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Abstract—In face of an increasing number of automotive cyber-
physical threat scenarios, the issue of adversarial destabilization
of the lateral motion of target vehicles through direct attacks
on their steering systems has been extensively studied. A more
subtle question is whether a cyberattacker can destabilize the
target vehicle lateral motion through improper engagement of
the vehicle brakes and/or anti-lock braking systems (ABS).
Motivated by such a question, this paper investigates the impact
of cyber-physical attacks that exploit the braking/ABS systems
to adversely affect the lateral motion stability of the targeted
vehicles. Using a hybrid physical/dynamic tire-road friction
model, it is shown that if a braking system/ABS attacker manages
to continuously vary the longitudinal slips of the wheels, they can
violate the necessary conditions for asymptotic stability of the
underlying linear time-varying (LTV) dynamics of the lateral
motion. Furthermore, the minimal perturbations of the wheel
longitudinal slips that result in lateral motion instability under
fixed slip values are derived. Finally, a real-time algorithm for
monitoring the lateral motion dynamics of vehicles against brak-
ing/ABS cyber-physical attacks is devised. This algorithm, which
can be efficiently computed using the modest computational
resources of automotive embedded processors, can be utilized
along with other intrusion detection techniques to infer whether
a vehicle braking system/ABS is experiencing a cyber-physical
attack. Numerical simulations in the presence of realistic CAN
bus delays, destabilizing slip value perturbations obtained from
solving quadratic programs on an embedded ARM Cortex-M3
emulator, and side-wind gusts demonstrate the effectiveness of
the proposed methodology.

I. INTRODUCTION

The existence of communication network protocols such
as CAN and FlexRay, which are an integral component of
the modern automotive networked control systems, and the
proliferation of connected vehicles, which facilitate vehicle-
to-everything (V2X) communications, have revealed an ever-
increasing horizon of automotive cyber-physical threat scenar-
ios [1], [2]. Given the safety-critical nature of braking, there
is no wonder that cybersecurity researchers are interested in
demonstrating cyber-physical vulnerabilities of modern vehi-
cles through design of various attacks against their braking
and anti-lock braking systems (ABS) (see, e.g., the line
of literature [3]–[9]) while analyzing the capabilities of an
adversary who “has made it to the last stage” [10].
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Figure 1 depicts several possible attack vectors through
which the adversaries can launch their malicious activities
against a target vehicle. In general, attacks against the vehicle
braking systems and ABS fall within two broad categories. In
the first category, adversaries target the physical components
of the braking systems through external attack vectors against
the physical layer. For instance, Shoukry et al. [4] executed an
ABS attack by injection of spoofing magnetic fields through
an electromagnetic actuator in a vicinity of the ABS sensor.

In the second category of attacks against the braking sys-
tem and ABS, the attackers target the CAN and/or FlexRay
communication systems of the vehicle and subsequently inject
false brake/ABS messages onto the in-vehicle network (IVN)
bus. Another possibility for an adversary who chooses to
use these types of CAN bus attacks is to reprogram a target
brake/ABS electronic control unit (ECU). For instance, in a
series of celebrated white-hat attacks, Miller and Valasek [11]
managed to reprogram V850 chips to disable the braking
system of a class of Fiat-Chrysler vehicles (for other types
of attacks that directly target the brake/ABS ECUs, see,
e.g., [10]). Furthermore, as demonstrated by [6], a compro-
mised brake/ABS ECU can be exploited for executing closed-
loop attack policies against the vehicle longitudinal traction
dynamics. Through a proper closed-loop attack policy, the au-
thors have shown that the adversary can drive the states of the
vehicle traction dynamics to a vicinity of the lockup manifold
in a finite time despite possessing a limited knowledge of the
tire-road interaction characteristics [6].

A less investigated aspect of the impact of cyber-physical at-
tacks against the vehicle braking/ABS systems is destabilizing
the vehicle lateral motion. A conventional way for adversarial
destabilization of a target vehicle lateral motion is through
direct attacks on its steering system. Indeed, Valasek and
Miller (see, e.g., [11], [12]) managed to steer a 2014 Jeep
Cherokee into a ditch by taking over its steering system while
leaving almost no forensic evidence behind. Another notable
hack against the active steering system is proposed by Nekouei
et al. [13], where the gains of the vehicle steering closed-
loop controller are inferred by infiltrating the vehicular ad-hoc
network. Nevertheless, in all of these scenarios, it is through
the direct adversarial manipulation of the steering input that
the lateral motion becomes unstable.

Given the well-documented literature on attacks against
ABS/braking systems [3]–[9], this paper investigates the fol-
lowing questions: (1) is it possible for a braking system/ABS
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Fig. 1: Several possible vectors through which attacks can be
executed against the braking system/ABS of the target vehicle.

attacker to induce lateral motion instability through varying
the longitudinal slips of the wheels?; (2) what is the minimum
amount of longitudinal slip perturbations that makes the lateral
motion dynamics unstable?; and, (3) is it possible to devise
an algorithm, which can be efficiently computed in real-time
(preferably with the modest computational capabilities of a
commercial ECU), for monitoring the lateral motion dynamics
of the vehicles against potential braking system/ABS attacks?

To answer these three questions (see, also, Section II-A
for the contributions of the paper), we demonstrate that
if a braking system/ABS attacker manages to continuously
vary the longitudinal slips of the wheels, they can violate
certain conditions for asymptotic stability of an underlying
LTV dynamical model that governs the vehicle lateral motion
under small slip angles (Propositions 3, 4, and Corollary 6).
Furthermore, we provide a distance-to-instability metric for
the lateral dynamics with frozen-time eigenvalues and derive
the minimal perturbations of the wheel longitudinal slips
resulting in lateral motion instability under fixed slip val-
ues (Propositions 7, 8, and the quadratic programming (QP)
problem formulated in (34)). Finally, we devise a real-time
algorithm for monitoring the vehicle lateral dynamics against
braking/ABS cyber-physical attacks (Algorithm 1 and Propo-
sitions 12 and 14). This algorithm monitors the vehicle lateral
dynamics for potential unstable behavior due to time-varying
longitudinal slip values under braking/ABS attacks and issues
warning signals to higher-level supervisory modules for taking
further actions. The algorithm, which can be run using the
modest computational resources of commercial ECUs (through
the closed-form solutions outlined in V-A1, V-A2, and V-A3),
can be utilized along with other intrusion detection techniques
(see, e.g., [14]) to infer an attack.

The rest of this paper is organized as follows. We first
highlight the contributions of this paper in Section II-A. After
reviewing some preliminaries about the vehicle dynamics
and the impact of road/tire lateral forces using a hybrid
physical/dynamic friction model, we present the resulting LTV
dynamics under varying longitudinal slips in Section II-B.
Next, in Section III, we present the conditions under which
the adversary can violate certain conditions for asymptotic
stability of the lateral motion. Thereafter, we find the minimal
perturbations of the wheel longitudinal slip values that result
in an unstable lateral motion under fixed slip conditions in
Section IV. Afterwards, we present a real-time algorithm that

can be used for monitoring the lateral motion of vehicles
for inferring potential cyber-physical attacks on the vehicle
braking systems/ABS in Section V. After presenting the sim-
ulations in Section VI and providing some further remarks and
discussion about the scalability of the proposed approach in
Section VII, we conclude this paper in Section VIII.
Notation. Given an integer N , we denote the identity matrix
of size N by IN . Given a square matrix A, we denote its
trace and determinant by det(A) and tr(A), respectively. Ad-
ditionally, we let eig(A) denote the collection of eigenvalues
of A. Given the integers m,n and the matrix B ∈ Rm×n, we
denote the transpose of the matrix by B⊤.

II. LITERATURE REVIEW AND PRELIMINARIES

In this section we first provide an outline of the paper
contributions and its highlights with respect to the existing
literature. Next, we review some preliminaries about the
vehicle dynamics and the impact of road/tire lateral forces
using a hybrid physical/dynamic friction model.

A. Contributions of the Paper

With respect to the vehicle dynamics and control literature,
this work provides a formal analysis of the lateral motion
stability under braking/ABS cyber-physical attacks in an ad-
versarial setting where the longitudinal slip values of the
wheels can change over time due to the adversary’s exploita-
tion of the braking/ABS systems. Remarkably, the interest
within the traditional vehicle dynamics and control literature
is in maximizing the traction forces and operating within
a close vicinity of a constant reference friction coefficient
(see, e.g., [15], [16]). Due to the emerging cyber-physical
threat scenarios, there is a need to investigate the less-studied
stability issues under time-varying longitudinal slip values
with an emphasis on finding conditions that lead to instability.

The conditions of linear time invariant (LTI) lateral motion
instability with fixed wheel longitudinal slip values have
already been investigated in the line of work by Yi, Tseng,
and collaborators (see, e.g., [17]–[19]). An extension of their
work in [7] utilizes Mikhailov plots from the robust stability
analysis literature to find the intervals on which the lateral
motion stability with fixed wheel longitudinal slip values
is guaranteed. This paper extends these previous results by
extending the analysis to time-varying longitudinal slip val-
ues and computing minimally destabilizing longitudinal slip
perturbations as outlined in what follows.

As another contribution, this article adds to the body of
knowledge on cyber-physical attack generation in autonomous
and connected vehicles. In particular, by utilizing the concept
of the distance of a given stable LTI system from its nearest
unstable dynamics of the same order (see, e.g., [20]–[22]), we
provide a method for computing the minimal perturbations
of the longitudinal slip values that result in lateral motion
instability. These results are related to the body of literature
on designing cyber-physical attacks where the intent of the
adversary is to drive the targeted system to an unsafe operating
region (see, e.g., [23]–[26]). Additionally, a majority of the
previous cyber-physical attack generation literature has an
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exclusive focus on plants with time-invariant dynamics. In
contrast, our results focus on a time-varying setting, where we
demonstrate that a braking system/ABS attacker, who manages
to continuously vary the longitudinal slips of the wheels,
can violate the necessary conditions for asymptotic stability
of the underlying lateral motion LTV dynamics. One of the
few similar results is due to Pessim and Lacerda [27], where
feedback schemes for cyber-physical linear parameter varying
systems under DoS attacks is designed.

There are a number of theoretical and practical challenges
associated with monitoring the stability of LTV systems in
real-time. The LTV dynamics stability results with the ex-
ception of few works such as [28], which are suitable for a
real-time monitoring setting, are very scarce in the literature
(see, [29]–[31] on some recent results about the stability of
LTV dynamical systems). Furthermore, despite the existence
of conclusive theories and abundance of tools for assessing the
stability of LTI systems, investigating the properties of LTV
systems is still an open quest (see, e.g., [29], [30] for some
recent theoretical results and the earlier pioneering works by
Rosenbrock [32], [33] and Desoer [34], respectively).

The underlying assumption of a majority of previous results
in the LTV stability literature is completely knowing the state
transition matrix as a function of time. However, possessing
such a knowledge is not realistic when the adversary is
manipulating the dynamics at his/her own will. Accordingly,
the emerging automotive cyberthreat scenarios necessitate the
development of real-time monitoring tools to infer whether a
vehicle is undergoing a braking system/ABS attack.

By modifying the framework proposed by Mullhaupt et
al. [28] in a way that is suitable for implementation in automo-
tive embedded settings for the first time, we devise a real-time
algorithm for monitoring the lateral motion dynamics against
braking/ABS cyber-physical attacks. In particular, through two
extensions, we are making the results of [28] applicable to
real-time settings. First, since the numerical procedures in [28]
rely on solving matrix Lyapunov equations and multivariable
optimization problems as well as orthonormal diagonalization
of real symmetric matrices, they are not suitable for implemen-
tation in embedded applications with modest computational
resources. We provide closed-form solutions to the numerical
subproblems that are needed for running the algorithm in real-
time. Second, we provide a condition on the sampling times
of the monitoring algorithm ensuring that the stability results
of [28] can be invoked in a sampled-data setting.

B. Modeling

In this section we present a brief overview of the important
kinematic relationships, the bicycle model for vehicle dynam-
ics, the tire/road interaction forces under small slip conditions,
and the resulting LTV dynamics under time-varying longitu-
dinal slip profiles. We assume, without loss of generality, that
the front wheel is braking while the rear wheel is in traction.
The reader is referred to the respective vehicle dynamics and
control references for further details on the presented modeling
approach (see, e.g., [17]–[19]). Unless otherwise stated, we use

Fig. 2: Bicycle model schematic.

the subscripts r and f to denote the variables associated with
the rear and front wheels of the vehicle, respectively.

1) Kinematic Relationships: In this section we briefly
present the important kinematic relationship in the vehicle
bicycle model. Table I provides the list of variables utilized in
the bicycle model along with their descriptions. Additionally,
Figure 2 provides a schematic view of the bicycle model. A
variable that plays an important role in analyzing the lateral
motion stability besides the vehicle yaw rate, i.e., ωψ := ψ̇,
can be defined using the side slip angle β as follows

σ := tanβ =
vGy
vGx

. (1)

TABLE I: Bicycle Model Kinematic and Dynamic Variables.

Variable Description
X , Y
x, y

Ground-fixed and body-fixed coordinate
systems.

Ffx, Ffy
Frx, Fry The front and rear wheel contact forces.

vf , vr
vG = [vGx, vGy ]

⊤
The Front and rear wheel contact point
velocity vectors.
The velocity vector of the COM.

ωf , ωr
αf , αr
λf , λr

The front and rear wheel angular veloc-
ities.
The front and rear wheel slip angles.
The front and rear wheel longitudinal
slip values.

ψ, ψ̇
δ

The vehicle yaw angle and angular yaw
rate.
Front wheel steering angle.

β
σ = tan(β)

Vehicle side slip angle.
Side slip angle variable.

g
m
Iz
Lf , Lr

The gravitational acceleration.
The vehicle total mass.
The moment of inertia about the z-axis.
The distances between the COM and the
front and rear wheel contact points.

Two other important relationships can be used to describe
the front and rear wheel slip angles αf and αr in terms of the
other kinematic variables. In particular, we have

tan(δ − αf ) =
vfy
vfx

=
vGy + Lf ψ̇

vGx
= σ +

Lf ψ̇

vGx
, (2)



4

and

tan(αr) = −
vry
vrx

= −vGy − Lrψ̇
vGx

= −σ +
Lrψ̇

vGx
. (3)

The kinematic relationships (2) and (3), under small slip
angle conditions, can be further simplified to

αf = δ − σ − Lf ψ̇

vGx
, αr = −σ +

Lrψ̇

vGx
. (4)

To describe the kinematic relationships between the rear
and front wheel contact point velocities and the vehicle COM
velocity, one can use the slip angles αf and αr as follows

vrx = vr cos(αr) = vGx, vry = −vrx tan(αr), (5)

and

vfx = vf cos(δ − αf ) = vGx, vfy = vfx tan(δ − αf ). (6)

Consequently, the relative velocity of the front and rear
wheel contact points with respect to the ground are

vRf
=

√︂
v2fx + v2fy = vGx

√︂
1 + sin(δ − αf )2, (7a)

vRr
=

√︂
v2rx + v2ry = vGx

√︁
1 + tan(αr)2. (7b)

Under small slip angle conditions and zero front wheel
steering angle, i.e., δ = 0, the magnitudes of the relative
velocity of the front and rear wheel contact points given by (7)
get simplified to

vRf
= vRr

= vGx. (8)

In addition to the slip angles αf and αr, it is possible to
define the front and rear wheel longitudinal slips as

λf :=
vf cos(αf )− rfωf

vf cos(αf )
, λr :=

vGx − rrωr
vGx

, (9)

respectively. Similarly, under small slip angle conditions and
zero front wheel steering angle, the longitudinal slip values
given by (9) get simplified to

λf =
vGx − rfωf

vGx
, λr =

vGx − rrωr
vGx

. (10)

2) Bicycle Model of Vehicle Dynamics: In this section we
present the bicycle model for vehicle dynamics, the tire/road
interaction forces under small slip angle conditions, and the
resulting LTV dynamics under time-varying longitudinal slip
profiles. We assume that Ffx − Frx = 0 and that δ = 0.
In the vehicle dynamics and control literature (see, e.g., [17],
[18]), where the coupling between the lateral and longitudinal
dynamics are investigated, it is customary to assume a constant
COM velocity, i.e., vGx = V0, which is equivalent to Ffx −
Frx = 0. Under these assumptions, the nonlinear dynamics of
the vehicle lateral motion are

σ̇ = −(1 + σ2)ωψ +
Ffy + Fry
mV0

, (11a)

ω̇ψ =
1

Iz
(FfyLf − FryLr). (11b)

The nonlinear dynamics given by (11) can effectively cap-
ture the effect of tire/road friction forces on the lateral stability

Fig. 3: The tire contact patch geometry and its motion kinematics.

of the vehicle (see, e.g., [17], [18]). To model the tire/road
friction forces, we assume a contact patch with rectangular
geometry between the tire and the road (see Figure 3). Under
this contact patch geometry and small slip angle conditions,
the steady-state tire/road lateral forces using a hybrid physi-
cal/dynamic tire/road friction model (see, e.g., [17]–[19]) are

Fyi =
liσ̂0yiFni

2

(︁
1− liσ̂0yi

2giy(vRi)
λi
)︁
αi, i = r, f, (12)

where li and σ̂0yi, i = r, f , are contact patch length and
normalized tire bristle elastic stiffness, respectively (see Fig-
ure 3 for the tire/road contact patch geometry). Furthermore,
Fni, i = r, f , is the tire normal load, where the relationship
Fni = Li

L mg holds under a static normal load distribution.
Finally, the nonlinear mapping giy(·), which captures the
impact of the tire/road distributed LuGre dynamic model on
lateral forces in steady state, can be expressed as

giy(vRi) = µCi + (µSi − µCi) exp
(︁
−
√︃
vRi
vsi

)︁
. (13)

In (13), the parameters vsi, µCi, and µSi, i = r, f , are the
Stribeck velocity, the Coulomb friction coefficient, and the
static friction coefficient, respectively. As it is demonstrated
by [17], the tire lateral forces in (12) can be written as

Fyi = bigiy(vRi)Fni
(︁
1− biλi

)︁
αi, i = r, f, (14)

where bi :=
liσ̂0yi

2giy(vRi)
, and the slip angles are given by (4).

It is possible to model the effect of environmental distur-
bances acting on the vehicle lateral dynamics as discussed
in Section VI. Such environmental disturbance modeling not
only makes the utilized physics-based models more accurate
but also helps to understand the capabilities of sophisticated
adversaries when they time their cyber-physical attacks with
environmental factors to induce more damage (see, e.g., the
work by Kott et al. [35]).

Linearizing the nonlinear dynamics given by (11) under the
lateral tire forces in (14) about the equilibrium xe = [σ, ψ]⊤ =
[0, 0]⊤ (see [17] for the derivation details), we arrive at the
LTV dynamical model

σ̇ = A11(t)σ +A12(t)ωψ, (15a)
ω̇ψ = A21(t)σ +A22(t)ωψ, (15b)
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under time-varying longitudinal slips λi(t), i = r, f , where

A11(t) =
−g
LV0

{︃
bfgfy(V0)(1− bfλf (t))Lr

+ brgry(V0)(1− brλr(t))Lf
}︃
, (16a)

A12(t) = −1−
gLfLr
LV 2

0

{︃
bfgfy(V0)(1− bfλf (t))

− brgry(V0)(1− brλr(t))
}︃
, (16b)

A21(t) =
−gLfLr
IzL

{︃
bfgfy(V0)(1− bfλf (t))

− brgry(V0)(1− brλr(t))
}︃
, (16c)

A22(t) =
−gLfLr
LV0

{︃
bfgfy(V0)(1− bfλf (t))Lf

− brgry(V0)(1 + brλr(t))Lr

}︃
. (16d)

In summary, under small slip angle conditions and zero
steering angle input, the linearized lateral dynamics about
the equilibrium xe = [σ, ψ]⊤ = [0, 0]⊤ under time-varying
longitudinal slip profiles take the following LTV form

ẋ = Aℓ(t)x, (17)

where x := [σ, ωψ]
⊤ is the state vector. Also, the entries of

the state transition matrix Aℓ(t) ∈ R2×2 are given by (16).
When the longitudinal slip values of the wheels do not

change with time, namely, when λf (t) = λ∗f and λr(t) = λ∗r
for some constant values λ∗f and λ∗r , we arrive at

ẋ = A∗
ℓx, (18)

where A∗
ℓ is the state transition matrix of the LTI dynamics

in (18) under λf (t) = λ∗f and λr(t) = λ∗r .
The trace of the matrix Aℓ(t), which will play an important

role in our subsequent developments, is given by tr(Aℓ(t)) =
A11(t) +A22(t). Using (16), it can be seen that

tr(Aℓ(t)) = κf
(︁
1− bfλf (t)

)︁
+ κr(1− brλr(t)

)︁
, (19)

where the constant parameters κf and κr, which are dependent
on the kinematic parameters of the vehicle and the tire-road
interaction characteristics, are given by

κf =
−gLrbfgfy(V0)

LV0

(︁
1 + L2

f

)︁
, (20a)

κr =
−gLfbrgry(V0)

LV0

(︁
1 + L2

r

)︁
. (20b)

Remark 1. There are various ways for estimating the state
transition matrix Aℓ(t) thanks to the mature technologies and
algorithms developed for commercial vehicles such as utilizing
unknown input observers and lateral tire force sensors (see,
e.g., [36]–[38]).

III. CYBER-PHYSICAL THREAT ANALYSIS UNDER
TIME-VARYING LONGITUDINAL SLIP VALUES

In this section we present the conditions under which the
adversary can endanger the vehicle lateral motion stability
through improper engagement of the braking system/ABS by
continuously changing the longitudinal slip values.

Our analysis in this section is independent of the source
of intrusion into the braking system/ABS and the only as-
sumption is that the attacker is changing the longitudinal slip
values with time. A special case of such a scenario is when
the attacker causes wheel lockups (see, e.g., [6]), which can
be considered as one of the most severe types of attacks with a
potential for catastrophic road injuries [39]. Nevertheless, such
a sophisticated attacker needs to execute closed-loop attack
policies on the vehicle traction dynamics while having full
disclosure and disruption resources simultaneously. Here, we
relax such an assumption and provide more general conditions
under which the attacker can induce lateral motion instability.
For instance, the attacker might be using the simple and
inexpensive electromagnetic spoofing device proposed by [4].

We first present the following proposition that establishes
the equivalency between the local exponential stability of the
equilibrium xe = [0, 0]⊤ for the lateral motion nonlinear time-
varying dynamics and its LTV linearized model.

Proposition 2. Consider the vehicle lateral motion dynamics
given by (11) and its linearized LTV model about the equilib-
rium xe = [σ, ψ]⊤ = [0, 0]⊤ given by (17). The equilibrium
xe is locally uniformly exponentially stable for the nonlinear
dynamics in (11) if and only if the LTV dynamics in (17) are
uniformly asymptotically stable.

Proof. The uniform exponential stability of xe for the nonlin-
ear dynamics (11) is equivalent to the uniform exponential sta-
bility of xe for the LTV dynamics (17) (see, e.g., Theorem 4.15
in [40]). Furthermore, the uniform exponential stability of
the LTV dynamics given by (17) is equivalent to its uniform
asymptotic stability (see, e.g., Lemma 1 in [29]).

The following proposition provides a necessary condition
for asymptotic stability of the lateral motion LTV dynamics
that can get violated due to improper engagement of the
vehicle brakes/ABS by an adversary.

Proposition 3. Consider the lateral motion LTV dynamics un-
der time-varying longitudinal slip values given by (17), where
the entries of Aℓ(t) are given by (16). A necessary condition
for asymptotic stability of the vehicle lateral dynamics is

lim
t→∞

∫︂ t

t0

[︁
κf

(︁
1−bfλf (t)

)︁
+κr(1−brλr(t)

)︁]︁
dt = −∞. (21)

Proof. The trace of the state transition matrix Aℓ(t) is given
by (19). According to Theorem 1 given by [41], if the LTV
dynamics in (17) are asymptotically stable, then it is necessary
that for any t > t0,

∫︁ t
t0
tr(Aℓ(t)) dt→ −∞, as t→∞.

The following proposition provides a sufficient condition
for instability of the lateral motion LTV dynamics.
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Proposition 4. Consider the lateral dynamics in the statement
of Proposition 3. A sufficient condition for instability is

lim
t→∞

∫︂ t

t0

[︁
κf

(︁
1− bfλf (t)

)︁
+ κr(1− brλr(t)

)︁]︁
dt =∞. (22)

Proof. The proof follows from a straightforward application
of Theorem 2 given by [41] and noting that the trace of the
state transition matrix Aℓ(t) is given by (19).

Remark 5. In the special case of fixed longitudinal slip
values resulting in the LTI dynamics in (18), we have∫︁ t
t0
tr(Aℓ(t)) dt = tr(A∗

ℓ )(t − t0). Therefore, if tr(A∗
ℓ ) > 0,

then the sufficient condition in (22) holds and instability of the
vehicle lateral motion follows, which is in agreement with the
results obtained by [7], [17].

The following corollary is an immediate result of Propo-
sition 4 when the wheel longitudinal slip values change
periodically under the adversary’s actions.

Corollary 6. Consider the lateral dynamics in the statement of
Proposition 4. Assume that the wheel longitudinal slip values
are periodically time-varying with period T0. A sufficient
condition for instability of the vehicle lateral dynamics is

κf + κr > κfbf λ̄f + κrbrλ̄r, (23)

where λ̄i = 1
T0

∫︁ t0+T0

t0
λi(τ)dτ , i = r, f , is the longitudinal

slip value average over one period for any arbitrary t0 > 0.

According to Proposition 3 if the attacker changes the
longitudinal slip values such that the equality in (21) is
violated, then a necessary condition for asymptotic stability
of the lateral motion LTV dynamics will not hold anymore.
Furthermore, Proposition 4 and Corollary 6 provide sufficient
conditions for time-varying wheel slip profiles that will re-
sult in lateral motion instability. The reader is referred to
Section VI-A for the simulation results associated with time-
varying longitudinal slip value profiles.

IV. DISTANCE TO THE NEAREST UNSTABLE LATERAL
MOTION DYNAMICS

In this section we utilize the concept of the distance between
a given stable LTI dynamical system and its nearest unstable
dynamics using the frozen-time eigenvalues of (17) (see,
e.g., [20]–[22] for various approaches to develop a metric for
this concept). In particular, we find the distance between the
lateral motion dynamics under fixed wheel longitudinal slip
values to its nearest unstable LTI dynamics. Furthermore, we
provide a method for computing the minimal perturbations
of the wheel longitudinal slip values that result in lateral
motion instability under fixed slip conditions. These deriva-
tions are important from two different perspectives. From the
adversary’s perspective, it might be appealing to know about
the minimal engagement of the brakes/ABS to cause lateral
instability. From a defender’s perspective, as discussed in the
next section (Remark 10), the derived distance metric appears
in certain parts of the real-time monitoring algorithm.

Let us consider an arbitrary time instant t∗ > 0. The frozen-
time eigenvalues of Aℓ(t) given by (17) at t = t∗ play an

important role for computing the instantaneous distance to
instability. At t = t∗, the state transition matrix Aℓ(t) gives
rise to the LTI dynamics

ẋ = Aℓ(t
∗)x. (24)

The characteristic polynomial of Aℓ(t
∗) in (24) is given by

the second-order monic polynomial

f(z) = det(zI2−Aℓ(t
∗)) = z2− tr(Aℓ(t

∗))z+det(Aℓ(t
∗)).
(25)

The LTI dynamics given by (24) are asymptotically stable
if and only if the frozen-time eigenvalues of Aℓ(t) at t = t∗

lie in the left half complex plane. Since the trace and the
determinant of Aℓ(t

∗) are equal to the product and sum of
the frozen-time eigenvalues of Aℓ(t) at t = t∗, asymptotic
stability holds if and only if

tr(Aℓ(t
∗)) < 0, det(Aℓ(t

∗)) > 0. (26)

Assuming asymptotic stability of (24), we would like to
find the minimal real-valued perturbations to the coefficients
of (25) such that the dynamics given by (24) become unstable.
Furthermore, we would like to compute the distance of (24)
to the nearest unstable LTI dynamics of the same order,
namely, with a second-order characteristic polynomial. To find
such perturbations, we follow the procedure due to Hitz and
Kaltofen [21]. Let us consider the first-order polynomial

P∆(z) = ∆0 +∆1z, (27)

where ∆0 and ∆1 are real constant values. The polynomial
P∆(z) in (27) yields the perturbed monic polynomial

f̃(z) :=f(z)− P∆(z) = z2 − (tr(Aℓ(t
∗)) + ∆1)z

+ (det(Aℓ(t
∗))−∆0).

(28)

Additionally, the distance between f(·) and f̃(·) is given by

d(f, f̃) :=
√︂
∆2

0 +∆2
1. (29)

The following proposition can be used for computing the
nearest unstable polynomial f̃ with real coefficients from a sta-
ble lateral motion characteristic polynomial of the form (25).

Proposition 7. Consider the vehicle lateral motion LTI
dynamics given by (24) and its associated characteristic
polynomial in (25). Assume that the dynamics in (24) are
asymptotically stable, where the inequalities (26) are satisfied.
Denote the nearest second-order monic polynomial to the
stable lateral motion characteristic polynomial in (25) by
f̃(z). The polynomial f̃(z), which has at least one root
on the imaginary axis, is of the form (28). The nearest
unstable polynomial f̃(z) to f(z) can be obtained through
the parametric perturbations ∆0(ζ) = −ζ2 + det(Aℓ(t

∗))
and ∆1(ζ) = − tr(Aℓ(t

∗)). Furthermore, the square norm
Nm(ζ) := tr(Aℓ(t

∗))2 +
(︁
ζ2 − det(Aℓ(t

∗)
)︁2

gets minimized
at ζ = ±

√︁
det(Aℓ(t∗)) resulting in the minimum distance

d∗Aℓ(t∗)
= − tr(Aℓ(t

∗)). (30)
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Proof. The statement of the proposition directly follows from
the application of Theorem 3 in [21] to the second-order stable
monic polynomial given by (25).

We now utilize Proposition 7 to find the minimal perturba-
tions of the wheel longitudinal slip values that result in lateral
motion instability. First, it is remarked that a perturbed wheel
longitudinal slip vector of the form

λλλ̃ =

[︃
λf (t

∗) + ∆λf
λr(t

∗) + ∆λr

]︃
, (31)

at time t = t∗ results in a perturbed state transition matrix
Ãℓ(t) whose trace is given by

tr(Ãℓ(t
∗)) = tr(Aℓ(t

∗))−κfbf∆λf (t)−κrbr∆λr(t). (32)

We have the following lemma regarding the wheel longitu-
dinal slip vector perturbations that minimize the distance of the
stable characteristic polynomial in (25) to its nearest unstable
second-order monic polynomial.

Lemma 8. Consider the vehicle lateral motion LTI dynamics
given by (24) and its associated characteristic polynomial
in (25). Assume that the dynamics in (24) are asymptotically
stable, where the inequalities (26) are satisfied. The wheel lon-
gitudinal slip vector perturbation ∆λλλ := [∆λf , ∆λr]

⊤ that
minimizes the distance of (25) to the nearest unstable monic
second-order polynomial satisfies the equality constraint

∆λλλ⊤ννν − tr(Aℓ(t
∗)) = 0, (33)

where ννν := [κfbf , κrbr]
⊤.

Proof. According to Proposition 7, the perturbation P∆(z) =
− tr(Aℓ(t

∗))z will minimize the distance of (25) to the nearest
unstable characteristic polynomial. Such a perturbation will
result in a perturbed state transition matrix Ãℓ(t

∗) satisfy-
ing (32). Rewriting the Equation (32) by using an inner product
between ∆λλλ and ννν concludes the proof.

Using Lemma 8, we can numerically search for the wheel
longitudinal slip vector perturbations ∆λλλ := [∆λf , ∆λr]

⊤

of minimum norm, which minimize the distance between the
asymptotically stable characteristic polynomial in (25) and the
family of unstable characteristic polynomials of order two. In
particular, we can form the following QP problem

min
∆λλλ

∆λλλ⊤∆λλλ

s.t. ∆λλλ⊤ννν − tr(Aℓ(t
∗)) = 0

− λi(t∗) ≤ ∆λi ≤ 1− λi(t∗), i = r, f,

(34)

where the equality constraint in the constrained QP is the
condition given by (33) in Lemma 8. The reader is referred
to Section VI-B for the simulation results associated with the
minimal destabilizing longitudinal slip value perturbations.

Remark 9. The QP in (34) can be solved in embedded settings
using alternating direction method of multipliers (ADMM)-
based algorithms (see, e.g., [42], [43]). One such algorithm
is presented in Appendix A and its real-time performance is
benchmarked through processor-in-the-loop (PIL) simulations
on an ARM Cortex processor emulator in Section VI.

Fig. 4: Using the incoming stream of matrices Aℓ(ti+1), Algo-
rithm 1 keeps generating a sequence of tube widths {V0, V1, · · · }
through the following three numerical procedures: (1) tube width
estimation (computing V̂ i+1); (2) tube shape construction (computing
Pi+1 = LY(Aℓ(ti+1))); and, (3) tube junction (computing Vi+1

and v∗
i+1). By inspecting the numerical properties of the generated

sequence S = {Vi}∞i=0 by Algorithm 1, one can infer stability of the
vehicle lateral motion LTV dynamics.

V. MONITORING THE LATERAL MOTION DYNAMICS
AGAINST BRAKING SYSTEM/ABS ATTACKS

In this section we adapt the theoretical framework in [28]
to real-time settings for devising an algorithm to monitor
the lateral motion dynamics of vehicles against braking/ABS
cyber-physical attacks. This is the first time that Mullhaupt et
al.’s theoretical results [28] are adapted to a cyber-physical
monitoring application. In particular, through two extensions,
we are making the results of [28] applicable to a real-time
setting. First, since the numerical procedures in [28] rely on
solving matrix-based equations and numerical optimizations,
they are not suitable for implementation on embedded pro-
cessors with limited resources (see Remark 11). We provide
closed-form solutions to the numerical subproblems that are
needed for running the algorithm in real-time. Second, we
provide a condition on the sampling times of the monitoring
algorithm that upholds the stability results of [28] in the case
of a sampled-data setting (see Remark 13).

A. The Algorithm and Its Numerical Implementation

Algorithm 1 is a re-statement of the numerical procedures
presented by [28] with extensions for making it suitable for
automotive embedded settings. In particular, while Mullhaupt
et al.’s method [28] is not suitable for real-time implementa-
tion on automotive embedded processors, Algorithm 1 in this
article merely relies on the four fundamental arithmetic opera-
tions and some trigonometric function calculations as outlined
in V-A1–V-A3. Indeed, Algorithm 1 is suitable for embedded
settings with limited computational resources (Remark 11).

Algorithm 1 can be described as follows (see, also, Fig-
ure 4). First, the initialization step is carried out through the
closed-form solution presented in V-A1 at time t0. In the next
sampling instants ti+1, where i = 0, 1, · · · , Algorithm 1
reads the lateral dynamics state transition matrix Aℓ(ti+1)



8

Algorithm 1: Real-Time Monitoring of the Vehicle Lateral
Motion LTV Dynamics
Data: A constant threshold Vmax and sampled LTV

state transition matrices Aℓ(ti) at sampling
instants ti > 0, i = 0, 1, · · ·

Result: A sequence of tube widths {V0, V1, · · · }
Initialization: Set i = 0 and read Aℓ(t0);
if tr(Aℓ(t0)) < 0 AND det(Aℓ(t0)) > 0 then

Choose V0 > 0 and compute P0 = LY(Aℓ(t0))
using (36) and (37) as outlined in V-A1;

else
Issue a warning signal;
return;

end
while sup

i
Vi < Vmax do

Wait for the next sample of Aℓ(t) at t = ti+1;
Compute the elapsed time δi = ti+1 − ti between

the two readings;
if tr(Aℓ(ti)) < 0 AND det(Aℓ(ti)) > 0 then

(1) Estimate the tube width:
Compute λ1(Pi) using (40) as outlined

in V-A2 and V̂ i+1 = Vi exp(− δi
λ1(Pi)

);
(2) Construct the tube shape:
Compute Pi+1 = LY(Aℓ(ti+1)) using (36)

and (37) as outlined in V-A1;
(3) Perform the tube junction:
Compute (v∗

i+1, Vi+1) = QPc(Pi+1,Pi, V̂ i+1)
using (46) as outlined in V-A3;
i← i+ 1

else
Issue a warning signal;
return;

end
Issue a warning signal;
return;

end

(see Remark 1). Using the incoming stream of matrices
Aℓ(ti+1), the algorithm keeps generating a sequence of tube
widths {V0, V1, · · · } through the following three numerical
calculations: (1) tube width estimation (through the closed-
form solution presented in V-A2); (2) tube shape construction
(through the closed-form solution presented in V-A1); and,
(3) tube junction (through the closed-form solution presented
in V-A3). Figure 4 provides a schematic of the computational
steps within each iteration of running the algorithm.

For now, we assume that the sequence of tube widths
{V0, V1, · · · } keeps getting generated with no interruption and
that sup

i
Vi ≤ Vmax. We will discuss the situations when

tr(Aℓ(ti)) > 0, det(Aℓ(ti)) < 0, or when sup
i
Vi > Vmax later

in this section (see Remark 15). The closed-form solutions for
implementing the Algorithm are outlined as follows.

1) Closed-form solution to two-dimensional Lyapunov
equations: We define the function LY : B ↦→ X to be
the mapping whose domain is the collection of constant real
square matrices B ∈ R2×2 with eigenvalues belonging to the
left half complex plane. The mapping LY(·) maps each matrix

B in its domain to a unique symmetric matrix X ∈ R2×2 that
is the solution to the Lyapunov equation

B⊤X+XB = −I2. (35)

In (35), if we denote the columns of the matrix B by b1

and b2, namely, if B = [b1, b2], then the unique solution X
to (35) takes the closed-form

X = LY(B) =

[︃
x11(B) x12(B)
x21(B) x22(B)

]︃
, (36)

where

x11(B) = −|b2|2 + det(B)

2 tr(B) det(B)
, (37a)

x12(B) = x21(B) =
b⊤
1 b2

2 tr(B) det(B)
, (37b)

x22(B) = −|b1|2 + det(B)

2 tr(B) det(B)
. (37c)

Remark 10. The entries of LY(Aℓ(ti)), which need to be
computed for tube shape construction at each time instant,
are proportional to 1

d∗
Aℓ(ti)

. This is due to Proposition 7 stating
that the smallest distance-to-instability is given by d∗Aℓ(ti)

=
− tr(Aℓ(ti)) > 0.

2) Closed-form orthonormal diagonalization of two-
dimensional symmetric matrices: We define the functions
D : Z ↦→ D(Z) and O : Z ↦→ O(Z) that take in constant
real symmetric square matrices Z ∈ R2×2 and map them to
D(Z) ∈ R2×2 and O(Z) ∈ R2×2 such that

Z = O(Z)D(Z)O(Z)⊤. (38)

Therefore, the matrices D(Z) and O(Z) provide an oth-
ornormal diagonalization of Z given by (38). The closed-form
expression for the diagonal matrix D(Z) is given by

D(Z) =
[︃
λ1(Z) 0

0 λ2(Z)

]︃
, (39)

where λi(Z), i = 1, 2, are the eigenvalues of Z. These
eigenvalues can be computed according to

λi(Z) =
1

2

{︃
tr(Z) + (−1)i−1

√︂
(z11 − z22)2 + 4z212

}︃
. (40)

Also, the orthonormal matrix O(Z) is the rotation matrix

O(Z) =
[︃
cos θZ − sin θZ
sin θZ cos θZ

]︃
, (41)

where

θZ =
1

2
atan2(sin(2θZ), cos(2θZ)), (42a)

sin(2θZ) =
2z12√︁

(z11 − z22)2 + 4z212
, (42b)

cos(2θZ) =
z11 − z22√︁

(z11 − z22)2 + 4z212
. (42c)
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3) Closed-form solution to two-dimensional quadratic pro-
grams subject to quadratic equality constraints: We define
the mapping QPc : (X,Y, v0) ↦→ (v∗, v∗) that takes in
triplets of the form (X,Y, v0) consisting of two positive
definite matrices X,Y ∈ R2×2 and a positive real number v0.
The mapping QPc(·) maps the triplet (X,Y, v0) to a vector
v∗ ∈ R2 and a real value v∗ such that

v∗ = max
v

v⊤Xv

s.t. v⊤Yv − v0 = 0,
(43)

and v∗ is the vector that maximizes the quadratic cost function
v⊤Xv while satisfying the equality constraint in (43).

Considering the mapping QPc : (X,Y, v0) ↦→ (v, v∗), it
can be shown that (see, e.g., Lemma 2 in [28])

v =

√︃
v0
λ2
O(X)D(X)−

1
2m2, v

∗ = v⊤Xv, (44)

where D(X) and O(X) are obtained from applying the
mappings D(·) in (39)–(40) and O(·) in (41)–(42) to X,
respectively. Furthermore, λ2 is the smallest eigenvalue of

ΓΓΓ := D(X)−
1
2O(X)⊤YO(X)D(X)−

1
2 , (45)

and the vector m2 is the orthonormal vector associated with
λ2. To compute λ2 and m2, one needs to apply the mappings
D(·) in (39)–(40) and O(·) in (41)–(42) to ΓΓΓ, respectively. The
second element on the diagonal of D(ΓΓΓ) is equal to λ2 and the
second column of O(ΓΓΓ) is equal to the vector m2. Therefore,
the closed-form solution to (44) takes the following form

v =

√︃
v0

λ2(ΓΓΓ)

⎡⎣− sin(θX+θΓΓΓ)√
λ1(X)

cos(θX+θΓΓΓ)√
λ2(X)

⎤⎦ , v∗ = v⊤Xv, (46)

where θX and θΓΓΓ can be computed from (42).

Remark 11. Computing the closed-form solutions as outlined
in V-A1– V-A3 merely relies on computing some trigonometric
functions and performing the four fundamental arithmetic
operations. The trigonometric expressions in (41) and (42)
can be effectively calculated using CORDIC algorithms (see,
e.g., [44]), which are well-suited for implementation on em-
bedded processors. In contrast, the numerical procedures
presented by [28] rely on solving matrix Lyapunov equations
(to construct the tube shapes) and multivariable optimization
problems as well as orthonormal diagonalization of real
symmetric matrices (to perform the tube junction). Conse-
quently, they are not suitable for implementation in automotive
embedded applications with modest computational resources.

B. Stability Guarantees of the Monitoring Algorithm

In this section we present the theoretical underpinnings
of Algorithm 1. The theoretical framework of Mullhaupt et
al. [28] is based on successive ellipsoidal approximations for
checking the asymptotic stability of LTV Hurwitz systems,
where the underlying continuous-time LTV state transition
matrices are evaluated at discrete time instants. The following
proposition, which constrains the sampling times, will enable
us to invoke the stability results from [28].

Proposition 12. Consider the vehicle lateral motion LTV
dynamics under time-varying wheel longitudinal slip values
given by (17), where the entries of the state transition matrix
Aℓ(t) are given by (16). Assume that Aℓ(t) is Hurwitz for all
times t and that the inequality

t− ti ≤
⃓⃓ ∫︂ t

ti

βi(τ) dτ
⃓⃓
, i = 0, 1, · · · , (47)

is satisfied for all time intervals [ti, ti+1], i = 0, 1, · · · .
In (47), βi(t) = max

{︁
eig

(︁
A⊤
ℓ (t)Pi+PiAℓ(t)

)︁}︁
and Pi =

LY(Aℓ(ti)), where LY(·) is defined in V-A1. Furthermore,
consider the sequence of tube widths {Vi}∞i=0 generated by
Algorithm 1. Then, the lateral dynamics state trajectories
x(t) = [σ(t), ωψ(t)]

⊤ satisfying (17) will be confined to the
tubes Ti := {w|w⊤Piw ≤ Vi} for all t ∈ [ti, ti+1], i =
1, 2, · · · , provided that V0 is chosen such that x⊤

0 P0x0 ≤ V0.

Remark 13. Due to the restrictions of the sampled-data
setting in automotive embedded applications, the tube width
estimates in Algorithm 1 presented in this paper, i.e., V̂ i+1 =
Vi exp(− δi

λ1(Pi)
), where δi = ti+1 − ti, are different from

the tube width estimates in Mullhaupt et al.’s work [28].

Indeed, they utilize V̂ i+1 = Vi exp(−
∫︁ ti+1
ti

βi(τ) dτ

λ1(Pi)
) with

βi(t) = max
{︁
eig

(︁
A⊤
ℓ (t)Pi + PiAℓ(t)

)︁}︁
. Proposition 12

guarantees that the results of [28] can be utilized in this paper.

Proof. The inequality given by (47) guarantees that V̂ (t) :=

V ∗
i exp

(︁ ∫︁ t
ti
βi(τ)dτ

λ1(Pi)

)︁
≤ V̂

s
(t), where V ∗

i = x(ti)
⊤Pix(ti)

and V̂
s
(t) := V ∗

i exp
(︁−(t−ti)
λ1(Pi)

)︁
. Using Equation (6) in the

proof of Theorem 1 stated by [28], it follows that for all t ∈
[ti, ti+1], x(t) ∈ {w

⃓⃓
w⊤Piw ≤ V̂ (t) ≤ V̂

s
(t)}. The rest

follows verbatim the proof of Theorem 1 stated by [28].

As a direct consequence of (47), the inequality

δi ≤
⃓⃓ ∫︂ ti+1

ti

βi(τ) dτ
⃓⃓
, (48)

provides an upper bound on the sampling times to ensure
that the state trajectories of the vehicle lateral dynamics are
contained within the tubes Ti whose widths are given by
the sequence {Vi}∞i=0 generated by Algorithm 1. As affirmed
by the following proposition, which is a direct consequence
of Proposition 12 in this paper, Corollary 1, and Corol-
lary 2 in [28], we can infer uniform stability and/or uniform
asymptotic stability of the lateral dynamics of a monitored
vehicle by inspecting the numerical properties of the sequence
S = {Vi}∞i=0 generated by Algorithm 1. In Section VI, we will
benchmark the performance of Algorithm 1 in the presence of
delays in CAN bus using experimental data reported in the
literature (see, e.g., [45], [46]).

Proposition 14. Assume the conditions in the statement of
Proposition 12 and consider the sequence S = {Vi}∞i=0 gener-
ated by Algorithm 1. If there exists a finite integer M0 such that
VM0 < ∞ and Vi ≤ VM0 for all Vi ∈ S, then vehicle lateral
LTV dynamics are uniformly stable. Furthermore, if there
exists an ordered subsequence S∗ ⊂ S that is monotonically
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strictly decreasing, then the vehicle lateral LTV dynamics are
uniformly asymptotically stable.

Proof. Under the assumptions of Proposition 12, the proof
follows verbatim the proof of Corollaries 1 and 2 of [28].

Remark 15. When the conditions tr(Aℓ(ti)) < 0 or
det(Aℓ(ti)) > 0 are violated at ti, i = 0, 1, · · · , then no
tube width estimate will be generated by Algorithm 1. Indeed,
since the frozen-time eigenvalues of Aℓ(ti) do not fall within
the left-half complex plane, a warning signal will be issued
to a higher-level supervisory module such as the security
supervisor proposed by Lima et al. [47] for further actions.
Moreover, when supi Vi is non-decreasing, then the conditions
in Proposition 14 for uniform stability and/or uniform asymp-
totic stability of Aℓ(t) do not hold and a warning signal is
issued to the higher-level supervisory module.

The reader is referred to Section VI-C for the simulation
results associated with the real-time monitoring algorithm.

VI. SIMULATION RESULTS

In the numerical simulations that will follow, we are using
the nonlinear dynamics given by (11) and its linearized LTV
model in (15) under tire/road lateral forces given by (12).
In our numerical simulations, we have chosen the parameter
values to be given by σ̂0y = 54 1/m, µS = 4.7, µC = 0.14,
vs = 0.3 m/s, and l = 0.29 m, for the front tire. Furthermore,
we have chosen the parameter values σ̂0y = 55 1/m, µS = 3.4,
µC = 0.06, vs = 0.2 m/s, and l = 0.28 m, for the rear
tire. Additionally, we have chosen the vehicle mass to be
m = 1500 kg, its mass moment of inertia to be Iz = 3000
kg.m2, and the distances between the front and rear wheel
contact points and the COM to be Lf = 1.2 m and Lr = 1.3
m, respectively. Finally, we have chosen the vehicle velocity
component vGx = V0, where V0 = 25 m/s is a fixed value
unless otherwise stated. These values have also been used in
the numerical simulations presented by [17].

Our assumption regarding the attacker is that they can
change the longitudinal slip values with time through improper
engagement of the brakes/ABS. For instance, a sophisticated
attacker who has managed to reprogram the braking/ABS
ECUs can either induce wheel lock conditions (see, e.g., [6])
or can make the wheel slip values to follow a desired reference
trajectory (see, e.g., [48]).
Modeling the Environmental Disturbances: In our sim-

ulations, the environmental disturbance effects on the lat-
eral dynamics of the vehicle such as side-wind gusts can
be modeled. Such environmental disturbance modeling not
only makes the utilized physics-based models more accurate
but also helps to understand the capabilities of sophisticated
adversaries when they time their cyber-physical attacks with
environmental factors to induce more damage. Following
Cerone et al. [49], a side wind of velocity with time profile
vw(t) will exert the force Fw(t) = 2.5π

2 vw(t)
2 and the

moment Mw(t) =
Lf−Lr

2 Fw(t) +
(︁
2.5π
2 − 3.3π3

8

)︁
vw(t)

2 on
the vehicle. Therefore, in (11), the wind gust-induced dis-
turbances manifest themselves as time-varying inputs getting
added to dynamical equations. In particular, Ffy+Fry

mV0
should

be changed to Ffy+Fry+Fw(t)
mV0

and 1
Iz
(FfyLf −FryLr) should

be changed to 1
Iz
(FfyLf − FryLr + Mw(t)). Furthermore,

the LTV dynamics given by (17) take the following form
ẋ = Aℓ(t)x+ dw(t), where dw(t) := [Fw(t)

mV0
, Mw(t)

Iz
]⊤ is the

vector of environmental disturbances due to side-wind gusts.
Modeling the CAN Bus Delay: To benchmark the perfor-

mance of Algorithm 1 in the presence of realistic CAN bus
delays, we use experimental data reported in the literature. In
particular, the work by De Andrade et al. [46] provides ex-
perimental measurements of the CAN bus worst-case message
delay versus CAN bus load, where CAN bus loads of 19.49%,
29.62%, 49.88%, and 70.13% correspond to CAN bus delays
of approximately 1 ms, 2.5 ms, 10 ms, and 21 ms, respectively.
Using a second-order polynomial fit, we arrive at

δCAN = 5.14×10−3x2busload−6.176×10−2xbusload+1.002×10−1,
(49)

where δCAN, which is the CAN bus delay in milliseconds, can
be expressed as a function of xbusload, which is the bus load (in
percents). Figure 5 depicts the second-order polynomial given
by (49) and the data reported by De Andrade et al. [46].

Fig. 5: The second-order polynomial fit (dashed black) to bus delay-
bus load data (yellow diamonds) reported by De Andrade et al. [46].
The blue line segments represent the piecewise linear interpolation
of the data.

A. Simulations Under Time-Varying Longitudinal Slip Profiles

Figure 6 depicts the phase portrait of the asymptotically
stable lateral motion dynamics under λf = λr = 0.

Fig. 6: The phase portrait of the asymptotically stable lateral motion
dynamics under λf = λr = 0 and vGx = 25.0 m/s.
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We now assume that the attacker is periodically varying the
longitudinal slip values according to λr = 0 and λf (t) =
α cos(t)2, where α = 0.075. Since the inequality κfbf

α
2 <

κf + κr is satisfied for all α > 0.072, we should expect from
Corollary 6 that the vehicle will lose its lateral stability. This
is indeed the case where the upper plot in Figure 7 depicts the
unstable time profiles of ωψ(t) and σ(t) starting from σ(0) =
0.1 and ωψ(0) = −0.05. The lower plot in Figure 7 depicts
the locus of the frozen-time eigenvalues of Aℓ(t).

Figure 8 depicts the vehicle trajectories under λf = λr = 0
(upper plot) and the periodically time-varying longitudinal slip
profiles λf (t) = 0.2 cos(t)2, λr(t) = 0 (lower plot). The initial
conditions for the vehicle have been chosen to be ω̇ψ(0) =
−0.05 rad/s and vGy(0) = 2.5 m/s. Remarkably, the attacker
does not need to induce wheel lockups (i.e., either λf = 1 or
λr = 1) to cause lateral motion instability.

Fig. 7: (Upper) The time profiles of ωψ(t) and σ(t) under period-
ically time-varying longitudinal time profiles λr = 0 and λf (t) =
α cos(t)2 with α = 0.075 and σ(0) = 0.1, ωψ(0) = −0.05. (Lower)
The locus of the frozen-time eigenvalues of Aℓ(t) over one period.

Fig. 8: The trajectories of the vehicle under λf = λr = 0 (upper
plot), and λf (t) = 0.2 cos(t)2, λr(t) = 0 (lower plot), with initial
conditions ω̇ψ(0) = −0.05 rad/s and vGy(0) = 2.5 m/s.

B. Simulations Under Minimal Slip Value Perturbations

Computing the minimal perturbation vectors ∆λλλ =
[∆λf , ∆λr]

⊤ versus the velocity profiles vGx for destabilizing
the vehicle lateral motion dynamics is important from both a
cyber-physical safety and a lateral motion stability perspective.
While one can utilize the constrained QP given by (34)

with conventional QP solvers, it is of crucial importance to
solve (34) in an embedded setting. For this purpose, we will
utilize an ADMM-based embedded algorithm for finding the
minimal destabilizing perturbations (see Algorithm 2 in Ap-
pendix A) and benchmark its real-time performance through
processor-in-the-loop (PIL) simulations on ARM Cortex pro-
cessors (in particular, ARM Cortex-M3 processor [50]). ARM
Cortex-M3 is an automotive grade processor utilized in various
cybersecurity applications (see, e.g., [51] and [52]).

The black curve in the 3D plot in Figure 9 depicts the
profile of the minimal perturbation vector components for
destabilizing the vehicle lateral dynamics from λf = λr = 0
(obtained from MATLAB quadprog solver). The green and
yellow diamonds on the black curve are associated with
vGx = 2.5 m/s and vGx = 37.5 m/s, respectively. As it can be
clearly seen from Figure 9, the required destabilizing minimal
perturbations to the longitudinal slip values keep decreasing
as the vehicle speed vGx increases. Therefore, an attacker who
manages to engage the vehicle brakes at a higher speed can
destabilize the vehicle lateral motion with smaller amounts of
longitudinal slip value perturbations.
Embedded Benchmarking: To benchmark the embedded
ADMM-based algorithm (Algorithm 2 in Appendix A) for
solving (34), we utilize the MATLAB interface for embedded
benchmarking of codes on ARM Cortex-M3 QEMU Emu-
lator [53]. The dash-dotted green curve in the 3D plot in
Figure 9(a) depicts the profile of the solutions obtained from
the embedded ADMM algorithm with ϵdual = ϵprimal = 5 ×
10−4. The smaller upper plot in Figure 9(a) demonstrates the
profiles of the error norm ∥∆λλλ−∆λλλADMM∥ versus the vehicle
speed, where ∆λλλ and ∆λλλADMM are the solutions obtained
from the MATLAB quadprog solver and the ADMM-based
algorithm run on the ARM Cortex-M3 emulator, respectively.
The smaller lower plot in Figure 9(a) demonstrates the number
of needed iterations for convergence of the embedded ADMM
solver. Finally, Figure 9(b) demonstrates an execution time
profile on the ARM Cortex-M3 processor versus the vehicle
speed.

Figure 10 depicts the phase portrait of the destabilized
lateral motion dynamics by applying the minimal perturbations
∆λf = 6.4 × 10−3 and ∆λr = 13.4 × 10−3 to the nominal
wheel longitudinal slip values λf = λr = 0 with velocity
vGx = 25.0 m/s (compare this phase portrait with the one
depicted in Figure 6).

We now present the trajectories of the vehicle under side-
wind gust using the dynamical modeling approach discussed
earlier in this section in two attack scenarios. In the first
attack scenario, we assume that the attacker can solve the QP
in (34) via an accurate solver. In the second attack scenario,
we assume that the attacker is using the embedded real-time
solver on an ARM Cortex-M3 processor to obtain the solutions
to (34). We assume that the side-wind gust speed is vw = 6
km/h and the vehicle initial velocity vector components are
vGx(0) = 10.28 m/s and vGy(0) = 0 m/s. Additionally,
it is assumed that ωψ(0) = 0 rad/s. Figure 11 depicts the
trajectories of the vehicle under λf = λr = 0 (upper plot), the
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(a)

(b)

Fig. 9: (a) The trajectory of the minimal perturbation vectors ∆λλλ = [∆λf , ∆λr]
⊤ versus various vehicle speeds vGx for destabilizing the

lateral motion dynamics under λf = λr = 0: (black) obtained from MATLAB quadprog solver; and, (dash-dotted green) obtained from
the embedded ADMM optimization on ARM Cortex-M3 QEMU Emulator with ϵdual = ϵprimal = 5× 10−4. The green and yellow diamonds
on the black curve are associated with vGx = 2.5 m/s and vGx = 37.5 m/s, respectively. The smaller upper plot demonstrates the profile of
the error norm ∥∆λλλ−∆λλλADMM∥ versus vehicle speed. The smaller lower plot demonstrates the number of needed iterations for convergence
of the embedded ADMM solver. (b) An execution time profile for computing the minimal destabilizing perturbation vector on the ARM
Cortex-M3 processor versus the vehicle speed.

Fig. 10: The phase portrait of the destabilized lateral motion
dynamics by applying the minimal perturbations ∆λf = 6.4× 10−3

and ∆λr = 13.4 × 10−3 to nominal wheel longitudinal slip values
λf = λr = 0 with velocity vGx = 25.0 m/s.

perturbed longitudinal slip values in the first attack scenario
(middle plot), and the perturbed longitudinal slip values in
the second attack scenario (bottom plot). Remarkably, the
attacker does not need to induce wheel lockups (i.e., either
λf = 1 or λr = 1) to cause lateral motion instability.
Furthermore, despite the fact that the attacker is using an
embedded processor in the second scenario where it takes
about 50 microseconds for the iterative ADMM algorithm to
converge to the approximate solution (see Figure 9(b)), the
motion of the vehicle gets destabilized.

C. The Real-Time Monitoring Algorithm Simulations

In this section we investigate the performance of the
monitoring algorithm (Algorithm 1) under various simulation
scenarios and CAN bus load profiles. Using the polynomial
fit in (49), which has been found by fitting a second-order

Fig. 11: The trajectories of the vehicle under λf = λr = 0 (most
upper plot), λf = 6.464 × 10−3, λr = 14.119 × 10−3 (middle
plot), and λf = 7.339× 10−3, λr = 13.718× 10−3 (bottom plot),
with initial conditions ωψ(0) = 0 rad/s, vGx(0) = 10.28 m/s, and
vGy(0) = 0 m/s. In all of these cases, a side-wind gust with a constant
speed vw = 6 km/h is assumed.

polynomial to the experimental data reported by De Andrade et
al. [46], we consider three different CAN bus load probability
distributions in each simulation scenario resulting in different
CAN bus delay profiles. In particular, the first, the second, and
the third CAN bus delay profiles are obtained by assuming a
fixed bus load of 50%, a uniformly distributed bus load varying
between 0% and 100%, and a normally distributed bus load
with a mean of 50% and a standard deviation of 20%.

Figure 12 depicts the sequence of the tube widths Vi, V̂ i
generated by Algorithm 1 under λr(t) = 0 and λf (t) =
0.02 cos2(

√
10t)+0.005 with the fixed CAN bus delay profile.

It is remarked that the monitoring algorithm does not have
any knowledge of the lateral dynamics state transition matrix
Aℓ(t) except for discrete readings of this matrix at each
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sampling time. Therefore, the only way that Algorithm 1
manages to predict uniform stability or uniform asymptotic
stability of the vehicle lateral motion dynamics is through
checking the sequence of the tube widths Vi and invoking
Proposition 14. Figures 13 and 14 depict the sequence of
the tube widths generated by Algorithm 1 under the same
longitudinal slip profiles but with the uniformly and normally
distributed CAN bus load profiles, respectively. As it can be
seen in both cases, there exists a subsequence of tube widths
that is monotonically strictly decreasing during the simulation.
Therefore, according to Proposition 14, the algorithm does not
issue any warning signals through the simulation.

Fig. 12: The sequence of the tube widths Vi, V̂ i generated by
Algorithm 1 under λr(t) = 0 and λf (t) = 0.02 cos2(

√
10t)+0.005.

The inner plot depicts the CAN bus delay δi versus time resulting
from a fixed bus load of 50%.

Fig. 13: The sequence of the tube widths Vi, V̂ i generated by
Algorithm 1 under λr(t) = 0 and λf (t) = 0.02 cos2(

√
10t)+0.005.

The inner plot depicts the CAN bus delay δi versus time resulting
from a uniformly distributed bus load varying between 0% and 100%.

Figures 15, 16, and 17 depict the sequence of the tube
widths generated by Algorithm 1 up to time t ≈ 4.2 sec
under λr(t) = 1.5 × 10−3 sin2(10t) and λf (t) = 10−3(t −
π
2 )

2 cos4(
√
40t)u(t− π

2 ), where u(·) is the unit step function,
with the fixed, uniformly distributed, and normally distributed
CAN bus delay profiles, respectively. In all these scenarios,
as it can be seen from their respective figures, supi Vi keeps
increasing as the time goes on. The upper plot in Figure 18
depicts the trajectory profile [ωψ(t), σ(t)]

⊤ up to time t ≈ 8.5
sec while the lower plot in the same figure demonstrates the

Fig. 14: The sequence of the tube widths Vi, V̂ i generated by
Algorithm 1 under λr(t) = 0 and λf (t) = 0.02 cos2(

√
10t)+0.005.

The inner plot depicts the CAN bus delay δi versus time resulting
from a normally distributed bus load with a mean of 50% and a
standard deviation of 20%.

locus of the frozen-time eigenvalues up to time t ≈ 8.5 sec. It
is notable that the monitoring algorithm has been generating
a sequence of tube widths with increasing supi Vi well before
the frozen-time eigenvalues become unstable around t ≈ 7.5
sec. Therefore, the higher-level supervisory module can be
informed well ahead for taking a decision on the issued
warning signal.

Fig. 15: The sequence of the tube widths Vi, V̂ i generated by
Algorithm 1 under λr(t) = 1.5 × 10−3 sin2(10t) and λf (t) =
10−3(t− π

2
)2 cos4(

√
40t)u(t− π

2
). The inner plot depicts the CAN

bus delay δi versus time resulting from a fixed bus load of 50%.

VII. FURTHER REMARKS AND DISCUSSION

The Impact of Environmental Disturbances on Algo-
rithm 1: As long as the environmental disturbances acting
on the lateral dynamics of the vehicle (e.g., due to side-wind
gusts as discussed in Section VI) manifest themselves as a
time-varying additive input in the form

ẋ = Aℓ(t)x+ de(t), (50)

the monitoring Algorithm 1 is capable of attributing the
anomalies in Aℓ(t) to a cyber-physical attack targeting the
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Fig. 16: The sequence of the tube widths Vi, V̂ i generated by
Algorithm 1 under λr(t) = 1.5 × 10−3 sin2(10t) and λf (t) =
10−3(t− π

2
)2 cos4(

√
40t)u(t− π

2
). The inner plot depicts the CAN

bus delay δi versus time resulting from a uniformly distributed bus
load varying between 0% and 100%.

Fig. 17: The sequence of the tube widths Vi, V̂ i generated by
Algorithm 1 under λr(t) = 1.5 × 10−3 sin2(10t) and λf (t) =
10−3(t− π

2
)2 cos4(

√
40t)u(t− π

2
). The inner plot depicts the CAN

bus delay δi versus time resulting from a normally distributed bus
load with a mean of 50% and a standard deviation of 20%.

braking/ABS system of the vehicle without even the need for
knowing de(t) (recall that Algorithm 1 only needs the samples
Aℓ(ti)). Nevertheless, variations in the road conditions, which
perturb the entries of Aℓ(t) and result in destabilization of the
lateral dynamics, will only lead to issuance of warning signals
by Algorithm 1. To provide a definitive answer to whether
there exists a cyber-physical threat against the braking/ABS
system in such a scenario, on-board road condition monitoring
systems relying on additional sensor readings such as dashcam
videos and GPS/IMU sensors along with machine learning
algorithms (see, e.g., [54]–[56]) should work concurrently
with Algorithm 1. For instance, one can utilize an additional
artificial neural network-based algorithm, which has been
trained on various road condition datasets. If no change in
road conditions is detected, then a warning signal issued by
Algorithm 1 will be indicative of a cyber-physical attack
against the braking/ABS system.
Extensions to Electric Vehicles: When utilized for anti-lock

braking or traction control, the dynamic performance of on-
board electric powertrains can be affected by the torsional
dynamics of the half-shafts, which connect the motor and

Fig. 18: (Upper) The time profiles of ωψ(t) and σ(t) under
periodically time-varying longitudinal time profiles λr(t) = 1.5 ×
10−3 sin2(10t) and λf (t) = 10−3(t − π

2
)2 cos4(

√
40t)u(t − π

2
)

with σ(0) = 0.1, ωψ(0) = −0.2. (Lower) The locus of the frozen-
time eigenvalues of Aℓ(t).

transmission to the wheels. Therefore, to extend the method
of analysis in this paper to electric vehicles, one should
additionally take into account wheel slip dynamics that impact
on-board electric drivetrain layouts with significant torsional
dynamics (see, e.g., [57], [58] for further details).
Extensions to Autonomous Vehicles: To increase the safety

of autonomous vehicle operations, fail safe technologies such
as using dual winding (DW) motors in integrated electric
brake (IEB) systems have been proposed in the literature
(see, e.g., [59]). Under cyber-physical attack scenarios against
IEB system of autonomous vehicles, the dynamics of DW
motors and their overheating under successful attacks should
be additionally taken into consideration.

VIII. CONCLUSION

This paper investigated the safety-critical issue of indirect
destabilization of a target vehicle lateral motion under brak-
ing system/ABS attacks, where the adversary is improperly
engaging the braking system/ABS. We demonstrated that if
an attacker manages to continuously vary the longitudinal
slips of the wheels, they can violate the necessary conditions
for asymptotic stability of the vehicle lateral motion LTV
dynamics. Furthermore, we derived the minimal perturba-
tions of the wheel longitudinal slips that result in lateral
motion instability under fixed longitudinal slip values. Such
a minimal perturbation enables the braking/ABS attacker to
destabilize the lateral motion of the vehicle without having to
induce wheel lockup conditions. Finally, we devised a real-
time algorithm for monitoring the lateral motion dynamics
of vehicles against braking/ABS cyber-physical attacks. This
numerical algorithm, which can be efficiently computed using
the modest computational resources of automotive embedded
processors, can inform higher-level supervisory modules of
the vehicle about impending instability of the vehicle lateral
motion due to the time-varying behavior of the longitudinal
wheel slip values induced by a braking system/ABS attacker.
This real-time monitoring algorithm can be utilized along with
other intrusion detection techniques to infer whether a vehicle
braking system/ABS is experiencing a cyber-physical attack.
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Future research should consider integration of the developed
control theory-based real-time monitoring algorithm in this
paper with physical finger printing-based intrusion detection
techniques (see, e.g., [60], [61]) and CAN bus traffic/load
monitoring-based security tools (see, e.g., [62]) from the
cybersecurity forensics literature.

APPENDIX A
ADMM-BASED EMBEDDED ALGORITHM FOR QP (34)
We follow [42] to derive our embedded solver algorithm.

One first needs to define and compute the matrices and vectors

Fe = [ν1, ν2]
⊤ ∈ R2×1, (51a)

ge = [λf (t
∗), 1− λf (t∗), λr(t∗), 1− λr(t∗)]⊤ ∈ R4×1,

(51b)

Ge =

⎡⎢⎢⎣
−1 0
1 0
0 −1
0 1

⎤⎥⎥⎦ ∈ R4×2, (51c)

Ae =

[︃
Ge

F⊤
e

]︃
∈ R5×2, (51d)

Be =

[︃
I4
0

]︃
∈ R5×4, (51e)

ce = [g⊤
e , tr

(︁
Aℓ(t

∗)
)︁
]⊤ ∈ R5×1, (51f)

M̄ = −ρ(I2 + ρA⊤A)−1A⊤ ∈ R2×5 (51g)

where the parameter ρ, which determines the convergence
rate of the ADMM iterative algorithm, needs to be computed
according to the following procedure. Recall that [ν1, ν2]⊤ :=
[κfbf , κrbr]

⊤. Therefore, Fe, ge, and tr
(︁
Aℓ(t

∗)
)︁

are physi-
cally meaningful quantities, which play a fundamental role in
the stability of the lateral dynamics of the vehicle as discussed
in II-B. The matrices/vectors in (51) need to be computed only
once in each call of the ADMM Algorithm 2.
Calculating ρ: According to [42], the constant ρ > 0, should
be chosen such that the nonzero eigenvalues of ρAe(I2 +
ρA⊤

e Ae)
−1A⊤

e are as close to 1
2 as possible. Thankfully, in the

case of the matrices in (51), the two aforementioned non-zero
eigenvalues can be computed analytically. These two eigen-
values are equal to 2ρ

2ρ+1 and 1− 1
ρν2

1+ρν
2
2+2ρ+1

, respectively.

Therefore, the optimal ρ minimizing
(︁
1
2 −

2ρ
2ρ+1

)︁2
+

(︁
1
2 −

1
ρν2

1+ρν
2
2+2ρ+1

)︁2
can be computed to be equal to ρ⋆ = 0.5.

The iterative Algorithm 2 is well-suited for implementation
on embedded processors (e.g., microprocessors and FPGAs).
It takes as input the matrices/vectors defined in (51) and
two constant tolerances ϵdual, ϵprimal. In Algorithm 2, k is
the counter, zk is the vector of slack variables for taking
into account the inequalities −λi(t∗) ≤ ∆λi ≤ 1 − λi(t

∗)

in (34), and τττk := [τττgk
⊤
, τfk ]

⊤ is the vector of the scaled dual
variables, where τττgk is the vector of τττk first four elements.
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