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ARTICLE INFO ABSTRACT

Edited by Menghua Wang Accurately estimating river discharge from satellite-derived river hydraulic variables (e.g., width, height, and
slope) is the overarching goal of the remote sensing of discharge (RSQ) community. Numerous past studies have

Keywords: developed and intercompared different RSQ algorithms to demonstrate their feasibility, yet relatively few have

Remote sensing of discharge focused on assessing how the RSQ algorithms are adapted to a wide range of rivers globally. As the community is

BAM

now ready to expand to the global scale given advances in computing power, sensors, and the launch of the
Landsat Surface Water and Ocean Topography (SWOT) satellite mission, a much broader geographic view of RSQ ac-
River width curacy should be prioritized toward “better generalizability” instead of “higher accuracy at limited places”. To
Global assessment help close this gap, we extracted multi-temporal river widths from >350 K Landsat scenes at >3 K river reaches
globally, and used them to estimate discharge using the Bayesian AMHG-Manning (BAM) algorithm and the
geomorphologically-enhanced variant (geoBAM). We use this framework to demonstrate how to apply an ‘off the
shelf’ RSQ algorithm and test it globally without methodological intervention and answer: does it live up to its
promise? Our daily discharge inversions (1984-2019) showed positive Kling-Gupta Efficiency (KGE) at 27% of
the gauges for BAM and 39% for geoBAM, and this percentage increased to 46-65% after feeding richer priors on
flow seasonality and monthly variability, amounting to 1400-2000 successful inversions. Exploratory analyses
showed that the inversion is the most sensitive to a channel geomorphological parameter b and climate aridity,
where the optimal conditions are high-b, humid environments, as well as moderate width variability, leaf area
index (LAD), and river width. Although specific to BAM/geoBAM, constraining the factors to their optimal ranges
led to a median KGE of 0.33 for >600 gauges, which highlights the promising potential for global RSQ. We
further discussed the optimal configuration of the RS/priors by analyzing results derived from different infor-
mation content in priors. Overall, our critical assessment of BAM/geoBAM reveals a successful global imple-
mentation of an existing algorithm that SWOT will improve. We suggest similar large-scale assessments for other
RSQs be prioritized to identify the emerging challenges as we move into a new era with global river monitoring
capability from space.

geoBAM
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River water is the most accessible and critical water resource for life
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Summary of relevant studies focusing on assessing the RSQ accuracy with a global scope. Summarized information includes the assessment sample size, hydraulic
variables of interest, data used, requirement for calibration, and their key results. Note that this summary does not incorporate those with a regional focus, those

completely within one continent/basin, or one single climatic regime.

Reference Sample Size ~ Hydraulic Data Used

Variables

Requirement for
calibration

Key Results

Revilla-Romero 322 stations River surface GFDS passive

et al. (2014) extent microwave
observations
Sichangi et al. 8 rivers River width/ MODIS + satellite
(2016) stage altimetry
Gleason et al. 34 rivers River width Landsat No
(2014)
Van Dijk et al. 8000+ River surface MODIS + passive
(2016) stations extent microwave data
Durand et al. 19 rivers River width/ Hydraulic model No
(2016) stage/slope outputs
Hou et al. (2020) 10,000+ River surface MODIS data
stations extent
Frasson et al. 31 rivers River stage/ Hydraulic model No
(2021) width/slope outputs
This study 3000+ River width Landsat No
rivers

Calibrated against
discharge measurements

Calibrated against

discharge measurements

Trained against
discharge measurements

Trained against model-
based discharge

48% stations show NSE > 0

NSE: 0.6-0.97

Median RRMSE 33% for non-braided rivers

86% stations show correlation of <0.7

Median standard deviation of relative residuals at 12.5% for 16 non-
braided rivers

25% stations show correlation >0.4

Median normalized standard deviation of residuals: 19%-29%
~1/3 stations show KGE > 0; 46%-65% stations show KGE > 0 if

feeding improved priors; 69% stations show daily KGE > 0.2 if
confining to optimal conditions

despite its low volumetric percentage among the Earth's freshwater
storages. An earth system science view to study the spatio-temporal
dynamics of river discharge (or interchangeably referred as discharge
or streamflow) is crucial to our understanding of global rivers as a sub-
system of the Earth instead of disconnected segments or watersheds. Yet
this understanding is largely compromised by spatial gaps (Do et al.,
2018), a downward trend (Hannah et al., 2011), and placement biases
(Krabbenhoft et al., 2022) of river gauge networks, urging researchers to
actively seek for other means, such as remote sensing and global hy-
drologic modeling approaches, to fill in these gauging gaps.

As a relatively young field, remote sensing of river discharge (here-
after RSQ, where Q denotes discharge) has been burgeoning in recent
years along with the increasing availability of satellite data, computa-
tional resources, and increased spatial/temporal/spectral resolutions of
satellite sensors (see Gleason and Durand (2020) and literatures
therein). Since the early demonstration of useful signals of surface water
variability in spaceborne measurements (Alsdorf and Lettenmaier, 2003;
Brakenridge et al., 2005; Smith, 1997), studies have been devoted to
retrieving essential hydraulic variables (e.g., river surface extent/stage/
slope, termed as “RS river observables”) from space, and then propa-
gating useful RS signals into Q by establishing relationships between RS
observables and Q. A plethora of research has been conducted to assess
the usability of different optical or active/passive microwave satellite
sensors (e.g., Alsdorf et al., 2007; Feng et al., 2019; Huang et al., 2018,
2020a, 2022; Marcus and Fonstad, 2008; Sichangi et al., 2016; Tarpa-
nelli et al., 2021; Tourian et al., 2013), signal/image processing tech-
niques to overcome contaminations from clouds/vegetation/sand bars/
wet banks (e.g., Brakenridge et al., 2007; Huang et al., 2018; Tarpanelli
et al., 2013), and flow laws/physics (e.g., Bjerklie et al., 2003; Gleason
and Smith, 2014), which have collectively contributed to the flourish-
ment of RSQ.

The rationale behind estimating Q with RS observables is simple — Q
variability responds to changes in river width (W) or surface inundation
area (A), as well as river stage (H) or slope (S) variations. If one can
obtain in-situ Q measurements or river cross sections & velocity profile
surveys, transferring remotely sensed river W/H into Q is straightfor-
ward as it only requires establishing empirical relationships between W/
H and Q, the same practice taken when installing automatic gauging
stations. Many studies followed this logic to develop RSQ algorithms,
which relied on W/H-discharge rating curves (e.g., Pavelsky, 2014) and/
or statistical regression models (e.g., Bjerklie et al., 2003, 2018) to es-
timate Q. However, the need for in-situ Q precludes RSQ's applications in
truly ungauged scenarios and is thought to have limited gains for Q

prediction in ungauged basins (i.e., the PUB challenge, Sivapalan et al.,
2003; Hrachowitz et al., 2013). This recognition caused researchers to
look to another RSQ group that combines mechanistic river hydraulics/
flow laws with Bayesian inference (Durand et al., 2014; Hagemann et al.,
2017) or data assimilation (DA) frameworks (Andreadis et al., 2020;
Gejadze et al., 2022; Larnier et al., 2020; Oubanas et al., 2018) to esti-
mate Q. The emergence of this group of RSQ reflected the conceptual
updates from earlier studies, and as they do not require in-situ infor-
mation, they were selected for the composition of the ensemble algo-
rithms by the Surface Water and Ocean Topography (SWOT) satellite
mission to estimate Q globally (Durand et al., 2021). Among them, the
Bayesian inference sub-group termed the Mass-conserved Flow Law
Inversion (McFLI; more details in Gleason et al. (2017) and Frasson et al.
(2021)) is particularly promising as it requires much less computation
for large-scale applications compared to DA while retaining the proba-
bilistic way of Q estimation. Given our interest in global-scale RSQ, this
study is specifically concerned with the McFLI sub-group of RSQ unless
otherwise cautioned.

Despite the prosperous development of RSQ that focused on showing
feasibility, relatively few have challenged RSQ's generalizability across a
wide range of rivers. Often times researchers tend to make explicit or
implicit assumptions on RSQ being readily extensible to the global scale
by showing good Nash-Sutcliffe Efficiency (NSE) skill at limited sites (e.
g., Gleason and Smith, 2014; Huang et al., 2020b, 2022; Smith and
Pavelsky, 2008). Rarely do RSQ algorithmic studies go beyond limited
evaluation sites. This confinement comes not only from the significant
amount of work with site-specific tuning of physics/parameters for RSQ
development, but also from the difficulty in obtaining large-scale RS
observations for Q estimation. For example, the SWOT family of RSQ
used a few dozen sites when constructing and evaluating the algorithms
— the constraints mainly came from the limited hydraulic model outputs
to mimic the as-yet-to-exist SWOT data (Durand et al., 2016; Frasson
et al., 2021). Outside of the SWOT context, studies have assessed various
combination of optical, microwave sensor, or altimetry data for Q esti-
mation at a few to thousands of gauges, but these studies tended to rely
heavily on in situ/model outputs for calibration/training, or they have
not been evaluated by stricter skill metrics beyond correlation (see
Table 1 for a summary of studies with similar scopes). As a result, thus
far, a clear understanding of when and where state-of-the-art RSQ yields
good or limited accuracy is still very much constrained with respect to
the geography of global rivers.

Now as SWOT has been launched in December 2022 which is ex-
pected to revolutionize the monitoring capability of global inland waters
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(Biancamaria et al., 2016), we are particularly motivated to generate
more challenging testing cases, and help prioritize the assessment of
how state-of-the-art RSQs are adapted to the wide variety of global
rivers, particularly in ungauged basins. Our motivation is in line with the
recent petabyte-scale satellite datasets and tools made available via
cloud computing platforms such as the Google Earth Engine (GEE)
(Gorelick et al., 2017; Pekel et al., 2016; Riggs et al., 2022; Yang et al.,
2020b), which has improved our mapping and modeling capabilities for
global rivers (Allen and Pavelsky, 2018; Feng et al., 2021; Lin et al.,
2019; 2020; Yamazaki et al., 2019; Yang et al., 2020a). Although the
available RS data from GEE are less accurate and partial compared to
SWOT, the wealth of such data are already valuable to facilitate
large-scale assessment, potentially guiding RSQ developers to consider
places needing more attention for improvements.

We aim to shed light on the following three questions: i) How well
does state-of-the-art McFLI perform at daily Q inversion globally? ii)
What factors may contribute to or limit the RSQ inversion skill and how
sensitive are they? iii) How to optimize the Q inversion strategies by
jointly considering the improved RS data and prior knowledge on global
rivers? To achieve the goals, we extracted multi-temporal river widths
from >350 K Landsat scenes using GEE, and performed McFLI evalua-
tion at >3000 gauging sites from 1984 to 2019. Two members of the
SWOT family RSQ, i.e., BAM (Hagemann et al., 2017) and geoBAM
(Brinkerhoff et al., 2020) were used to frame our algorithmic examples,
as both of them rely on the at-many-station hydraulic geometry (AMHG)
physics (Gleason and Smith, 2014), making them the sole McFLI capable
of Q inversion with width-only observations and relatively easy-to-
comprehend computations. We use these algorithms as an example to
show how to approach generalizing RSQ worldwide as they become
testable at global scales. The upcoming data (e.g., SWOT) will improve
the accuracy of these results.

The paper is organized as follows. Section 2 presents our technical

workflows to obtain long-term river width observations for global RSQ
assessments. Section 3 presents the RSQ accuracy with ‘off-the-shelf’
algorithm setups and the exploratory analyses to assess factors affecting
the accuracy. In Section 4, we present the RSQ accuracy after feeding
richer priors on Q seasonality and monthly variability, where prominent
examples showing the interplay between the river conditions and RS/
prior setups are presented. Then, we reach at conclusions and discus-
sions on future work for improvements in Section 5.

2. Data and methods

In this section, we describe the datasets, tools, and methods adopted
by this study. Fig. 1 summarizes the technical flowcharts with details
provided below.

2.1. Determining gauged rivers observable by Landsat

To provide a stern test for global RSQ, we first identified all gauged
rivers observable by Landsat. A global database with >14,000 gauges
was used here; it contains daily discharge observations collected from
various international and national sources such as the Global Runoff
Data Centre (GRDC), the European Water Archive (EWA), the U.S.
Geological Survey (USGS), the Brazilian National Water Agency (ANA),
Australian Bureau of Meteorology (BoM), and the Chilean Center for
Climate and Resilience Research (CR2). This database was spatially
matched with the Global River Width from Landsat (GRWL) (Allen and
Pavelsky, 2018), resulting in 3432 gauges located on a river wider than
30 m excluding lakes/reservoirs (Fig. 2). These locations were used to
search for all available Landsat imagery as they were considered
observable by Landsat at 30-m spatial resolution (Section 2.2). These
gauges cover a wide range of discharge from 0.06 to 165,770.99 m%/s
(with a median of 96.96 m®/s and mean of 518.87 m3/s; Fig. 2a), river
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Fig. 2. Spatial pattern and histogram plot of the 3432 gauges used for Landsat width extraction. (a) is for mean annual flow (m>/s), (b) is for mean width (m), and (c)
is for Koppen-Geiger climate classification obtained from Beck et al. (2018); 1-3 for tropical climate, 4-7 for arid climate, 8-16 for temperate climate, 17-28 for

tropical climate, and 29-30 for polar climate.

width from 30 m to 5000 m (with a median of 60 m and mean of 150 m;
Fig. 2b), and major Koppen-Geiger climate zones (arid, cold, temperate,
and tropical; Fig. 2¢). By leveraging all possible gauges without a biased
view to retain or disregard any gauges a priori, we expect the substantial
spatial heterogeneity to challenge any existing RSQ algorithm by nature.
The aim is to expose potential problems to the maximum extent possible,
and help guide areas to prioritize improvements. This design is different
from those starting with idealized conditions and increasingly added
errors (Durand et al., 2016; Frasson et al., 2021) — we approach the
problem in a conceptually opposite way from the worst-case scenario,
and then systematically approach optimal conditions.

2.2. Constructing cross sections/reaches needed by width extraction and
the inversion

At each location, multi-temporal river widths were extracted from all
available Landsat 5, 7, and 8 imagery from 1984 to 2019 via the Google
Earth Engine (GEE) RivWidthCloud tool (Yang et al., 2020b). Riv-
WidthCloud measures wetted river width by overlaying orthogonal lines
at selected cross sections with water masks. To avoid the most time-
consuming part with river centerline/orthogonal calculation, these
lines were pre-defined as inputs for efficient large-scale extraction. More

specifically, each gauge was spatially joined with one MERIT river reach
and several GRWL segments (Lin et al., 2019) — we used the GRWL
segment centroids (a 30-42.4 m interval) as the cross sections, and the
MERIT river reach (a median length of 6.7 km) as the unit for imposing
mass balance for BAM/geoBAM discharge inversion (see Fig. 3a for an
example). This “cross section/node” and “reach” definition is in line
with how the SWOT product will be organized (Altenau et al., 2021).
Here as the dense GRWL cross sections (interval of 30-42.4 m) have
been shown to substantially slowdown the BAM/geoBAM computation,
sub-sampling was used to maintain accuracy compared to the full den-
sity inversions (Hagemann et al., 2017). We first eliminated the nodes
within 2xwidthpean intervals if the node number exceeded 100 for a
given reach — this helped to improve the computational efficiency while
obtaining the most complete RS measurements. We then constructed
orthogonal lines with a length of 4xwidthpean (Fig. 3b) and overlaid
them with water masks determined by the default RivWidthCloud water
classification algorithm (Jones, 2019) to extract widths. Finally, as
BAM/geoBAM (Section 2.4) cap the number of input cross-sections at 40
for a given time/river to optimize the computation demand and the
performance gain, we further sub-sampled the input cross sections based
on the width data availability. This sampling may introduce un-
certainties, but in the absence of true dynamic width data as the
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Fig. 3. (a) Examples of the cross sections/nodes (red dots) for orthogonal line construction in the width extraction process, and the river reach (blue segment) for
discharge inversion. This example gauge (Canada 10UHO001) is randomly selected and located in a river reach of 15.36 km long (COMID: 85009373); the cross-
section locations are from the GRWL segment centroids joined to the reach. (b) shows a zoomed-in plot for the constructed river orthogonal lines from which
the wetted widths are extracted. (c) shows the sub-sampled cross-sectional widths (ranging between 5 and 40) that feed into BAM/geoBAM algorithms for discharge
inversion; for simplicity, only eight dates are shown. Basemap is from the ESRI Satellite image. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

reference, this strategy is used to retain the best observable part of a
reach (Feng et al., 2021, 2022). Fig. 3c shows the time-varying cross-
sectional widths for discharge inversion at different dates, which ranges
from 5 to 40.

2.3. Multi-temporal Landsat observations at 3000+ gauged rivers
(1984-2019)

Only Landsat measurements not affected by cloud effects, snow
cover, and topographical shadows were considered for the water clas-
sification. In total, we collected 357,389 Landsat scenes meeting such
criteria for the eight continents of MERIT Basins, namely Africa
(14,797), Europe (53,605), North Asia (5696), South Asia (27,938),
Oceania and South Asian Islands (25,478), South America (77,119),
North America (136,428), and Arctic Region (16,328). Fig. 4 summa-
rizes the reach-averaged widths to assess the obtained Landsat river
observations.

The revisit time of Landsat is 16 days and with all the qualified im-
ages from TM, ETM+, and OLI sensors combined, the temporal interval
for width retrievals can be <16 days for many locations. Overall, ma-
jority of locations have 150-350 observations across the 36 years due to
non-usable scenes with cloud/snow/shade contamination, but some can
exceed 600-800 (Fig. 4a). There is also a clear latitudinal pattern
showing limited observations for the northern hemisphere tropics and
high-latitudes, where clouds or snow covers are high; as a comparison,
extra-tropics arrive at the largest number of observations. The mean
width (Fig. 4b) derived from the temporally intermittent observations
generally match with the static width estimates by GRWL and the
gauges' drainage areas (Fig. 2), suggesting the correctness of the multi-

temporal width extraction process. The coefficient of variation (CV)
(Fig. 4c) reflects the combined effect of the RS observability as well as
the geomorphic variability of rivers related to the channel geometry,
and it mostly falls between 0.1 and 0.3. Using circular statistics (see SI
Text S1 for the equations), we also calculate the mean observation date
(D, Fig. 4d) and how concentrated these dates are (CI index, Fig. 4€) to
further summarize the river RS data. It clearly shows that Landsat ob-
servations in the Amazon river basin and the high-latitudes are highly
concentrated (CI close to 1, with mean observation dates in June to
August) to the relatively dry months in the Amazon (little chance of
cloud cover) and the warm season in the high-latitude (little chance of
snow and river freezing/ice), respectively, which possibly reveals the
sampling bias with optical RS data. In comparison, Landsat observation
dates are much more dispersed throughout the year for other global
regions (CI <0.6 in Fig. 4e, and the mean observation dates vary across
regions in Fig. 4d).

2.4. The Bayesian AMHG-Manning (BAM) algorithm and its recent
variant geoBAM

We used two algorithms, i.e., BAM and geoBAM, for Q inversion with
river width data obtained from RS (W; o). The two algorithms utilize the
same flow law and Bayesian underpinning to probabilistically estimate
Q; - one states the likelihood (a sampling model for W; ; conditional on
the non-RS parameters) and the priors (the non-RS terms of equations in
Appendix) as probability distributions. Then these two terms are suffi-
cient to describe the joint posterior distribution for inferring Q. To
approximate the distribution, a Hamiltonian Monte Carlo sampler is
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(b) and (c) show the mean (Width_mean) and the coefficient of variation (Width CV) calculated from all observations. (d) and (e) show the mean observational date

(D_bar, expressed as month number) and its concentration index (CI).

adopted for efficient high-dimensional sampling. Beyond the sampling,
BAM/geoBAM are largely similar to the other Bayesian McFLIs such as
MetroMan (Durand et al., 2014) and GaMo (Garambois and Monnier,
2015), except that it adds AMHG (Gleason and Smith, 2014) as an
alternative of the widely used Manning's equation, eliminating the need
for stage/slope observations, making it possible to invert Q with width-
only data. BAM/geoBAM code packages are openly available (see
Acknowledgement). The physics of BAM/geoBAM are described in
detail in Appendix.

Priors formalize a priori estimates and uncertainties for non-
observable parameters, and they represent the initial understanding of
the distribution of these terms. Two types of priors are fed into BAM/
geoBAM, namely Q priors and hydraulic geometry priors; the former can
be derived from global hydrologic modeling (see below), and the latter
can be derived from river geomorphic attributes. To mimic ungauged
scenarios, we assumed no gauge data existed for Q different from
strategies by Brinkerhoff et al. (2020) and Feng et al. (2021) where all
gauged data were used to constrain the inversion when applicable.
Following this logic, we used the Global Reach-level A priori Discharge
Estimates for SWOT (GRADES) (Lin et al., 2019) and the updated Global
Reach-level Flood Reanalysis (GRFR) (Yang et al., 2021) to formalize Q;
priors. GRADES/GRFR leveraged recent advancements in global hy-
drologic modeling to estimate Q worldwide, and it provides one of the

best-verified and openly accessible Q priors based on updated hydro-
climatic knowledge for 2.94 million reaches. Although GRADES/GRFR
were calibrated and bias-corrected, no direct gauged observations were
included when formulating the model; thus, they are appropriate to use
as the priors for ungauged rivers. To state the truncated log-normal
distribution needed for Q; and Q,, the priors include Qnean, Qmin, Qmaxs
and Qcy, where the ‘off-the-shelf” BAM/geoBAM takes Queqn as the Q
climatology of the prior model and Qcy as 1.

The geomorphic priors came from the hydraulic training datasets
used when constructing BAM/geoBAM (Canova et al., 2016), which we
did not make changes to. In geoBAM, rivers were classified with an
unsupervised and a bespoke “expert” scheme, where different geomor-
phic priors were assigned to the river classes. The unsupervised scheme
used DBSCAN to cluster the rivers into 8 classes, and the expert scheme
subjectively chose 17 classes to make river width a strong predictor of
the river types (ref. to Fig. 2 by Brinkerhoff et al. (2020)). In our initial
experiments, we found the unsupervised scheme failed to represent river
variabilities worldwide (>90% of rivers classified as Type 1; not shown),
suggesting its limitation as also cautioned by Brinkerhoff et al. (2020)
for its pure statistical realization. Thus, we used the expert scheme for
the ensuing results and interpretations of this scheme for the Q in-
versions are provided in Section 3.1.

To infer Q, mass conservation is a necessary assumption as lateral
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Fig. 5. Cumulative density function (CDF) of the skill metrics for BAM/geoBAM. (a) for correlation coefficient (CC), (b) for normalized root-mean-squared-error
(NRMSE), (c) for Nash-Sutcliffe Efficiency (NSE), and (d) for Kling-Gupta Efficiency (KGE). We used at least 3 pairs of the inverted and observed discharge for
calculating the skill metrics (3078 locations), while “nn >50" used at least 50 pairs for calculating the skill metrics (1691 locations). We note KGE = 0 is used as a
stricter threshold to delineate good/bad inversion skills despite studies suggesting KGE > —0.41 can already denote useful skills.

inflows can interfere with the results (Nickles et al., 2020). This
assumption is valid here as we segmented global rivers into reaches of
~6-7 km long with a 25 km? channelization threshold. This means only
tributaries draining <25 km? are ignored, which better conserves mass
compared to Durand et al. (2016) that has a reach length of 11 to 223
km. For meaningful Q inversion with BAM/geoBAM, one needs at least
five cross sections at a given location/date to derive AMHG. For fair
statistical evaluation, one needs at least three pairs of overlapping
Landsat widths and observed Q (sensitivity to this criterion is assessed in
Section 3.1). The screening led to 3078 gauges for final evaluation.

3. Discharge inversion using ‘off-the-shelf” BAM/geoBAM
configurations

3.1. Summary skill metrics across all locations

We ran BAM/geoBAM at 3078 gauges, and summarized the skill
metrics of Q inversion using cumulative density function (CDF) plots in
Fig. 5; the skill metrics calculated against daily Q observations included
correlation coefficient (CC), normalized root-mean-squared-error
(NRMSE), NSE, and Kling-Gupta Efficiency (KGE), as they offer in-
sights into the RSQ inversion from different angles, e.g., CC for temporal
variability, NRMSE for biases and standard deviation errors, and NSE/
KGE for the overall skill. We followed Frasson et al. (2021) in choosing
these metrics, and they were defined therein.

Fig. 5 shows the baseline RSQ performance for all locations, where
the CC distribution is largely similar to Van Dijk et al. (2016) who
assessed monthly Q estimates with MODIS measurements. BAM/geo-
BAM performance is seemingly unsatisfactory due to the many negative
NSE/KGEs, but these match with our expectation as we provided the
sternest criteria to include all possible river types worldwide and did not
tailor the algorithm in any way between rivers. Despite this worst-case
scenario, we still see ~1000 successful cases, e.g., reasonably captured
daily discharge at 33-37% of locations with CC > 0.5 (Fig. 5a) and
27-39% of locations with KGE > 0 (Fig. 5b), which shows promise for
large-scale RSQ. Note that we used zero-KGE to delineate good/bad
performances, but studies have suggested that KGE > —0.41 can denote
informative performance than the mean particularly when NSE alone
(Fig. 5¢) can be limited in interpreting the results if the observation
variability is low (Knoben et al., 2019). This means the criteria on KGE
> 0 may be relaxed especially considering the challenging situations in
Q estimation in ungauged basins (Sivapalan et al., 2003), which shows
promise for global RSQ.

Looking at the component statistics, we found the inversion accuracy
is mainly compromised by model biases (i.e., only <20% of gauges show
an NRMSE <0.6, Fig. 5b), and this behavior of RSQ error dominated by
bias rather than temporal variability error has also been highlighted by
recent SWOT studies (Frasson et al., 2021, 2022; Tuozzolo et al., 2019).
This behavior is different from hydrologic modeling, where temporal
variability error is often considered more difficult to cope with - the
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Fig. 6. River classes determined by geoBAM and its inversion accuracy. (a) and (b) show the river class spatial map and the histogram; (c) shows the KGE boxplot
calculated as KGEgeopam minus KGEpay to understand geoBAM's improvements upon BAM (horizontal line shows KGEg;¢r = 0; positive values mean geoBAM is better
than BAM); (d) is the geoBAM KGE boxplot against the river class (horizontal line shows KGE = —0.41). Class 6 has only three cases, thus not sufficient to shown on

(c) and (d).

uncertainty cascades in hydrologic modeling are dynamic and cannot be
addressed using effective bias correction techniques (Lin et al., 2019).
Such complementary strengths of RSQ and hydrologic modeling imply
that merging of the two will become increasingly useful in the future
(Feng et al., 2021; Ishitsuka et al., 2021). We also tested the sensitivity of
the skill metrics to the threshold of a minimum of 3 pairs of inverted and
observed discharges by increasing it to 50 pairs (1691 out of 3073
gauges in Fig. 5). The latter shows slightly better KGE/NSE when biases
are negative (likely due to the high sensitivity of bias to small sample
sizes) and when CC is low (likely due to the difficulty in capturing
temporal variability with large sample sizes), but the overall sensitivity
is small. Thus, in the later sections we consistently used locations with
>3 pairs of inverted and observed discharge to increase the spatial
coverage of our assessment. We also found geoBAM is mainly superior to
BAM in the bias component rather than the correlation component —
recall geoBAM is only different in its geomorphic priors, and this sug-
gests that better stated geomorphic priors are key to alleviating the bias
error.

In geoBAM expert scheme, rivers were pre-classified to different
types mainly by their widths — Classes 1-15 refer to small- to medium-
sized rivers, Class 16 are the “highly width-variable” rivers, and Class
17 are big rivers (mean width > 665 m) which also lack sufficient
samples in its geomorphic training data (more details in Brinkerhoff
etal., 2020). According to this scheme, the ~3000 rivers are classified as
Classes 6-17 covering a wide geographic extent (Fig. 6a), and Classes 9

Table 2
Six selected factors potentially influencing the RSQ inversion accuracy.
Factor Description
b At-a-station hydraulic geometry (AHG) b exponent, calculated by
fitting reach-averaged width and prior discharge in a power law model
Al Aridity Index (AI) calculated as mean precipitation divided by
potential evapotranspiration (Zomer et al., 2008)
Width.CV Coefficient of variation (CV) calculated as the standard deviation of
width divided by mean width
LAI Leaf Area Index (LAI) of the 1981-2015 annual mean from the
Advanced Very High Resolution Radiometer (AVHRR) Global
Inventory Modeling and Mapping Studies (GIMMS) LAI3g version 2 (
Mao and Yan, 2019)
CI Concentration index (CI) of the Landsat observation dates across all
years
Width.mean ~ Mean width in the unit of meters

& 16 are the dominant types (Fig. 6b). The KGEg;¢r between geoBAM and
BAM against river classes (Fig. 6¢) shows that geoBAM improves over
BAM in all river classes, particularly for Class 16 (i.e., the highly width-
variable rivers), but limited gains were found for Class 7-9 (i.e., smaller
rivers). There is a tendency for geoBAM to bring more improvements as
rivers get larger, but this tendency drops for Class 17 (i.e., big rivers)
likely due to the limited training data in this class. Despite the better skill
of geoBAM, Fig. 6d shows it still struggles to accurately estimate Q for
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Fig. 7. Exploratory analyses of the BAM/geoBAM inversion accuracy against six selected factors. (a) to (f) show the analyses for b, AI, Width.CV, LAI, CI, and
Width mean (Table 2); the x-axis shows the assessed range, the left y-axis shows the median KGE, and the right y-axis shows the sample size (shown as gray bars). (g)
shows the KGE boxplot by incrementally applying filters for one factor at a time to obtain increased inversion accuracy, and the sample size is denoted in n. The KGE
ranges on the left y-axes from (a) to (f) are kept the same such that they can better show the sensitivity to each factor.

Classes 16 and 17, and both good (KGE > 0.5) and bad (KGE < 0) per-
formances can be seen in each river class. This implies other factors are
still compounding the inversion and better understanding of each river's
uniqueness is needed. Based on this result, we assessed a range of other
factors possibly influencing RSQ to better understand this question.

3.2. Exploratory analyses on factors influencing RSQ

We selected six factors to assess how they affect the RSQ accuracy
(Table 2). Among them, at-a-station hydraulic geometry (AHG) expo-
nent b and aridity index (AI) have been previously assessed at 34 rivers
by Gleason et al. (2014), and Width CV has been discussed to indicate
AMHG strengths by Feng et al. (2019, 2021), while we further added the
assessment of leaf area index (LAI), mean river width, and the CI index.
The first three factors better reflect the physical properties of a river (b,
Al, Width_CV) while others are expected to affect the RS retrieval ac-
curacy more (LAI, CI, Width_ mean). We note this assessment is not to be
exhaustive but to probe into “what factor can influence the RSQ inver-
sion and how sensitive is the RSQ to them?” Although some factors may
be algorithm-specific, this analysis framework can be useful for other
RSQs too. In the following section, we elaborate on their expected
control on accuracy, and in Fig. 7, the sensitivity of RSQ to these factors
is assessed with the median KGE derived from each factor.

Overall, the RSQ exhibits the greatest sensitivity to b followed by AI,
as shown by the greatest slope change (Fig. 7a). Generally, close-to-zero
b denotes channels of nearly rectangular shapes that lack width vari-
ability, thus, these channels show the most unsatisfactory inversion, as
also anticipated by Gleason et al. (2014). We show that KGE increases
rapidly for increasing b, but after b > 0.15, the increase in KGEpedian
gradually leveled off. Al is a climate regime factor where arid environ-
ments tend to show low AMHG strengths (Gleason et al., 2014); here we
found AI>0.5 (a divide for sub-humid climate) shows the best KGE, but
the overall sensitivity is smaller (Fig. 7b). For Width CV, modest values
show the best RSQ; low values can correspond to low-b situations and
KGE increases as Width CV increases to 0.25, yet we found KGE drops
quickly for Width_CV > 0.25 (Fig. 7c). This behavior may be attributable
to overbank conditions that can introduce compound behavior to the
AMHG flow laws, which won over the AMHG strengths to some degree
captured by Width CV.

Shifting to factors affecting the RS retrievals that can occur in all
river forms, we found that the best KGE is for LAI < 1.5-2.5 (Fig. 7d),
where too large LAI can interfere with width retrievals for optical sen-
sors, and too small LAI can indicate dry conditions. High CI is associated
with seasons of the best RS observational quality with low cloud/snow/
ice contaminations, but we do not see prominent KGE changes with
increased CI (Fig. 7e). Lastly, as the width extraction process was known
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Fig. 8. Example locations exhibiting very good discharge inversion accuracy. For each continent of MERIT Basins, we randomly selected one gauge with KGE > 0.7
in geoBAM for this demonstration. (a) to (h) show the hydrographs, where the texts show the number of inversion dates (nn) and the skill metrics including CC,
percentage bias (PB), NRMSE, NSE, and KGE. Error bars show the 95% confidence interval, where uncertainty is estimated by the Bayesian inference. (i) to (h) show

the ESRI Satellite Image backgrounds of the gauged river segments.

to show higher uncertainties for rivers narrower than 90 m (Allen and
Pavelsky, 2018), we also assessed the RSQ accuracy with regard to
Width mean. Our results showed that KGEyedian peaks for Width mean
between 90-500 m, but further increases in Width mean can lead to
decreased KGE (Fig. 7f). This seemingly counterintuitive behavior in-
dicates that the width uncertainty becomes a less significant error source
for wide rivers. We further examined locations with Width. mean >
500-1000 m, and identified several other error sources that can explain
this behavior. First, we found the worst KGEs were mostly seen within a

lake/reservoir. Recall in Section 2.1 we eliminated reaches with lakes/
reservoirs, but we found many low KGE locations were incorrectly
flagged as rivers by GRWL possibly because of the difficulty to distin-
guish between a wide channel and a channel-like reservoir; thus, the
biased widths and compound hydraulics of a reservoir-like river were
propagated into erroneous discharge estimation. Second, in geoBAM,
rivers wider than 665 m were classified as a single class that also lacked
sufficient geomorphic training sample (see Section 3.1); the lower KGE
here indicates the geomorphic priors became less informative for wide
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KGE, similar to Fig. 4. Cold colors show BAM, BAM seas, and BAM_mon experiments, respectively; and warm colors show geoBAM, geoBAM seas, and geoBAM_mon

experiments, respectively.

rivers, which is a known but non-prominent issue by Brinkerhoff et al.
(2020) and will require further improvement in the future. Third, we
found wider rivers also tend to show smaller b (Fig. S1). These collec-
tively offer a feasible explanation on why the widest group of rivers does
not see further improved RSQ. While it remains difficult to fully derive
the mutually exclusive strength as the factor interactions started to show
up, here we offer a unique perspective on where to expect better RSQ
accuracy based on the prior knowledge of b, Al, Width CV, LAI, CI, and
Width_mean. The strengths of each factor were further demonstrated in
Fig. 7g, where filters were incrementally applied to one factor at a time
(x-axis) to gradually increase KGE while accounting for the compro-
mised sample size n; this outlined the optimal conditions that can in-
crease KGEpedian from —0.10 to 0.29.

3.3. Locations with good inversion accuracy

Fig. 8 shows locations exhibiting very good inversion accuracy; we
randomly picked one station with KGE > 0.7 (geoBAM) for this
demonstration. These rivers are located in quite different environments,
e.g., highly natural (Fig. 8k), highly urbanized (Fig. 8i, m & 8p), limited
agricultural activities (Fig. 8j, 0), and mountainous regions (Fig. 8n).
They are also in different climate zones, but their river discharge has all
been well estimated. This confirms the RSQ accuracy based on the
Bayesian inversion is not necessarily a function of the physical hydro-
climate conditions, but the key to successful inversion is outlined in the
factor interactions shown by Fig. 7. We also found that the inversion
accuracy is not necessarily lower for smaller mountainous rivers as
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might be expected (see four locations randomly picked from the Andes,
the Qilian Mountain, and the Alps from Fig. S2 for a closer look at RSQ
performance in mountainous rivers which has received relatively less
attention (Huang et al., 2018)). The fact that both good and bad in-
versions can be obtained for small mountainous rivers ranging from 55
to 81 m wide suggest that, overall, the successful RSQ requires channel
shapes of higher b and high AI in sub-humid to humid regions, moderate
width variability and LAI (the order of appearance reflected their rela-
tive importance). As long as these conditions are satisfied together
within a reasonable way to retrieve the river hydraulic variables, good
RSQ inversions can be obtained in different hydroclimatic regions.

4. Improving discharge inversions over the baseline
4.1. The use of enriched discharge priors

In this section, we seek to use openly obtainable geospatial datasets
to improve the global RSQ. For challenging locations presented above,
one would naturally seek for additional height/slope information from
SWOT or other altimetry missions, or from better prior knowledge of
river hydroclimatology/geomorphology for optimal inversion. As this
study focuses on Q inversion with width-only observations, we resort to
richer priors to assess how they influence the global RSQ. Here, instead
of assuming the known Q climatology from the prior model GRADES/
GREFR (Section 2.4(2)) with a single set of {Qmeqn and Qcy}, we tested the
use of two other configurations (i.e., ‘seasonal’ and ‘monthly’ priors) to
describe the truncated log-normal prior distribution of Q. In the
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respectively.

‘seasonal’ configuration, seasonal averages and CV (i.e., four unique
values) of the 40-yr GRADES/GRFR Q priors (i.e., March-April-May,
June-July-August, September-October-November, and December—Jan-
uary-February) were served to {Qmeqn and Qcy}. Analogously, in the
‘monthly’ configuration, monthly averages and CV (i.e., 12 unique
values) of the 40-yr Q priors were served to {Qmean and Qcy}. The
rationale behind using these priors is that the flow seasonality and
monthly variability from hydrologic modeling provides complementary
strengths to RS observations, which is also the philosophy of data
assimilation (DA). BAM/geoBAM represent flow as a truncated
lognormal distribution, and as a Bayesian process the more accurately
we can represent the prior within the distribution, the more accurate the
posterior will be. We gradually increase the information content from
the ‘default’, ‘seasonal’, to ‘monthly’ configurations with the aim to
better understand how to best describe the distribution of the priors
versus the observations — the global model is more accurate when
aggregated over longer times, but finer time resolution better resolves
the distribution. Thus, the configurations below should allow us to take
a closer look at this question.

In Fig. 9, the sensitivity of BAM/geoBAM to the enriched priors were
revealed. It is seen that the ‘monthly’ and ‘seasonal’ configurations
consistently outperform the ‘default’, matching the expectations that
when RS data is uninformative, BAM/geoBAM reverts to the prior and
ensures valuable dynamic information present in ‘seasonal’ and
‘monthly’ Q priors preserved. These setups increased the percentage of
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locations with CC > 0.5 from 33 to 37% (in BAM/geoBAM) to 44-57%
(in BAM_mon/geoBAM_mon; the same format is consistently used later).
In addition, percentage of locations with KGE > 0 increased from 27 to
39% to 46-65%, suggesting that the successful daily Q inversions now
increased to 1400-2000 gauges.

Performing similar exploratory analyses in Fig. 10, we show that the
‘monthly’ and ‘seasonal’ configurations improve the inversion for nearly
all conditions, particularly for low-b channels (see leveled-off lines in
Figs. 10a&e), while locations with large Width CV and Width mean
remain to show low inversion accuracy (Figs. 10d&f). This confirms that
the error sources for Width CV > 0.25 and Width mean > 500-1000 come
from the overbank flow conditions and the challenging geomorphic
prior setups with geoBAM (as discussed in Section 3.2), which is not
expected to be resolvable by enriched Q priors. Accordingly, we suggest
future geoBAM improvements to be tailored to these rivers.

Interestingly, we find that for high-b channels, supplying richer Q
priors can degrade the geoBAM inversion accuracy (Figs. 10a) — note
that b is a channel geomorphological indicator where high-b values
indicate width is a strong predictor of Q with no lateral confinement, and
in this case less informative priors should be used. Running the filters
similar to Fig. 7g shows that constraining factors to their optimal ranges
can help improve the daily KGE;egiqn of ge0BAM to 0.32 while retaining
a sample size of 649 (Fig. 10g). These outline the conditions for RSQ to
be successful — for the optimal case on the rightmost column of Fig. 10g,
gauges with a daily KGE > 0.2 take up 68.9%. We compare this high
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Fig. 11. Spatial distribution of the RSQ inversion accuracy for the geoBAM_mon configuration at daily time scales. (a) to (f) show CC, PBIAS, RV, NRMSE, NSE, and
KGE, respectively. (a) to (c) show the component statistics for KGE to offer better interpretations of KGE.

percentage with existing large-scale RSQ studies, and find it better than
those using MODIS-only (Hou et al., 2020) or combined MODIS-
microwave measurements (Van Dijk et al., 2016). The high percentage
of daily KGE > 0.2 also complements global hydrologic modeling efforts
such as that by Lin et al. (2019), suggesting the combined strengths of RS
(i.e., ingesting river width in here) and hydrologic modeling (i.e.,
ingesting prior knowledge on hydroclimate seasonality/monthly vari-
ability here) — this desirable RSQ performance holds further potential for
discharge estimation in ungauged rivers.

Fig. 11 shows the RSQ inversion accuracy for the geoBAM mon
configuration (N = 3078), which offers a geographically explicit un-
derstanding of locations with good inversions and those remain chal-
lenging. In addition to the integrated metrics such as NSE and KGE
(Figs. 11e&f), we also presented the component statistics of KGE (a—c).
Fig. 11a shows the highest CC is located in the Amazon, west Africa,
Southeast Asia (tropics), eastern Europe, and Canada (high-latitudes),
where limited CC in parts of the US may be ascribed to the smaller-than-
observed relative variability (Fig. 11c). Gauges that show PBIAS within

+35% take up ~54.5% of all locations, and those with NRMSE <0.6 take
up 20.8% for all locations (34.2% for their optimal factor range). High
PBIAS and NRMSE are generally seen in arid to semi-arid environments,
matching with where prior Q is highly biased (Figs. 11b & d). The geo-
BAM mon priors significantly improved the inversions for the Amazon
River Basin, which consistently showed high biases in the ‘off-the-shelf’
BAM/geoBAM (Fig. S3) possibly related to the high LAI there. For places
where hydrologic modeling struggles to provide good CC such as the
high-latitude Arctic and regions influenced by human regulations, RSQ
can be more skillful in the temporal dynamics (compare Fig. 11a with
Fig. 7ain Lin et al., 2019). This imply that direct RS observations may be
better at capturing processes like permafrost freeze/thaw, snow/ice
melt, and dam regulations through propagating river widths informa-
tion to Q — these processes are often difficult to be parameterized well in
a physically-based model. The similar complementary strengths of RS
and modeling were discussed in two recent studies (Hou et al., 2020;
Feng et al., 2021), and here our assessment provides a clearer

Table 3
Summary information of two selected gauges and the KGE values for their RSQ. The best performing experiment in terms of KGE is bolded.
Station ID b Al Widthcy LAIL CI Width_mean CC (InWw, nQ) Widthcy/Qcv
Brazil 14,110,000 0.05 2.29 0.20 4.31 0.28 853.28 m 0.09 0.26
Brazil_ 46,150,000 0.06 0.46 0.09 1.82 0.29 500.69 m 0.75 0.15
Station ID KGE
BAM BAM _seas BAM_mon geoBAM geoBAM seas geoBAM_mon
Brazil 14,110,000 —0.38 —0.12 —0.09 —0.02 0.39 0.48
Brazil 46,150,000 -0.13 0.20 0.21 0.00 0.63 0.52
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Fig. 12. Hydrographs of the daily discharge inversion for the geoBAM (red), geoBAM seas (orange), and geoBAM_mon (pink) experiments. Only geoBAM inversion
results are presented here for clarity. Width and discharge observations are shown in gray and black lines, respectively. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

assessment on this question.

4.2. The optimal combination of Q priors and RS observations

We further show some examples to discuss how the RS data and
priors should be optimally combined for RSQ at different locations.
Table 3 summarizes the information of two selected gauges in Brazil that
consistently showed the worst performance in the original BAM/geo-
BAM. For both locations, CV ratios of width to discharge (last column of
Table 3) are <0.3, suggesting their W vary much less than Q. But the CC
between log-transformed W and Q for the first gauge is low (~0.09),
indicating little useful temporal Q information in W, while CC for the
latter is high (0.75).

For the first location Brazil 14,110,000 (Rio Negro River, 1.2153°S,
66.8525°W), the limited RSQ accuracy is mostly due to the rectangular-
like shape of channel geometry, together with the high LAI (~4.3, the
Amazon rainforest) that blocks the optical sensors to capture the W
variability; for this case, consistently improved RSQ was obtained with
richer Q priors (Fig. 12a). For the contrasting example of
Brazil 46,150,000 (Sao Francisco River, 12.1825°S, 43.2231°W), richer
Q priors led to improved inversion accuracy by allowing for more flow
variability, but the behavior of geoBAM seas outperforming ggoBAM_mon
also showed up (see the best KGE in Table 3).

We closely examined the hydrographs in Fig. 12, and found that
geoBAM_mon (pink line) may have provided over-confident Q priors on
the low/high flows, which resulted in the sub-optimal RSQ when the
priors are biased but RS observations are informative. We use the dry
months to elaborate on the problem. For example in August, geo-
BAM mon stated the Q prior to have a mean of ~721 m3/sand a tight CV
of 192 m®/s, while geoBAM seas stated it to have a greater mean of
~1148 m3/s with less confidence (i.e., a greater CV of 513 m3/ s). Under
these setups, in the 1980s when the low flows were relatively high
(~1500 m3/s), geoBAM _mon under-estimated Q (pink lines) but geo-
BAM seas estimated it reasonably (orange lines); from 2014 onwards
when low flows were observed, both reasonably estimated the discharge
to be ~600 m>/s. The difference is ascribed to the wider Q prior dis-
tribution of geoBAM seas, allowing for more RS information to be
ingested based on the Bayes theorem. Similarly, ggoBAM mon almost

14

always overestimated the high flows when it should be relatively low (i.
e., peaks of <4000 m>/s, black lines for the gauge observation). These
over-confident prior distributions of Q for low/high flows explain why
richer priors do not guarantee improved RSQ, suggesting better strate-
gies such as the inflating the prior uncertainty estimates need to be
considered for future optimization of the global RSQ.

In light of the above, we further assessed the locations where richer Q
priors do not lead to improved RSQ, as preliminarily outlined by Fig. S3.
Among them, the high-latitude rivers are prominent, and we believe it is
related to the challenges with the prior model GRADES/GRFR that
struggles to fully capture the flow variability on cryosphere processes
such as frozen soil freeze/thaw, and glacier/snow melt. Therefore, the
bulk water balance aggregated over longer times yields a better prior as
the model cannot finely resolve these processes. We also note that richer
Q priors almost always degraded the inversion accuracy for locations
immediately downstream of a reservoir/lake (see KGE values in Fig. 13;
the degradation by ggoBAM_mon can be more than geoBAM seas). This is
because the prior model GRADES/GRFR did not account for dam/
reservoir regulations, thus propagating the wrong flow variability to the
inversion. In this case, the bulk water balance (or the less temporally
resolved priors) also yields better results.

Interpretations of these cases helped to outline a clearer picture on
how we can optimally combine the RS observations and the priors to
improve the generalizability of global RSQ. For example, we suggest
using inflated distributions for the monthly priors, which may help
better capture the flow extremes. Additionally, we suggest global rivers
to be more explicitly labeled such that less informative Q priors should
be used at places with known problems of a particular prior model. Here,
rivers with runoff contributed from cryosphere processes or those
immediately downstream of a reservoir should be labeled to use less
informative priors, while other prior models may have similar or
different error structures, depending on how the prior model was con-
structed. Lastly, one should also account for the physical properties of
rivers, e.g., by nature, rivers of certain geomorphological types (e.g.,
incised rivers) should have limited W variability; for this case, any
additional prior knowledge can be key to the Q estimation. By contrast,
rivers of high-b values (e.g., those with high width-to-depth ratio) can
have W as a strong predictor of Q, and for this case uninformative priors
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Fig. 13. The RSQ inversion accuracy for four randomly selected locations immediately downstream of a reservoir/dam. The left column shows the ESRI satellite
images of these locations; the right column shows the RSQ time series (black: gauge observations; red: geoBAM; orange: geoBAM seas; pink: geoBAM_mon). The KGE
for each prior configuration is printed in the same colour as the hydrograph. Note the strong control of the prior on the bias of the output in panel f. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

should be used, where explicitly labeling of high-b channels can lead to
optimal inversions. Although the RSQ problem for SWOT will be
different from this assessment as one would obtain river height/slope
information, we believe the suggestions on how to configure the priors
and RS observations for optimal inversion will hold true for the SWOT
settings (e.g., using wider distribution, labeling rivers, accounting for
the river's intrinsic geomorphologic type). In the future, a clearer un-
derstanding of this question will be possible by using increasingly
available geospatial datasets, such as hydrologic modeling (Lin et al.,
2019), or new soil, vegetation, geology (Beck et al., 2015), or geomor-
phic datasets (Brinkerhoff et al., 2020) to update our hydroclimatic/
geomorphologic/hydraulic understanding of global rivers, and we
believe filling up the knowledge gap is the important next steps for the
SWOT era.

5. Conclusions and discussions

We extracted multi-temporal river widths from 357,389 Landsat

scenes (1984-2019) and used them for daily Q inversion with BAM/
geoBAM for evaluation at 3078 sites. The large spatial coverage and
diversity of rivers presented a stern test, which promoted the under-
standing of the promising status of global RSQ and the remaining
challenges that require further attention. We suggest this framework is
useful for all RSQ, including SWOT, with the following main findings:

e Using ‘off-the-shelf” BAM/geoBAM configured with width-only RS
observations, we found 33-37% of the three-thousand evaluation
sites show daily correlation >0.5 and 27-39% show positive KGEs.
This number reaches 46-65% with richer Q priors on flow season-
ality and monthly variability, which translates to 1400-2000 suc-
cessful inversions. As our evaluation setup mimics ungauged
scenarios and that past studies have suggested KGE > -0.41 already
denote useful model skills than the benchmark, the results here with
the stricter KGE threshold demonstrate a conservative estimate of the
skill, showing great promise for the global scale RSQ.
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e By probing into factors influencing the RSQ accuracy for BAM/geo-
BAM, we found that the inversion is the most sensitive to the channel
geomorphological factor b and climatic aridity, where optimal con-
ditions for inversion include high-b, sub-humid to humid environ-
ments, moderate variability in width, LAI, and mean width. By
applying filters on one factor at a time to gradually increase KGE,
favorable RSQ conditions were outlined and the complementary
strengths of RS and hydrologic modeling started to appear.

The results prove the generalizability of BAM/geoBAM, while
pointing to the condition of rivers that requires future improvements
(e.g., low-b channels, arid climate, low/high width variability, high
LAI, and wide rivers; the wide river group calls for a better differ-
entiation for channel-like reservoirs, as well as improving the
geomorphic priors in geoBAM). We suggest other RSQ algorithms
that claim global applicability also undergo similar large-scale
evaluation as data become obtainable; this can help prioritize algo-
rithm improvements as we move to the global scale RSQ.

By presenting examples on richer priors did not always lead to
improved RSQ, we discuss the optimal ways of configuring the RS
observations and the prior model, which includes inflating the dis-
tribution in the monthly priors, labeling global rivers with known
problems in the prior model, and accounting for the river's geo-
morphology. These suggestions should also hold for the SWOT
setting for global discharge inversion.

Although our work has been largely motivated by the SWOT's
launch, it is noted again that the accuracy revealed should not be
directly linked with the SWOT discharge product. The additional in-
formation on river stage/slope and better data retrievals from SWOT
will lead to better RSQ particularly at locations where relying on W
alone is inadvisable. Additionally, as low-b channels take up almost two
thirds of our assessment likely because gauges are preferentially located
in places with stable hydraulics, one should expect even better RSQ for
naturalized and ungauged rivers for SWOT. Overall, our work adds value
to the existing RSQ studies by prioritizing “spatial generalizability” over
“perfect skill at limited locations”. This emphasis not only helps to offer
insights into factors compounding the RSQ inversion behavior at scale,
but also helps to outline the optimal ways to combine RS data and priors
globally. In the future, we suggest more systematic geospatial data
collections on river hydraulic variables from altimetry missions (e.g.,
Coss et al., 2020; Hou et al., 2020; Huang et al., 2020a; Nielsen et al.,
2022) and optical sensors (e.g., Feng et al., 2022), together with
improved prior knowledge of river hydroclimatology, geomorphology,
and hydraulics (Bjerklie et al., 2020; Brinkerhoff et al., 2020; Lin et al.,
2019; Linke et al., 2019). Such integrated knowledge and explicit la-
beling of rivers holds potential to vastly improve our monitoring capa-
bility for the discharge variability worldwide in the SWOT era.
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Both BAM and geoBAM are based off the AMHG theory. The equation adopted by geoBAM is different from BAM in that it has more explicit
geomorphic physics based on Dingman's (2007) channel formulation. The original BAM writes the log-transformed AMHG as Eq. (1):

logW;, = b(logQ, — logQ.) +logW. + ¢,

(€8]

where W; ;stands for width observation for cross section i at time t; Q., W, are global parameters for AMHG,; b; is the width-discharge exponent; and e
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is the error term. Later, geoBAM leverages theoretical work (Brinkerhoff et al., 2019) reconciling AMHG with traditional hydraulic geometry via the

model of Dingman (2007). This re-writes AMHG as Eq. (2):

-1
5r;
Wi\ 1| 5 s/ 1 \ st 7(HT>
0= (i) | i () s

C

(2)

where several variables were added into AMHG, including Wj, Dy that denote bankfull width/depth, r; that represents a channel shape parameter by
Dingman (2007), n; as the Manning's roughness, and S;; for channel slope. This updated Eq. 2 makes the hydraulic form of AMHG more physics-based

and resemble the Manning's (Brinkerhoff et al., 2020).
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