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Abstract

Recent studies, e.g., Wangsawijaya et al. (2020) have revealed the preva-
lence of streak meandering underlying turbulent flow over spanwise hetero-
geneous roughness. Here we exploit the scale decomposition inherent in the
Restricted Nonlinear (RNL) modeling approach to further investigate this
behavior. The RNL decomposition comprises a large-scale streamwise aver-
aged mean with small-scale fluctuations about that mean defined through a
dynamical restriction that leads to computational tractability. The simplified
setting facilitates the study of secondary flow interacting with the large-scale
streak via one-way coupling, thus enabling additional insight into relevant in-
teraction mechanisms. In agreement with the experimental work, our results
indicate that the energy of the large-scales is amplified over the low rough-
ness region due to the secondary flow. The small-scales are shown to play a
dominant role in the Reynolds stresses responsible for generation of the sec-
ondary flow. Conditional averaging of the RNL mean field reveals stronger
momentum pathways and diminished energy over low roughness regions ex-
periencing downwash in instances that differ from the time-averaged trends.
Further analysis, via time-filtering, shows long time-scales pertinent to streak
meandering are anti-correlated with instantaneous upwash/downwash mo-
tions that are the dominant contribution to the increased shear Reynolds
stress observed over the low roughness strips.
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1. Introduction

The importance of coherent structures in the dynamics of turbulent bound-
ary layers over smooth walls and homogeneous rough surfaces is well known.
Early flow visualizations by Kline et al. (1967) revealed streamwise rolls and
streaks near the wall. The dynamics of these structures and their interactions
are responsible for the generation of skin-friction drag, see e.g. Raupach et al.
(1991); Jiménez (2004). Near-wall streaks and rolls have also been shown to
interact in a self-sustaining process (SSP) (Waleffe, 1997; Jeong et al., 1997),
widely believed to be a dominant flow mechanism in wall-bounded turbu-
lence.

Streamwise coherence also persists away from the wall, where early ex-
periments identified turbulent bulges in the outer-layer (Fiedler and Head,
1966; Falco, 1977). Later works identified streamwise coherent large-scale or
very-large-scale motions that lead to a secondary peak in the velocity spec-
tra (Kim and Adrian, 1999; Marusic, 2001). These outer-layer structures
interact with near-wall streaks by modulating their amplitude (Hutchins and
Marusic, 2007; Mathis et al., 2011). Large scale streamwise vorticies and
streaks have also been shown to interact in a SSP as part of the hierarchy
of these cycles mirroring that of the near-wall steaks (Flores and Jiménez,
2010; Cossu and Hwang, 2016).

Similarities between flows over smooth walls and homogeneous rough sur-
faces readily permit methods to evaluate skin-friction drag for such surfaces
by the Moody diagram or Hama roughness function (Nikuradse and Niku-
radse, 1933; Moody, 1944; Hama et al., 1954). For example, streamwise co-
herent structures are spatially invariant over smooth walls and homogeneous
roughness topography imposes similar stricture thereby permitting meth-
ods such as the Moody diagram or Hama roughness function to evaluate
skin-friction drag independent of spatial orientation (Nikuradse and Niku-
radse, 1933; Moody, 1944; Hama et al., 1954). Outer-layer similarity also
enables estimates for turbulent statistics of flow over homogeneous rough
walls (Townsend, 1980; Schultz and Flack, 2005; Flack et al., 2007). Unfor-
tunately, when the roughness is not homogeneous, the mean velocity profiles
and second-order statistics do not collapse at different spanwise locations
(Medjnoun et al., 2018; Yang and Anderson, 2017; Chung et al., 2018).

The failure of Townsend’s similarity hypothesis for such surfaces suggest
that well established methods for characterization of flow over homogeneous
roughness are not applicable to the wide range of heterogeneous surfaces
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that are prevalent in nature and engineering applications. In fact, the full
effects of such surfaces on the properties of turbulent flows over them has
yet to be understood. Recent studies aimed at expanding the understanding
of these flows have focused on how the topography affects their statistical
features. In an early investigation along these lines, Barros and Christensen
(2014) identify time-averaged alternating low- and high-momentum path-
ways (LMPs and HMPs respectively) flanked by streamwise vortices over a
turbine blade eroded by foreign materials. This finding inspired others to
study flow over more simplified spanwise heterogeneous topographies that
have been shown to lead to the breakdown of self-similarity. Two classes of
such surfaces are; ridge and strip roughness. Ridge roughness is character-
ized by alternating elevated and recessed regions of rough surfaces, i.e, the
height of the surface varies in a regular pattern. Such surfaces have been
constructed in experiments using alternating strips of Lego bricks with dif-
ferent heights (Vanderwel and Ganapathisubramani, 2015) as well as smooth
surfaces of alternating heights (smooth ridges) (Medjnoun et al., 2018). Nu-
merical studies typically implement this variation using immersed boundary
methods (Hwang and Lee, 2018; Yang and Anderson, 2017; Awasthi and An-
derson, 2018). In strip roughness, the height of the surface remains relatively
constant and the heterogeneity arises from alternating strips of rough sur-
faces with different skin-friction. Experimental studies of turbulent boundary
layers over strip roughness have been performed using densely packed gravel
(Wang and Cheng, 2005) or sand paper (Bai et al., 2018; Wangsawijaya
et al., 2020), while numerical studies have imposed spanwise variations in
the wall-stress (Willingham et al., 2014; Chung et al., 2018).

There is a general consensus that the non-zero time-averaged streamwise
vorticity that arises over spanwise heterogeneous rough surfaces is associated
with the second kind of Prandtl’s secondary flow (Prandtl, 1952); a notion
that was investigated in detail in And (2015). This type of secondary flow
is generated from spanwise variations in the Reynolds stresses that induce
mixing in the cross-plane. This mixing generates spanwise varying regions
comprised of high and low momentum pathways respectively forming between
ridges or over ridges for ridge type roughness or over high and low roughness
strips.

While much is known about the statistical features of secondary flow
structures, their unsteady behavior was historically masked by the time-
averaging employed in their analysis. Kevin et al. (2017) were the first to
use correlations and conditional averaging to uncover meandering of sec-
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ondary flow over herringbone riblets. The similarity of this behavior to that
observed in smooth-walled turbulent boundary layers has led to a body of
work exploring connections between these flows. For example, Kevin et al.
(2019) attributed secondary flow meandering to an outer-layer streak-vortex
instability mimicking one initially described near the wall (Jeong et al., 1997)
and later at larger scales (Flores and Jiménez, 2010) of smooth wall turbu-
lent flows. More specifically Kevin et al. (2019) argue that the streak-vortex
instability model in Jeong et al. (1997) may provide structural model that
could explain the meandering features in these flows. Zampiron et al. (2020)
similarly found meandering of large-scale streaks (which they referred to as
secondary current instability) over ridge roughness.

In strip type roughness Wangsawijaya et al. (2020) also found a secondary
outer-layer in the streamwise energy spectra over the low roughness strip rem-
iniscent of the outer-layer peak in the energy spectra found in experiment
(Marusic, 2001) and simulation (Bernardini et al., 2014; Lee and Moser,
2015; Yamamoto and Tsuji, 2018) of smooth wall flows. The large-scale
streaks found to modulate near-wall small-scales initially found in Hutchins
and Marusic (2007) for a smooth wall flow, has also been found to occur in
the LMPs over heterogeneous strip roughness (Awasthi and Anderson, 2018).
Interestingly, these works have found the intensity of secondary flow mean-
dering, energy amplification, and amplitude modulation to increase within
the LMP. These studies certainly advance our understanding of coherent
structures over heterogeneous strip roughness however questions remain, pri-
marily, how do the secondary flow structures and large-scale streaks interact?

In this work we aim to further the understanding of these interactions
using the restricted nonlinear (RNL) modeling framework, which provides
a direct approach to isolate streak and vortex components and study their
interactions. More specifically, the RNL representation decomposes the flow
into a streamwise averaged mean component that is permitted to interact
nonlinearly and perturbations whose nonlinear interactions are limited to
those contributing to the mean. RNL turbulence is self-sustaining despite its
reduced streamwise varying perturbation field (Thomas et al., 2014). The
model also reproduces accurate turbulent statistics at moderate Reynolds
numbers when the perturbation field is restricted to wavelengths that coin-
cide with the outer-layer surrogate dissipation spectra (Minnick and Gayme,
2019). It has also been shown to be useful in the study of coherent structures,
see e.g. Farrell et al. (2017); Gayme and Minnick (2019). The simplified set-
ting of the RNL model provides a tractable simulation and analysis tool that
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can be used to inform or analyse mechanistic models such as the streak-vortex
instability (Jeong et al., 1997) based structural model that Kevin et al. (2019)
postulated as a means to explain the meandering features in these flows.

We focus on turbulent flow over spanwise heterogeneous strip rough-
ness and use RNL large eddy simulation (RNL-LES) model introduced in
Bretheim et al. (2018) to study this flow at arbitrarily high Reynolds number.
As in previous LES studies (Willingham et al., 2014) we impose the the strip
roughness through the equilibrium wall-model boundary condition. First, we
demonstrate that this reduced-order model predicts time-averaged secondary
flow and momentum pathway trends consistent with observations in the lit-
erature. We then use the RNL decomposition to assess the contributions
of the large-scale mean and small-scale perturbation field to the mixing and
momentum transfer mechanisms. We examine the dynamics of the structures
using a conditional averaging approach similar to that in Kevin et al. (2017).
The results uncover similar meandering behavior, which suggests momentum
mixing is primarily due to the secondary flow. Analysis by time-filtering the
large-scale streamwise averaged mean component supports this conclusion
and further shows streak motions and instantaneous upwash/downwash mo-
tions at long time-scales are highly anti-correlated contributing to increased
outer-layer shear Reynolds stress.

2. The RNL-LES Model

We take (x, y, z) to denote the streamwise, wall-normal, and spanwise
spatial coordinates with respective domain extents (Lx, Ly, Lz). t denotes
the temporal coordinate. The total filtered velocity field, ũT(x, y, z, t), is
decomposed into a mean component, Ũ(y, z, t) = ⟨ũT ⟩x, where the angle
brackets with the subscript x indicate streamwise averaging, and a streamwise
perturbation component, ũ(x, y, z, t). The governing equations consist of
divergence free conditions, ∇ · Ũ = ∇ · ũ = 0, and momentum equations,

∂tŨ+ Ũ · ∇Ũ+∇P̃ +∇ · ⟨τ⟩x = −⟨ũ · ∇ũ⟩x,
∂tũ+ Ũ · ∇ũ+∇p̃+∇ · (τ − ⟨τ⟩x) = −ũ · ∇Ũ,

which are derived from the filtered Navier-Stokes equations with nonlinear
interactions between perturbations that do not result in a contribution to the
mean omitted, i.e., ⟨ũ · ∇ũ⟩x − ũ · ∇ũ = 0. This dynamical restriction leads
to a simplified model in which structures with finite streamwise wavelengths
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are isolated and only interact with the streamwise constant mean. Order
reduction arises through the reduced streamwise wavenumber support of the
perturbation dynamics, i.e. a small number of streamwise varying modes are
simulated as described in (Bretheim et al., 2018).

In the context of flows over spanwise heterogeneous roughness, the ad-
vantage to expressing the filtered velocity field in this manner is the streak
and vortex component are isolated, respectively expressed by the Ũ and
(Ṽ , W̃ ) components. In the RNL decomposition, the streak component is
independent of the x-position and is therefore only advected by the vortex
component. Furthermore, the vortex component is only advected by itself.
Both the streamwise averaged mean streak and vortex components are effec-
tively forced by the streamwise perturbation field consistent with the SSP.
No time-averaging operation is performed to derive the RNL equations and
therefore the dynamics and the interactions between these components can
be studied.

The sub-grid scale stress tensor is modelled using the standard Smagorin-
sky model (Smagorinsky, 1963) with an eddy viscosity formulation for the
deviatoric component of this tensor

τ − 1

3
tr(τ )I = −2νeS̃T.

Since the RNL methodology clearly defines streamwise scales in terms of
large-scales represented by the streamwise averaged mean and small-scales
as the streamwise varying perturbations, subgrid-scales in the cross-plane are
modelled using the mean component. The eddy viscosity is therefore taken
to be the product of the streamwise averaged filtered strain rate tensor,

νe(y, z, t) = (Cs∆)2
√
2⟨S̃T⟩x : ⟨S̃T⟩x.

Mason wall-damping is used for the Smagorinsky coefficient,

Cs∆ =
[( 1

C0∆

)n

+
( 1

κ(y + y0(z))

)n]−1/n

,

with n = 2, von Kármán constant, κ = 0.4, and a spanwise varying roughness
height y0. The filter size is taken to be, ∆ = (∆y∆z)1/2, instead of the
traditional ∆ = (∆x∆y∆z)1/3, and this requires that we use a slightly higher
constant of C0 = 0.23 rather than the common value of C0 = 0.16 (Bretheim
et al., 2018).
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We impose the strip type spanwise heterogeneous roughness on the bot-
tom boundary (y = 0) using the equilibrium wall-model with spanwise vary-
ing roughness heights y0(z), following previous LES studies of these flows
(Willingham et al., 2014; And, 2015). The streamwise (i = 1) and spanwise
(i = 3) components of the total wall-stress are prescribed as,

τ
(w)
i,2 (x, z, t) = −u2

∗
ũT,i(x, y1, z)

|U|
,

where y1 is the first grid point from the wall,

u∗(z) =
|U|

log(y1/y0(z))
, and |U|(z) =

√
Ũ2
1 (y1, z) + Ũ2

3 (y1, z).

Note this equilibrium wall-model differs from the traditional wall-model used
in LES in that the magnitude of the streamwise averaged mean component,
|U| is used instead of the total velocity. The top boundary (y = δ) is taken
to be a stress-free, slip surface. Periodic boundary conditions are applied in
the streamwise and spanwise directions.

3. Numerical Approach

Simulations are performed in a half channel configuration with domain
extents [Lx, Ly, Lz]/δ = [2π, 1, 2π]. The cross-plane grid resolution used for
all simulations is [Ny, Nz] = [144, 144]. The non-zero streamwise wavenumber
retained in the dynamics is kxδ = 8, and corresponds to a point in the
outer-layer peak region of the vorticity spectra of an LES with equivalent
grid resolution for a homogeneous rough wall configuration as detailed in
Bretheim et al. (2018). Here the dimensional streamwise wavenumber is
defined as kx = 2πn/Lx for some integer n.

The governing equations are solved in the pseudo-spectral code LESGO
(https://lesgo.me.jhu.edu). Spectral derivatives are applied in the stream-
wise and spanwise directions, while second-order central finite differencing is
used for wall-normal derivatives. The second-order explicit Adams-Bashforth
method is used for time-marching. The 3/2-rule is used for dealiasing. The
pressure Poisson equation is solved exactly by direct inversion in the stream-
wise and spanwise Fourier space, then discretizing the resulting ordinary dif-
ferential equation using finite differencing in the wall-normal direction and
applying the tri-diagonal matrix algorithm.
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We take advantage of the reduced number of streamwise wavenumbers
in the RNL-LES dynamics by solving the governing equations in (kx, y, z, t)
space. This involves computing the components of the nonlinear terms in-
volving streamwise interactions as a convolution instead of as a product in
physical space, which reduces the number of transforms required and saves
computational time and resources, see Bretheim et al. (2018) for details or
the implementation and computational savings.

We consider a topography of repeating units, each consisting of a high
and low roughness strip with a total width of S = (2π/3)δ. All simulations
are three units wide. This topography is shown in the contour plot in Fig.
1, where black and white rectangles respectively indicate the high and low
roughness regions. Within each unit the high roughness strip width is ℓ =
0.3125 S. This topography is imposed through the equilibrium wall-model
described in equation 2 where y0,h = 0.001δ for the high roughness and
y0,l = 0.01y0,h for the low roughness. This particular topography was selected
because secondary flows have been reported to be dominant for the spacing
S ∼ δ (Wangsawijaya et al., 2020) and the particular roughness heights, y0,h
and y0,l, are similar to those used in other LES studies, e.g. And (2015).

4. Results

The results section is outlined as follows. First the total RNL-LES ve-
locity field, composed of the streamwise averaged mean and perturbation
components, will be presented. The predicted time-averaged flow field will
be compared to literature to confirm that this streamwise coherent struc-
ture based reduced-order model is capable of predicting HMP/LMP and sec-
ondary flow trends in a time-averaged sense. Second, the RNL-LES model
components will be decomposed and investigated to isolate the contributions
from the large-scale streamwise averaged mean and small-scale streamwise
perturbations. The remainder of the results section focuses on large-scale
streak meandering. For this part of the paper, we first perform a conditional
averaging analysis to assess the RNL-LES model’s ability to predict mean-
dering behavior. We then investigate interactions between the secondary flow
and the meandering of streaks using time-filtering of the streamwise averaged
mean component of the RNL-LES field.
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4.1. The Total RNL-LES Velocity Field

Fig. 1a compares time-averaged streamwise velocity profiles obtained
from RNL-LES of homogeneous roughness at the low and high roughness
levels (y0,l and y0,h) to those obtained over the low and high roughness strips
for the spanwise heterogeneous surface. These profiles show similar behavior
to experimental and numerical studies, see e.g., And (2015). Near the wall
the low and high roughness strips show similar velocity predictions to their
corresponding homogeneous roughness counterparts, a consequence of the
boundary condition imposed. Further from the wall these profiles mix in the
cross (y, z)-plane such that the velocity profile over the high roughness strip
increases and attains a higher velocity compared to the homogeneous case.
Similarly for the profile over the low roughness strip which attains a lower
velocity than compared to the homogeneous case far from the wall.

The contour plot in Fig. 1b provides a cross-stream view of the time-
averaged flow with arrows indicating vectors of spanwise/wall-normal flow
directions (secondary flow). Here the full spanwise variation of the stream-
wise velocity profiles are visualized, where it is clear that HMPs and LMPs
are observed over the high and low roughness regions respectively. The ar-
rows show that the formation of these pathways is highly dependent on the
secondary flow. A pair of time-averaged streamwise rolls with alternating di-
rections is observed for each high/low roughness region, centered at y ≈ δ/2.
The location and orientation of this secondary flow is comparable to results
reported in And (2015), as is the intensity, visualized using the swirl strength
in Fig. 1c. The ability of the RNL-LES model to accurately predict the time-
averaged secondary flow and corresponding momentum pathways is a result
of the streamwise constant nonlinearity retained in the model dynamics.

Fig. 2 shows a three dimensional perspective of an instantaneous snap-
shot of the streamwise velocity field at the mid-plane of the half-channel.
Here the boundaries of the high roughness regions are indicated by solid
black lines. At y ≈ δ/2 where the secondary flow is dominant, high and
low speed streaks are shown to align with high and low roughness regions
respectively. Although these high and low speed large-scale structures are
organized preferentially over the respective roughness regions, they meander
instantaneously - a phenomenon first demonstrated by in Kevin et al. (2017).
Among these large-scale streaks, a single small-scale streamwise wavelength,
represented by the perturbation component, is shown to be prevalent. This
perturbation component, which is loosely coupled to the mean, is thought
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Figure 1: Time-averaged velocity field predictions from the RNL-LES model. (a) Solid
lines are homogeneous roughness predictions at y0/δ = 10−5 (red) and y0/δ = 10−3 (blue)
with corresponding dashed lines: (1/0.4) log(y/y0). Solid lines with markers are heteroge-
neous roughness predictions taken at spanwise locations centered over low (red) and high
(blue) roughness strips. (b) Contours of the time averaged streamwise velocity field with
arrows indicating cross-stream velocity field (v, w components) superimposed. (c) Swirl
strength contour. Markers in (a) and arrows in (b) do not represent grid resolution.

to re-energize the large-scale streaks. In the cross-plane, the sum of these
components is shown to produce multi-scale behavior.

The time-averaged and instantaneous characteristics of the RNL-LES to-
tal velocity field discussed above indicated that this reduced-order model is
capable of predicting salient features of turbulent boundary layers over span-
wise heterogeneous roughness. The turbulence is self-sustaining, despite the
limited number of streamwise Fourier modes simulated, suggesting spanwise
heterogeneous roughness does not significantly alter the RNL SSP, as antic-
ipated. Furthermore the level of agreement of the time-averaged statistics
with And (2015) indicates the selected perturbation modes suitable for ho-
mogeneous roughness in the RNL-LES model is also suitable for spanwise
heterogeneous roughness. This indicates outer-layer similarity can poten-
tially be applied to small dissipative streamwise scales even if it cannot be
applied to turbulent statistics, although further analysis is required to fully
explore this notion and rigorously prove this conjecture.

The interactions retained in the streamwise averaged mean equation of
the RNL-LES model are analogous to those considered in the inviscid two-
dimensional three-velocity component model of Jeong et al. (1997), which is
the basis of a structural model proposed by Kevin et al. (2017). The stream-
wise averaged mean streak, U , is only advected by the streamwise averaged
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Figure 2: Instantaneous snapshot of the streamwise velocity field at the mid-plane (y/δ =
0.5) of the half-channel. Thick black lines in panel (a) show the borders of the high
roughness regions centered at the black dashed lines. Shaded regions in panel (a) are
shown up close in panels (b) and (c). The xz-plane in (b) is taken at height y = δ/2.

mean vortex, consisting of cross-plane components V,W , and forms momen-
tum pathways. The vortex component is not advected by U and generates the
secondary flow. Meandering characteristics of this streak-vortex interaction
will be discussed in later sections. The next section will continue to inves-
tigate interactions between the streamwise averaged mean and perturbation
components of the RNL-LES model.

4.2. Decomposition of the RNL-LES Field

Fig. 3 shows an instantaneous cross-stream snapshot of the RNL-LES
streamwise velocity field alongside the contributions from its mean and per-
turbation components. The cross-plane snapshots in the top row of the
figure indicate that, as expected, the streamwise averaged (RNL) mean ve-
locity acts as a large-scale in that it filters small scale activity. Although the
perturbation field is supported by a single streamwise wavenumber, full scale
variation is observed in the cross-plane. The intensity of the perturbation
component is particularly high in the region over the high roughness strip.

The RNL mean component is further decomposed into a time-average, Ũ , and
fluctuation, Ũ ′, components in the bottom row of Fig. 3. Note that since

time-averaged quantities are independent of streamwise location, ũT = Ũ
and ũ = 0. This decomposition reveals that while the time-fluctuating com-
ponent of the streamwise average mean contributes to the total fluctuations,
it still comprises larger cross-plane scales than the perturbation component.
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Figure 3: Instantaneous streamwise velocity field, ũT decomposed into the streamwise
averaged mean, Ũ , and streamwise varying perturbation, ũ, components. The mean com-

ponent is further decomposed into a time-average, Ũ , and fluctuation, Ũ ′, component. All
quantities are non-dimensionalized by uτ .

This supports the characterization that the RNL mean component represents
the large scales.

We now further explore the contributions of the mean and perturbation
components to the flow statistics. Fig. 4 shows the normal and uv Reynolds
stresses alongside their relative contributions from the mean and perturbation
components. For comparison, Reynolds stress predictions over homogeneous
high roughness are included to the left of each panel and for homogeneous
low roughness to the right. Fig. 5 provides the Reynolds stresses generated
by the spanwise heterogeneity that are otherwise negligible in flows over
homogeneous roughness.

Since both the mean and perturbation components of the RNL model
are time-fluctuating, they both contribute to the total Reynolds stress which
is found to show reasonable agreement with And (2015). Furthermore with
only two streamwise wavenumbers, kxδ = 0, 8, simulated in the RNL-LES
model these results are equivalent to modelled one-dimensional spectra vary-
ing in the spanwise and wall-normal directions. Therefore Reynolds stresses
involving the streamwise averaged mean effectively represent spectra from
cumulative large-scales, while Reynolds stresses involving streamwise pertur-
bations represent spectra from small-scales.

The large-scale component of the streamwise Reynolds stress, Ũ ′Ũ ′, in
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Figure 4: Total Reynolds stress decomposed into RNL-LES streamwise averaged mean
(large-scale) and streamwise varying perturbation (small-scale) components. Reynolds
stresses shown are also relevant in homogeneous cases. To the left of all heterogeneous
roughness contours is the corresponding high roughness homogeneous prediction, similarly
to the right is the low roughness homogeneous prediction. Results are shown for one of
the repeating roughness units. Note the color maps for each plot are given and vary to
highlight the gradation in intensity for each case.
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Fig. 4a shows higher energy in the outer-layer over the low roughness region
near the center of the time-averaged secondary flow. This is particularly
evident if one examines the trend in the homogeneous cases, which shows a
more rapid decrease in energy with distance from the wall. This finding is
consistent with observations in the experimental work of Wangsawijaya et al.
(2020), which suggests the secondary flow supplies additional energy to the
very large-scale motions. The small-scale component, ũ′ũ′, contributes little
to this outer-layer energy. The small-scales instead show higher magnitude
near the wall and peak over the high roughness region.

A similar trend is observed for the dominant Reynolds stress that acts
in the streamwise momentum equation, ũ′

Tṽ
′
T, shown in panel (d). This

panel shows that, as expected, the small-scale perturbations have a greater
exchange of momentum in the near wall region and the large-scale mean
exchanges momentum further from the wall. Similar to the streamwise
Reynolds stress, a larger exchange of momentum is observed further from
the wall over the low roughness strip, particularly in the mean component,
indicating the large-scale secondary motions enhance mixing in this region.
Comparing this behavior to the analogous Reynolds stress predictions from
the homogeneous roughness cases indicates that the mixing induced by the
spanwise heterogeneity increases the cross-Reynolds stress directly over the
high roughness strip, near the wall, but lowers the cross-Reynolds stress over
the low roughness strip near the wall. This trend holds regardless of stream-
wise scale.

The small-scale perturbation component of the normal Reynolds stresses
involving cross-plane velocity components in panels (b) and (c) of Fig. 4
are shown to have higher contributions to the overall stress than the large-
scale mean component, which is also observed for the homogeneous roughness

cases. Unlike the Ũ ′Ũ ′ and Ũ ′Ṽ ′ stresses, there is no discernible outer-layer
peak that is only identified in the large-scale mean component. Similar to
the cross-Reynolds stress, the mixing induced by the spanwise heterogeneity
increases these normal Reynolds stresses over the high roughness strip and
decreases it over the low roughness strip near the wall. The stress then
increases over the low roughness strip far from the wall.

Fig. 5 shows that the ṽ′Tw̃
′
T Reynolds stress is of significance as its gra-

dients are responsible for the production of the secondary flow; a conclusion
consistent with that of And (2015). The RNL decomposition of this Reynolds
stress reveals the small-scale component, ṽ′w̃′, is dominant, particularly near
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Figure 5: Total Reynolds stress decomposed into RNL-LES streamwise averaged mean
(large-scale) and streamwise varying perturbation (small-scale) components. Reynolds
stresses shown are negligible in homogeneous cases. Results shown over one repeating
roughness unit. Note the color maps for each plot are given and vary to highlight the
gradation in intensity for each case.

the wall at the roughness transition. The sharp sign change in this Reynolds
stress at the roughness transition is not observed in the large-scale com-

ponent, Ṽ ′W̃ ′, suggesting only small-scales play a role in the generation of
secondary flow. Both large-scale streamwise averaged mean and small-scale
streamwise perturbation components contribute to the ũ′

Tw̃
′
T Reynolds stress

and show a similar trend.
The findings in Figs. 4 and 5 support conclusions made in numerical

and experimental studies of the statistical behavior of turbulent flow over
spanwise heterogeneous roughness. The decomposition of the RNL model is
shown to be particularly appealing in assessing large and small scale contri-
butions to outer-layer turbulent energy and secondary flow generation.

We now turn our attention to the time-varying aspects of the flow and
relate meandering features of the large-scale streamwise averaged mean flow
field to recent studies of turbulent flows over spanwise heterogeneous rough-
ness Kevin et al. (2017); Zampiron et al. (2020).
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4.3. Conditional Averaging
The previous section demonstrated that the streamwise average mean of

the RNL decomposition enables structural features of the large-scale momen-
tum pathways and secondary flow to be interrogated directly. We next exploit
this feature by performing a conditional averaging analysis to illustrate streak
meandering and other features masked by time-averaging. Following the pro-
cedure introduced in Kevin et al. (2017), we sort instantaneous flow samples
according to the direction of the locally averaged wall-normal velocity of the
large-scale streamwise averaged mean centered over a high roughness region
and the two neighboring low roughness regions. The spanwise boundaries
of the areas over which these local averages are performed, are indicated by
solid black lines in Fig. 6. The center location of the region is indicated by
the dashed black line. The local averages are performed over the entirety of
the corresponding roughness region and the wall-normal extent. It should
be noted that this analysis can be sensitive to the chosen width of the local
averages, and the one chosen here is larger than the one used in Kevin et al.
(2017). However the overall trends illustrating the secondary flow direction
and streak meandering are reasonably insensitive to this choice and therefore
will remain relatively unaffected.

Fig. 6 shows the results from this conditional averaging across a total of
70,000 samples organized into four bins respectively shown in panels (a)–(d):
bin 1 (+,-,+), bin 2 (-,-,+), bin 3 (+,-,-), and bin 4, which includes the other
five combinations. Here the +/- sign is used to denote the upward/downward
direction of the locally averaged wall-normal velocity of the RNL mean com-
ponent in each region. The order of the combination denotes the location of
each local average, from left to right: over the low roughness strip, the high
roughness strip, and then the other low roughness strip. Included in this
figure is the percentage of samples used to develop each conditional average,
this percentage indicates the frequency of occurrence for each case. Addi-
tionally, we denote the spanwise position in these figures as zc, taking zc = 0
to denote the center of the high roughness region and zc = ±0.5S to indicate
the center of the neighboring low roughness regions.

The case (+,-,+) which is most comparable to the time-average velocity
field is shown to be predominant, more-so than the case considered in Kevin
et al. (2017), this is likely due to the choice of conditional averaging width.
Regardless, it is clear that a flow behavior different than the time-averaged
sense occurs relatively often. Similar to the results in Kevin et al. (2017),
cases where downwash exists simultaneously over the high roughness region
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Figure 6: Conditionally averaged (a-d) velocity field and (e-h) Ũ ′Ũ ′/u2
τ based on direction

of locally averaged wall-normal velocity performed over the entire high roughness region
(indicated by black rectangle) and low roughness regions (centered by solid black line and
bounded by dotted lines). Direction of flow in these regions indicated by +/- respec-
tively denoting upwash/downwash. All five other possible combinations [(+,+,+),(+,+,-
),(-,+,+),(-,+,-),(-,-,-)] not shown in panels (a-c,e-g) are included in (d,h). Color bar for

streamwise velocity contour same as Fig. 2 and for Ũ ′Ũ ′/u2
τ as in Fig. 4.

17



and a neighboring low roughness region, i.e., those denoted (-,-,+) and (+,-
,-), occur often.

The downwash region of the (-,-,+) and (+,-,-) cases continue to show a
time-averaged vortex, however it is reduced in size and magnitude. Interest-
ingly, the streamwise momentum in this region is notably higher than the
overall time-average field indicating a conditionally averaged HMP between
the high and low roughness region coinciding with the conditionally averaged
downwash.

Included in Fig. 6 is the streamwise Reynolds stress of the large-scale
RNL mean component. Panels (e)–(h) are binned following the same con-
vention as panels (a)–(d). The (-,-,+) and (+,-,-) cases show an asymmetry

in the Ũ ′Ũ ′ profiles over the neighboring low roughness strips which is not
seen in the other cases in panels (e) and (h). A higher streamwise Reynolds
stress far from the wall is predicted over the low roughness strip with cor-
responding upwash or conditionally averaged LMP. This behavior suggests
that the outer-layer peak is intensified within an instantaneous upwash re-
gion and diminished in an instantaneous downwash region as the secondary

flow meanders. A similar trend is observed in conditionally averaged Ũ ′Ũ ′

statistics (not shown here).
The meandering of the secondary flow in the RNL framework is a result

of the streamwise component of the mean equation, U responding to the
secondary flow, (V,W ), acting as a passive scalar only subject to small-
scale forcing. In other words, streak meandering and secondary flow have a
one-way coupling where the secondary flow drives streak meandering. This
coupling is imposed in the RNL mean, but given the similarity in behavior
observed in experiments this type of coupling may persist in the full system,
evaluating this idea is a topic of ongoing work. In the next section we further
investigate the interaction between the meandering secondary flow that drives
the streak by reviewing a time history of the streamwise averaged mean
component far from the wall, where the secondary flow is dominant.

4.4. Large-Scale Meandering
Results in the previous section have highlighted time-varying features

resolved by the RNL-LES model that are similar to those observed in the
experiments of Kevin et al. (2017). In this section, we expand our study to
investigate connections between meandering in the momentum pathways and
these time-varying motions of the secondary flow. Consistent with our analy-
sis in section 4.3, we consider only the streamwise averaged mean component
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Figure 7: Time and spanwise variations of the streamwise averaged mean velocity field

at y = δ/2: (a) streamwise component, (Ũ − ⟨Ũ⟩z)/uτ , and (b) wall-normal component,

(W̃ − ⟨W̃ ⟩z)/uτ EDIT SUBMITTED VERSION – THIS SHOULD BE V NOT W. The
spanwise average component is removed to show streak meandering near the roughness
strips.

of the RNL-LES model, as it allows us to isolate the large-scale streamwise
elongated structures believed to meander (Kevin et al., 2019; Wangsawijaya
et al., 2020).

Fig. 7, shows the time evolution of fluctuations of the RNL mean mi-

nus the spanwise average (Ũ − ⟨Ũ⟩z) at the channel center δ/2. Here the
high roughness strip locations are outlined by the black lines. This figure
clearly shows the large scale meandering of the streamwise (panel (a)) and
wall-normal (panel (b)) velocity components over the roughness strips. Con-

sistent with the spanwise-varying time-averaged field, Ũ , shown in Fig. 3,
higher streamwise velocity fluctuations primarily occur over the high rough-
ness strips. This high momentum streak however is shown to meander over
the neighboring low roughness region at various points in time. Time fluc-
tuations in the upwash and downwash regions over the respective low and
high roughness strips are noted in the wall-normal component of this velocity
field. Both the streamwise and wall-normal velocity components show small
time-scale fluctuations. However, a large time-scale fluctuation is evident in
the streamwise velocity component. These larger time-scales, on the order
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Figure 8: Filtered time fluctuations of the streamwise averaged mean velocity at y = δ/2:
(a) streamwise component and (b) wall-normal component. Time-scales smaller than
δ/⟨U⟩z(y = δ/2) = 0.05 are filtered out to isolate large-scale streak meandering. Black
solid line contours indicate streamwise velocity fluctuations that are 1uτ greater than the
average and black dotted line contours indicate streamwise fluctuations that are 1uτ less
than average.

of ∼ 10δ/uτ and greater, are of interest here because meandering is expected
to occur over large time-scales.

In order to further investigate the evolution of the large scales we time-

filter the data such that only time-scales above δ/⟨Ũ⟩z(y = δ/2) = 0.05

(corresponding to ⟨Ũ⟩z = 20 uτ ) are retained. Fig. 8 plots the filtered
streamwise and wall-normal components of the streamwise averaged (RNL)
mean velocity field over the same time window shown in Fig. 7. Here, it
is clear that the time-filtering process effectively smooths the velocity fields
and filters out small time scale turbulent fluctuations. However, we do not
remove the spanwise average, so the meandering in the momentum pathways
that was prominent in Fig. 7 is less evident. The contours shown indicate
fluctuations that are faster (positive) and slower (negative) than the aver-
age flow (corresponding to zero fluctuations). We highlight fluctuations with
magnitudes uτ above the average value using a black contour line, and those
one uτ below the average using a dotted black contour. The figure shows
that there are several events where downward (Ṽ ′ < 0) fluctuations occur
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during fast streamwise fluctuations (Ũ ′ > 0). Similarly, upward motions oc-
cur during slow streamwise fluctuations. These events occur more frequently
and with higher intensities over the LMPs, which is a trend consistent with

the Ũ ′Ṽ ′ spectra in Fig. 4. This anti-correlation between streamwise and
wall-normal velocity fluctuations is persistent at the long time-scales, only
for the streamwise averaged mean component of the RNL-LES model and
provides additional evidence for the secondary peak in the co-spectra over
low roughness strips.

Referring to the time-averaged flow, where upwash occurs on average over
the low roughness strips, Fig. 8 suggests fast streamwise velocity fluctuations
often occur when the instantaneous secondary flow opposes the time-averaged
secondary flow and slow streamwise velocity fluctuations occur when the in-
stantaneous secondary flow intensifies. It is interesting to note that this
phenomena, resolved by the RNL-LES model, occurs via one-way coupling
where the large-scale streamwise velocity component does not interact with
the large-scale wall-normal component. This suggests secondary flow me-
andering induces streak meandering and their coupled effect increases the
turbulent Reynolds stress u′

Tv
′
T within the LMP.

5. Conclusion

An RNL-LES model is shown to reproduce the momentum pathways
formed from secondary flow induced by spanwise heterogeneous strip rough-
ness. The natural scale decomposition of this framework is then exploited to
isolate the role of large and small streamwise scales in these secondary mo-
tions. An analysis of scale dependent streamwise Reynolds stress indicates
that large-scale low speed streaks over the low roughness accumulate energy
from the secondary flow. The small-scale component of the ṽ′Tw̃

′
T Reynolds

stress is observed to be dominant near the wall at the roughness transition,
suggesting small-scales are primarily responsible for the generation of the
secondary flow.

Conditional averaging based on the direction of the wall-normal veloc-
ity of the RNL mean component over the low and high roughness regions
is performed to quantify streak meandering. Upwash over low roughness
regions and downwash over the high roughness region, as observed in the
time-averaged flow field, is predominant however not the only instance ob-
served. The other cases, that occur approximately a quarter of the time,
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show less intense secondary flow coinciding with an intensified streamwise
momentum streak.

The conditional averaging predictions from the RNL-LES model inspired
an analysis of the time history of the streamwise and wall-normal velocity
components of the streamwise averaged (RNL) mean field. Further filtering
of motions with respect to time revealed streak meandering is closely related
to the instantaneous secondary flow. High speed motions were shown to occur
when the secondary flow was moving downward, and similarly secondary flow
was directed upward during low speed motions. This trend occurs often over

long time-scales and is a dominant contribution to increased outer-layer Ũ ′Ṽ ′

Reynolds stress. Furthermore, this observation occurs with higher intensity
over the low roughness strips where meandering is found to be dominant.

The RNL dynamics appears to provide a minimal representation of the
streak-vortex instability model described in Jeong et al. (1997) and reasoned
to be the mechanism for outer-layer streak meandering in spanwise heteroge-
neous roughness (Kevin et al., 2019). The construction of the RNL model and
its ability to reproduce this meandering suggests a one-way coupling wherein
secondary flow leads to meandering. Further analysis of this interaction is a
direction of ongoing work.

Further investigation of the role of small-scales and their response to
streak meandering using the RNL perturbation component is another poten-
tial direction for future study. In particular, for the cases of varying high
roughness width to low roughness width ratio to discussed inWangsawijaya
et al. (2020), where the spanwise wavelength of the roughness was varied.
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Flores, O., Jiménez, J., 2010. Hierarchy of minimal flow units in the loga-
rithmic layer. Phys. Fluids 22, 071704.

23



Gayme, D.F., Minnick, B.A., 2019. Coherent structure-based approach to
modeling wall turbulence. Phys. Rev. Fluids 4, 110505.

Hama, F., of Naval Architects, S., Engineers, M., 1954. Boundary-layer
Characteristics for Smooth and Rough Surfaces, by Francis R. Hama.

Hutchins, N., Marusic, I., 2007. Evidence of very long meandering features
in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579,
1–28.

Hwang, H.G., Lee, J.H., 2018. Secondary flows in turbulent boundary layers
over longitudinal surface roughness. Phys. Rev. Fluids 3, 014608.

Jeong, J., Hussain, F., Schoppa , W., Kim, J., 1997. Coherent structure near
the wall in a turbulent channel flow. Journal of Fluid Mechanics 332, 185
– 214.
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