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ABSTRACT

Unfamiliar native and non-native accents can cause
word recognition challenges, particularly in noisy
environments, but few studies have incorporated
quantitative pronunciation distance metrics to explain
intelligibility ~differences across accents. Here,
intelligibility was measured for 18 talkers -- two from
each of three native, one bilingual, and five non-
native accents -- in three listening conditions (quiet
and two noise conditions). Two variations of the
Levenshtein pronunciation distance metric, which
quantifies phonemic differences from a reference
accent, were assessed for their ability to predict
intelligibility. An unweighted Levenshtein distance
metric was the best intelligibility predictor; talker
accent further predicted performance. Accuracy did
not fall along a native - non-native divide. Thus,
phonemic differences from the listener’s home accent
primarily determine intelligibility, but other accent-
specific ~ pronunciation features, including
suprasegmental characteristics, must be quantified to
fully explain intelligibility across talkers and listening
conditions. These results have implications for
pedagogical practices and speech perception theories.

Keywords: Speech perception, intelligibility, non-
native accents, regional accents

1. INTRODUCTION

Theories of speech perception must account for how
listeners can recognize words amidst the variability
present in speech signals [1, 2]. One factor that
introduces substantial variability across talkers is a
talker’s accent, stemming either from regional
differences or from influences of the first language
when communicating in a second language. When
these accent variants are unfamiliar, they can cause
word recognition decrements [3, 4]. The challenge for
understanding unfamiliar accents can be particularly
acute in cases in which communication is occurring
in the presence of background noise [5-8]. Although
poorer accuracy has been observed for both
unfamiliar native and non-native varieties, some
research suggests that the pronunciation patterns
found in unfamiliar non-native accents are more
challenging to overcome than those in unfamiliar
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native varieties [9, 10]. However, most studies that
include both native and non-native variants have been
limited by including a small number of unfamiliar
accents (e.g., [9, 10]). Therefore, it is difficult to
determine the generalizability of the findings. [11]
included a much wider range of accents but was
limited by including only one talker per accent. Thus,
there was a confound between the talker and accent
variables. Studies that include both a wider number of
accent varieties and multiple talkers representing
each variety can provide greater insight into the
factors that cause word recognition difficulties across
native and non-native accents.

One open question in these studies is what specific
talker or accent characteristics are leading to word
recognition decrements. There is not a consensus
regarding methods for quantifying how the speech
differs from the listener’s home accent. Researchers
have taken different approaches to this problem. One
approach is to focus on the impact of very specific
production features (e.g., VOT differences [12]).
Another approach is to synthetically modify the
speech so that specific dimensions are more or less
native-like [13, 14]. Work using this approach
suggests that while keeping phonemic properties
constant, changing the rhythmic properties of non-
native speech to be more native-like increases
intelligibility [13] but changing intonation patterns to
be more native-like does not [14]. These approaches
have provided insight into which dimensions of
speech impact intelligibility for non-native talkers,
but they do not allow for understanding how naturally
produced interactions among multiple phonemic
differences or  between segmental and
suprasegmental features may impact intelligibility.
Finally, some researchers have incorporated general
descriptions of the accents included (e.g., vowel
differences across regional variants [8] or
descriptions of general phonemic and suprasegmental
differences across varieties [9]) but fell short of
incorporating quantitative pronunciation metrics into
their statistical modelling.

A recent approach to understanding how
phonemic variability across accents impacts speech
perception has been to incorporate edit-distance
metrics into investigations of non-native accent
strength ratings [15-17] and intelligibility [11, 18].
All these metrics measure pronunciation distance for
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a speaker relative to a reference set (e.g., distance of
a non-native talker to a specific native variant) using
phonemic transcription. Several variations have been
evaluated in relation to non-native accent strength
ratings including Levenshtein Distances, Native
Discriminative Learning (NDL) and Pointwise
Mutual Information (PMI) metrics [15-17]. These
metrics have shown substantial promise in accounting
for variance in accent strength ratings across talkers.
An advantage of the NDL and PMI metrics is that
they incorporate the frequency of pronunciations
within a corpus such that there are greater penalties
for less-frequent pronunciation patterns, for which
listeners are likely to assign higher accent strength
ratings. However, these metrics require large amounts
of data to calculate (e.g., hundreds of talkers),
limiting their utility for most researchers.

Few investigations have incorporated these
pronunciation distance metrics into studies of
intelligibility. One study used the Levenshtein
distance metric to characterise the talkers’ utterances
but did not incorporate the distance scores into the
statistical models [18]. [11] incorporated the
Levenshtein distance metric to model intelligibility of
seven different accents. Levenshtein scores were a
significant predictor of intelligibility in both quiet and
noise-added conditions. Furthermore, a model
including both Levenshtein distances and talker
accent was a better fit than the one using only the
Levenshtein distances. However, they only used one
talker per accent, thus confounding talker- and
accent-specific effects. Here, we build on [11] by
including two more accents than used previously and,
more importantly, including two talkers per accent.
Incorporating more than one talker per accent will
begin to address whether variability in intelligibility
can be traced to pronunciation features that are
characteristics of a specific accent or whether effects
that have been described as “accent effects” are
talker-level effects. Finally, we evaluate two versions
of the Levenshtein distance metric to determine
whether the weighted version used in [11] and [18]
explains more variability in intelligibility than an
unweighted version used in [19].

2. METHOD
2.1. Participants

There were 370 American English monolingual
listeners between the ages of 18 — 35 years (average
= 26). All listeners had self-reported typical speech,
language, and hearing abilities. Midland American
English was familiar to all participants due to its
similarity to Standard American English. Participants
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who reported daily exposure to one of the other
accents in their condition were excluded.

2.2, Stimuli

Sixty sentences from the Hearing in Noise Test for
Children [20] were produced by 18 talkers
representing 9 different accents: three native
(Midland American English, Southern Standard
British English, Scottish English), five non-native
(French-, Spanish-, German-, Japanese-, and
Mandarin-accented English), and one bilingual
(Hindi-Indian English) variety. Two speakers (1
female and 1 male) represented each variety.

2.3. Procedure

Listeners  were recruited through  Prolific
(https://www.prolific.co/) and tested online, using
Pavlovia [21]. Prior to the intelligibility experiment,
participants completed a consent form, a background
questionnaire, and a headphone screening [22].
Listeners were presented with sentences from three
talkers of the same gender including a Midland
American English talker and talkers with two less
familiar accents, each contributing 20 sentences.
Listeners were randomly assigned to one of three
listening conditions: quiet, +4 dB signal-to-noise
ratio (SNR), or 0 dB SNR. The noise was an 8-talker
babble with talkers matched in gender to the target
speech. A randomly selected section of the babble file
that was 1 second longer than the sentence was
selected as the masker for each item. For each accent
/ listening condition combination, 15—18 participants
were tested.

Listeners were presented with 9 practice trials,
including three from each talker in the experimental
trials. These were presented in the same listening
condition as the experimental trials. Experimental
trials were blocked by talker and randomized within
a block. Participants were instructed to listen to a
sentence and type in what they heard. They were not
provided with any feedback.

2.4. Analysis
2.4.1 Levenshtein distances

All sentences were phonemically transcribed by two
trained research assistants. These transcriptions were
compared, and any discrepancies were resolved by
discussion with a third transcriber. The transcriptions
for the non-Midland speakers were compared to four
talkers representing the familiar Midland American
English referent for the calculation of two different
versions of the Levenshtein distance metric: weighted
and unweighted. In the unweighted version [19], the
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target stimulus is compared to the reference and any
phonemic difference between the two (i.e., addition,
deletion, substitution) is given a one-point penalty.
These penalties are then summed and divided by the
total possible number of phonemes. This total is
determined by the maximum logical alignment of the
two strings (Table 1). The weighted Levenshtein
distance [18] assigns different penalties depending on
the type of difference between the two strings which
are then summed at the word level:

Vowel substituted by a vowel = 0.5
Consonant substituted by a consonant = (.75
Phoneme insertion = 1.0

Change to word length =

1/log1 0(max(length(Word1), length(Word2)))
e Other (e.g., deletion, vowel to consonant
substitution, consonant to vowel, etc.) = 0.4

These weightings were developed based on
theoretical assumptions from prior literature, but this
metric has not been compared to other Levenshtein
variants to determine whether these weightings add
further explanatory power.

Levenshtein scoring

Target word stopped

Midland American accent Pstapt

LT

Spanish-accented English e st Aap0d

Unweighted Levenshteinscores 1 0 0 1 0 1
Final score 3/6or.5

Weighted Levenshtein scores 100504
Final score 1.9

Table 1: Unweighted and weighted Levenshtein
scoring examples

2.4.2 Intelligibility scoring

Intelligibility scores were determined at the sentence
level using Fuzzy String Matching, specifically the
token sort ratio from [23] wusing the online
implementation  (https://tokensortratio.netlify.app).
These scores range from 0 to 100. Sentences that
match the target exactly are given a score of 100 and
those without any matching characters are given a 0.
For example, for the target sentence “Mother read the
instructions”, a response of “motherly subscriptions”
received a score of 36, “follow the instructions” 63,
“read the instructions” 86 and “mother read the
instruction” a 98. These scores tend to be higher than
percent words correct scores with a strict scoring
criterion in which the examples above would have
received scores of 9, 50, 75, and 75, because
responses are given credit for partial matches.
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However, [23] showed that scores obtained via Fuzzy
String Matching are highly correlated with traditional
hand calculated measures of percent words correct.

3. RESULTS
3.1 Weighted vs. unweighted Levenshtein scores

We first evaluated whether the weighted or
unweighted Levenshtein distance scores were a better
predictor of intelligibility. Intelligibility score for
each sentence was entered into a linear mixed effects
model with fixed effects of Levenshtein score and
SNR and their interaction with random intercepts for
participant and item as well as by-participant and by-
item varying slopes for talker accent. Two models
were built, one with the weighted and one with the
unweighted Levenshtein scores. From Type 111 Wald
chi-square tests, both models showed significant
effects of the Levenshtein scores, SNR, and their
interaction (all p-values < 0.001). Therefore, we
computed model comparisons to determine which
Levenshtein score resulted in a better fit for the
intelligibility scores. The model comparisons showed
that the AIC was lower for the model with the
unweighted (179969) than the weighted (179972)
Levenshtein  scores; thus, the unweighted
Levenshtein scores were a better fit for predicting
intelligibility. In further modelling, we employed the
unweighted scores.

3.2 Levenshtein scores and talker accent

We next investigated whether talker accent
contributed to intelligibility scores (Figure 1). In this
model, we included fixed effects of unweighted
Levenshtein scores, SNR, and talker accent, as well
as their interactions. The model also included random
intercepts for participant and item as well as by-
participant and by-item varying slopes for talker
accent. The results are shown in Table 2.

F-value | p-value
Levenshtein 35.0 <0.001
SNR 1539 <0.001
Accent 23.2 <0.001
Levenshtein x SNR 2.1 n.s.
Levenshtein x Accent 11.3 <0.001
SNR x Accent 29.7 <0.001
Levenshtein x SNR x Accent 2.9 <0.001

Table 2: Output of Type III Analysis of Variance
Table with Satterthwaite's method for full model of
intelligibility
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Figure 1: Intelligibility scores by accent and talker across
the three listening conditions.

All three main effects were significant. The main
effect of Levenshtein scores arose because items with
higher Levenshtein scores were less intelligible than
those with lower Levenshtein scores. That is,
productions that diverged more from the local accent
were more difficult for listeners to understand than
those closer to the local dialect. The main effect of
SNR resulted from highest accuracy in quiet and
lowest accuracy in the 0 dB SNR with intermediate
performance in the +4 dB SNR condition. The main
effect of accent was due to the differences in
intelligibility across accents with highest accuracy for
the Midland American English and the Southern
Standard British English accents and lowest accuracy
for the Hindi and Japanese accents. The two-way
interaction between Levenshtein distance and SNR
was not significant suggesting that the effect of
pronunciation distance from the local accent was
similar across listening conditions. The other two-
way and the three-way interaction were significant.
The SNR by Accent interaction arose because some
accents were highly intelligible even in the most
difficult SNRs (e.g., Midland and British) whereas
other accents showed much larger intelligibility
declines, particularly in the most difficult SNR. The
Levenshtein by Accent interaction and the three-way
interaction among Levenshtein, Accent, and SNR
suggest that effects of phonemic distance from the
local accent were not consistent across accents and
further, that these impacts were influenced by
listening environment.

4. DISCUSSION

This study investigated intelligibility in quiet and two
noise-added conditions across nine accents with two
talkers representing each accent. The explanatory
value of two variants of the Levenshtein distance
metric, which measures phonemic differences from a
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reference accent, were evaluated. Results showed that
higher Levenshtein distance scores were associated
with lower intelligibility. Further, the unweighted
Levenshtein metric was a better fit for the data than
the weighted one. This result further supports the
inclusion of these pronunciation distance metrics into
studies of intelligibility to capture how differences in
segmental productions across both unfamiliar native
and non-native accents can impact intelligibility.
They also suggest that relatively simple metrics (i.e.,
unweighted scores that are not adjusted for frequency
of pronunciations within a large corpus) may be
sufficient to capture the impact of phonemic
differences on intelligibility. That said, the continued
evaluation of other distance metrics (e.g., PMI, NDL)
would still be valuable to determine the extent to
which they can capture variance in intelligibility
across talkers and accents, beyond their utility with
explaining accent strength ratings [15-17]. This study
extends the use of these pronunciation distance
metrics to both native and non-native varieties
whereas most previous studies (except [11]) used
only non-native varieties. These results also cast
doubt on any strong claims about non-native accents
causing more disruption to word recognition than
unfamiliar native ones.

These distance measures do not capture any
pronunciation differences beyond the phoneme level,
such as prosodic differences. Fully explaining why a
specific talker or accent causes word recognition
challenges, particularly for stimuli longer than a
word, will very likely require measures of prosodic
characteristics, such as rhythm, intonation, and
speaking rate. Indeed, results in the full model
suggest that intelligibility is impacted by interactions
among phonemic distance, accent features, and
listening conditions. Establishing standardized
measures of prosodic distance from the home accent
will be an essential next step in explaining the source
of the accent effects. Similarly, a finer-grained
analysis is necessary to interpret the impacts of
listening condition (i.e., SNR). As has been seen for
regional American English accents [8] and non-native
accents [7], intelligibility differences across varieties
tend to be much larger in adverse listening conditions.
Additional analyses of the current data set will allow
for pinpointing which pronunciation characteristics
underlie the challenges that arise only in noisy
environments. Finally, future studies should also
include other social or sociolinguistic factors, such as
listener familiarity with accents or language attitudes,
to determine their impact on communication success.
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