reading the Please Call Stella passage. Some demographic information
for each speaker is also available (e.g., native language, gender, age, etc.).
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intonation instead of segmental information. Likewise, Anderson-Hsieh
et al. (1992) reported a stronger correlation between overall pronunci-
ation ratings and impressionistic ratings of nonnative speakers’ prosodic
deviance, than pronunciation ratings and segmental or syllable-level
changes. On the other hand, Sereno et al. (2016) found that segmental
changes influenced accentedness, comprehensibility, and intelligibility
ratings, while prosody influenced intelligibility ratings only. Sereno
et al. (2016) and Anderson-Hsieh et al. (1992) both investigated the
relative contributions of prosodic and segmental cues to listeners’
judgments. Differences in methodologies among these studies (e.g.,
impressionistic judgments of prosody: Anderson-Hsieh et al., 1992 and
Munro, 1995; versus more objective measures of prosodic differences
such as FO contours: Sereno et al., 2016) could at least partially explain
these discrepant findings.

In studies of accent perception with a non-English target language,
durational cues (German: Kolly et al., 2017), intonation (Norwegian:
Holm, 2008; Italian: Vitale et al., 2014), and spectral cues (Thai:
Wayland, 1997) have all been shown to play a significant role in pre-
dicting accent judgments. The majority of these studies used acoustic
manipulations of speech stimuli to identify the relative contributions of
prosodic versus segmental changes to accent perception. For example,
Holm (2008) reported a significant reduction in ratings of accentedness
when intonational manipulations (FO slope and direction) were applied
to stimuli in Norwegian, and Vitale et al. (2014) transplanted yes/no
question and declarative sentence FO trajectories between native and
non-native speakers of Italian, finding that native prosody with
non-native segments yielded lower accentedness ratings than the
reverse. On the other hand, Vieru et al. (2011) revealed that prosody
(quantified by rhythmic measures including proportion of vocalic in-
tervals, pairwise variability index, and word-final schwa duration) only
modestly contributed to accent classification by French speakers, in
comparison to segmental contributions. These studies demonstrate that
in addition to differing methodologies and outcome measures affecting
findings, the target language under investigation is likely a significant
predictor of the extent to which prosody influences accent judgments.

Investigations of the influence of prosody on listeners’ within-
language accent judgments (i.e., identifying dialect regions) show
similarly mixed results (e.g., English: Alcorn et al. (2020), van Bezooijen
and Gooskens (1999); Norwegian: Gooskens (2005); and Dutch: van
Bezooijen and Gooskens (1999)). Alcorn et al. (2020) observed that
while listeners use prosodic cues to make judgments about English
speakers’ region of origin within the United States (e.g., Southern,
Midwestern), there is a greater detriment to listeners’ accuracy when
segmental information is removed than when prosodic information is
removed. Prosodic cues similarly play only a minor role in
within-language dialect identification in both British English and Dutch
(van Bezooijen and Gooskens, 1999). The authors found a minimal effect
on accuracy when prosodic cues were removed (monotonized speech),
yet a large impact on accuracy when segmental content was removed
(low-pass filtered speech). In contrast, prosodic cues play an integral
role in distinguishing among Norwegian dialects: native listeners had
much more difficulty identifying Norwegian dialects from monotonized
recordings (i.e., intonation information removed) than when listening to
original recordings (Gooskens, 2005). It is likely that phonemic and
prosodic information are intertwined and are uniquely important factors
considered by listeners in accent judgments, although their relative
importance in accent perception may be language- or dialect-dependent.

To account for both the phonemic and non-phonemic (sub-phone-
mic, prosody, etc.) aspects of speech, dynamic time warping (DTW) has
recently been used in accent perception research to quantify the acoustic
distance between two speech signals. Instead of focusing only on the
phonemes produced, this procedure optimizes alignment between nu-
merical feature representations (e.g., Mel frequency cepstral co-
efficients: Bartelds et al., 2020; fundamental frequency: Gao, 2019),
allowing for additional acoustic information to be captured beyond the
phoneme level. From this alignment, the shortest path through a cost
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matrix is calculated, ultimately resulting in a distance score that cap-
tures pertinent acoustic information in the signal. This automated pro-
cedure does not rely on listener judgments of phoneme production (i.e.,
transcription) and DTW therefore could be a faster and more reliable
alternative to Levenshtein distance measures, which require manual
phonemic transcription, while also accounting for differences in
sub-phonemic or prosodic aspects of the speech signals. The acoustic
information captured by DTW includes phonemic, subphonemic, and
prosodic information, and will therefore be referred to as a holistic
acoustic distance measure.

Bartelds et al. (2020) compared DTW output scores (of Mel fre-
quency cepstral coefficients) with perceptual ratings of native-likeness
on a 7-point Likert scale and with segmental deviations (PMI-based
Levenshtein distance) of nonnative English speakers from 99 different
L1 backgrounds. Results from a multiple regression model including the
PMI-based Levenshtein distance measure, DTW, and number of mis-
pronunciations (manually counted), revealed that both the Levenshtein
distances and DTW scores significantly predicted perceptual judgments,
while number of mispronunciations did not. The DTW variable
contributed 5 % of the model variance. Although this contribution is
modest, Bartelds et al. (2020) suggested that DTW captures some aspects
of the signal beyond what phonemic measures (e.g., Levenshtein) cap-
ture. An additional experiment from their study included DTW analyses
of MFCCs generated from a single speaker’s repeated token but with
prosodic manipulations (i.e., normal pronunciation, rising intonation,
lengthened first syllable) and recorded with two different devices
simultaneously. The purpose of this final experiment from Bartelds et al.
(2020) was to both highlight the role of prosody in MFCC calculations,
and to show that different recording devices of the same stimuli from the
same speaker can have different DTW values. The authors posit that
MFCC'’s sensitivity to differences in recording devices and procedures
could explain the less-than-optimal performance of the DTW measure. In
their experiment predicting human perceptual ratings of native-likeness
from the acoustic and phonemic measures, Bartelds et al. (2020) used
recordings from the Speech Accent Archive (Weinberger and Kunath,
2011), which they report could have impacted their DTW results given
the wide range of recording conditions and quality. Speakers record and
upload audio files from their own personal devices to the Speech Accent
Archive (Weinberger and Kunath, 2011), eliminating the possibility of
consistency in recording protocols. This recording sensitivity issue could
be mitigated by using consistent recording conditions across stimuli,
such as recording all stimuli using high-quality equipment in a
sound-attenuated booth. In sum, this study shows that DTW may capture
important acoustic information that segmental measures alone cannot,
but suggests that consistency in recording conditions could improve its
reliability. More recently, Bartelds et al. (2022) demonstrated that a
self-supervised Transformer-based neural model of acoustic distance
significantly predicted human accent perception — outperforming the
segmental measure; however, the generalizability of the results were
limited by the fact that the model required language-specific training for
success, which is both costly and time-intensive.

1.3. Current study

The purpose of the current study was to examine the relative con-
tributions of phonemic and holistic acoustic distance from the local
accent to listeners’ accent rankings for multiple non-local native and
nonnative accents. The study compared the unweighted (original Lev-
enshtein measure) and weighted (the adapted measure from Levy et al.,
2019) Levenshtein distance measures against one another and analyzed
how these phonemic measures compare to a holistic acoustic distance
measure (DTW) in predicting perceptual accent judgments. Bartelds
et al. (2020) also used a similar multi-method approach, preliminarily
revealing promising results. The current study aimed to build upon that
work by using: (1) both non-local native and nonnative accents; (2) a
ladder task to allow for explicit perceptual comparison among accents

Speech Communication 155 (2023) 102987

by the listeners; (3) multiple sentence stimuli per talker, including a
condition in which each talker produced a different sentence; and (4)
shorter stimuli (1 sentence). The inclusion of non-local native and
nonnative accents in the same perceptual ranking task represents a
unique contribution of the current study, as the majority of research
focuses on only one group (i.e., either native or nonnative accents,
compared to a reference stimulus; see, for example: Flege et al., 1995;
Wieling et al., 2014a, 2014b; Bradlow et al., 2010). The use of an in-
terval scale in the ladder task on which accents can be compared pro-
vides a perceptual measure of accent distance (as opposed to strength),
which may serve as a better theoretical match to the objective phonemic
and holistic acoustic distance measures under investigation in the cur-
rent study, as opposed to other perceptual measures (e.g., free classifi-
cation, Likert scales of accent strength). Using multiple sentence stimuli
per talker, one of which is different for each talker, allows for the ex-
amination of performance consistency of the distance measures across
sentences with varied content. The presence of an interaction between
sentences and one or both of the acoustic distance measures would
suggest a dependence on linguistic content, which could speak to the
usefulness of the distance measures. Finally, limiting the stimuli to one
sentence allows for an acoustic or phonetic “first impression.” Many
studies (including Bartelds et al., 2020) use the Please Call Stella passage
from the Speech Accent Archive (Weinberger and Kunath, 2011). The
advantage of using this passage is in its representation of common En-
glish words and nearly the full spectrum of English consonants and
vowels. However, the length of the passage increases the cognitive load,
requiring the listener to hold more linguistic content in their working
memory when making their perceptual judgments (cf. Alcorn et al.,
2020). The inclusion of stimuli that vary in both length and content from
the Stella passage can provide a more robust understanding of the
contribution of segmental and acoustic cues on accent judgments.
Further, by using stimuli recorded in sound-attenuated booths with
consistent procedures and high-quality equipment, we mitigate the
negative effects of recording inconsistencies on DTW outcomes noted by
Bartelds et al. (2020).

2. Method
2.1. Participants

Fifty-two adult monolingual speakers of American English (M = 21.2
years; 16 males, 36 females) participated in this study. One additional
participant was tested but excluded for exceeding the criterion set for
time spent abroad (i.e., under 10 months). Listeners were recruited from
Indiana University and the surrounding Bloomington, Indiana, com-
munity. Participants demonstrated hearing within normal limits by
passing a pure-tone hearing screening at 25 dB HL at 250 Hz and at 20
dB HL for octave frequencies between and including 500 and 8000 Hz
(re: ANSI, 2004). A majority listed Indiana as their home state (n = 35)
with the remaining from the following states: Illinois (n = 6), Missouri
(n = 2), New Jersey (n = 2), Florida (n = 1), Michigan (n = 1), Mis-
sissippi (n = 1), New York (n = 1), Ohio (n = 1), Pennsylvania (n = 1),
and West Virginia (n = 1). Listeners were paid $10 for their participa-
tion. All research was approved by the local Institutional Review Board.

2.2, Stimuli

Stimuli were produced by 37 adult talkers (M = 28 years; 17 males,
20 females) from three native English accents (Midland American,
Standard Southern British,” Scottish), six nonnative accents (Japanese-,
Mandarin-, Korean-, Spanish-, French-, and German-accented), and one
bilingual accent (Hindi-English). All nonnative speakers reported having

2 Standard Southern British English will be referred to as “British” throughout
the manuscript.
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lived in the United States for no more than 4 years at the time of the
recordings. Nonnative accents and native dialects were chosen to
represent a variety of accent variation and geographic locations. Each
accent was produced by four speakers (2 male and 2 female), except for
British English (2 male, 1 female) and Scottish English (2 female).
Speaker gender was nearly balanced to preclude gender from acting as a
potential confounding variable in perceptual distance from Standard
American English. Each talker contributed three sentences, two of which
were the same across all talkers (“The cow was milked every day” and
“Father forgot the bread™) and one of which was unique for each talker
(see Appendix A). The first two sentences were selected because they
included phonemes that represent a variety of English consonants and
vowels. The unique sentence was included with the goal of reducing
listeners’ reliance on specific sentence content when determining accent
distance. The stimuli were selected from sentences in the Hearing in
Noise Test-Children (HINT-C; Nilsson et al., 1994). Speech samples were
either recorded at Indiana University’s Speech Perception Lab, Ohio
State University’s Developmental Speech Research Lab, or obtained
through the SpeechBox, ALLSSTAR Corpus from Northwestern Uni-
versity’s Department of Linguistics (Bradlow, n.d.). All recordings were
made in sound-attenuated booths with digital recorders and
high-quality microphones. The RMS amplitude of all samples was
normalized in Praat (Boersma, 2001).

Familiarity ratings were obtained for all of the non-local native and
nonnative accents used in the study, except for the reference accent
(Midland American English). The Midland accent was assumed to be
highly familiar to all listeners because it is the local variety of the testing
location. Listeners provided ratings of the amount of interaction with
speakers from the various accent backgrounds on a scale of 0-10 with
0 indicating “never interacted” and 10 indicating “interact with daily.”
Results from the familiarity ratings were averaged across participants.
An ANOVA was run to assess differences among accents in degree of
familiarity, with accent as the predictor variable and familiarity rating
as the outcome variable. The ANOVA was significant, indicating that
familiarity ratings for certain accents were higher, on average, than
others, F(8, 459) = 6.76, p < .001. Spanish- and Mandarin-accented
English had the highest degree of familiarity (2.6 and 2.4, respec-
tively), and Japanese- and Scottish-accented English represented the
least familiar accents to listeners (0.6 and 0.3, respectively). Although
there was a significant difference in familiarity of accents, all of the
average familiarity ratings were at or below 2.6 (out of 10), indicating a
low degree of experience with these accents.

2.3. Levenshtein distance measures

2.3.1. Unweighted

The unweighted Levenshtein distance is based on the traditional
algorithm (Levenshtein, 1966), and compares a target stimulus to a
reference, assigning one point per change, regardless of type (i.e., sub-
stitutions, omissions, additions, etc.) across all consonants and vowels
(Kessler, 1995). The total number of penalties are summed at the word
level, and then divided by the total possible number of phonemes
(Gooskens and Heeringa, 2004). The total possible number of phonemes
is not the number of phonemes produced by the reference speaker, but
rather comes from the most logical alignment between the target and
reference stimuli. If a non-local/nonnative speaker inserts a phoneme
into the word, this increases the total possible number of phonemes by
one. For example, if a nonnative speaker inserts a schwa in a target word
‘milked’ (e.g., /milkat/) and the reference speaker does not (e.g.,
/milkt/), the total possible number of phonemes increases from five to
six. See Table 1 for a visualization of this alignment, and calculation of
the total possible number of phonemes. Word level scores are summed
across the sentence and divided by the total number of words in the
sentence.
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Table 1
Calculating total possible phonemes from most logical alignment using the un-
weighted Levenshtein distance.

Reference speaker m 1 1 k @ t Total possible
phonemes = 6
Non-local/nonnative | [ | |

speaker

m I 1 k o t

2.3.2. Weighted

An adapted version of the Levenshtein distance algorithm provides
for more score variation depending on the type of error (see Table 2).
This scoring method was adapted for intelligibility tasks by Levy et al.
(2019) and is based on the assumption that not all phonemic changes
carry equal weight in perception. As with the unweighted Levenshtein,
the most logical alignment was used when comparing the reference and
target stimuli using the weighted Levenshtein (see Table 1). Penalties
were assigned per phoneme deviation (substitution, omission, or addi-
tion) as shown in Table 2, and then summed for each word. For example,
substitution of one consonant for another received a 0.75-point penalty,
while one vowel for another received a 0.5-point penalty. Unlike the
unweighted Levenshtein measure, word-level scores in the weighted
Levenshtein are not divided by the total possible number of phonemes in
the target word, but instead summed at the word-level. Word length
itself is not accounted for in this version. However, the word-length
change penalty accounts for changes to word length. Both the un-
weighted and weighted Levenshtein are averaged at the sentence level.
See Table 3 for example scoring for both unweighted and weighted
Levenshtein.

To complete this analysis, the two sentences from each of the 37
speakers (the four Midland and all non-local speakers) used in the same
sentence conditions were phonemically transcribed. In addition, all
sentences for the unique sentence condition (Appendix A) were tran-
scribed for all 37 speakers. Two research assistants trained in the use of
IPA conventions independently transcribed each sentence, using broad
(i.e., phonemic) transcription using a consistent set of symbols (e.g., the
diphthong in the word ‘same’ always transcribed as /e1/ and not /¢j/, if
produced in a native-like manner). The transcriptions were compared,
and any discrepancies between transcriptions were resolved by a third
research assistant. In the case of ambiguities that could not be resolved
among the three research assistants, the second author [TB] resolved
disagreements. Therefore, the final version of each transcription was
agreed upon by 3 to 4 researchers.

Each sentence was manually divided at word boundaries and
compared to the local (Midland American English) dialect on the word
level. The alignment of the reference and target phonemes was
completed manually by research assistants, using the most logical
alignment. For example, as seen in Table 1, all of the corresponding
phonemes produced by the local native and non-local native/nonnative
speaker were aligned, with the inserted schwa from the nonnative
speaker aligned with a corresponding empty position in the local native
speaker’s production. All alignments were reviewed by the first author
[HLC] to ensure use of the most logical and optimal alignment. The

Table 2
Weighted Levenshtein penalties for phonemic changes.

Change Point Penalty

Vowel substituted by another vowel 0.5

Consonant substituted by another consonant 0.75

Insertion 1.0

Change to length* 1/log10(max(length(word1),
length(word?2)))

Other (deletions, vowel to consonant, 0.4

consonant to vowel, etc.)

Note. *wordl = number of phonemes in the non-local accent speaker’s pro-
duction; word2 = number of phonemes for the local accent production.
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Table 3
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Examples of sentence-level score calculations using the weighted and unweighted Levenshtein algorithm.

Unweighted Levenshtein

Weighted Levenshtein

Target sentence Father forgot the bread Father forgot the bread

Midland accent fade- foigat 39 bied fade- foigat 9 bied
French-accented English feedo foigat ds bued feedor foigat ds bied
Penalties 1/4 0/6 172 0/4 .5 0 .75 0
Levenshtein Score .25 0 .5 0=0.188 .5 0 .75 0=0.313

transcription for each non-Midland speaker was compared to the tran-
scription of each of the four Midland American English speakers
included in this study. When a phoneme in one of the non-Midland
speakers did not match any of the Midland speakers, a penalty from
Table 2 was applied. Phonemes that matched at least one of the Midland
speakers were not assigned a penalty (see Table 4). Not all productions
of the stimuli were phonemically realized identically among the
Midland speakers, and comparison of each stimulus to all four Midland
speakers allowed for some flexibility in scoring to account for natural
variability in production. Also note in Table 4 that the production of the
target word “slept” by the Korean speaker received four penalties: two
for deleting phonemes, one for a consonant change, and one for a change
in word length. Higher penalties indicate larger phonemic differences
between the Midland and non-Midland productions. No penalties were
issued for changes in stress. A substitution of /a/ for /&-/ was treated as a
vowel change. Productions that lengthened consonants from one word
to the next (e.g., ‘bus stopped’ was transcribed as [bas:tapt] for one
Midland speaker) were calculated as though there were two separate
consonants. For both unweighted and weighted Levenshtein measures,
Midland speakers served as the comparison, and therefore all Midland
speakers had scores of zero (as they could not receive penalties for
phonemically deviating from themselves).

2.4. Dynamic time warping

Dynamic time warping computes the shortest distance through a cost
matrix, typically generated from two vectors. In speech recognition,
these vectors come from feature representations of the signals being
compared. Mel frequency cepstral coefficients (MFCCs) are often used as
feature representations in audio signal comparison, because they pro-
vide a more reliable representation of the phonetic content of the signal
in automatic speech recognition compared to other feature representa-
tions (e.g., linear frequency cepstrum, among others; Davis and Mer-
melstein, 1980). MFCCs were calculated for 74 sentences (37 talkers x 2
sentences) for the same sentence conditions and 37 sentences for the
unique sentence conditions, such that each Midland and non-local
talker’s production of each of the three sentences was measured. The

Table 4
Examples of transcriptions, penalties and overall score using the weighted
Levenshtein measure.

Sentence The  baby  slept all night  Average
Midland o beibi  slept ol nart
1
Midland do berbi  slopt ol nart
2
Midland 9 berbi  slepd ol nart
3
Midland do berbi  slept ol nart
4
Korean o5} berbi  sev al nart
Score 0 0 (0.4 +0.4 4+ 0.75 + 05 0 (2.981 +
(1/LOG10(MAX((3), 0.5)/5 =
(5)))) = 2.981 0.696

process for calculating MFCCs in the current study was guided by the
process outlined in detail by Bartelds et al. (2020), with a key difference
being that the MFCCs in the current study were calculated over the
entire sentence for each stimulus, instead of for each individual word
from a paragraph. In the current study, MFCC calculations and subse-
quent DTW analyses were performed using a Python script (written by
author HLC and shared in the OSF repository), incorporating the ‘mfcc’
function in the ‘librosa’ package (McFee et al., 2015).

To calculate the MFCCs, the signal was separated into 25-ms over-
lapping frames with a 10-ms step size, with 12 cepstral coefficients
capturing the overall power of the signal in that window and accounting
for variation in the signal intensity. The “Oth” coefficient was included
as a representation of the overall energy of each 25-ms frame, resulting
in a total of 13 coefficients per frame. The first- and second-order de-
rivatives were calculated for each of the 12 cepstral coefficients and
energy representations for each 10-ms step, to account for the temporal
changes between frames. This resulted in 39 coefficients for each 10-ms
step. The concatenation of the vectors of 39 coefficients over the entire
sample resulted in the MFCC feature representation for each speech
stimulus item. The final step in obtaining the MFCCs was to normalize
the coefficients, by applying a z-transform to each vector of MFCCs per
windowed frame. Bartelds et al. (2020) demonstrated the importance of
normalization of MFCCs in DTW to reduce the “noise” in the signal (i.e.,
less relevant acoustic information). Correlation of the acoustic distance
measure with human judgments of accent distance increased in
magnitude from r = -0.27 tor = -0.71 when the normalization procedure
was used in processing the stimuli in Bartelds et al. (2020).

DTW between MFCC vectors from the non-Midland (non-local native
and nonnative) accents and the reference stimuli (Midland, the local
accent) was performed to provide a holistic acoustic-based distance
measure. DTW scores were calculated as the shortest distance through a
cost matrix consisting of MFCCs between a non-local native or nonnative
accent (target) and reference (Midland) stimulus, with a higher DTW
score representing a greater deviation from the reference stimulus. Each
non-Midland stimulus was compared to the four reference stimuli (i.e.,
two male and two female Midland speakers), resulting in four acoustic
distance scores per sentence. The lowest of the four scores was selected
to represent the acoustic distance between that target speaker and the
reference Midland dialect, to most closely match the procedure for the
Levenshtein comparisons. Because three different sentences were used
(two consistent, one unique), each speaker had three associated distance
scores. Out of 111 possible comparisons, 107 of the lowest scores were
between same-gender talker pairs.

Midland speakers received non-zero DTW scores (unlike for the
Levenshtein scores, where all Midland speakers received zeros), as the
MFCCs for each Midland stimulus was compared to the other three
Midland stimuli. Following the same procedure as the non-Midland
stimuli, the lowest of the three scores were selected to represent the
acoustic distance between that target Midland speaker and the other
three Midland dialects for each sentence stimulus. The choice to
compare the Midland speakers to one another for the DTW measure and
not the Levenshtein measure was based on the fact that there were
substantial differences among DTW scores, while the Levenshtein dif-
ferences were negligible (i.e., there were only occasional differences,
such as flap (/r/) for /d/).
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2.5. Procedure

Participants were tested in one 60-minute session. Prior to the onset
of testing, participants completed the consent process, hearing
screening, and language background questionnaire. The experiment,
conducted in a sound-attenuated booth, consisted of three ladder tasks
with one-minute breaks between ladders. The two ladders in which each
talker produced the same sentence were counterbalanced across par-
ticipants and the ladder in which each talker produced a unique sen-
tence was presented last. Verbal instructions were given to participants
prior to the start of the experiment and on-screen instructions were
provided at the start of each ladder. The experiment was created with
custom software written in Python and run on a MacMini. Stimuli were
presented binaurally through Sennheiser HD280 Pro-headphones at an
average RMS amplitude of 65 dB SPL.

Each ladder had 20 rungs, with space for up to four speakers on each
rung. While the choice of four spaces on each rung is somewhat arbi-
trary, imposing a limit is necessary to ensure that listeners rank some
accents above/below others, thereby forcing them to make decisions
about accent distance, while still allowing them to indicate that some
accents are equally distant from the reference. A set of 37 rectangular
icons appeared to the left of the ladder (an example of a starting ladder is
displayed in the upper panel of Fig. 1). The bottom-most rung of the
ladder was labeled “Standard American English” (i.e., the lay term for
the Midland American English accent used by the local population).

Participants clicked on one of the talker icons to hear that sentence.
Participants were instructed to rank the talkers on the ladder according
to how similar the talker sounded to the local accent, with talkers whose
productions sounded most like the local accent placed near the bottom
and those furthest from the local accent at the top (an example of a
completed ladder is displayed in the bottom panel of Fig. 1). No model of
the target dialect was provided to participants; rather, their knowledge
and interpretation of the local dialect served as the reference stimulus.
Providing more spaces than talkers allowed for variety in participants’
representation of distance.

Midland American English speaker stimuli were included in the
ladder task. The purpose of including Midland speakers as an accent
variety in this study was to allow for the perceptual ranking of both
native and nonnative accents of varying familiarity to the listeners.
Although this Midland accent did not serve as the baseline in the ladder
task, including the Midland variety added to the gradient of perceptual
distances. Inclusion of this highly familiar variety served to situate the
listener on a scale of perceptual distances and avoid lumping all varieties
into a homogenous “other” group.

2.6. Data analysis

Statistical analyses were performed using R version 4.0.4 (R Core
Team, 2021). Data and R code are available in the OSF repository. A
linear mixed effects model was run to predict perceptual distance

Standard American English

DH —
AS
VT
WR
ME
:
oM
cP
AE
wu

Standard American English

Fig. 1. Examples of an empty ladder (top panel) and completed sample ladder (bottom panel).

Are you sure?

Speech Communication 155 (2023) 102987
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(ladder rankings) from DTW, weighted and unweighted Levenshtein
distance, and sentence condition (i.e., the 3-level factor of the sentence
variable). Continuous variables were standardized (z-transformed), both
to support convergence of the mixed effects models, and to allow for
direct comparison of these variables’ contributions to explaining vari-
ability in the outcome variable. A step-down approach was used to
identify the random effect structure for the linear mixed effects model,
beginning with the maximal design-driven random effects, including: a
by-listener intercept, and by-listener slopes for each distance measure,
the sentence variable, and their interactions; and a by-speaker intercept,
and by-speaker slope for the sentence variable. This maximally
design-driven model was over-specified, as expected, and resulted in a
singular fit which did not converge. The model was then stepped down
incrementally, removing one random effect term at a time (beginning
with the random effects with the highest correlations with other vari-
ables in the random effects structure) until convergence was achieved.
The model which ultimately achieved convergence included a
by-listener random intercept and slopes for sentence and weighted
Levenshtein, and a by-speaker random intercept and sentence slope. The
ImerTest package was used in R to obtain p-values for fixed effects in the
mixed effects model, and the criterion for significance was set at p < .05.

The variance inflation factor (VIF) function in R was used to identify
the potential presence of unacceptable (multi)collinearity among the
predictor variables. Using the heuristic that a VIF score greater than 10
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indicates unacceptable collinearity, it was determined that the two
Levenshtein predictor variables shared sufficient variance to inhibit
interpretability (unweighted Levenshtein: 14.11; weighted Levenshtein:
13.52; DTW: 2.21). To address this collinearity, two separate models
were constructed: one model with the unweighted Levenshtein measure
and DTW, and the other with the weighted Levenshtein and DTW. The
two models were then compared to determine which pair of acoustic
distance measures resulted in the best-fitting model. The random effects
structure for these two models was determined using the same methods
described above, beginning with the maximal design-driven random
effects (by-listener intercept, and by-listener slopes for each distance
measure, the sentence variable, and their interactions; and by-speaker
intercept and slope for the sentence variable). This model did not ach-
ieve convergence, and the models were stepped down by incrementally
removing the variable or interaction with the highest degree of corre-
lation to others in the random effects structure. The structures that
achieved convergence were the same for the two models: both by-
listener and by-speaker random intercepts and sentence slopes.

3. Results
Fig. 2 displays mean scores for each accent variety on the perceptual

ladder task and the three objective distance measures. For the ladder
task, scores represent the average ladder ranking by all listeners across
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Fig. 2. Mean perceptual and objective accent distance measurements by accent for each speaker

Note. Vertical axes are measured in units unique to each distance measure. Horizontal axes represent accent groups. Means and error bars (+/- 1 standard error) are
displayed for each speaker. Squares represent local and non-local native accents, and triangles represent nonnative accents. Large bold symbol for each accent
represents the mean for all speakers of each accent; small gray symbols represent the average score per speaker.
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all three sentences, per accent group. The DTW and Levenshtein distance
scores represent the average score for each speaker across all three
sentence stimuli. Lower scores on the ladder task represent greater
perceived proximity to Midland American English. Similarly, lower
scores on the Levenshtein and DTW distances represent greater prox-
imity to the Midland speakers.

An inspection of Fig. 2 suggests a similar general pattern of accent
distance across the four measures, with some variability present. An
expected finding evident in the ladder ranking data (top left) is the
tendency for increased variability among accent rankings for speakers
with nonnative accents compared to non-local native ones. The Midland
and British accents (and to a slightly lesser extent, the Scottish accent)
show all of the speakers clustering around the group mean. The
nonnative accents, on the other hand, tend to demonstrate more variable
ladder rankings among speakers, with some well above or below the
group mean. The error bars represent the within-speaker variability in
ladder ranking for the three sentences, with the local and non-local
native tending to demonstrate the least amount of variability in ladder
rankings among the sentences. Thus, there is a trend for listeners, as a
group, to rank the native accented speakers (both non-local and local)
consistently with one another and show more variability in their rank-
ings of the nonnative accents. Comparing among the objective measures
of distance, the within-speaker variability tended to be small when
measured using DTW; in other words, speakers’ DTW scores tended to be
relatively consistent across sentences. In contrast, both weighted and
unweighted Levenshtein scores tended to be more variable across sen-
tences for each speaker, as evidenced by the tendency for larger error
bars around the speakers’ mean scores.

3.1. Linear mixed effects models

Weighted and unweighted Levenshtein measures and DTW all
independently predicted ladder task results (see Fig. 3). The simple
correlations between the three distance measures and ladder rankings
are all significant, though the relationship is stronger in both of the
Levenshtein measures compared to the DTW measure, as visualized in
Fig. 3. Results from the two linear mixed effects models are shown in
Table 5. The sentence variable was not a significant predictor in either
model, suggesting that the phonemic content of the sentences did not
independently contribute to the ladder rankings by listeners. However,
the interaction between sentence 2 and the unweighted Levenshtein
measure in the first model was significant. Follow-up log-likelihood
comparisons between nested models with and without the interaction
between the sentence variable and unweighted Levenshtein distance
revealed a significant interaction between the variables, y%(2) = 7.44, p
=.024. The interaction between the sentence variable and the weighted
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Table 5
Results from two linear mixed effects models predicting ladder task results.

Model 1: Unweighted Levenshtein & DTW Estimate  tvalue p value
Intercept (Sentence 1) 9.24 16.74 < 0.001
Sentence 2 0.47 0.95 .347
Sentence 3 0.95 1.99 .051
Unweighted Levenshtein 1.34 3.27 .002
DTW 1.32 3.36 .002
Interaction: Unweighted Levenshtein by Sentence =~ —1.24 -2.16 .034
2
Interaction: Unweighted Levenshtein by Sentence  0.65 1.18 .245
3
Interaction: DTW by Sentence 2 —0.11 —0.22 .831
Interaction: DTW by Sentence 3 —0.45 —0.95 .347
Model 2: Weighted Levenshtein & DTW Estimate  tvalue p value
Intercept (Sentence 1) 9.38 17.87 < 0.001
Sentence 2 0.15 0.38 .745
Sentence 3 0.40 0.95 .347
Weighted Levenshtein 1.72 4.62 < 0.001
DTW 1.13 3.37 .002
Interaction: Weighted Levenshtein by Sentence 2~ —0.64 -1.21 .230
Interaction: Weighted Levenshtein by Sentence 3~ —0.51 -1.13 .263
Interaction: DTW by Sentence 2 -0.29 -0.59 .556
Interaction: DTW by Sentence 3 —0.31 -0.72 478

Levenshtein measure was not significant, nor was the interaction be-
tween DTW and sentence in either model. These findings suggest that
the relative contribution of the unweighted Levenshtein measure to
listeners’ perceptual accent distance ratings may be at least partially
dependent upon sentence content. In this case, the unweighted Lev-
enshtein distance was a better fit to the ladder rankings for Sentence 1
than for Sentence 2.

The intercepts in both models 1 and 2 represent the group average
ladder ranking for the first sentence. The coefficients for each predictor
variable (unweighted Levenshtein and DTW in model 1, and weighted
Levenshtein and DTW in model 2) represent the change in ladder
ranking when the predictor variable increases by one standard devia-
tion. The coefficients for both distance measures in each model were
positive, indicating that, as expected, a 1-SD increase in the distance
measure (i.e., getting farther from the reference Midland stimuli) results
in an increase in ladder rankings. Although all of the distance measures
were significant predictors of perceptual distance ratings, the un-
weighted and weighted Levenshtein’s larger coefficient (as compared to
DTW in each model) suggests that a 1-SD increase in this measure results
in a larger impact on ladder rankings than a 1-SD increase in DTW. It is
worth noting that the difference in coefficient size in model 1 between
the unweighted Levenshtein and DTW predictors is minimal. Still, the
weighted Levenshtein measure was a stronger predictor of perceptual
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Fig. 3. Scatterplots displaying ladder task results correlated with unweighted Levenshtein distances (Left), weighted Levenshtein distances (Center), and dynamic

time warping (Right)

Note. Individual points represent the average ladder rankings and distance values per speaker (averaged over the three sentences).
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accent distance than DTW in model 2, indicating that the weighted
Levenshtein measure was the strongest predictor of perceptual accent
distance.

To address the research question of which measure serves as a better
predictor of accent judgments, Akaike’s Information Criterion (AIC) and
log likelihood ratios for the two models were compared. Both AIC and
log likelihoods are measures of model fit and can be used to compare
models that are not nested, but that are modeled on the same data and
for the same outcome variable (Akaike, 1974). AIC and log-likelihood
values tend to covary, as they attempt to capture the same construct
(that is, model fit), and models with lower AIC values tend to have
higher log-likelihood ratios. As seen in Table 6, the model predicting
ladder task results from the weighted Levenshtein measure and DTW
had a lower AIC and higher, less-negative log-likelihood than the model
using the unweighted Levenshtein measure and DTW as predictor var-
iables. Although the difference between fit in these models is slight, the
weighted Levenshtein and DTW is the best-fitting model given the data
used in the present experiment.

4. Discussion

The purpose of the current study was to examine the relative con-
tributions of phonemic (weighted and unweighted Levenshtein) and
holistic acoustic (DTW) distances from the local accent to listeners’ ac-
cent rankings for multiple non-local native and nonnative accents.
Although these measures have been used in previous research, the
current study is the first to compare their effectiveness in predicting
accent judgments using a ladder task for short stimuli from both non-
local native and nonnative talkers. Results from the current study sug-
gest that the weighted Levenshtein distance measure is the strongest
predictor of perceptual accent distance, although the differences in
performance among the three distance measures were small.

4.1. Comparisons among the objective distance measures

4.1.1. Levenshtein distances

Both weighted and unweighted Levenshtein distances accounted for
significant variability in accent rankings, with the weighted Levenshtein
only slightly outperforming the unweighted. Given previous demon-
strations of the impact of segmental deviations on perceptions of accent
strength (Brennan et al., 1975; Derwing and Munro, 1997; Magen,
1998), the utility of Levenshtein measures as objective quantifications of
segmental changes that can be consistently applied across studies is
evident. The original, unweighted Levenshtein is highly correlated with
perceptual judgments of accent distance (Gooskens and Heeringa, 2004;
Wieling et al., 2014a). The weighted Levenshtein measure, introduced
by Levy et al. (2019) was validated for use in predicting intelligibility by
Bent et al. (2021). Although the weighted Levenshtein measure was
designed to account for the assumed impact of varying types of pro-
nunciation differences on intelligibility, there is limited evidence for a
strong advantage of the weighted over the unweighted Levenshtein
measure in this study. The current results indicate that the addition of
deviation weights may not add enough explained variability in accent
judgments over the unweighted Levenshtein measure to warrant its
replacement. To our knowledge, no other studies have compared this
weighted Levenshtein measure to the original, unweighted Levenshtein
measure. However, Wieling et al. (2014a) compared the Native
Discrimination Learning (NDL) Levenshtein measure — a cognitively

Table 6
AIC and Log-likelihood values for models predicting ladder results from un-
weighted and weighted Levenshtein and dynamic time warping.

AIC Log-likelihood
Unweighted Levenshtein + DTW 29,316.7 —14,636.3
Weighted Levenshtein + DTW 29,306.9 —14,631.5

10
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based Levenshtein adaptation that takes into account listeners’ famil-
iarity with certain segmental deviations — to the traditional Levenshtein
distance measure. The NDL Levenshtein adaptation and the original
Levenshtein correlated very highly (r = 0.89). Therefore, the results
from both Wieling et al. (2014a) and the current study suggest that the
unweighted Levenshtein measure is likely sufficient for quantifying ac-
cent distance compared with various weighted measures for most pur-
poses and situations.

Observing an advantage of the weighted Levenshtein measure over
an unweighted counterpart could depend on the tasks used, the specific
language under study, or the varieties included in the task. For example,
(Pettersson et al., 2013), who proposed the specific assignments of
weights which Levy et al. (2019) used, formulated these weights to
normalize historic text to a more modern spelling for natural language
processing of text in Swedish. Thus, this specific weighted Levenshtein
metric could be better suited for text-based (versus speech-based) tasks.
Consonant-to-consonant and vowel-to-vowel changes may differentially
affect readers and listeners, based on the cognitive processes recruited
for each task. How well these penalties predict perceptual accent judg-
ments could also be related to the language under investigation. It is
possible that the effect of certain deviations on intelligibility for a
Swedish listener (or reader; Pettersson et al., 2013) would be different
than the effect on German (Levy et al., 2019) or English (Bent et al.,
2021) listeners. Further, consonants and vowels may differentially
impact perceived accentedness among varieties, with consonant
changes factoring in more heavily for nonnative varieties (Gao, 2019)
and vowel changes better distinguishing among non-local native vari-
eties (Clopper et al., 2005).

Although the current study compared two different Levenshtein
calculations, there are many ways to calculate segmental changes that
could possibly capture more of the variability in accent rankings. The
impact of vowel versus consonant changes; use of phonetic-level tran-
scription and scoring (i.e., inclusion of diacritics); or an alternative
weighting system are all examples of possible ways in which segmental
changes could be quantified and compared to perceptual accent rank-
ings. For example, Vieru et al. (2011) revealed certain segmental
changes could be used as cues to accent identification by French lis-
teners, such as /b/ — /v/ indicating a native Spanish versus native
Italian speaker of French. Though these changes were dependent upon
speakers’ native language, results demonstrate that generalizations
regarding the relative importance of certain segmental changes could be
made across varieties. In the current study, the relative difference in the
predictive value of unweighted and weighted Levenshtein metrics to
accent rankings was fairly minimal, suggesting that differences in Lev-
enshtein calculations may be relatively minor. However, the way in
which the segmental changes are calculated may differentially correlate
with accent perception based on the type or length of stimuli (i.e.,
sentences versus words). Future work could investigate the utility of
various segmental calculations in predicting stimuli of differing lengths.

4.1.2. Dynamic time warping

DTW was a significant predictor of ladder rankings, even when
controlling for Levenshtein distance, indicating that holistic acoustic
distance significantly explains variability in perceptual judgments of
accent distance beyond phonemic distance alone. That being said, DTW
contributed slightly less to perceptual accent rankings than did either
Levenshtein measure. This result supports the findings of Bartelds et al.
(2020) who similarly found a unique but modest contribution of DTW in
explaining variability in accent judgments. Bartelds et al. (2020) sug-
gested that recording inconsistencies may have influenced their find-
ings. In the current study, all of the stimuli were recorded under similar
high-quality conditions. The similar findings between Bartelds et al.
(2020) study and the current study suggest that recording in-
consistencies are not likely the primary source of the relatively small
contribution of DTW measures to accent judgments.

There are several other possible explanations for the relatively
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modest independent contribution of DTW to variability in perceptual
accent judgments: (1) its importance may be dependent on the language
background of the speaker and/or the listener; and (2) it does not
discriminate between linguistic and non-linguistic acoustic information.
Fig. 2 shows that the holistic acoustic distance of certain accents (e.g.,
German, Scottish) played a larger role in listeners’ perceptions of accent
distance than other accents (e.g., Korean). The Levenshtein scores of the
German and Scottish speakers were relatively high and low, respec-
tively, compared to their ladder rankings, and the pattern of ladder
rankings more closely matched the DTW scores for these two accents.
This pattern of results suggests that the holistic acoustic distances be-
tween Midland American- and both Scottish- and German-accented
English are driving listeners’ perceptions of accent distance of these
accents, more so than phonemic differences. On the other hand, Korean-
accented speakers had a relatively low holistic acoustic distance
(ranking only slightly above the British-accented speakers) and yet their
ladder ranking seems to correlate more with their relatively high Lev-
enshtein scores. For this accent, phonemic changes seem to contribute
more heavily than holistic acoustic distance to listeners’ decision to rank
them as relatively farther from Midland American English. Thus, lis-
teners’ reliance on phonemic versus holistic acoustic distance to make
their accent distance judgments may relate to the language background
of the speaker. There are likely to be other factors that impact perceived
distance that were not measured in this study, including attitudes about
particular accents along dimensions related to solidarity and status.

Likewise, the utility of the DTW measure in explaining accent
judgments may be dependent upon the listener’s language background.
Results from the current study suggest that native, monolingual Amer-
ican English listeners attend to cues that are not fully captured by
phoneme deviations — such as prosodic or subphonemic cues — as evi-
denced by the significance of DTW in predicting judgments of accent
distance. However, phonemic cues (i.e., Levenshtein distances) were
more important than DTW in predicting ladder rankings for these
monolingual American English listeners. This finding is consistent with
previous research that found a relatively minimal benefit from prosodic
information in distinguishing among English dialects (van Bezooijen and
Gooskens, 1999; Alcorn et al., 2020) or when identifying the native
language status of a French or English speaker (Grover et al., 1987;
Vieru et al., 2011). On the other hand, prosodic information is important
for distinguishing among Norwegian dialects (Gooskens, 2005). Nor-
wegian listeners may therefore rely more heavily than American English
listeners on prosodic cues in making accent strength or distance judg-
ments. Further cross-linguistic support for this interpretation comes
from Boula de Mareiiil and Vieru-Dimulescu’s (2006) study, which
demonstrated a significant role of prosody in identifying both
Spanish-accented Italian and Italian-accented Spanish. A comparison of
the effectiveness of DTW in predicting accent judgments using the same
task but with varied target languages (and listeners who are native
speakers of those target languages) could provide insight into how DTW
performs in predicting judgments as a function of talker and listener
language background. For example, Bradlow et al. (2010) compared
perceived distance from English (using ladder rankings) of 17 languages
by listeners of 5 different native language backgrounds, revealing sig-
nificant correlations among the ladder rankings based on native lan-
guage background. Identifying the relative contributions of phonemic
cues versus holistic acoustic cues in these perceptual distances from
English as a function of listeners’ native languages would reveal how
native language background shapes which cues listeners attend to in
making accent judgments.

Another possible explanation for the modest contribution of the DTW
variable in predicting perceptual accent judgments could be related to
extra, non-linguistic acoustic information captured by MFCCs that might
obscure what listeners use to make accent judgments. MFCCs capture a
global acoustic picture of the signal but are not able to differentiate
between linguistic and non-linguistic content. Thus, this measure is
likely capturing acoustic information that is not relevant to accent
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judgments. Bartelds et al. (2020) noted that the difficulty in generating
computational representations of phonetic information is in the ability
to capture only what is important, without superfluous acoustic infor-
mation that may not contribute to accent judgments. Further, MFCCs are
impacted by speaker-level variability, such as vocal tract anatomy. In
fact, out of the 111 sentences analyzed (37 speakers, 3 sentences per
speaker), the lowest DTW distance between the target and reference
(Midland) speakers were speakers of the same gender in 107 instances,
suggesting that vocal tract anatomy may play a substantial role in DTW
scores. Even within genders, there is likely a fair amount of variability in
vocal tract length (and anatomy in general) that could influence MFCC
calculations. Including this sort of idiolectal information that varies
from speaker to speaker in MFCC calculations represents a limitation of
the DTW variable. Although DTW captures sub-phonemic, phonemic,
and prosodic cues, the relative importance of each of these cues as well
as the addition of other non-linguistic acoustic information captured by
DTW make it difficult to discern what non-phonemic information is truly
important in perceptual accent judgments.

One clear advantage DTW demonstrates over the phonemic measures
is in its indifference to context. In the current study, DTW did not
significantly interact with the sentence variable in either of the mixed
effects models. Further, the relatively small error bars around the indi-
vidual speaker means for the DTW scores compared to the Levenshtein
scores (see Fig. 2) indicate that the DTW scores were less variable across
sentences than the Levenshtein scores. This finding is expected, given
that the Levenshtein measure is phoneme-based and therefore will vary
depending upon which phonemes are present in a given sentence. Thus,
DTW can provide an acoustic distance measure that is more impervious
to sentence content than the Levenshtein distance, despite being out-
performed by the Levenshtein distance in predicting accent distance
judgments.

Levenshtein distances and DTW represent imperfect but perhaps
complementary distance measures. One advantage of the Levenshtein
distance is its ability to quantify changes in the speech signal (specif-
ically, segmental changes) that may reflect how listeners perceptually
weigh these changes. Limitations of this measure include the introduc-
tion of human bias when manually transcribing speech stimuli, and its
inability to capture anything beyond the phoneme (at least in its
instantiation in the current study). DTW (in this case, MFCCs), on the
other hand, is an objective measure (and therefore, more resistant to
human-level error in its calculation) and is able to capture a wide range
of acoustic information. However, it captures only the general shape of
the spectrum (Ryant et al., 2014), and weighs all of the acoustic infor-
mation equally, which provides a poor representation of the cognitive
underpinnings of accent perception. Human listeners take in the entire
acoustic signal — not just the phonemes — but place more weight on
linguistic information and are able to ignore irrelevant acoustic infor-
mation when making accent judgments.

In summary, all three objective distance measures contributed to
perceptual judgments of accent distance, as measured by the ladder task.
Comparisons across models revealed the weighted Levenshtein distance
as the best predictor of the perceptual accent distance rankings,
although the differences were modest. However, these objective dis-
tance measures do not account for all of the variability in perceptions of
accent distance. Fig. 3 demonstrates that although the distance measures
perform fairly well in predicting accent judgments, there are clearly
unaccounted for factors that contribute to listeners’ accent rankings.
Listeners could be using metalinguistic cues, social knowledge or as-
sumptions, or information relating to intelligibility or comprehensibility
to make accent judgments. These factors were outside of the scope of the
current study, and therefore unaccounted for, but could have exerted
influence on listeners’ judgments.

The next steps in identifying the cues that contribute to listeners’
perceptual judgments of both non-local native and nonnative accents
include disentangling what non-phonemic cues (as captured by DTW)
listeners are using that contribute to perceptual judgments beyond the
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phoneme level (as captured by the Levenshtein distances). Objectively
quantifying prosodic information (such as rhythm, FO changes, and
intonation, among others) is an important next step in determining the
presence and relative importance of these cues in making perceptual
judgments. Although DTW provides a good first step in capturing some
of this information, this holistic acoustic distance measure casts a rela-
tively wide net, making it difficult to draw conclusions about which cues
are most important in accent judgments. Further, some acoustic infor-
mation that was controlled for by the DTW measure in the current study
- such as speaking rate — could also add to the understanding of how
non-segmental information affects accent judgments. Pursuing self-
trained neural models to predict accent distance (from Bartelds et al.,
2022) is another potentially worthwhile future direction, if the cost- and
time-related barriers to training these models could be addressed.

4.2. Non-local native versus nonnative accent rankings

The present study included a variety of non-local native and
nonnative accents. A few studies have included both nonnative and
native accents (Adank et al., 2009; Bent et al., 2016; Goslin et al., 2012,
2021; Floccia et al., 2009), yielding mixed results. Results from some
studies have indicated that accent judgments are consistent with a
native vs. nonnative distinction (i.e., all non-local native accents are
rated as closer or less strong than nonnative; see Adank et al., 2009;
Bent et al., 2016; Goslin et al., 2012), while others have demonstrated
that listeners are not classifying accents based on native-status (Bent
et al., 2021; Floccia et al., 2009; Levy et al., 2019). Adank et al. (2009)
assessed reaction times of listeners to true/false questions presented in
noise and in quiet with speakers of familiar and unfamiliar native and
nonnative accents. Overall, a greater processing cost was seen for the
nonnative than native accents. Floccia et al. (2009) investigated differ-
ences in adaptation to accent changes when the accents were nonnative
versus non-local native, using reaction times to identify processing ef-
fects based on native language status. Diverging from Adank et al.
(2009), they found a significant increase in reaction time when accent
stimuli changed from baseline (local Plymouth English) to both
non-local native and nonnative accents; still, the effect was stronger for
the change to the nonnative accent than to the non-local native accent,
suggesting some degree of processing differences of these two accent
groups. It is worth noting that only one nonnative and one non-local
native accent were included as stimuli in both Floccia et al.’s and
Adank et al.’s studies, limiting the generalizability of this finding. In
contrast, Bent et al. (2021) included one local native, three non-local
native, and three nonnative accents in an intelligibility task (in quiet
and noise), and reported that although performance by both children
and adults was overall better for native and non-local native compared
to nonnative stimuli, there was variability at the speaker-level. In other
words, certain nonnative speakers’ stimuli (e.g., German, Mandarin)
yielded better intelligibility scores than non-local native stimuli. The
results of the current study are consistent with Bent et al.’s (2021)
findings in revealing variability in accent distance both within and be-
tween non-local native and nonnative accents, reflecting speaker-level
variability. Although inclusion criteria for the non-native speakers of
having lived in the United States for no more than 4 years attempted to
control for accent strength, the overall strength of the accents (both
non-local and nonnative) was not explicitly assessed. Certainly, different
language learning profiles and residential histories contributed to the
observed speaker-level variability in the current study.

Cristia et al. (2012) questioned the importance of the distinction
between native and nonnative accents, particularly in how listeners
interpret or consider these accents in their judgments of strength or
distance. They challenged the notion that native dialects differ at the
segmental level only, citing White et al. (2012) study demonstrating
more prosodic similarity between Dutch and Standard Southern British
English than between Standard Southern British and Glaswegian En-
glish. The inclusion of both non-local native and nonnative accents in
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the current study cannot speak to the question of perceptual distinction
in processing of these accents. Although the present study included a
relatively larger number of both accents and speakers from each accent
(as compared to Floccia et al. (2009), for instance), suggestions of dif-
ferences in strength, distance, or variability between non-local native
and nonnative are limited by speaker-level variability, the small number
of talkers included for each variety, and the relatively limited number of
phonemes in various word-level positions. Still, investigating both
non-local native and nonnative accents together in one study can pro-
vide a broader view of perception, as it provides a greater breadth of
both acoustic and phonemic cues in the speech signal.

Future work could also include less-often studied native and
nonnative accents (e.g., speakers from countries in Kachru’s (2006)
“outer circle,” such as Pakistan or South Africa), to improve the gener-
alizability of the findings of what contributes to perceptual judgments of
accent distance. Including diverse and less often studied non-local native
and nonnative accents would help expand the current understanding of
what phonemic and non-phonemic cues are important for accent dis-
tance judgments.

Conclusion

Both phonemic and holistic acoustic distance cues are used by
American English-speaking listeners when making judgments of accent
distance for both non-local native and nonnative accents, with phonemic
cues contributing more to accent rankings than holistic acoustic distance
cues. The unweighted and weighted Levenshtein distances both signif-
icantly predicted accent distance judgments, with the weighted slightly
outperforming the unweighted. The holistic acoustic distance measure is
agnostic to the nature of the content it is analyzing (i.e., whether or not it
is linguistically relevant), and may include extra, non-linguistic acoustic
information that dampens its predictive performance. The significance
of the phonemic versus the holistic acoustic distance measures in pre-
dicting perceptual accent judgments may be partially due to the native
variety of the speaker. However, both phonemic and acoustic distance
measures have limitations that are somewhat mitigated by using both to
assess the potential cues used by listeners to make accent distance
judgments. For the purposes of investigating cues used by listeners when
making accent distance judgments, analyzing only non-local native or
nonnative accents-as opposed to considering both of these accent
groups-may be unnecessarily restrictive, when both accent groups
provide significant information about how phonemic and acoustic cues
are used in accent judgments.
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Appendix A
Accent Gender Sentence
British Female The clown has a funny face.
Male The boy fell from the window
A lady went to the store.
French Male The dishcloth is soaking wet.
The oven door is open.
Female They had some chocolate pudding.
The bus stopped suddenly.
German Female She’s paying for her bread.
The dinner plate was hot.
Male He broke his leg again.
The lady wore a coat.
Hindi Female The baby has blue eyes.
They’re shopping for school clothes.
Male They have two empty bottles.
The kitchen window is clean.
Japanese Male They are coming for dinner.
The table has three legs.
Female A child ripped open the bag.
The sun melted the snow.
Korean Female The baby slept all night.
There was a bad train wreck.
Male The puppy played with the ball.
The old woman was at home.
Mandarin Male They’re watching the train go by.
The woman cleaned her house.
Female The oven was too hot.
A girl came into the room.
Scottish Female They had a wonderful day.
They finished dinner on time.
Spanish Male The big boy kicked the ball.
A dog was eating some meat.
Female He’s washing his face with soap.
They are drinking coffee.
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