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Abstract. There are a variety of ways, such as reflashing of targeted
electronic control units (ECUs) to hijacking the control of a fleet of
wheeled mobile robots, through which adversaries can execute attacks
on the actuators of mobile robots and autonomous vehicles. Indepen-
dent of the source of cyber-physical infiltration, assessing the physical
capabilities of an adversary who has made it to the last stage and is
directly controlling the cyber-physical system actuators is of crucial im-
portance. This paper investigates the potentials of an adversary who
can directly manipulate the traction dynamics of wheeled mobile robots
and autonomous vehicles but has a very limited knowledge of the physi-
cal parameters of the traction dynamics. It is shown that the adversary
can exploit a new class of closed-loop attack policies that can be exe-
cuted against the traction dynamics leading to wheel lock conditions.
In comparison with a previously proposed wheel lock closed-loop attack
policy, the attack policy in this paper relies on less computations and
knowledge of the traction dynamics. Furthermore, the proposed attack
policy generates smooth actuator input signals and is thus harder to de-
tect. Simulation results using various tire-ground interaction conditions
demonstrate the effectiveness of the proposed wheel lock attack policy.
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1 Introduction

The past decade has witnessed the proliferation of mobility-related cyber-physical
systems [10] ranging from vehicles with autonomous and connected features [29]
to small UAVs for inspecting critical infrastructures and agricultural robotics [20].

The interconnected and autonomous features associated with mobility-related
cyber-physical systems have been demonstrated to accompany serious security
threats as evidenced by several recent successful attacks such as the wireless hack
of a Tesla vehicle CAN bus [36] or successful adversarial hijacking of drones [39].
These risks span a plethora of scenarios such as exploitation of the critical vul-
nerabilities of in-vehicle networks by adversaries that try to take over the self-
driving features of target vehicles [21], jamming/spoofing the GPS signals used
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Fig. 1: Various class of wheeled mobile platforms where traction, through the longitu-
dinal friction force between the ground and the wheels, slow or accelerate the motion:
(left) a two-wheeled segway robot [16]; (middle) a 3-wheeled mobile platform with rear
wheel torque vectoring [1]; and (right) an n-wheeled vehicle on uneven terrain [15]. In
attacks against the traction dynamics, the adversary seeks to induce wheel lock condi-
tions with a minimal knowledge of the tire-ground physical interaction characteristics.

by a fleet of service UAVs [41], and attacks against onboard charging systems of
electric vehicles [9], to name a few.

Impact of cyber-attacks, as assessed in information security risk manage-
ment [19, 46], is often concerned with the information/cyber system damage
ranging from denying critical service functionality to sensitive information dis-
closure. In a cyber-physical system, on the other hand, attacks on the system
constituents can also induce potential damage extending beyond the cyber-realm
and impacting the physical components of the system [3,47], as documented by
infamous malwares such as Triton and Industoyer (see, e.g., [23]). Accordingly,
physics-based impact assessment of cyber-attacks on physical processes has be-
come one of the emerging aspects of security analysis in the cyber-physical sys-
tems literature [14,33].

An important aspect of being able to assess the risk of cyberattacks on smart
mobility applications is to search the space of attack policies through which
adversaries can induce physical damage on their target systems [46]. In other
words, the physical implications of cyberattacks against smart mobility systems,
such as remotely steering a vehicle into a ditch as discussed by Miller [30], lead
to the natural question posed by Fröschle and Stühring [11]: “Once an attacker
has made it to the last stage, what exactly are his capabilities?”

The traction dynamics of vehicles and mobile robots, through which the
wheels move with respect to the tangential ground surface (see Figure 1), can
be attacked in a variety of ways such as spoofing attacks against the anti-lock
braking system, reflashing the brake ECUs, and sending malicious brake com-
mands through the CAN bus of the vehicle, amongst others (see, e.g. [13,17,18,
21,22,28,40,43]). Independent from the source of cyber-physical vulnerability, a
frightening feature of vehicular cyberattacks on steering and braking actuators
(see, e.g., [30–32]) is that they are forensically scentless (i.e., leaving no forensic
evidence behind) and are almost invisible to the driver. Accordingly, it is of cru-
cial importance to search and assess the space of attack policies through which
an adversary can induce maximum physical damage on their target system.
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The first steps on assessing the physical capabilities of an adversary manip-
ulating the vehicular traction dynamics has been taken in [34, 35], where the
authors model the cyber-physical threat of an adversary as a closed-loop attack
policy design problem, which can be executed on the vehicle braking actua-
tors. To demonstrate the physical capabilities of an adversary who has a limited
knowledge of the vehicle traction dynamics and the tire-ground interaction char-
acteristics, the authors utilized a predefined-time controller [42] and a nonlinear
disturbance observer [26] to design a brake attack policy that will induce wheel
lockup conditions in a finite time interval. A drawback of the proposed attack
policies in [34, 35] is the reliance on the nonlinear disturbance observer feed-
forward computations, which compensate for the lack of adversarial knowledge
about the physical parameters of the traction dynamics. Furthermore, the gen-
erated attack signals in [34, 35] might be non-smooth and therefore easier to
detect through anomaly detection algorithms [12]. Finally, the overall effect of
such wheel lock attacks were not investigated in terms of their impact on the
overall motion of the vehicle under attack.

This paper demonstrates that the adversary with a very limited knowledge of
tire-ground interaction characteristics can induce wheel lock conditions through
a properly designed closed-loop attack policy against the traction dynamics.
Unlike a previously designed wheel lock attack policy in [34,35], the new attack
policy does not rely on the computation of nonlinear disturbance observer-based
feedforward terms. Furthermore, the new feedback control input is generated
through a time-varying controller with prescribed convergence time [44] that can
cause wheel lockups even when the physical parameters of the traction dynamics
are not known a priori (see Figure 2). Finally, the attack signals generated by
the policy in this paper are guaranteed to be smooth and hence harder detect
through anomaly detection algorithms for monitoring the actuator signals [12].

Contributions of the paper. This paper proposes a new class of traction
dynamics attack policies that can be executed against mobile robots and au-
tonomous vehicles. In comparison with an existing result in [34, 35], the pro-
posed attack policy in this article, which relies on time-varying feedback control
schemes with prescribed convergence time, relies on less computations. Further-
more, the proposed attack policy is guaranteed to generate smooth actuator
input signals and thus is harder to detect. Moreover, the effectiveness of the pro-
posed attack policy is demonstrated in terms of its impact on the overall motion
of the mobile platform under attack through various simulation scenarios.

The rest of this paper is organized as follows. First, we present the vehicle
traction dynamics and formulate the wheel lock attack policy objective in terms
of these dynamics in Section 2. Thereafter, in Section 3, we present our attack
policy that is based on using time-varying feedback controllers with prescribed
convergence time. Next, we validate the effectiveness of the proposed attack
policy using various ground conditions and demonstrate the destabilizing effect
of such wheel lock attacks on the overall motion of a 4-wheeled vehicle through
simulations in Section 4. Finally, we conclude the paper with future research
directions and final remarks in Section 5.
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2 Traction Dynamics

In this section, we briefly present the single-wheel model of traction dynamics.
This dynamical model can effectively capture the steady and transient tractive
performance while demonstrating how a vehicle or wheeled mobile robot can
end up in a wheel lock condition (see, e.g., [45,48] for the wheel slip dynamics of
wheeled mobile robots and [6,27] for that of the vehicles). Often, the states of the
traction dynamical system are selected to be the forward mobile robot/vehicle
speed and tire/wheel rate of rotation. The dynamics that govern the states of
the traction dynamical system are given by (see, e.g., [6])

v̇ = −gαµ(λ)−
∆v(t, v)

M
, (1a)

ω̇ =
Mgαr

J
µ(λ)− Ta

J
− ∆w(t, ω)

J
, (1b)

where the parameters M , r, and J are the vehicle/mobile robot mass, wheel
radius, and wheel inertia, respectively. Additionally, during deceleration, the
mobile robot/vehicle speed v and the wheel rotational speed ω vary within the
set

Db := {(v, ω)|v > 0, 0 ≤ rω ≤ v}. (2)

In the dynamics given by (1), the torque Ta, resulting from either the electric
motors of the mobile robot or the vehicle brakes, is the input to the dynamical
system in (1). Furthermore, the longitudinal slip λ that determines whether the
wheel is locked is given by

λ :=
v − rω

max(v, rω)
. (3)

While the traction input actuators are engaged, we have λ = v−rω
v and

(v, ω) ∈ Db. Accordingly, the longitudinal slip value λ belongs to the closed
interval [0, 1] during deceleration. Given the ground slope α, we denote the tan-
gential acceleration g cos(α) by gα. Finally, µ(λ), ∆v(t, v), and ∆w(t, ω) denote
the uncertain nonlinear friction coefficient, the force, and the torque disturbances
resulting from tractive unmodeled dynamics, respectively.

There are numerous ways to represent the nonlinear friction coefficient func-
tion µ(·) including the Burckhardt equation (see, e.g., [5]). For instance, equa-
tions like Burckhardt model (see, e.g., [7]) where

µ(λ) = c1(1− exp(−c2λ))− c3λ, (4)

are empirical equations, which are based on coefficient curve fitting, and are
widely employed in modeling the tire/ground interaction. The longitudinal force
on the tire arising from this interaction is computed by −µ(λ)gα. In this paper,
no particular closed-form representation is assumed for the function µ(·).

In accordance with the traction dynamics control literature (see, e.g., [6]),
we assume that the unknown disturbance acting on the speed dynamics, i.e.,
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∆v(t, v), and the unknown disturbance acting on the wheel angular speed dy-
namics, i.e., ∆w(t, ω), respect the following inequalities

|∆v(t, v)| ≤ ∆̄v, |∆w(t, ω)| ≤ ∆̄ω,

for all (t, v, ω) ∈ [0,∞)×Db. (5)

As it has been noted by Olson et al. in [37], it is more beneficial to change the
coordinates of the traction dynamics in (1) from the pair of longitudinal speed-
wheel angular speed, i.e., (v, ω), to the pair of longitudinal speed-longitudinal
slip, i.e., (v, λ). After the change of coordinates, the longitudinal dynamics read
as

v̇ = −gαµ(λ)−
∆v(t, v)

M
, (6a)

λ̇ =
gα
v

{︁
(λ− 1− ν)µ(λ) + Υa + Υ∆,w + (λ− 1)Υ∆,v

}︁
, (6b)

where ν := MR2

J denotes a dimensionless ratio, Υa := r
Jgα

Ta is the dimensionless

traction dynamics control input, and Υ∆,w := r
Jgα

∆w(t, ω), Υ∆,v := ∆v(t,v)
Mgα

are the dimensionless force and torque disturbances affecting the speed and the
longitudinal slip dynamics, respectively.

The dynamical system given by (1) and (6) take into account the inter-
coupling between the wheel slip λ and the mobile platform speed v in (6), or
the wheel angular speed ω dynamics and the mobile platform speed v in (1). In
the coordinates given by (v, λ), the set Db in (2), which is the state space of the
traction dynamics, can be written as

Db =
{︁
(v, λ)|v > 0, λ ∈ Λ := [0, 1]

}︁
. (7)

Both the literature of automotive cybersecurity (see, e.g., [11,30]) and mobile
robotics cybersecurity (see, e.g., [2, 25]) outline a plethora of threats through
which an adversary can manipulate the traction dynamics. This cyber-physical
threat capability of an adversary can be formulated as a closed-loop attack policy
design for the vehicle/mobile robot traction dynamics actuators (see Figure 2).
To assess the physical capabilities of the adversary who can manipulate the
traction dynamics of the mobile platform by utilizing the tractive control input
Υa, we consider the case where the adversary desires to induce unstable tractive
behavior by wheel locks. To consider the most severe case of wheel lock, i.e.,
when the longitudinal slip satisfies λ = 1, we define the lockup manifold in the
following way

WL
b :=

{︁
(v, λ)

⃓⃓
v > 0, λ = 1

}︁
. (8)

It is remarked that the wheel lockup manifold was originally defined by Olson
et al. in [37] to study the stability of vehicular traction dynamics. Furthermore,
we remark that the adversary can set the slip reference value λr, belonging to
the closed interval [0, 1], a priori. The closer the reference slip value λr to one,
the closer the wheel to the lock condition. We assume, without loss of generality,
that λr = 1.
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Fig. 2: This paper assesses the physical capabilities of an adversary who has infiltrated
the control system associated with the traction dynamics. Despite having a limited
knowledge of the underlying physical parameters, the adversary is trying to induce
wheel lock using the input actuators, e.g., electric motors of mobile robot wheels or
vehicle brake actuators.

3 Design of Traction Dynamics Wheel Lock Attack Policy

In this section, we present a wheel lock closed-loop attack policy that can be
executed against the traction dynamics of vehicles and various wheeled mobile
robots (see Figure 1). Our closed-loop attack policy merely relies on a feedback
control action. In contrast to the previous line of work in [34, 35], no additional
feedforward control action computation is required in this proposed attack policy.
The attack input is designed based on a time-varying feedback control framework
with prescribed convergence in finite time [44]. The proposed attack can induce
wheel lock conditions even if the wheel-ground interaction characteristics and
other relevant parameters in the vehicle traction dynamics are not known.

Following the control design framework in [44], we consider the mapping
µK : t ↦→ µK(t) where

µK(t− t0) =
T 1+m0(︁

T + t0 − w( t−t0
T )

)︁1+m0
, t ∈ [t0, t0 + T ). (9)

In (9), m0 is a positive integer and the real numbers t0 and T are non-negative
and positive, respectively. Furthermore, the function w : τ ↦→ w(τ) is any smooth
and monotonically increasing function such that w(0) = 0 and w(1) = t0 + T .

In the context of the wheel lock attack policy, t0 in (9) represents the time
of the onset of the attack. Furthermore, T is the finite settling time associated
with the attack by which the wheel longitudinal slip will converge to the adver-
sary’s desired slip value. The time-warping function w(·) controls the transient
convergence behavior of the states of the traction dynamics to the wheel lockup
manifold WL

b given by (8). In its simplest form, the monotonic function w(·) can
be chosen to be w(τ) = τ as in [44]. As shown later, we choose this function to
be a Bézier polynomial of order two.

Finally, we define the wheel lockup error as

eL = λ− 1. (10)
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Hence, if the wheel lockup error satisfies eL = 0 while the wheeled mobile plat-
form speed is positive, i.e., v > 0, the wheel is in a locked stated. Using the
closed-loop attack policy in this paper, the wheel will be locked in finite time.
Therefore, the wheeled robot speed will satisfy

v ∈ [vmin, vmax], (11)

during a successful attack, for some positive vmin and vmax.
Closed-loop attack policy for inducing wheel lock in finite time. Con-
sider the wheeled mobile platform traction dynamics in (6). We propose using
the following wheel lock attack policy

Υa =
v

gα
ua
np(eL, t), (12)

where

ua
np(eL, t) = −(k0 +

1 +m0

T
)µK(t)eL. (13)

In (13), the time-varying feedback gain function µK(·) is given by (9). Fur-
thermore, the time-warping function w(·) used in (9) is given by the second order
Bézier polynomial

w(τ) = p1 + (1− τ)2(p0 − p1) + τ2(p2 − p1), (14)

where p0 = 0 and p2 = t0+T are constant parameters. Furthermore, the constant
parameter p1 is chosen at the adversary’s discretionary to control the transient
behavior of the traction dynamics state trajectories during the wheel lock attack.
It can be shown that the wheel slip error dynamics take the form

ėL = ua
np(eL, t) +∆′

e(t, eL), (15)

where ∆′
e(t, eL) denotes the lumped disturbance that lump the effect of all un-

known parameters, unknown disturbances such as ∆v(·), ∆w(·), and the un-
known wheel-ground friction coefficient function µ(·) in the traction dynam-
ics given by (6). The time-varying feedback control input ua

np(eL, t), which is
adopted from [44], ensures the rejection of these unknown disturbances and con-
vergence to the lockup manifold WL

b given by (8) in finite time t0 + T from the
onset of the attack at time t0. Indeed, it is because of the superior disturbance
rejection capabilities of the time-varying feedback input ua

np(eL, t) that there is
no need for additional real-time computations of feedforward disturbance com-
pensation terms as in [34,35]. In other words, the time-varying feedback control
input ua

np(eL, t) removes the need for additional estimation computations.
In the proposed attack policy in (12), we are assuming that the adversary

has the knowledge and/or can estimate the wheeled mobile platform speed as
well as the attacked wheel longitudinal slip. Clark et al. [4] and Lacava et al.
in [24] enumerate several ways through which the firmware/OS on the micropro-
cessor of the robotic devices can be infiltrated and exploited later for performing
attacks on the actuation system of the robot. Furthermore, as demonstrated in
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Fig. 3: The inexpensive attacking device proposed by Palanca et al. [38] for accessing
the CAN bus through the OBD-II port.

experimental wireless attacks against Tesla electric vehicles [36], reprogramming
the firmware of ECUs through the Unified Diagnostic Services (UDS) enables
the adversary to read live data, such as speed or engine rpm, from the in-vehicle
network. Finally, as demonstrated by Palanca et al. in [38], it is possible to craft
an inexpensive attacking device consisting of an an SAE J1962 Male Connector,
a Microchip MCP2551 E/Pa Microchip MCP2551 E/P, and Arduino Uno Rev
3, which can be powered by a simple 12V battery. This device, which was exper-
imentally tested on a 2012 Alfa Romeo Giulietta, could be physically plugged
into the OBD-II port of the target vehicle and access the various ECUs in the
vehicle through the CAN bus (see Figure 3).

4 Simulation Results

In this section we first present numerical simulation results associated with the
wheel lock attack policy in (12) using various wheel-ground interaction con-
ditions. Next, we will present numerical simulation results demonstrating the
impact of the presented wheel lock attack policy on the overall stability of the
motion of a 4-wheeled vehicle.

In the wheel lock attack numerical simulations, we consider four different
wheel-ground interaction conditions; namely, interaction with dry asphalt, wet
asphalt, dry cobblestone, and wet cobblestone. The nonlinear friction coefficient
function is modeled using the three-parameter Burckhardt model in (4). In the
simulations, the adversary has no knowledge of the nonlinear friction coefficient
function as it is evident from the closed-loop attack policy given by (12). The
friction coefficient function is based on the Burckhardt tire model and the asso-
ciated parameters are taken from [8]. The wheeled vehicle parameters are taken
from [6]. The parameters of the wheel lock attack policy in (13) are chosen to
be m0 = 1, T = 2.5, t0 = 0, and p1 = 2.38.

Figure 4 presents the speed, wheel slip, and the traction dynamics state space
trajectories from the simulations. As it can be seen from the figure, the time-
varying feedback-based attack policy manages to induce wheel lock conditions in
all four scenarios. Figure 5 depicts the lumped disturbance ∆′

e(t, eL) time profile
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Fig. 4: Time profiles of the simulation results: (top) speed time profile on various
ground conditions; (middle) wheel slip time profile on various ground conditions; and
(bottom) state space trajectories of the traction dynamics in (6). In all four scenarios,
finite-time convergence to the wheel lockup manifold WL

b :=
{︁
(v, λ)

⃓⃓
v > 0, λ = 1

}︁
takes place without the need for estimating the lumped disturbance time profiles
∆′

e(t, eL).

associated with the wheel lock attack numerical simulations. Despite being non-
zero and time-varying, the closed-loop attack policy given by (12) manages to
reject their effect on the wheel slip tracking dynamics without the need for
additional computations to estimate this unknown lumped disturbance term.

To study the effect of the proposed closed-loop attack policy on the over-
all motion and stability of mobile platforms (including mobile robots and au-
tonomous vehicles), one needs to study the attack impact on an individual basis.
For instance, a wheel lock attack on a 3W mobile robot [1] or a 4-wheeled ve-
hicle [49, 50] might result in lateral motion instability. The same attack on a
segway robot [16] might result in loss of balance. In this paper, we study the
overall impact of the wheel lock attacks by using the dynamical model developed
by Yi, Tseng, and collaborators (see, e.g., [49,50]). The model in [49,50], which
is based on a hybrid physical/dynamic tire/road friction mode, captures the cou-
pling effect between longitudinal and lateral vehicle motions. As demonstrated
by Figure 6, after the wheel lock attack policy in (12) is executed on the front
wheels of the vehicle interacting with dry asphalt, wet asphalt, dry cobblestone,
and wet cobblestone, the vehicle loses its lateral stability in all four scenarios.
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Fig. 5: The lumped disturbance ∆′
e(t, eL) time profile associated with the wheel lock

attack numerical simulations. The lumped disturbance captures the effect of all un-
known parameters, unknown disturbances such as ∆v(·), ∆w(·), and the unknown
wheel-ground friction coefficient function µ(·) in the traction dynamics given by (6)
and manifests itself in the tracking error dynamics in (15). The time-varying feedback
control input ua

np(eL, t) given by (13) guarantees the convergence of trajectories of the
traction dynamics with the need for estimation of ∆′

e(t, eL).

Fig. 6: The overall impact of the wheel lock attacks on the stability of a 4-wheeled
vehicle modeled using the approach by Yi, Tseng, and collaborators [49,50].

5 Concluding Remarks and Future Research Directions

In this paper, the potentials of an adversary who can directly manipulate the
traction dynamics of wheeled mobile robots and autonomous vehicles were inves-
tigated. It was assumed that the adversary has a very limited knowledge of the
physical parameters of the traction dynamics. Using a class of time-varying feed-
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back control inputs with prescribed finite time convergence, this paper showed
that the adversary can exploit this class of attack policies against the traction
dynamics inducing wheel lock conditions. Simulation results using various tire-
ground interaction conditions demonstrated the effectiveness of the proposed
wheel lock attack policy.
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