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Monitoring of Dynamical
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Graphical Models

Data-driven analysis and monitoring of complex dynamical systems have been gaining
popularity due to various reasons like ubiquitous sensing and advanced computation
capabilities. A key rationale is that such systems inherently have high dimensionality and
feature complex subsystem interactions due to which majority of the first-principle based
methods become insufficient. We explore the family of a recently proposed probabilistic
graphical modeling technique, called spatiotemporal pattern network (STPN) in order to
capture the Granger causal relationships among observations in a dynamical system. We
also show that this technique can be used for anomaly detection and root-cause analysis
for real-life dynamical systems. In this context, we introduce the notion of Granger-STPN
(G-STPN) inspired by the notion of Granger causality and introduce a new nonparamet-
ric technique to detect causality among dynamical systems observations. We experimen-
tally validate our framework for detecting anomalies and analyzing root causes in a
robotic arm platform and obtain superior results compared to when other causality met-

rics were used in previous frameworks. [DOI: 10.1115/1.4046673]

1 Introduction

A wide variety of human-engineered applications leverage
large scale cyber-physical systems (CPSs), such as integrated
buildings [1], transportation networks [2], robotic networks [3],
smart home internet of things (IoT) [4], and wind farms [5]. For
decision and control, it is crucial to understand the interactions
among different parts or subsystems of such large-scale systems.
Although it is possible to model the interactions in detail, which
most physics-based models do using first principles, it becomes
highly complex with increasing number of subsystems. Therefore,
data-driven methods have been receiving considerable attention
from the industry and academia being more scalable and accurate.
However, data-driven modeling of these spatiotemporal (causal)
interactions are not trivial and is a crucial step for performance
monitoring and diagnostics as well as developing advanced con-
trol for large-scale CPSs. Information theoretic techniques can
help in this regard, e.g., Granger causality (a causality metric that
works on the hypothesis that a process X is causal to Y if predic-
tions about Y made using joint history of X and Y is better than
those made using only history of Y) can provide relevant insights
when considering the effectiveness of control mechanisms [6].
Although research in finance [7], neuroscience [8], and social sci-
ences [9] has focused on identification of such causal interactions,
for large scale CPSs, the applications have not been explored
sufficiently.

A recently proposed probabilistic graphical modeling
technique—spatiotemporal pattern network (STPN) has been used
for modeling the multivariate time series observations from dis-
tributed CPSs, with reasonable success. The proposed framework
was formulated using symbolic dynamic filtering (SDF) [10], with
applications in diagnostics and root-cause analysis of physical
faults and cyber anomalies in CPSs [11-14] residential energy dis-
aggregation [1], building occupancy detection [15], and wind
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energy prediction [5]. While the method has been shown to be
effective in practice, so far there has been no rigorous analysis on
whether it is able to capture causality among observations from
the subsystems. This paper explores the capability of STPN in
capturing Granger causality among observations in a dynamical
system. In this context, we introduce two variants of STPN,
namely, transfer-STPN (T-STPN), and Granger-STPN (G-STPN).
T-STPN leverages the concept of transfer entropy computed
between two symbolic time series to detect causality. On the other
hand, using the G-STPN framework, we propose a new nonlinear
causality detection metric which extends naturally from the STPN
framework. In T-STPN, transfer entropy is used to quantify the
dependency between two observations as opposed to mutual infor-
mation that was originally used in the STPN framework [1].2

The key difference across the three formulations, STPN, T-
STPN, and G-STPN is the way in which the underlying state
spaces of the two time series under consideration are formulated.
In both G-STPN and T-STPN, (joint) product state space is con-
sidered as opposed to individual state spaces that were used in
STPN for improved performance. The remainder of the paper is
organized as follows: Sec. 2 provides preliminaries on two main
approaches for causality detection, Sec. 3 introduces STPN, T-
STPN, and G-STPN frameworks—our proposed improvement
upon two existing popular data driven frameworks for anomaly
detection and performance monitoring. After that, Sec. 4 briefly
provided the series of steps involved for anomaly detection and
root cause analysis using our framework. In Sec. 5, we perform an
empirical study and compare our newly proposed causality detec-
tion metric with transfer entropy. In Sec. 6, we provide details of
our experimental setup on a real seven degrees-of-freedom
(7DOF) robotic manipulator, followed by performance and results
in Sec. 7 (overview of our results provided in Fig. 1).

Contributions: In summary, the overall contributions of this
paper are: (i) we propose a generalized G-STPN graphical model-
ing framework (detailed flowchart provided in Fig. 2) and define a

>Note that in a preliminary study [12], we used the term G-STPN for the STPN
variant with transfer entropy. However, in this paper we refer to this variant as T-
STPN as we call our new framework as G-STPN where we propose a new metric
comparable to Granger causality.
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Fig. 1 We develop an anomaly detection and root cause analysis framework for CPSs. This figure shows the results of our
algorithm on correctly identifying injected cyber-physical attacks in a complex 7DOF manipulator in two types of crafted
attacks-controller hack and communication delay (explained in the experiments section).
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Fig.2 Detailed flowchart expla

new nonlinear relationship metric comparable to Granger causal-
ity; (ii) we experimentally validate the G-STPN framework in a
performance monitoring problem of an industrial manipulator
(robotic arm), we present detailed anomaly detection and root
cause analysis performance of G-STPN along with comparison
with previous approaches, STPN and T-STPN.

2 Multivariate Feature Extraction and Association

Multivariate feature extraction is an important step for informa-
tion fusion uniting research in several directions such as anomaly

081006-2 / Vol. 142, AUGUST 2020
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detection, event classification [16] and even visualizing multi-
agent or multimode communication in robotics [17,18]. In this
section, we will briefly describe the techniques that we use for
converting real-valued multivariate time series data into useful
features and how those features are associated with each other in
our causal framework—G-STPN. First, we use SDF based encod-
ing to convert real valued time series into sequence of symbols.
Details are described in supplementary section available in the
Supplemental Materials on the ASME Digital Collection. Then,
we extract states of the system by using time delay embedding.
Thereafter, we use joint state information from a pair of variables
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to predict causal influence on a target, variable giving us an esti-
mate of association between the particular states of the two varia-
bles. This forms the backbone of our G-STPN framework. A short
schematic is provided in Fig. 3—on the left, the embedding pro-
cess is visualized, and on the right the association between states
for both STPN and G-STPN is visualized. Following Fig. 3, let us
consider two time series variables / and J. Let the observation at
the (7 + 1)th instant of sequence / be i, |, which depends on its
previous state, i, := {i,,...,i—1,i}, and accordingly for vari-
able J. Then we can use the following equation for finding transfer
entropy from / to J, which is also a data driven nonlinear measure
of Granger causality

I’(JHWNH)

log (p (Jm l/f) )

Detailed derivation of Eq. (1) is provided in supplementary sec-
tion available in the Supplemental Materials on the ASME Digital
Collection. After having associated all pairs of variables in the
system through derived transfer entropy, we proceed to defining
our framework in Sec. 3.

L& %
T—] = ZP(]/HJ,J,) log

()]

3 Granger-Spatiotemporal Pattern Network
Framework

In this section we generalize STPN framework as G-STPN
which includes nonlinear metrics for causality detection which is
akin to Granger causality.

3.1 Granger-Spatiotemporal Pattern Network Frame-
work. An STPN is intended to capture the strengths of “causality”
between different nodes of the graph which correspond to the vari-
ables of a multivariate time series under observation. While
details of STPN can be found in our previous work [1], we pro-
vide the definition of STPN in supplementary section, available in
the Supplemental Materials on the ASME Digital Collection, for
completeness. Here we propose a new variant of STPN, called G-
STPN.

DeriNnition 3.1. A Granger-STPN is a 5-tuple W = (Q',Q’,
/1 TY): (1, J denote nodes of the Granger-STPN which are

ISymboI sequence I |

li—a I L3 I li_2 | le—1 | 23 |

\

2| lc1]| b

T?

State sequence

Embedding symbols
to states

basically two different variables of a multivariate time series
where causality is investigated)

) 0" ={q1,9, ...7q‘Q,‘} is the state set corresponding to all
k-lag embeddings of symbol sequences S';

) 0" ={q1.92,....q)0,} is the state set corresponding to all
k-lag embeddings of symbol sequences S’ ;

3) = = {og,..., O\x/|-1} is the alphabet set of symbol

selguence S";

@) " is the joint state-symbol generation matrix of size
|Q"| x |Q7| x |Z’|, the ijth element of T denotes the proba-
bility of finding the symbol c; in the symbol string S while
making a transition from the state q; € Q' and (jointly)
state q; € O’ such a pattern is called joint pattern between
nodes of I and J; and

(5) T denotes a metric that can represent causality in a cer-
tain time window between I and J (degree of influence of
variation of J on 1), denoted I — J which is a function of
.

As STPN only uses individual state spaces to describe atomic pat-
terns and relational patterns, we cannot compare them without rig-
orous normalization processes. Therefore, we consider variants of
the STPN framework, called G-STPN and T-STPN that consider
the joint/product state space. In this case, the relational patterns in
STPN get replaced by the joint patterns as shown in Fig. 3. While
we use transfer entropy as 7% = ¥ in T-STPN, a new Granger
causality based metric is defined for G-STPN which we will now
denote as T" in Secs. 3.2, 3.3, and 4—7. While modeling the joint
state symbol generation matrix, we would require a mechanism to
prevent the dimensions of the matrix 7"/ from increasing dramati-
cally with increasing number states in Q’, 9 and alphabets in X,
In order to achieve this, we use the state merging algorithm which
is explained in detail in Ref. [1] as well as in the supplementary
section available in the Supplemental Materials on the ASME
Digital Collection. We need to find a joint symbol state generation
matrix for each variable pair (x,y) € (1,J), where (, J) is the set
of all pairs of variables in the multivariate time series. Therefore,
we model the matrix " using the Dirichlet distribution following
previous works [19], and find out an expression for its prior joint
density conditioned on a realization (x,, y,) of n data-points from
two variables of the time series X and Y. We have included
detailed steps for deriving this joint probability distribution in the

1] bt

1 Joint pattern G-STPN

Ji=p th—1 _];2

—2
1| b

Relational pattern STPN

Finding state pair relationships across
variables I (above) and J (below)

Fig. 3 Leftz—demonstrating the process of embedding a symbol sequence / into a state
sequence I/, with each state having an embedding dimension k=2. Right—using obtained
state sequences in the STPN and G-STPN frameworks.
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supplementary section available in the Supplemental Materials on
the ASME Digital Collection.

3.2 Inferring About Test Observations. Granger-STPN is a
pattern based framework that can capture multiple operating
modes of a system. A graphical model learned at a time instant
may not be same as the graphical model learned at another instant,
especially when the system moves on to a different mode of oper-
ation. However, this change can be recorded as patterns in the
graph connectivity. The role of importance metric 7" defined in
earlier sections is to capture these changes in flow of information
from one node of the graphical model to another. However, there
is no direct way to infer this change. One way to go about it is to
evaluate the likelihood of a subsequence of data based on past
observed data. We first model the nominal distribution of the data
through ™. During online inference, we calculate the likelihood
of an observed small time window of the data based on our prior
model. We denote variables collected during inference phase with
a tilde symbol in the superscript. For an observed subsequence of
symbols in process Y, we denote the joint symbols of X and Y col-
lected in training stage as S;, symbols of Y collected in training
stage as S, and those in inference stage as S. We also use ¢ and k
to denote the time point of observed variables in the inference and
training sequences, respectively. We call X as the source time
series and Y as the target time series. We are interested in deter-
mining the following two probabilities:

(1) Probability that a probabilistic finite state automaton with
transition matrix t* and joint state set of |Q¥| x |QY| gen-
erated the subsequence S. We call the model as full (joint)
model, and denote the probability as A™.

(2) Probability that a probabilistic finite state automaton with
transition matrix I’ and a state set of |QY| generated the
subsequence S. We call the model as reduced (self) model,
and denote the probability as A”. Note that in this case S
does not depend on X.

We therefore define A and 4 as

A =Pr(0;,0,,5,101,01.S,) =Pr(SIS:) (@)

2 = Pr(0).5),,10)S)11) = Pr(31S0) 3
We obtain a set of patterns A and /2”, for all x and y forming
pairs_ f time series in the multivariate time series of the system.
Let N ., denote the number of times in the short subsequence that
the symbol o) was observed while there was a state g, € |Q"].
Then N, denotes the number of times the state gm € |0 was
observed in the short subsequence. Thus, the probability that the
“self-model” generated S is given by the product of independent
multinomial distributions

), [ N,
Pr(3I) = [ (N;y)lﬂ% @)

m=1 =1 N |

mn

The results from the testing are now conditioned on the training
data. Given the symbol string S, in the training phase the proba-
bility of observing the symbol string S is given by

12| (N ) NY + 2| -1
pe(315.) H ic ( )!
X T <Nmn +Nr);t{t)!
~Yy "
n=1 <Nmyn> !(N,},/;‘n)!
Details of deriving the equation above is provided in the supple-

mentary section available in the Supplemental Materials on the
ASME Digital Collection. The probability of the joint state-

+NY>+|2>|—1>

(&)
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symbol subsequence is also a product of independent multinomial
distributions given that the exact joint state symbol generation
matrix is known

o ] (o |5
Pr(Sle”) = H () e ©)

m=1 n=1 mn*

where the definition of /\7“}' is similar to N, in the context of
short subsequence With the similar derlvatlon as above which
can be also seen in Ref. [19], the metric A¥(Q",0”,S") can be
obtained as follows:

oo (W2) 1z + 2] - 1)

m=1 (N;?’+N,‘,,y+|2y| - 1>|

Pr(SS,) = AV =

) | (N,,,,, +N*y) .

n=1 (1\7;{"> '( ,Xn}n)'

3.3 Granger Causal Online Inference Metric. As a pattern
based algorithm, we use a metric to capture how important is the
interaction between two time series at a given instant (for a
dynamical system having multiple time series). When inferring
about the nature of the observed data, we consider short time
sequences which are collected as the system operates. For each
pair of variables X and Y in the n-point time window of (x,, y,),
we calculate the importance metric. The importance metric 7
should have two desirable properties:

(1) It should reflect the degree to which the full model (the
model learned by using joint state space consideration of
the target time series and the source time series which is
suspected to have influence on the target time series, or
joint patterns in short) yields a better prediction of the tar-
get variable than the reduced model (the model learned by
using the state space of the target time series only, or
atomic patterns in short), as inferred from the given time
window.

(2) It should easily reflect the importance of the current
observed test (joint) pattern with respect to the learned
nominal pattern 7 in the modeling phase.

As a framework that detects anomalies based on dynamics of
changes in the influence that one time series exerts on another (in
a multivariate time series setting), we believe that property 1 is
more important than property 2. In this regard, transfer entropy
has been used successfully in several applications [7-9] to esti-
mate this desirable property 1. However, a tricky issue in evaluat-
ing this empirical metric is to obtain accurate estimates of
conditional and joint probabilities to compute conditional entropy
values. To preserve property 1, it is very convenient to use trans-
fer entropy as a direct estimator. However, here we will take a
detour and explore a new concept to detect (possibly) a wide
range of causality in a nonparametric manner, thus establishing a
metric alongside the existing transfer entropy.

Based on their respective formulation, it is evident that A
should be always much smaller than A. This is because one
involves three dimensions (states of X, states of Y and future sym-
bols of Y), whereas the other only involves two dimensions (states
of Y and future symbols of Y). Therefore, the two probabilities
cannot be compared unless we introduce a baseline: “if the pro-
cess corresponding to X does not cause the process corresponding
to Y then for the baseline, the joint probability A can be written as
individual products of self-probability 4 over all possible states of
X.” This gives rise to the following baseline:
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log(A™) 20| log(#*) when X causes Y ®)

log(/A\X)’) ~ log(A™) when X does not cause ¥ )

However, if causality does hold, then our assumption does not
apply and we quantity our causality detection metric as

T = log(A") — log(A™) (10)

In order to test our newly proposed metric, we have performed
empirical analysis of our metric on several example time series
pairs modeled with several different types of causal structures
within them. We found out that our metric is at least as sensitive
as the data driven transfer entropy metric. Detailed results and
explanations are provided in the supplementary section available
in the Supplemental Materials on the ASME Digital Collection.

4 Spatiotemporal Pattern Network for Anomaly
Detection and Root-Cause Analysis

After constructing G-STPN using multivariate time series data,
a learning framework using a combination of G-STPN and
restricted Boltzmann machine (RBM) as introduced in Refs. [11],
[12], and [20] can be leveraged for anomaly detection and root-
cause analysis. In brief, RBMs are used to effectively capture a
probability distribution for sequences of observed spatiotemporal
patterns. The observed patterns during “nominal” operation of a
system are assigned high probability of occurrence (highly likely
to happen) which is inversely proportional to a metric associated
with trained RBMs called “free-energy.” If free energy for an
input sequence pattern to an RBM is low, the probability of occur-
rence of that sequence is high. Conversely, if the free energy is
high, then the probability of occurrence is low. When an anoma-
lous operation is observed, it causes an high free energy output.
The sequential state switching (S*) algorithm [11] takes advantage
of this fact and manipulates (flip from O to 1 and vice versa) each
bit of the input sequence one by one to revert the free energy out-
put to a low value. The corresponding bits which when flipped
reverts the RBM output to low free energy are the potential “root-
causes” for the anomaly. Interested readers are suggested to read
[11,20] for further details. The overall process is briefly explained
below:

(1) Perform discretization (e.g., maximum entropy partitioning
[20]) of given multivariate time series into a N number of
bins and symbolize the time series as decided by the strat-
egy described in Sec. 2;

(2) For each variable a, find the state Hf-’l- which denotes the
probability of transition from state i in state sequence a to
symbol j in symbol sequence a;

(3) Let @ and b be a pair of variables in consideration. Find
their joint state transition matrix t*”. Here, TZZ will denote
the probability of transitioning from state i in state
sequence a and state j in state sequence b to symbol £ in
symbolic sequence b;

(4) Short subsequences of symbols obtained from training
sequences are considered, and then we evaluate T°° Va, b
for each short subsequence using Eq. (10); and

(5) Real values of 7% are converted to binary values by finding
a maximum margin hyperplane. In this case, we would
obtain a threshold and values below it would be assigned 0.

(6) A fixed time window W is considered when selecting short
subsequences. The window moves over the entire time
series. Each input pattern for training an RBM is obtained
as one short subsequence (time window) from the binary
pattern P Va, b (computed in the previous step). A trained
RBM assigns high probability or low free energy to training
patterns.

Journal of Dynamic Systems, Measurement, and Control

5 Experimental Setup for Validation

To demonstrate that our framework can successfully identify
and isolate anomalous events, we focus on an experimental setup
with a single arm robotic manipulator. Robotic manipulators have
formed the backbone for several supply chain based industries
and performance monitoring of such systems have not received a
lot of interest. While physical failures occurring within a robot are
relatively easy to observe and monitor, intelligent hacks meant to
reduce overall productivity can be very hard to detect. Detailed
motivation for choosing this practical experiment is included in
the supplementary section available in the Supplemental Materials
on the ASME Digital Collection. We present a case study based
on multivariate time series values collected from this system
which are used to discriminate anomalous modes of operation
from nominal modes. This technique of anomaly detection and
root cause analysis is crucial for attack resilient and safety-critical
systems.

5.1 Data and Testbed. We have made use of the multivariate
time series data collected from the single arm manipulator Sawyer
after before and after anomalies were simulated on the system.
Figure 1 shows a schematic of joint assignment and degrees-of-
freedom, which we will use later to analyze the results.

We obtained data from 27 controlled variables denoting the
positions, velocities, and accelerations of each of the seven joint
angles (as illustrated in Fig. 1), along with the gripper linear posi-
tion, velocity, acceleration and angles of the head-pan. Out of the
remaining 19 variables, we include the five three-dimensional var-
iables (i.e., position, linear twist, angular twist, wrench force, and
wrench torque) for x, y, and z dimensions and one four-
dimensional variable (i.e., orientation) of the end effector. From
the experimental setup, we can see that there is a causal relation-
ship between the controlled and observed variables. In Sec. 6, we
discuss how we change controlled variables, simulating a cyber-
attack, and show that our method can detect the change using only
observed variables.

6 Experiments, Results, and Discussion

In this section we test our algorithm on three general cases of
anomaly attacks on the robot, and compare performance of Spatio
Temporal Pattern Network (STPN) framework as proposed in
Ref. [21], transfer entropy metric based STPN (T-STPN) as pro-
posed in Ref. [12], and our newly proposed G-STPN.

6.1 Attack Injection. Figure 4 provides a visualization of all
the attack types with a time series of image frames.

Type 1: controller hack: By changing the controlled value of
single or several joints, for example, joint 0, 2, 3, and 4, we simu-
late a controller hack situation. A simpler example would be mul-
tiplying the joint values of joints O and 3 by a time dependent
“error factor” e; of the following form:

le—1i| ...
—, ifi<c
c
l

c

e =

otherwisei > ¢

Here, c is defined as a positive constant specifically for the experi-
ments and we let i be the time index of first ¢ points in the
acquired dataset Q. Thereafter, we multiply the values of joints 2
and 4 by the same time-dependent “error factor” e; with a time
shift

e
ldte—i o€
c 2

e =

|i —d|

.. c
otherwisei > d + =
c 2
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(e)
Fig. 4 Time frames showing the task execution in nominal and anomalous conditions [12]: (a) defined nominal operation of
the robot in 10 frames, (b) anomalous operation of the robot due to controller hack, (¢) anomalous operation of the robot due

to communication delay, (d) nominal trajectory of the robot by following commands from moveit, and (e) anomalous trajectory
of the robot following anomalous commands from moveit because of imaginary obstacle

Again, ¢ and d positive constants are chosen to be kept fixed in
the experiments and the time index in dataset Q between indices d
and d + ¢ is denoted by i.

Type 2: communication delay: In order to simulate communica-
tion delay, the first ¢ joint 3 control values are set equal to the first
data point value (i.e., we apply zero order hold). After the cth data
point the following equation gives the value for joint 3

0(1,3), ifi<e

Q(i —c,3) otherwisei > ¢

Q(i7 3) =

All other joint values in the dataset Q remain unchanged.

Type 3: trajectory manipulation: For simulating intelligent
attacks of type (3), we use the Movelt! inverse kinematics library
with visualization in Rviz. The library is typically used to solve the
inverse kinematics problem of the desired minimum path length
trajectory for a given starting and ending end effector position and
orientation. Nominal training data is obtained by collecting com-
manded joint angles and end effector positions for a given starting
and ending position and orientation of end effector. We place an
imaginary obstacle in between the shortest trajectory path and force
the inverse kinematics based trajectory planner to recalculate a lon-
ger optimal path. In this, we introduce trajectory manipulation
anomaly. The graphical structure learned by our algorithm for this
case is provided in supplementary section available in the Supple-
mental Materials on the ASME Digital Collection. However, keep-
ing in mind the complexity of the problem in establishing exact
ground truth as a baseline for our algorithm, detailed analysis of
this special case of anomaly is left as future work.

6.2 Spatiotemporal Anomaly Detection. The anomaly detec-
tion algorithm proposed here is able to detect causes of system
anomaly on both spatial and temporal scales. It can provide explana-
tions of failure at each individual subsystem as well as the explana-
tions for failure because of anomalous interactions among

081006-6 / Vol. 142, AUGUST 2020

subsystems. The results essentially present us with a three-
dimensional graph with nodes, time points, and anomaly scores as x,
v, and z axis, respectively. To simplify the interpretation, we take the
average of all the anomaly scores along time to produce the follow-
ing explanation: node anomaly scores averaged over time, presented
in Figs. 5 and 6 for STPN, T-STPN, and G-STPN frameworks. The
anomaly score values along the y-axis are relative importance given
to events along time and nodes, and is thus scale independent across
different algorithms (only relative differences matter).

The time period of operation of the robot is roughly 35s. This
work is repeatedly performed and recorded as nominal data for
around 12 min. The frequency of data collection is 100 datapoints
per second. The Window size for extracting importance metrics is
2000 points (=205s), the window stride length is 10 (=0.1 s). During
inference in root cause analysis (RCA) technique, a collection of 50
windows are considered together (=5 s resolution for anomaly detec-
tion). We call each of these collection of 50 windows an instant.

For communication delay, joint 4 was programmed to have the
time lag anomaly and the time averaged node score (T-STPN)
across the nodes shows that node 4 joint position is the most
anomalous. However, STPN attributes majority of root causes to
the (observed) end effector variables. G-STPN attributes majority
of causes to joint 6 acceleration and joint 1 positions. This is not
surprising as both of them are equally distant from joint 3 and due
to operating mechanism are heavily influenced by perturbations in
joint 3 operation.

For controller hack, joint 1, 3, 4, 5 controllers had been pro-
grammed for anomaly. In the time averaged node score plot
STPN detects acceleration anomaly of joint 6, T-STPN detects
velocity anomaly of joint 4, and G-STPN detects velocity anom-
aly of joint 3 and 4 with high relative weights. It is evident by
comparison, that for these cases, the results offered by G-STPN is
more stable and accurate over the results produced by STPN and
T-STPN.

6.3 Performance Analysis. In Figs. 7-9 and 10-12, we can
see the raw data with free energy plots derived from the RBM
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Fig. 8 Raw data and free energy of RBM under nominal and anomalous conditions for the controller hack
(T-STPN)—note that the anomalous free energy distribution is flat but sits higher than the nominal case
denoting that the entire series is captured as anomaly

trained on nominal data. In the case of raw data, the time series of  after which the robot operates in an anomalous operation cycle till

every
three

variable is combined and showed in one plot. For all of the end. Free energy has been calculated on the entire symbolic
cases, presence of anomaly in raw data is manifested as an  time series which includes events before and after the anomaly. It

increase in free energy. Anomaly has been introduced at 15,000s, is seen that just based on free energies, STPN and T-STPN
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Fig. 10 Raw data and free energy of RBM under nominal and anomalous conditions for the communication
delay (STPN)—note that the anomalous free energy distribution is flat but is higher than the nominal case

frameworks are not able to indicate introduction of anomalies
based on jumps in free energy (a fact not investigated in Ref.
[12]). However G-STPN shows sudden jumps at 16,000-18,000
time window for controller hack, and the time windows
12,000-14,000; 16,000-18,000 for communication delays.

This change in nature of the free energy can also be investi-
gated by various state of the art change detection algorithms to
trigger defense mechanisms. This is in line with several state of

Journal of Dynamic Systems, Measurement, and Control

the art data driven techniques that tend to characterize anomalous
events as departures from known probability distributions in the
training data [22-24].

Figures 5 and 6 shows the root causes corresponding to control-
ler hack and communication delay, respectively. In the case of
controller hack, anomalies are injected to joints 0, 2, 3, and 4.
Along with those, joint 5 is also considered as anomaly because it
is directly connected to the 2, 3, 4 chains. By using the proposed
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Fig. 11 Raw data and free energy of RBM under nominal and anomalous conditions for the communication
delay (T-STPN)—note that the anomalous free energy distribution is almost flat and is higher than the nomi-

nal case
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Fig. 12 Raw data and free energy of RBM under nominal and anomalous conditions for the communication
delay (G-STPN)—note that it precisely detects the anomalies (orange squares) as the spikes inside purple

squares

approach, except joint 5, the rest of four joints can be isolated cor-
rectly. As joint 5 is next to joint 4 the isolation of joint 4 may neg-
atively affect the isolation of joint 5.

For the communication delay, it can be observed that the anom-
aly is injected to joint 3. Although eventually using the proposed
RCA method enables us to isolate three joints, i.e., joints 0, 3, and
4, where anomalies are detected, joint 3 can be correctly detected
to help operators locate the attacks.

081006-10 / Vol. 142, AUGUST 2020

From the figures, we can observe that for the case of communi-
cation delay, anomalies are identified to be injected at joint 3.
After using the proposed RCA technique, we can isolate three
joints, i.e., joints 0, 3, and 4.

Joint 4 is also isolated in this case as it is close to joint 3
while for joint 0, the reason may be attributed to the robot’s
dynamics which is not analyzed in detail in this work. For the case
of trajectory manipulation, we can know that when a block is
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placed in the path from starting point to end, joints can be observed
to move for avoiding the block. However, it is difficult to determine
the ground truth in terms of joints as the trajectories involve most
of the joints. Also, based on the proposed algorithm, results show
that most of joints are involved so the isolation of joints is not pro-
vided for the root-cause analysis in the trajectory manipulation
case.

7 Conclusions and Future Work

In this paper, we thoroughly analyze a family of techniques for
anomaly detection and root cause analysis in complex cyber-
physical-systems, namely, STPN, and its variants Transfer
entropy based T-STPN, and a nonlinear granger causality based
G-STPN (which we propose in this paper). All of the techniques
leverage abstraction of time series dynamics through SDF. How-
ever, by investigating variations of Granger causality (nonlinear
version proposed by us), between each pair of time series within
the multivariate time series, causes of anomaly can be easily
found out. We provide a detailed mathematical formulation, per-
form a simulated Monte Carlo case study for classical time series
models studied in literature for causality, and finally apply our
framework to a real world scenario of detection cyber-attacks on
an industrial manipulator. The key technical contributions are
summarized below:

(1) The proposed technique of data driven anomaly detection
can be used in performance monitoring of large scale indus-
trial processes and check for intruders and potential hackers
that may significantly lower productivity.

(2) Proposed metric of causality detection can be used as a
replacement for transfer entropy and can be used to detect
causal interactions in multivariate time series data.

(3) Proposed framework when integrated with root cause anal-
ysis approach is more sensitive in detecting individual
anomalous variables in a process than earlier STPN, T-
STPN frameworks and hence can be used as an improve-
ment upon existing root cause analysis techniques.

Some limitations of our proposed G-STPN framework are:

(1) Our framework relies upon abstracting continuous multi-
variate time series data using the technique of SDF, which
is not guaranteed to capture the complete dynamics of a
continuous time series because it heavily relies upon the
partitioning scheme [25].

(2) Computation load and data requirement may grow dramati-
cally with larger embedding dimension (k-refer to Fig. 3)
and larger alphabet size 2 (refer Sec. 2). Both of these vari-
ables need to be increased in order to capture increasingly
complex patterns.

(3) Statistical stationarity is needed to reliably estimate the
transition probabilities.

Possible future research directions are:

(1) We propose to evaluate joint and self-symbol generation
matrices corresponding to pairs of time series. A method
that would use our Dirichlet priors of joint symbol genera-
tion matrix and self-symbol generation matrix to arrive at
and improve estimates of a new nonlinear Granger causal-
ity metric is left as future work.

(2) Establishing theoretical bounds on optimal length of win-
dow and embedding depth required for capturing time
series dynamics using SDF.

(3) On the implementation side, a rigorous complexity analysis
and considerations when implementing on cheap real time
systems.

(4) Online interception of cyber-physical attacks and incorpo-
rating attack patterns to prevent future failures is a potential
future research direction. This requires understanding of
temporal attack propagation characteristics.
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