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A B S T R A C T   

Accurately estimating river discharge from satellite-derived river hydraulic variables (e.g., width, height, and 
slope) is the overarching goal of the remote sensing of discharge (RSQ) community. Numerous past studies have 
developed and intercompared different RSQ algorithms to demonstrate their feasibility, yet relatively few have 
focused on assessing how the RSQ algorithms are adapted to a wide range of rivers globally. As the community is 
now ready to expand to the global scale given advances in computing power, sensors, and the launch of the 
Surface Water and Ocean Topography (SWOT) satellite mission, a much broader geographic view of RSQ ac
curacy should be prioritized toward “better generalizability” instead of “higher accuracy at limited places”. To 
help close this gap, we extracted multi-temporal river widths from >350 K Landsat scenes at >3 K river reaches 
globally, and used them to estimate discharge using the Bayesian AMHG-Manning (BAM) algorithm and the 
geomorphologically-enhanced variant (geoBAM). We use this framework to demonstrate how to apply an ‘off the 
shelf’ RSQ algorithm and test it globally without methodological intervention and answer: does it live up to its 
promise? Our daily discharge inversions (1984–2019) showed positive Kling-Gupta Efficiency (KGE) at 27% of 
the gauges for BAM and 39% for geoBAM, and this percentage increased to 46–65% after feeding richer priors on 
flow seasonality and monthly variability, amounting to 1400–2000 successful inversions. Exploratory analyses 
showed that the inversion is the most sensitive to a channel geomorphological parameter b and climate aridity, 
where the optimal conditions are high-b, humid environments, as well as moderate width variability, leaf area 
index (LAI), and river width. Although specific to BAM/geoBAM, constraining the factors to their optimal ranges 
led to a median KGE of 0.33 for >600 gauges, which highlights the promising potential for global RSQ. We 
further discussed the optimal configuration of the RS/priors by analyzing results derived from different infor
mation content in priors. Overall, our critical assessment of BAM/geoBAM reveals a successful global imple
mentation of an existing algorithm that SWOT will improve. We suggest similar large-scale assessments for other 
RSQs be prioritized to identify the emerging challenges as we move into a new era with global river monitoring 
capability from space.   

Confidential manuscript in revision at Remote Sensing of Environment, 
Jan. 20th, 2023. 

1. Introduction 

River water is the most accessible and critical water resource for life 
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despite its low volumetric percentage among the Earth's freshwater 
storages. An earth system science view to study the spatio-temporal 
dynamics of river discharge (or interchangeably referred as discharge 
or streamflow) is crucial to our understanding of global rivers as a sub- 
system of the Earth instead of disconnected segments or watersheds. Yet 
this understanding is largely compromised by spatial gaps (Do et al., 
2018), a downward trend (Hannah et al., 2011), and placement biases 
(Krabbenhoft et al., 2022) of river gauge networks, urging researchers to 
actively seek for other means, such as remote sensing and global hy
drologic modeling approaches, to fill in these gauging gaps. 

As a relatively young field, remote sensing of river discharge (here
after RSQ, where Q denotes discharge) has been burgeoning in recent 
years along with the increasing availability of satellite data, computa
tional resources, and increased spatial/temporal/spectral resolutions of 
satellite sensors (see Gleason and Durand (2020) and literatures 
therein). Since the early demonstration of useful signals of surface water 
variability in spaceborne measurements (Alsdorf and Lettenmaier, 2003; 
Brakenridge et al., 2005; Smith, 1997), studies have been devoted to 
retrieving essential hydraulic variables (e.g., river surface extent/stage/ 
slope, termed as “RS river observables”) from space, and then propa
gating useful RS signals into Q by establishing relationships between RS 
observables and Q. A plethora of research has been conducted to assess 
the usability of different optical or active/passive microwave satellite 
sensors (e.g., Alsdorf et al., 2007; Feng et al., 2019; Huang et al., 2018, 
2020a, 2022; Marcus and Fonstad, 2008; Sichangi et al., 2016; Tarpa
nelli et al., 2021; Tourian et al., 2013), signal/image processing tech
niques to overcome contaminations from clouds/vegetation/sand bars/ 
wet banks (e.g., Brakenridge et al., 2007; Huang et al., 2018; Tarpanelli 
et al., 2013), and flow laws/physics (e.g., Bjerklie et al., 2003; Gleason 
and Smith, 2014), which have collectively contributed to the flourish
ment of RSQ. 

The rationale behind estimating Q with RS observables is simple – Q 
variability responds to changes in river width (W) or surface inundation 
area (A), as well as river stage (H) or slope (S) variations. If one can 
obtain in-situ Q measurements or river cross sections & velocity profile 
surveys, transferring remotely sensed river W/H into Q is straightfor
ward as it only requires establishing empirical relationships between W/ 
H and Q, the same practice taken when installing automatic gauging 
stations. Many studies followed this logic to develop RSQ algorithms, 
which relied on W/H-discharge rating curves (e.g., Pavelsky, 2014) and/ 
or statistical regression models (e.g., Bjerklie et al., 2003, 2018) to es
timate Q. However, the need for in-situ Q precludes RSQ's applications in 
truly ungauged scenarios and is thought to have limited gains for Q 

prediction in ungauged basins (i.e., the PUB challenge, Sivapalan et al., 
2003; Hrachowitz et al., 2013). This recognition caused researchers to 
look to another RSQ group that combines mechanistic river hydraulics/ 
flow laws with Bayesian inference (Durand et al., 2014; Hagemann et al., 
2017) or data assimilation (DA) frameworks (Andreadis et al., 2020; 
Gejadze et al., 2022; Larnier et al., 2020; Oubanas et al., 2018) to esti
mate Q. The emergence of this group of RSQ reflected the conceptual 
updates from earlier studies, and as they do not require in-situ infor
mation, they were selected for the composition of the ensemble algo
rithms by the Surface Water and Ocean Topography (SWOT) satellite 
mission to estimate Q globally (Durand et al., 2021). Among them, the 
Bayesian inference sub-group termed the Mass-conserved Flow Law 
Inversion (McFLI; more details in Gleason et al. (2017) and Frasson et al. 
(2021)) is particularly promising as it requires much less computation 
for large-scale applications compared to DA while retaining the proba
bilistic way of Q estimation. Given our interest in global-scale RSQ, this 
study is specifically concerned with the McFLI sub-group of RSQ unless 
otherwise cautioned. 

Despite the prosperous development of RSQ that focused on showing 
feasibility, relatively few have challenged RSQ's generalizability across a 
wide range of rivers. Often times researchers tend to make explicit or 
implicit assumptions on RSQ being readily extensible to the global scale 
by showing good Nash-Sutcliffe Efficiency (NSE) skill at limited sites (e. 
g., Gleason and Smith, 2014; Huang et al., 2020b, 2022; Smith and 
Pavelsky, 2008). Rarely do RSQ algorithmic studies go beyond limited 
evaluation sites. This confinement comes not only from the significant 
amount of work with site-specific tuning of physics/parameters for RSQ 
development, but also from the difficulty in obtaining large-scale RS 
observations for Q estimation. For example, the SWOT family of RSQ 
used a few dozen sites when constructing and evaluating the algorithms 
– the constraints mainly came from the limited hydraulic model outputs 
to mimic the as-yet-to-exist SWOT data (Durand et al., 2016; Frasson 
et al., 2021). Outside of the SWOT context, studies have assessed various 
combination of optical, microwave sensor, or altimetry data for Q esti
mation at a few to thousands of gauges, but these studies tended to rely 
heavily on in situ/model outputs for calibration/training, or they have 
not been evaluated by stricter skill metrics beyond correlation (see 
Table 1 for a summary of studies with similar scopes). As a result, thus 
far, a clear understanding of when and where state-of-the-art RSQ yields 
good or limited accuracy is still very much constrained with respect to 
the geography of global rivers. 

Now as SWOT has been launched in December 2022 which is ex
pected to revolutionize the monitoring capability of global inland waters 

Table 1 
Summary of relevant studies focusing on assessing the RSQ accuracy with a global scope. Summarized information includes the assessment sample size, hydraulic 
variables of interest, data used, requirement for calibration, and their key results. Note that this summary does not incorporate those with a regional focus, those 
completely within one continent/basin, or one single climatic regime.  

Reference Sample Size Hydraulic 
Variables 

Data Used Requirement for 
calibration 

Key Results 

Revilla-Romero 
et al. (2014) 

322 stations River surface 
extent 

GFDS passive 
microwave 
observations 

Calibrated against 
discharge measurements 

48% stations show NSE > 0 

Sichangi et al. 
(2016) 

8 rivers River width/ 
stage 

MODIS + satellite 
altimetry 

Calibrated against 
discharge measurements 

NSE: 0.6–0.97 

Gleason et al. 
(2014) 

34 rivers River width Landsat No Median RRMSE 33% for non-braided rivers 

Van Dijk et al. 
(2016) 

8000+
stations 

River surface 
extent 

MODIS + passive 
microwave data 

Trained against 
discharge measurements 

86% stations show correlation of <0.7 

Durand et al. 
(2016) 

19 rivers River width/ 
stage/slope 

Hydraulic model 
outputs 

No Median standard deviation of relative residuals at 12.5% for 16 non- 
braided rivers 

Hou et al. (2020) 10,000+
stations 

River surface 
extent 

MODIS data Trained against model- 
based discharge 

25% stations show correlation ≥0.4 

Frasson et al. 
(2021) 

31 rivers River stage/ 
width/slope 

Hydraulic model 
outputs 

No Median normalized standard deviation of residuals: 19%–29% 

This study 3000+
rivers 

River width Landsat No ~1/3 stations show KGE > 0; 46%–65% stations show KGE > 0 if 
feeding improved priors; 69% stations show daily KGE > 0.2 if 
confining to optimal conditions  
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(Biancamaria et al., 2016), we are particularly motivated to generate 
more challenging testing cases, and help prioritize the assessment of 
how state-of-the-art RSQs are adapted to the wide variety of global 
rivers, particularly in ungauged basins. Our motivation is in line with the 
recent petabyte-scale satellite datasets and tools made available via 
cloud computing platforms such as the Google Earth Engine (GEE) 
(Gorelick et al., 2017; Pekel et al., 2016; Riggs et al., 2022; Yang et al., 
2020b), which has improved our mapping and modeling capabilities for 
global rivers (Allen and Pavelsky, 2018; Feng et al., 2021; Lin et al., 
2019; 2020; Yamazaki et al., 2019; Yang et al., 2020a). Although the 
available RS data from GEE are less accurate and partial compared to 
SWOT, the wealth of such data are already valuable to facilitate 
large-scale assessment, potentially guiding RSQ developers to consider 
places needing more attention for improvements. 

We aim to shed light on the following three questions: i) How well 
does state-of-the-art McFLI perform at daily Q inversion globally? ii) 
What factors may contribute to or limit the RSQ inversion skill and how 
sensitive are they? iii) How to optimize the Q inversion strategies by 
jointly considering the improved RS data and prior knowledge on global 
rivers? To achieve the goals, we extracted multi-temporal river widths 
from >350 K Landsat scenes using GEE, and performed McFLI evalua
tion at >3000 gauging sites from 1984 to 2019. Two members of the 
SWOT family RSQ, i.e., BAM (Hagemann et al., 2017) and geoBAM 
(Brinkerhoff et al., 2020) were used to frame our algorithmic examples, 
as both of them rely on the at-many-station hydraulic geometry (AMHG) 
physics (Gleason and Smith, 2014), making them the sole McFLI capable 
of Q inversion with width-only observations and relatively easy-to- 
comprehend computations. We use these algorithms as an example to 
show how to approach generalizing RSQ worldwide as they become 
testable at global scales. The upcoming data (e.g., SWOT) will improve 
the accuracy of these results. 

The paper is organized as follows. Section 2 presents our technical 

workflows to obtain long-term river width observations for global RSQ 
assessments. Section 3 presents the RSQ accuracy with ‘off-the-shelf’ 
algorithm setups and the exploratory analyses to assess factors affecting 
the accuracy. In Section 4, we present the RSQ accuracy after feeding 
richer priors on Q seasonality and monthly variability, where prominent 
examples showing the interplay between the river conditions and RS/ 
prior setups are presented. Then, we reach at conclusions and discus
sions on future work for improvements in Section 5. 

2. Data and methods 

In this section, we describe the datasets, tools, and methods adopted 
by this study. Fig. 1 summarizes the technical flowcharts with details 
provided below. 

2.1. Determining gauged rivers observable by Landsat 

To provide a stern test for global RSQ, we first identified all gauged 
rivers observable by Landsat. A global database with >14,000 gauges 
was used here; it contains daily discharge observations collected from 
various international and national sources such as the Global Runoff 
Data Centre (GRDC), the European Water Archive (EWA), the U.S. 
Geological Survey (USGS), the Brazilian National Water Agency (ANA), 
Australian Bureau of Meteorology (BoM), and the Chilean Center for 
Climate and Resilience Research (CR2). This database was spatially 
matched with the Global River Width from Landsat (GRWL) (Allen and 
Pavelsky, 2018), resulting in 3432 gauges located on a river wider than 
30 m excluding lakes/reservoirs (Fig. 2). These locations were used to 
search for all available Landsat imagery as they were considered 
observable by Landsat at 30-m spatial resolution (Section 2.2). These 
gauges cover a wide range of discharge from 0.06 to 165,770.99 m3/s 
(with a median of 96.96 m3/s and mean of 518.87 m3/s; Fig. 2a), river 

Fig. 1. Technical flowchart of this study. 
GRWL (Allen and Pavelsky, 2018) refers to 
the static river width estimates from Landsat; 
MERIT Basins (Lin et al., 2019) refers to a 
vector-based river network shapefile; 
GRADES/GRFR (Lin et al., 2019; Yang et al., 
2021) refers to the naturalized river 
discharge simulated by a global hydrologic 
model; and see Acknowledgement for the 
discharge gauge database. Major tools used: 
RivWidthCloud (Yang et al., 2020b) refers to 
the GEE tool for river width extraction; BAM 
(Hagemann et al., 2017) and geoBAM 
(Brinkerhoff et al., 2020) refer to the 
discharge inversion algorithms based off the 
AMHG (Gleason and Smith, 2014; Brinkerh
off et al., 2019) flow law.   
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width from 30 m to 5000 m (with a median of 60 m and mean of 150 m; 
Fig. 2b), and major Köppen-Geiger climate zones (arid, cold, temperate, 
and tropical; Fig. 2c). By leveraging all possible gauges without a biased 
view to retain or disregard any gauges a priori, we expect the substantial 
spatial heterogeneity to challenge any existing RSQ algorithm by nature. 
The aim is to expose potential problems to the maximum extent possible, 
and help guide areas to prioritize improvements. This design is different 
from those starting with idealized conditions and increasingly added 
errors (Durand et al., 2016; Frasson et al., 2021) – we approach the 
problem in a conceptually opposite way from the worst-case scenario, 
and then systematically approach optimal conditions. 

2.2. Constructing cross sections/reaches needed by width extraction and 
the inversion 

At each location, multi-temporal river widths were extracted from all 
available Landsat 5, 7, and 8 imagery from 1984 to 2019 via the Google 
Earth Engine (GEE) RivWidthCloud tool (Yang et al., 2020b). Riv
WidthCloud measures wetted river width by overlaying orthogonal lines 
at selected cross sections with water masks. To avoid the most time- 
consuming part with river centerline/orthogonal calculation, these 
lines were pre-defined as inputs for efficient large-scale extraction. More 

specifically, each gauge was spatially joined with one MERIT river reach 
and several GRWL segments (Lin et al., 2019) – we used the GRWL 
segment centroids (a 30–42.4 m interval) as the cross sections, and the 
MERIT river reach (a median length of 6.7 km) as the unit for imposing 
mass balance for BAM/geoBAM discharge inversion (see Fig. 3a for an 
example). This “cross section/node” and “reach” definition is in line 
with how the SWOT product will be organized (Altenau et al., 2021). 
Here as the dense GRWL cross sections (interval of 30–42.4 m) have 
been shown to substantially slowdown the BAM/geoBAM computation, 
sub-sampling was used to maintain accuracy compared to the full den
sity inversions (Hagemann et al., 2017). We first eliminated the nodes 
within 2xwidthmean intervals if the node number exceeded 100 for a 
given reach – this helped to improve the computational efficiency while 
obtaining the most complete RS measurements. We then constructed 
orthogonal lines with a length of 4xwidthmean (Fig. 3b) and overlaid 
them with water masks determined by the default RivWidthCloud water 
classification algorithm (Jones, 2019) to extract widths. Finally, as 
BAM/geoBAM (Section 2.4) cap the number of input cross-sections at 40 
for a given time/river to optimize the computation demand and the 
performance gain, we further sub-sampled the input cross sections based 
on the width data availability. This sampling may introduce un
certainties, but in the absence of true dynamic width data as the 

Fig. 2. Spatial pattern and histogram plot of the 3432 gauges used for Landsat width extraction. (a) is for mean annual flow (m3/s), (b) is for mean width (m), and (c) 
is for Köppen-Geiger climate classification obtained from Beck et al. (2018); 1–3 for tropical climate, 4–7 for arid climate, 8–16 for temperate climate, 17–28 for 
tropical climate, and 29–30 for polar climate. 
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reference, this strategy is used to retain the best observable part of a 
reach (Feng et al., 2021, 2022). Fig. 3c shows the time-varying cross- 
sectional widths for discharge inversion at different dates, which ranges 
from 5 to 40. 

2.3. Multi-temporal Landsat observations at 3000+ gauged rivers 
(1984–2019) 

Only Landsat measurements not affected by cloud effects, snow 
cover, and topographical shadows were considered for the water clas
sification. In total, we collected 357,389 Landsat scenes meeting such 
criteria for the eight continents of MERIT Basins, namely Africa 
(14,797), Europe (53,605), North Asia (5696), South Asia (27,938), 
Oceania and South Asian Islands (25,478), South America (77,119), 
North America (136,428), and Arctic Region (16,328). Fig. 4 summa
rizes the reach-averaged widths to assess the obtained Landsat river 
observations. 

The revisit time of Landsat is 16 days and with all the qualified im
ages from TM, ETM+, and OLI sensors combined, the temporal interval 
for width retrievals can be <16 days for many locations. Overall, ma
jority of locations have 150–350 observations across the 36 years due to 
non-usable scenes with cloud/snow/shade contamination, but some can 
exceed 600–800 (Fig. 4a). There is also a clear latitudinal pattern 
showing limited observations for the northern hemisphere tropics and 
high-latitudes, where clouds or snow covers are high; as a comparison, 
extra-tropics arrive at the largest number of observations. The mean 
width (Fig. 4b) derived from the temporally intermittent observations 
generally match with the static width estimates by GRWL and the 
gauges' drainage areas (Fig. 2), suggesting the correctness of the multi- 

temporal width extraction process. The coefficient of variation (CV) 
(Fig. 4c) reflects the combined effect of the RS observability as well as 
the geomorphic variability of rivers related to the channel geometry, 
and it mostly falls between 0.1 and 0.3. Using circular statistics (see SI 
Text S1 for the equations), we also calculate the mean observation date 
(D, Fig. 4d) and how concentrated these dates are (CI index, Fig. 4e) to 
further summarize the river RS data. It clearly shows that Landsat ob
servations in the Amazon river basin and the high-latitudes are highly 
concentrated (CI close to 1, with mean observation dates in June to 
August) to the relatively dry months in the Amazon (little chance of 
cloud cover) and the warm season in the high-latitude (little chance of 
snow and river freezing/ice), respectively, which possibly reveals the 
sampling bias with optical RS data. In comparison, Landsat observation 
dates are much more dispersed throughout the year for other global 
regions (CI <0.6 in Fig. 4e, and the mean observation dates vary across 
regions in Fig. 4d). 

2.4. The Bayesian AMHG-Manning (BAM) algorithm and its recent 
variant geoBAM 

We used two algorithms, i.e., BAM and geoBAM, for Q inversion with 
river width data obtained from RS (Wi, t). The two algorithms utilize the 
same flow law and Bayesian underpinning to probabilistically estimate 
Qt – one states the likelihood (a sampling model for Wi, t conditional on 
the non-RS parameters) and the priors (the non-RS terms of equations in 
Appendix) as probability distributions. Then these two terms are suffi
cient to describe the joint posterior distribution for inferring Q. To 
approximate the distribution, a Hamiltonian Monte Carlo sampler is 

Fig. 3. (a) Examples of the cross sections/nodes (red dots) for orthogonal line construction in the width extraction process, and the river reach (blue segment) for 
discharge inversion. This example gauge (Canada 10UH001) is randomly selected and located in a river reach of 15.36 km long (COMID: 85009373); the cross- 
section locations are from the GRWL segment centroids joined to the reach. (b) shows a zoomed-in plot for the constructed river orthogonal lines from which 
the wetted widths are extracted. (c) shows the sub-sampled cross-sectional widths (ranging between 5 and 40) that feed into BAM/geoBAM algorithms for discharge 
inversion; for simplicity, only eight dates are shown. Basemap is from the ESRI Satellite image. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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adopted for efficient high-dimensional sampling. Beyond the sampling, 
BAM/geoBAM are largely similar to the other Bayesian McFLIs such as 
MetroMan (Durand et al., 2014) and GaMo (Garambois and Monnier, 
2015), except that it adds AMHG (Gleason and Smith, 2014) as an 
alternative of the widely used Manning's equation, eliminating the need 
for stage/slope observations, making it possible to invert Q with width- 
only data. BAM/geoBAM code packages are openly available (see 
Acknowledgement). The physics of BAM/geoBAM are described in 
detail in Appendix. 

Priors formalize a priori estimates and uncertainties for non- 
observable parameters, and they represent the initial understanding of 
the distribution of these terms. Two types of priors are fed into BAM/ 
geoBAM, namely Q priors and hydraulic geometry priors; the former can 
be derived from global hydrologic modeling (see below), and the latter 
can be derived from river geomorphic attributes. To mimic ungauged 
scenarios, we assumed no gauge data existed for Qt, different from 
strategies by Brinkerhoff et al. (2020) and Feng et al. (2021) where all 
gauged data were used to constrain the inversion when applicable. 
Following this logic, we used the Global Reach-level A priori Discharge 
Estimates for SWOT (GRADES) (Lin et al., 2019) and the updated Global 
Reach-level Flood Reanalysis (GRFR) (Yang et al., 2021) to formalize Qt 
priors. GRADES/GRFR leveraged recent advancements in global hy
drologic modeling to estimate Q worldwide, and it provides one of the 

best-verified and openly accessible Q priors based on updated hydro
climatic knowledge for 2.94 million reaches. Although GRADES/GRFR 
were calibrated and bias-corrected, no direct gauged observations were 
included when formulating the model; thus, they are appropriate to use 
as the priors for ungauged rivers. To state the truncated log-normal 
distribution needed for Qt and Qc, the priors include Qmean, Qmin, Qmax, 
and QCV, where the ‘off-the-shelf’ BAM/geoBAM takes Qmean as the Q 
climatology of the prior model and QCV as 1. 

The geomorphic priors came from the hydraulic training datasets 
used when constructing BAM/geoBAM (Canova et al., 2016), which we 
did not make changes to. In geoBAM, rivers were classified with an 
unsupervised and a bespoke “expert” scheme, where different geomor
phic priors were assigned to the river classes. The unsupervised scheme 
used DBSCAN to cluster the rivers into 8 classes, and the expert scheme 
subjectively chose 17 classes to make river width a strong predictor of 
the river types (ref. to Fig. 2 by Brinkerhoff et al. (2020)). In our initial 
experiments, we found the unsupervised scheme failed to represent river 
variabilities worldwide (>90% of rivers classified as Type 1; not shown), 
suggesting its limitation as also cautioned by Brinkerhoff et al. (2020) 
for its pure statistical realization. Thus, we used the expert scheme for 
the ensuing results and interpretations of this scheme for the Q in
versions are provided in Section 3.1. 

To infer Q, mass conservation is a necessary assumption as lateral 

Fig. 4. Reach-averaged spatio-temporal characteristics of the 357,389 Landsat scenes. (a) shows the number of scenes at each gauge (Date_count) and the histogram, 
(b) and (c) show the mean (Width_mean) and the coefficient of variation (Width_CV) calculated from all observations. (d) and (e) show the mean observational date 
(D_bar, expressed as month number) and its concentration index (CI). 
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inflows can interfere with the results (Nickles et al., 2020). This 
assumption is valid here as we segmented global rivers into reaches of 
~6–7 km long with a 25 km2 channelization threshold. This means only 
tributaries draining ≤25 km2 are ignored, which better conserves mass 
compared to Durand et al. (2016) that has a reach length of 11 to 223 
km. For meaningful Q inversion with BAM/geoBAM, one needs at least 
five cross sections at a given location/date to derive AMHG. For fair 
statistical evaluation, one needs at least three pairs of overlapping 
Landsat widths and observed Q (sensitivity to this criterion is assessed in 
Section 3.1). The screening led to 3078 gauges for final evaluation. 

3. Discharge inversion using ‘off-the-shelf’ BAM/geoBAM 
configurations 

3.1. Summary skill metrics across all locations 

We ran BAM/geoBAM at 3078 gauges, and summarized the skill 
metrics of Q inversion using cumulative density function (CDF) plots in 
Fig. 5; the skill metrics calculated against daily Q observations included 
correlation coefficient (CC), normalized root-mean-squared-error 
(NRMSE), NSE, and Kling-Gupta Efficiency (KGE), as they offer in
sights into the RSQ inversion from different angles, e.g., CC for temporal 
variability, NRMSE for biases and standard deviation errors, and NSE/ 
KGE for the overall skill. We followed Frasson et al. (2021) in choosing 
these metrics, and they were defined therein. 

Fig. 5 shows the baseline RSQ performance for all locations, where 
the CC distribution is largely similar to Van Dijk et al. (2016) who 
assessed monthly Q estimates with MODIS measurements. BAM/geo
BAM performance is seemingly unsatisfactory due to the many negative 
NSE/KGEs, but these match with our expectation as we provided the 
sternest criteria to include all possible river types worldwide and did not 
tailor the algorithm in any way between rivers. Despite this worst-case 
scenario, we still see ~1000 successful cases, e.g., reasonably captured 
daily discharge at 33–37% of locations with CC > 0.5 (Fig. 5a) and 
27–39% of locations with KGE > 0 (Fig. 5b), which shows promise for 
large-scale RSQ. Note that we used zero-KGE to delineate good/bad 
performances, but studies have suggested that KGE > –0.41 can denote 
informative performance than the mean particularly when NSE alone 
(Fig. 5c) can be limited in interpreting the results if the observation 
variability is low (Knoben et al., 2019). This means the criteria on KGE 
> 0 may be relaxed especially considering the challenging situations in 
Q estimation in ungauged basins (Sivapalan et al., 2003), which shows 
promise for global RSQ. 

Looking at the component statistics, we found the inversion accuracy 
is mainly compromised by model biases (i.e., only <20% of gauges show 
an NRMSE <0.6, Fig. 5b), and this behavior of RSQ error dominated by 
bias rather than temporal variability error has also been highlighted by 
recent SWOT studies (Frasson et al., 2021, 2022; Tuozzolo et al., 2019). 
This behavior is different from hydrologic modeling, where temporal 
variability error is often considered more difficult to cope with - the 

Fig. 5. Cumulative density function (CDF) of the skill metrics for BAM/geoBAM. (a) for correlation coefficient (CC), (b) for normalized root-mean-squared-error 
(NRMSE), (c) for Nash-Sutcliffe Efficiency (NSE), and (d) for Kling-Gupta Efficiency (KGE). We used at least 3 pairs of the inverted and observed discharge for 
calculating the skill metrics (3078 locations), while “nn ≥50” used at least 50 pairs for calculating the skill metrics (1691 locations). We note KGE = 0 is used as a 
stricter threshold to delineate good/bad inversion skills despite studies suggesting KGE > –0.41 can already denote useful skills. 
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uncertainty cascades in hydrologic modeling are dynamic and cannot be 
addressed using effective bias correction techniques (Lin et al., 2019). 
Such complementary strengths of RSQ and hydrologic modeling imply 
that merging of the two will become increasingly useful in the future 
(Feng et al., 2021; Ishitsuka et al., 2021). We also tested the sensitivity of 
the skill metrics to the threshold of a minimum of 3 pairs of inverted and 
observed discharges by increasing it to 50 pairs (1691 out of 3073 
gauges in Fig. 5). The latter shows slightly better KGE/NSE when biases 
are negative (likely due to the high sensitivity of bias to small sample 
sizes) and when CC is low (likely due to the difficulty in capturing 
temporal variability with large sample sizes), but the overall sensitivity 
is small. Thus, in the later sections we consistently used locations with 
>3 pairs of inverted and observed discharge to increase the spatial 
coverage of our assessment. We also found geoBAM is mainly superior to 
BAM in the bias component rather than the correlation component – 
recall geoBAM is only different in its geomorphic priors, and this sug
gests that better stated geomorphic priors are key to alleviating the bias 
error. 

In geoBAM expert scheme, rivers were pre-classified to different 
types mainly by their widths – Classes 1–15 refer to small- to medium- 
sized rivers, Class 16 are the “highly width-variable” rivers, and Class 
17 are big rivers (mean width > 665 m) which also lack sufficient 
samples in its geomorphic training data (more details in Brinkerhoff 
et al., 2020). According to this scheme, the ~3000 rivers are classified as 
Classes 6–17 covering a wide geographic extent (Fig. 6a), and Classes 9 

& 16 are the dominant types (Fig. 6b). The KGEdiff between geoBAM and 
BAM against river classes (Fig. 6c) shows that geoBAM improves over 
BAM in all river classes, particularly for Class 16 (i.e., the highly width- 
variable rivers), but limited gains were found for Class 7–9 (i.e., smaller 
rivers). There is a tendency for geoBAM to bring more improvements as 
rivers get larger, but this tendency drops for Class 17 (i.e., big rivers) 
likely due to the limited training data in this class. Despite the better skill 
of geoBAM, Fig. 6d shows it still struggles to accurately estimate Q for 

Fig. 6. River classes determined by geoBAM and its inversion accuracy. (a) and (b) show the river class spatial map and the histogram; (c) shows the KGE boxplot 
calculated as KGEgeoBAM minus KGEBAM to understand geoBAM's improvements upon BAM (horizontal line shows KGEdiff = 0; positive values mean geoBAM is better 
than BAM); (d) is the geoBAM KGE boxplot against the river class (horizontal line shows KGE = –0.41). Class 6 has only three cases, thus not sufficient to shown on 
(c) and (d). 

Table 2 
Six selected factors potentially influencing the RSQ inversion accuracy.  

Factor Description 

b At-a-station hydraulic geometry (AHG) b exponent, calculated by 
fitting reach-averaged width and prior discharge in a power law model 

AI Aridity Index (AI) calculated as mean precipitation divided by 
potential evapotranspiration (Zomer et al., 2008) 

Width_CV Coefficient of variation (CV) calculated as the standard deviation of 
width divided by mean width 

LAI Leaf Area Index (LAI) of the 1981–2015 annual mean from the 
Advanced Very High Resolution Radiometer (AVHRR) Global 
Inventory Modeling and Mapping Studies (GIMMS) LAI3g version 2 ( 
Mao and Yan, 2019) 

CI Concentration index (CI) of the Landsat observation dates across all 
years 

Width_mean Mean width in the unit of meters  
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Classes 16 and 17, and both good (KGE > 0.5) and bad (KGE < 0) per
formances can be seen in each river class. This implies other factors are 
still compounding the inversion and better understanding of each river's 
uniqueness is needed. Based on this result, we assessed a range of other 
factors possibly influencing RSQ to better understand this question. 

3.2. Exploratory analyses on factors influencing RSQ 

We selected six factors to assess how they affect the RSQ accuracy 
(Table 2). Among them, at-a-station hydraulic geometry (AHG) expo
nent b and aridity index (AI) have been previously assessed at 34 rivers 
by Gleason et al. (2014), and Width_CV has been discussed to indicate 
AMHG strengths by Feng et al. (2019, 2021), while we further added the 
assessment of leaf area index (LAI), mean river width, and the CI index. 
The first three factors better reflect the physical properties of a river (b, 
AI, Width_CV) while others are expected to affect the RS retrieval ac
curacy more (LAI, CI, Width_mean). We note this assessment is not to be 
exhaustive but to probe into “what factor can influence the RSQ inver
sion and how sensitive is the RSQ to them?” Although some factors may 
be algorithm-specific, this analysis framework can be useful for other 
RSQs too. In the following section, we elaborate on their expected 
control on accuracy, and in Fig. 7, the sensitivity of RSQ to these factors 
is assessed with the median KGE derived from each factor. 

Overall, the RSQ exhibits the greatest sensitivity to b followed by AI, 
as shown by the greatest slope change (Fig. 7a). Generally, close-to-zero 
b denotes channels of nearly rectangular shapes that lack width vari
ability, thus, these channels show the most unsatisfactory inversion, as 
also anticipated by Gleason et al. (2014). We show that KGE increases 
rapidly for increasing b, but after b > 0.15, the increase in KGEmedian 
gradually leveled off. AI is a climate regime factor where arid environ
ments tend to show low AMHG strengths (Gleason et al., 2014); here we 
found AI>0.5 (a divide for sub-humid climate) shows the best KGE, but 
the overall sensitivity is smaller (Fig. 7b). For Width_CV, modest values 
show the best RSQ; low values can correspond to low-b situations and 
KGE increases as Width_CV increases to 0.25, yet we found KGE drops 
quickly for Width_CV > 0.25 (Fig. 7c). This behavior may be attributable 
to overbank conditions that can introduce compound behavior to the 
AMHG flow laws, which won over the AMHG strengths to some degree 
captured by Width_CV. 

Shifting to factors affecting the RS retrievals that can occur in all 
river forms, we found that the best KGE is for LAI < 1.5–2.5 (Fig. 7d), 
where too large LAI can interfere with width retrievals for optical sen
sors, and too small LAI can indicate dry conditions. High CI is associated 
with seasons of the best RS observational quality with low cloud/snow/ 
ice contaminations, but we do not see prominent KGE changes with 
increased CI (Fig. 7e). Lastly, as the width extraction process was known 

Fig. 7. Exploratory analyses of the BAM/geoBAM inversion accuracy against six selected factors. (a) to (f) show the analyses for b, AI, Width_CV, LAI, CI, and 
Width_mean (Table 2); the x-axis shows the assessed range, the left y-axis shows the median KGE, and the right y-axis shows the sample size (shown as gray bars). (g) 
shows the KGE boxplot by incrementally applying filters for one factor at a time to obtain increased inversion accuracy, and the sample size is denoted in n. The KGE 
ranges on the left y-axes from (a) to (f) are kept the same such that they can better show the sensitivity to each factor. 
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to show higher uncertainties for rivers narrower than 90 m (Allen and 
Pavelsky, 2018), we also assessed the RSQ accuracy with regard to 
Width_mean. Our results showed that KGEmedian peaks for Width_mean 
between 90–500 m, but further increases in Width_mean can lead to 
decreased KGE (Fig. 7f). This seemingly counterintuitive behavior in
dicates that the width uncertainty becomes a less significant error source 
for wide rivers. We further examined locations with Width_mean >
500–1000 m, and identified several other error sources that can explain 
this behavior. First, we found the worst KGEs were mostly seen within a 

lake/reservoir. Recall in Section 2.1 we eliminated reaches with lakes/ 
reservoirs, but we found many low KGE locations were incorrectly 
flagged as rivers by GRWL possibly because of the difficulty to distin
guish between a wide channel and a channel-like reservoir; thus, the 
biased widths and compound hydraulics of a reservoir-like river were 
propagated into erroneous discharge estimation. Second, in geoBAM, 
rivers wider than 665 m were classified as a single class that also lacked 
sufficient geomorphic training sample (see Section 3.1); the lower KGE 
here indicates the geomorphic priors became less informative for wide 

Fig. 8. Example locations exhibiting very good discharge inversion accuracy. For each continent of MERIT Basins, we randomly selected one gauge with KGE > 0.7 
in geoBAM for this demonstration. (a) to (h) show the hydrographs, where the texts show the number of inversion dates (nn) and the skill metrics including CC, 
percentage bias (PB), NRMSE, NSE, and KGE. Error bars show the 95% confidence interval, where uncertainty is estimated by the Bayesian inference. (i) to (h) show 
the ESRI Satellite Image backgrounds of the gauged river segments. 
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rivers, which is a known but non-prominent issue by Brinkerhoff et al. 
(2020) and will require further improvement in the future. Third, we 
found wider rivers also tend to show smaller b (Fig. S1). These collec
tively offer a feasible explanation on why the widest group of rivers does 
not see further improved RSQ. While it remains difficult to fully derive 
the mutually exclusive strength as the factor interactions started to show 
up, here we offer a unique perspective on where to expect better RSQ 
accuracy based on the prior knowledge of b, AI, Width_CV, LAI, CI, and 
Width_mean. The strengths of each factor were further demonstrated in 
Fig. 7g, where filters were incrementally applied to one factor at a time 
(x-axis) to gradually increase KGE while accounting for the compro
mised sample size n; this outlined the optimal conditions that can in
crease KGEmedian from − 0.10 to 0.29. 

3.3. Locations with good inversion accuracy 

Fig. 8 shows locations exhibiting very good inversion accuracy; we 
randomly picked one station with KGE > 0.7 (geoBAM) for this 
demonstration. These rivers are located in quite different environments, 
e.g., highly natural (Fig. 8k), highly urbanized (Fig. 8i, m & 8p), limited 
agricultural activities (Fig. 8j, o), and mountainous regions (Fig. 8n). 
They are also in different climate zones, but their river discharge has all 
been well estimated. This confirms the RSQ accuracy based on the 
Bayesian inversion is not necessarily a function of the physical hydro
climate conditions, but the key to successful inversion is outlined in the 
factor interactions shown by Fig. 7. We also found that the inversion 
accuracy is not necessarily lower for smaller mountainous rivers as 

might be expected (see four locations randomly picked from the Andes, 
the Qilian Mountain, and the Alps from Fig. S2 for a closer look at RSQ 
performance in mountainous rivers which has received relatively less 
attention (Huang et al., 2018)). The fact that both good and bad in
versions can be obtained for small mountainous rivers ranging from 55 
to 81 m wide suggest that, overall, the successful RSQ requires channel 
shapes of higher b and high AI in sub-humid to humid regions, moderate 
width variability and LAI (the order of appearance reflected their rela
tive importance). As long as these conditions are satisfied together 
within a reasonable way to retrieve the river hydraulic variables, good 
RSQ inversions can be obtained in different hydroclimatic regions. 

4. Improving discharge inversions over the baseline 

4.1. The use of enriched discharge priors 

In this section, we seek to use openly obtainable geospatial datasets 
to improve the global RSQ. For challenging locations presented above, 
one would naturally seek for additional height/slope information from 
SWOT or other altimetry missions, or from better prior knowledge of 
river hydroclimatology/geomorphology for optimal inversion. As this 
study focuses on Q inversion with width-only observations, we resort to 
richer priors to assess how they influence the global RSQ. Here, instead 
of assuming the known Q climatology from the prior model GRADES/ 
GRFR (Section 2.4(2)) with a single set of {Qmean and QCV}, we tested the 
use of two other configurations (i.e., ‘seasonal’ and ‘monthly’ priors) to 
describe the truncated log-normal prior distribution of Q. In the 

Fig. 9. CDF plots of the skill metrics for BAM/geoBAM by feeding ‘seasonal’ and ‘monthly’ Q priors (N = 3078). (a) for CC, (b) for NRMSE, (c) for NSE and (d) for 
KGE, similar to Fig. 4. Cold colors show BAM, BAM_seas, and BAM_mon experiments, respectively; and warm colors show geoBAM, geoBAM_seas, and geoBAM_mon 
experiments, respectively. 
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‘seasonal’ configuration, seasonal averages and CV (i.e., four unique 
values) of the 40-yr GRADES/GRFR Q priors (i.e., March–April-May, 
June–July-August, September–October-November, and December–Jan
uary-February) were served to {Qmean and QCV}. Analogously, in the 
‘monthly’ configuration, monthly averages and CV (i.e., 12 unique 
values) of the 40-yr Q priors were served to {Qmean and QCV}. The 
rationale behind using these priors is that the flow seasonality and 
monthly variability from hydrologic modeling provides complementary 
strengths to RS observations, which is also the philosophy of data 
assimilation (DA). BAM/geoBAM represent flow as a truncated 
lognormal distribution, and as a Bayesian process the more accurately 
we can represent the prior within the distribution, the more accurate the 
posterior will be. We gradually increase the information content from 
the ‘default’, ‘seasonal’, to ‘monthly’ configurations with the aim to 
better understand how to best describe the distribution of the priors 
versus the observations – the global model is more accurate when 
aggregated over longer times, but finer time resolution better resolves 
the distribution. Thus, the configurations below should allow us to take 
a closer look at this question. 

In Fig. 9, the sensitivity of BAM/geoBAM to the enriched priors were 
revealed. It is seen that the ‘monthly’ and ‘seasonal’ configurations 
consistently outperform the ‘default’, matching the expectations that 
when RS data is uninformative, BAM/geoBAM reverts to the prior and 
ensures valuable dynamic information present in ‘seasonal’ and 
‘monthly’ Q priors preserved. These setups increased the percentage of 

locations with CC > 0.5 from 33 to 37% (in BAM/geoBAM) to 44–57% 
(in BAM_mon/geoBAM_mon; the same format is consistently used later). 
In addition, percentage of locations with KGE > 0 increased from 27 to 
39% to 46–65%, suggesting that the successful daily Q inversions now 
increased to 1400–2000 gauges. 

Performing similar exploratory analyses in Fig. 10, we show that the 
‘monthly’ and ‘seasonal’ configurations improve the inversion for nearly 
all conditions, particularly for low-b channels (see leveled-off lines in 
Figs. 10a&e), while locations with large Width_CV and Width_mean 
remain to show low inversion accuracy (Figs. 10d&f). This confirms that 
the error sources for Width_CV > 0.25 and Width_mean > 500–1000 come 
from the overbank flow conditions and the challenging geomorphic 
prior setups with geoBAM (as discussed in Section 3.2), which is not 
expected to be resolvable by enriched Q priors. Accordingly, we suggest 
future geoBAM improvements to be tailored to these rivers. 

Interestingly, we find that for high-b channels, supplying richer Q 
priors can degrade the geoBAM inversion accuracy (Figs. 10a) – note 
that b is a channel geomorphological indicator where high-b values 
indicate width is a strong predictor of Q with no lateral confinement, and 
in this case less informative priors should be used. Running the filters 
similar to Fig. 7g shows that constraining factors to their optimal ranges 
can help improve the daily KGEmedian of geoBAM to 0.32 while retaining 
a sample size of 649 (Fig. 10g). These outline the conditions for RSQ to 
be successful – for the optimal case on the rightmost column of Fig. 10g, 
gauges with a daily KGE > 0.2 take up 68.9%. We compare this high 

Fig. 10. Exploratory analyses of the BAM/geoBAM discharge inversion accuracy after feeding ‘seasonal’ and ‘monthly’ Q priors. The figure is largely similar to Fig. 6. 
Cold colors show BAM, BAM_seas, and BAM_mon experiments, respectively; and warm colors show geoBAM, geoBAM_seas, and geoBAM_mon experiments, 
respectively. 
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percentage with existing large-scale RSQ studies, and find it better than 
those using MODIS-only (Hou et al., 2020) or combined MODIS- 
microwave measurements (Van Dijk et al., 2016). The high percentage 
of daily KGE > 0.2 also complements global hydrologic modeling efforts 
such as that by Lin et al. (2019), suggesting the combined strengths of RS 
(i.e., ingesting river width in here) and hydrologic modeling (i.e., 
ingesting prior knowledge on hydroclimate seasonality/monthly vari
ability here) – this desirable RSQ performance holds further potential for 
discharge estimation in ungauged rivers. 

Fig. 11 shows the RSQ inversion accuracy for the geoBAM_mon 
configuration (N = 3078), which offers a geographically explicit un
derstanding of locations with good inversions and those remain chal
lenging. In addition to the integrated metrics such as NSE and KGE 
(Figs. 11e&f), we also presented the component statistics of KGE (a–c). 
Fig. 11a shows the highest CC is located in the Amazon, west Africa, 
Southeast Asia (tropics), eastern Europe, and Canada (high-latitudes), 
where limited CC in parts of the US may be ascribed to the smaller-than- 
observed relative variability (Fig. 11c). Gauges that show PBIAS within 

±35% take up ~54.5% of all locations, and those with NRMSE <0.6 take 
up 20.8% for all locations (34.2% for their optimal factor range). High 
PBIAS and NRMSE are generally seen in arid to semi-arid environments, 
matching with where prior Q is highly biased (Figs. 11b & d). The geo
BAM_mon priors significantly improved the inversions for the Amazon 
River Basin, which consistently showed high biases in the ‘off-the-shelf’ 
BAM/geoBAM (Fig. S3) possibly related to the high LAI there. For places 
where hydrologic modeling struggles to provide good CC such as the 
high-latitude Arctic and regions influenced by human regulations, RSQ 
can be more skillful in the temporal dynamics (compare Fig. 11a with 
Fig. 7a in Lin et al., 2019). This imply that direct RS observations may be 
better at capturing processes like permafrost freeze/thaw, snow/ice 
melt, and dam regulations through propagating river widths informa
tion to Q – these processes are often difficult to be parameterized well in 
a physically-based model. The similar complementary strengths of RS 
and modeling were discussed in two recent studies (Hou et al., 2020; 
Feng et al., 2021), and here our assessment provides a clearer 

Fig. 11. Spatial distribution of the RSQ inversion accuracy for the geoBAM_mon configuration at daily time scales. (a) to (f) show CC, PBIAS, RV, NRMSE, NSE, and 
KGE, respectively. (a) to (c) show the component statistics for KGE to offer better interpretations of KGE. 

Table 3 
Summary information of two selected gauges and the KGE values for their RSQ. The best performing experiment in terms of KGE is bolded.  

Station ID b AI WidthCV LAI CI Width_mean CC (lnW, lnQ) WidthCV/QCV 

Brazil_ 14,110,000 0.05 2.29 0.20 4.31 0.28 853.28 m 0.09 0.26 
Brazil_ 46,150,000 0.06 0.46 0.09 1.82 0.29 500.69 m 0.75 0.15   

Station ID KGE 

BAM BAM_seas BAM_mon geoBAM geoBAM_seas geoBAM_mon 

Brazil_ 14,110,000 − 0.38 − 0.12 − 0.09 − 0.02 0.39 0.48 
Brazil_ 46,150,000 − 0.13 0.20 0.21 0.00 0.63 0.52  
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assessment on this question. 

4.2. The optimal combination of Q priors and RS observations 

We further show some examples to discuss how the RS data and 
priors should be optimally combined for RSQ at different locations. 
Table 3 summarizes the information of two selected gauges in Brazil that 
consistently showed the worst performance in the original BAM/geo
BAM. For both locations, CV ratios of width to discharge (last column of 
Table 3) are <0.3, suggesting their W vary much less than Q. But the CC 
between log-transformed W and Q for the first gauge is low (~0.09), 
indicating little useful temporal Q information in W, while CC for the 
latter is high (0.75). 

For the first location Brazil_14,110,000 (Rio Negro River, 1.2153◦S, 
66.8525◦W), the limited RSQ accuracy is mostly due to the rectangular- 
like shape of channel geometry, together with the high LAI (~4.3, the 
Amazon rainforest) that blocks the optical sensors to capture the W 
variability; for this case, consistently improved RSQ was obtained with 
richer Q priors (Fig. 12a). For the contrasting example of 
Brazil_46,150,000 (São Francisco River, 12.1825◦S, 43.2231◦W), richer 
Q priors led to improved inversion accuracy by allowing for more flow 
variability, but the behavior of geoBAM_seas outperforming geoBAM_mon 
also showed up (see the best KGE in Table 3). 

We closely examined the hydrographs in Fig. 12, and found that 
geoBAM_mon (pink line) may have provided over-confident Q priors on 
the low/high flows, which resulted in the sub-optimal RSQ when the 
priors are biased but RS observations are informative. We use the dry 
months to elaborate on the problem. For example in August, geo
BAM_mon stated the Q prior to have a mean of ~721 m3/s and a tight CV 
of 192 m3/s, while geoBAM_seas stated it to have a greater mean of 
~1148 m3/s with less confidence (i.e., a greater CV of 513 m3/s). Under 
these setups, in the 1980s when the low flows were relatively high 
(~1500 m3/s), geoBAM_mon under-estimated Q (pink lines) but geo
BAM_seas estimated it reasonably (orange lines); from 2014 onwards 
when low flows were observed, both reasonably estimated the discharge 
to be ~600 m3/s. The difference is ascribed to the wider Q prior dis
tribution of geoBAM_seas, allowing for more RS information to be 
ingested based on the Bayes theorem. Similarly, geoBAM_mon almost 

always overestimated the high flows when it should be relatively low (i. 
e., peaks of <4000 m3/s, black lines for the gauge observation). These 
over-confident prior distributions of Q for low/high flows explain why 
richer priors do not guarantee improved RSQ, suggesting better strate
gies such as the inflating the prior uncertainty estimates need to be 
considered for future optimization of the global RSQ. 

In light of the above, we further assessed the locations where richer Q 
priors do not lead to improved RSQ, as preliminarily outlined by Fig. S3. 
Among them, the high-latitude rivers are prominent, and we believe it is 
related to the challenges with the prior model GRADES/GRFR that 
struggles to fully capture the flow variability on cryosphere processes 
such as frozen soil freeze/thaw, and glacier/snow melt. Therefore, the 
bulk water balance aggregated over longer times yields a better prior as 
the model cannot finely resolve these processes. We also note that richer 
Q priors almost always degraded the inversion accuracy for locations 
immediately downstream of a reservoir/lake (see KGE values in Fig. 13; 
the degradation by geoBAM_mon can be more than geoBAM_seas). This is 
because the prior model GRADES/GRFR did not account for dam/ 
reservoir regulations, thus propagating the wrong flow variability to the 
inversion. In this case, the bulk water balance (or the less temporally 
resolved priors) also yields better results. 

Interpretations of these cases helped to outline a clearer picture on 
how we can optimally combine the RS observations and the priors to 
improve the generalizability of global RSQ. For example, we suggest 
using inflated distributions for the monthly priors, which may help 
better capture the flow extremes. Additionally, we suggest global rivers 
to be more explicitly labeled such that less informative Q priors should 
be used at places with known problems of a particular prior model. Here, 
rivers with runoff contributed from cryosphere processes or those 
immediately downstream of a reservoir should be labeled to use less 
informative priors, while other prior models may have similar or 
different error structures, depending on how the prior model was con
structed. Lastly, one should also account for the physical properties of 
rivers, e.g., by nature, rivers of certain geomorphological types (e.g., 
incised rivers) should have limited W variability; for this case, any 
additional prior knowledge can be key to the Q estimation. By contrast, 
rivers of high-b values (e.g., those with high width-to-depth ratio) can 
have W as a strong predictor of Q, and for this case uninformative priors 

Fig. 12. Hydrographs of the daily discharge inversion for the geoBAM (red), geoBAM_seas (orange), and geoBAM_mon (pink) experiments. Only geoBAM inversion 
results are presented here for clarity. Width and discharge observations are shown in gray and black lines, respectively. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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should be used, where explicitly labeling of high-b channels can lead to 
optimal inversions. Although the RSQ problem for SWOT will be 
different from this assessment as one would obtain river height/slope 
information, we believe the suggestions on how to configure the priors 
and RS observations for optimal inversion will hold true for the SWOT 
settings (e.g., using wider distribution, labeling rivers, accounting for 
the river's intrinsic geomorphologic type). In the future, a clearer un
derstanding of this question will be possible by using increasingly 
available geospatial datasets, such as hydrologic modeling (Lin et al., 
2019), or new soil, vegetation, geology (Beck et al., 2015), or geomor
phic datasets (Brinkerhoff et al., 2020) to update our hydroclimatic/ 
geomorphologic/hydraulic understanding of global rivers, and we 
believe filling up the knowledge gap is the important next steps for the 
SWOT era. 

5. Conclusions and discussions 

We extracted multi-temporal river widths from 357,389 Landsat 

scenes (1984–2019) and used them for daily Q inversion with BAM/ 
geoBAM for evaluation at 3078 sites. The large spatial coverage and 
diversity of rivers presented a stern test, which promoted the under
standing of the promising status of global RSQ and the remaining 
challenges that require further attention. We suggest this framework is 
useful for all RSQ, including SWOT, with the following main findings:  

• Using ‘off-the-shelf’ BAM/geoBAM configured with width-only RS 
observations, we found 33–37% of the three-thousand evaluation 
sites show daily correlation >0.5 and 27–39% show positive KGEs. 
This number reaches 46–65% with richer Q priors on flow season
ality and monthly variability, which translates to 1400–2000 suc
cessful inversions. As our evaluation setup mimics ungauged 
scenarios and that past studies have suggested KGE > –0.41 already 
denote useful model skills than the benchmark, the results here with 
the stricter KGE threshold demonstrate a conservative estimate of the 
skill, showing great promise for the global scale RSQ. 

Fig. 13. The RSQ inversion accuracy for four randomly selected locations immediately downstream of a reservoir/dam. The left column shows the ESRI satellite 
images of these locations; the right column shows the RSQ time series (black: gauge observations; red: geoBAM; orange: geoBAM_seas; pink: geoBAM_mon). The KGE 
for each prior configuration is printed in the same colour as the hydrograph. Note the strong control of the prior on the bias of the output in panel f. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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• By probing into factors influencing the RSQ accuracy for BAM/geo
BAM, we found that the inversion is the most sensitive to the channel 
geomorphological factor b and climatic aridity, where optimal con
ditions for inversion include high-b, sub-humid to humid environ
ments, moderate variability in width, LAI, and mean width. By 
applying filters on one factor at a time to gradually increase KGE, 
favorable RSQ conditions were outlined and the complementary 
strengths of RS and hydrologic modeling started to appear.  

• The results prove the generalizability of BAM/geoBAM, while 
pointing to the condition of rivers that requires future improvements 
(e.g., low-b channels, arid climate, low/high width variability, high 
LAI, and wide rivers; the wide river group calls for a better differ
entiation for channel-like reservoirs, as well as improving the 
geomorphic priors in geoBAM). We suggest other RSQ algorithms 
that claim global applicability also undergo similar large-scale 
evaluation as data become obtainable; this can help prioritize algo
rithm improvements as we move to the global scale RSQ.  

• By presenting examples on richer priors did not always lead to 
improved RSQ, we discuss the optimal ways of configuring the RS 
observations and the prior model, which includes inflating the dis
tribution in the monthly priors, labeling global rivers with known 
problems in the prior model, and accounting for the river's geo
morphology. These suggestions should also hold for the SWOT 
setting for global discharge inversion. 

Although our work has been largely motivated by the SWOT's 
launch, it is noted again that the accuracy revealed should not be 
directly linked with the SWOT discharge product. The additional in
formation on river stage/slope and better data retrievals from SWOT 
will lead to better RSQ particularly at locations where relying on W 
alone is inadvisable. Additionally, as low-b channels take up almost two 
thirds of our assessment likely because gauges are preferentially located 
in places with stable hydraulics, one should expect even better RSQ for 
naturalized and ungauged rivers for SWOT. Overall, our work adds value 
to the existing RSQ studies by prioritizing “spatial generalizability” over 
“perfect skill at limited locations”. This emphasis not only helps to offer 
insights into factors compounding the RSQ inversion behavior at scale, 
but also helps to outline the optimal ways to combine RS data and priors 
globally. In the future, we suggest more systematic geospatial data 
collections on river hydraulic variables from altimetry missions (e.g., 
Coss et al., 2020; Hou et al., 2020; Huang et al., 2020a; Nielsen et al., 
2022) and optical sensors (e.g., Feng et al., 2022), together with 
improved prior knowledge of river hydroclimatology, geomorphology, 
and hydraulics (Bjerklie et al., 2020; Brinkerhoff et al., 2020; Lin et al., 
2019; Linke et al., 2019). Such integrated knowledge and explicit la
beling of rivers holds potential to vastly improve our monitoring capa
bility for the discharge variability worldwide in the SWOT era. 
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Appendix A. Appendix 

A.1. Physics of BAM and geoBAM 

Both BAM and geoBAM are based off the AMHG theory. The equation adopted by geoBAM is different from BAM in that it has more explicit 
geomorphic physics based on Dingman's (2007) channel formulation. The original BAM writes the log-transformed AMHG as Eq. (1): 

logWi,t = bi(logQt − logQc)+ logWc + ϵg (1)  

where Wi, t stands for width observation for cross section i at time t; Qc, Wc are global parameters for AMHG; bi is the width-discharge exponent; and ϵg 
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is the error term. Later, geoBAM leverages theoretical work (Brinkerhoff et al., 2019) reconciling AMHG with traditional hydraulic geometry via the 
model of Dingman (2007). This re-writes AMHG as Eq. (2): 
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where several variables were added into AMHG, including Wbi, Dbithat denote bankfull width/depth, ri that represents a channel shape parameter by 
Dingman (2007), ni as the Manning's roughness, and Sit for channel slope. This updated Eq. 2 makes the hydraulic form of AMHG more physics-based 
and resemble the Manning's (Brinkerhoff et al., 2020). 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2023.113489. 
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