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Abstract

How to construct the pseudo-weights in voluntary samples is an important practical problem in survey
sampling. The problem is quite challenging when the sampling mechanism for the voluntary sample is
allowed to be non-ignorable. Under the assumption that the sample participation model is correctly
specified, we can compute a consistent estimator of the model parameter and construct the propensity
score estimator of the population mean. We propose using the empirical likelihood method to con-
struct the final weights for voluntary samples by incorporating the bias calibration constraints and the
benchmarking constraints. Linearization variance estimation of the proposed method is developed. A
toy example is also presented to illustrate the idea and the computational details. A limited simulation
study is also performed to evaluate the performance of the proposed methods.
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I. Introduction

Probability sampling is a gold-standard method for obtaining a representative sample from a tar-
get population. Probability sampling allows constructing valid statistical inferences for finite pop-
ulation parameters. Classical approaches in survey sampling are discussed in Cochranl®, Sirndal
et al.?), Fuller!"?, and Tillél"].

Despite the promise of probability samples, non-probability samples are common even though
an appropriate representation of the target population is not guaranteed. Nowadays, collect-
ing a strict probability sample is almost impossible due to unavoidable issues such as frame
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undercoverage and non-response. Also, the cost of strict probability sampling is increasing. How-
ever, statistical analysis of non-probability survey samples faces many challenges, as documented
by Baker et al.ll. Non-probability samples are subject to selection biases, and they do not repre-
sent the target population. A popular framework in dealing with biased non-probability samples is
calibration weighting incorporating the auxiliary information observed throughout the finite popu-
lation. Such calibration weighting method is based on the assumption that the sampling mechanism
for the non-probability sample is ignorable after adjusting for the auxiliary variables used for cal-
ibration weighting. Such an assumption is essentially the missing at random (MAR) assumption
of Rubin?¥l, Using MAR assumptions, calibration weighting methods for non-probability samples
have been discussed in Dever and Valliant!® and Elliott and Valliant®®), among others.

However, the MAR assumption may not be satisfied in many cases. That is, the selection bias
may exist even after controlling on the auxiliary variables that are observed throughout the finite
population. In that case, we need to build an explicit model for the non-ignorable sampling mecha-
nism that reflects the dependency of the sampling mechanism on the study variable that is subject to
missingness. Under a correctly specified model of the sampling mechanism, the generalized method
of moments approach in Kott and Chang!!”l and Wang et al.?! or the maximum likelihood estima-
tion approach considered in Pfeffermann and Sikov?’, Riddles et al.>3], or Morikawa et al.'l can
be developed. Chapter 8 of Kim and Shaol'¥ contains an extensive review of statistical methods for
non-ignorable non-response models.

In this article, motivated by Qin et al.*?, we consider combining non-ignorable selection model
with empirical likelihood method to develop a unified approach to propensity score weighting for
voluntary samples. Under model identification condtions, the proposed method can handle non-
ignorable selection model. The final weights can incorporate the auxiliary variables through cali-
bration weighting. Statistical inference with the final propensity score weighting is somewhat com-
plicated due to the several steps in the final weighting. While the idea of using a non-ignorable
response model to construct the final propensity weights for handling voluntary sample is natural,
the literature on this research direction is somewhat limited. Thus, we present a systematic approach
to using a non-ignorable sample participation model to adjust the selection bias and make infer-
ences from a non-probability sample. The empirical likelihood is nicely applied to create the final
weights. The proposed method, however, is based on the model assumption for the sampling mech-
anism. We also present a toy example to illustrate the idea and give the computational details. If
a single model assumption is not feasible, we can compute several estimates under different model
scenarios and may consider sensitivity analysis (Copas and Eguchil®).

The article is organized as follows. In Section 2, the basic setup and the research problem are
introduced. In Section 3, propensity score estimation method under non-ignorable model is dis-
cussed. In Section 4, the final propensity score weighting method using empirical likelihood is pro-
posed and its variance estimation is discussed. In Section 5, an illustrative example is used to present
the computational detains of the proposed method. In Section 6, results from a limited simulation
study are presented. An extension to a semiparametric non-ignorable selection model is discussed
in Section 7. Some concluding remarks are made in Section 8.

2. Basic Setup

Let U ={l,---, N} be the index set of the finite population of size N. Let S C U be the index set
of sample. Let §; be the sample selection indicator of unit i such that §; =1 if i € Sand §; =0



10 Calcutta Statistical Association Bulletin 75(1)

otherwise. We observe y; only when §; = 1. We assume that the vectors of auxiliary variables x;
are available throughout the finite population. We are interested in estimating the population mean
0 = N3Ny from the sample.

Letw(x, y) = P(8 =1 | x, y) be the propensity score (PS) function for the sampling mechanism.
If 7 (x, y) is known, the empirical likelihood (EL) method can be used to estimate the parameter of
interest. That is, we first find the maximizer of

Up) =Y log(p))

ieS

subjectto ) ;¢ pi = 1 and

> pim(xi. ) = W (2.1)

ieS

where W= P(§ = 1) is the marginal probability of § = 1. If W= N~! Zl]i | 7; is unknown, we can
estimate I by the profile empirical likelihood method, as considered by Qin et al.?l, or simply use
Wur =n /N, where n = | S| is the realized sample size. Constraint (2.1) can be called the (internal)
bias calibration constraint (Firth and Bennett!!”)). In addition, we may impose

> pixi =Xy (2.2)

ieS

as an additional restriction, where Xy = N~! Zl]\; 1 X;. Constraint (2.2) can be called the bench-
marking constraint. Constraint (2.1) is used to remove the selection bias and constraint (2.2) is
used to improve the efficiency of the resulting EL estimator. The implicit assumption for using (2.2)
is that the outcome model is linear as in E(Y | x) = x'g for some B. If the outcome regression model
is non-linear, we can directly use the model calibration of Wu and Sitter® to replace the bench-
marking constraint in (2.2).

Once p; are obtained from the above optimization, the final estimator of 6 is obtained by

OpL = Zi?iyi- (2.3)

ieS

The final estimator in (2.3) is often called the maximum empirical likelihood estimator (MELE)
of 6. The above empirical likelihood estimator has been considered by Qin et al.??l, Kim!'3l, and
Berger and Torres?l, among others.

If W= N"! Zl]\; , ; is known, using the standard linearization, we can obtain

N
. 1 . 0 . _
OpL = N 2—1 {J/i + ;ll i = )/z‘)} +0,(n"1), (2.4)
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where j; = 7B + x§B2 and

-1
A /
B\ _ N e ofm =Wy
(/}2> B Z;ni <Xi —Xy) \xi — Xy -X;Ni x; — Xy )"
e AS]

A sketched proof for (2.4) is presented in Appendix A. Result (2.4) means that the EL estimator is
asymptotically equivalent to a version of regression estimator which satisfies the calibration con-
straints.

The linearization formula in (2.4) is particularly useful in developing linearization variance esti-
mation. That is, we can use

. 1 Voo
V=m§(m—7m) ; (2.5)

where 7, = J; + 8,-71[1 (yi — 3) and fjy = N! Zil 7i;, to estimate the variance of fg;. The lin-
earization variance estimator in (2.5) is derived based on the assumption that §; are mutually inde-
pendent to each other. If they are correlated as in survey sampling, the joint probabilities of (8;, 8;)
are needed to compute more accurate variance estimation.

3. Propensity Score Estimation Under a Parametric PS Model

In probability sampling, r; are known and the EL method in Section 2 can be directly applicable. In
the voluntary sampling, we do not know the propensity score function 7 (x, y). Instead, we may use
amodel on 7 (x, y), say 7 (X, y) = (X, y; ¢o) for some ¢y, and develop methods for bias adjustment
under the model. We first discuss how to estimate ¢y from the voluntary sample and then discuss
estimation of 6 = E(Y).

We assume that the propensity score function follows a parametric model such that 7 (x, y) =
(X, y; ¢o) for some ¢y € ® C R?. The observed likelihood function of ¢ derived from the marginal
density of (8;, 8; ;) given x; can be written as

=

1-5;

Lass() = [T {01 1 x0m(xi. yiz )} {1 = 7 (xi: )}

i=1

3.1)

where
7(x;¢) =E{7(x, Y;¢) | x}.

Thus, to construct the observed likelihood function in (3.1), we may need to make a model assump-
tion about f(y | x). Unfortunately, the resulting maximum likelihood estimator (MLE) of ¢y is not
robust against model misspecification of the outcome model (Copas and Lill). Because we do not
observe y; among §; = 0, we cannot directly apply the model diagnostic tools for complete response.
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Instead of using a model assumption for f(y | x), we can make a model assumption for f(y |
x, § = 1) with confidence, as (x;, J;) are observed for §; = 1. Thus, we can safely assume that fj(y |
x) = f(y]x,8 = 1) is correctly specified. In this case, we can use the following identity which was
originally proved by Pfeffermann and Sverchkovi?!!:

-1

F(x: ) = [ [ son Ao x)dy} | (3.2)
Using (3.2), we can construct
N
Lors(@) = Y {81 logm(xi. yi:9) + (1 = ) log (1 - (x:9) | (3.3)
i=1
where
R —1
#(x:¢) = [ [ ron o x)dy} (3.4)

and ]ﬁ(y | x) is a consistent estimator of fi(y | x). If we define w(x, y;¢) = {7(x, y;¢)}~! and
o(x; ¢) = {7 (x;¢)}~", then (3.4) can be expressed as

o(x; 9) = / o, y: ) Ji(y | dy. (3.5)

The propensity weight in (3.5) can be called the smoothed propensity weight (Kim and Skinner!!*).
See Section 5 for some computational details of the smoothed propensity score function. Further-
more, we impose

i=1

as a constraint for estimating the model parameter in the PS function. Including constraint (3.6)
into the ML estimation will improve the efficiency of the final estimation. It was originally proposed
by Cao et al.Bl,

Morikawa et al.l'! show that the MLE can be obtained by solving

N 5.

— L 1}b*(x;50) =0, 3.7
;{”(Xn)’i;@ } (xi: ) G0
where

b*(x;¢) = E{h(x;, Y;¢)m(xi, Y;¢) | x;,8; =0},

h(X Vs ¢) _loglt{”(x Vs ¢)}
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and

1 —m(x, y;¢>).

O(x, y;¢) = 2%, )

More generally, we can estimate ¢ by solving

. | & 5; o
Up(¢) = ﬁ; {m - 1} b(x;;¢) =0 (3-8)

for some b(x; ¢) such that the solution exists uniquely. For example, we can use b(x;; ¢) = x;. Param-
eter estimation using (3.8) under a parametric PS model was first considered by Kott and Chang(!7!
and further explored by Wang et al.?’l. Note that we can achieve (3.6) by including the intercept
term in b(x; ¢). If ¢ is obtained from (3.8), we can compute #; = 7 (X;, y;; @) in the sample and we
can estimate 6 = E(Y) by

R 1 1
bos =5 D = (3.9)

ieS !

Using the standard linearization, we can show that

A 1 ol ’ 51' / —1/2
eps=ﬁ§{yb,-+;(y,-—ybi)}+op(n ) (3.10)

1

where b; = b(x;; ¢) is defined in (3.8),

y' = £ (X 1) [ £ bOomcx )]

and hy(X, Y) = h(X, V){1 — 7 (X, Y)}. A sketched proof for (3.10) is presented in Appendix B.

The linearization formula in (3.10) can be used to construct the linearized variance estimation.
We can apply the same linearization formula in (2.5) with a different formula for 7;. Since we use a
different linearization result in (3.10), we may use

. A6 A
ni=b;y + - (yf - bir)
i

in applying the variance estimation formula (2.5), where

-1
p = (Z(ﬁi1 — Dy | D @ — Dbk

ieS ieS

and ¢ is replaced by ¢ in the linearization formula.
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Now, to incorporate the auxiliary information, we consider the class of the regression PS estima-
tor

=

Orrs(B) = % Z {X B + - X;ﬂ)} (3.11)

where B is to be determined.
~ %k . . ~ . . . .
If we choose B such that the asymptotic variance of Ogps(f) is minimized among the class in
(3.11), we obtain the optimal PS estimator. The optimal ,B* can be written as

A1 = A1 ~A—1
Eni X; Cov Eni X,-,ET[ Vi

ieS ieS ieS

and we can use Taylor expansion to derive the explicit formula for the variance—covariance matrix.
When ¢ is obtained from (3.8), we can compute the optimal estimator by solving

Zﬁ',‘il(l — ﬁ'z) (y,- —X;ﬂ —b:y) x; =0

ieS

and

DA =) (= xB—bjy)hi =0

ieS
for B and y. Morikawa and Kim['¥l proposed an adaptive optimal estimator achieving the semi-

parametric lower bound.

4. Empirical Likelihood Method

Using the parameter estimation in Section 3, we can apply the EL method for final PS weighting.
That is, we first find the maximizer of

Up) = _log(p)

ieS

subjectto ), g pi =1,

N
Y i yid) = N Y R(xi3 ), @.1)
i=1

ieS
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and

N
Zpixi =N"! in, (4.2)
i=1

ieS

where 7 (x;; ¢) is defined in (3.4) and ¢ is computed from (3.8). Condition (4.1) is the bias calibration
condition.

Note that the final weights are obtained in two steps. In the first step, a consistent estimator
é of the model parameter in the PS model 7 (x, y;¢) is computed. In the second step, we treat
#t; = m(X;, y;; @) as if the true inclusion probability and apply the EL method incorporating the
bias-calibration constraints and the calibration constraint.

Now, to discuss the asymptotic property of the final EL estimator g1 , we apply the same two-
step procedure to obtain Taylor linearization. In the first step, ignoring the uncertainty in ¢ for now,
we can apply the linearization method for obtaining (2.4) to get

A 1o o 8i ) |
OpL = — E ¥ _ V +o0,(n"1? , 4.3
BTN P [ 7(Xi, Yis P) <y g ) P 3

where 3 = #(xi; $)B1 + KB, 3" = m(xi, yi; $)B1 + X, B, and

—1
A A / A
ﬁl g} J%i—W f[,—W A2 ﬁ'l’—W i
(ﬂz an[ x; — Xy \xi — Xy 27” xi— Xy )"
ie ie

Here, #; = n(x;, yi;d) and W= N"' SN 7(x;: ).
Note that we can express (4.3) as

N
o =+ > Ui (30 = 8) + st 2 (3= xib) 0,07 e

In the second step, we need to take into account the uncertainty in ¢. To do this, we apply the Taylor
expansion with respect to ¢ and obtain the final influence function.
Now, to apply the Taylor expansion with respect to ¢, define

N R l L
Ou(p) = ﬁ;ﬁl (W(Xi;¢)—5i> N;{X 132+—( XiﬂZ)}
= 0,.1(9) + 01 2(9)
and note that (4.3) can be written as

brL = 0u(@) + 0,(n™'/7).



6 Calcutta Statistical Association Bulletin 75(1)

We can apply Taylor linearization to . 1(¢) with respect to ¢ to get

=

00,1(9) =

2|*
Mz

(A p) = 8) + E [N_l p: 335,ﬁ(x,-;¢>)} (¢3 - ¢) +o,(n~1?)

N
Z[ﬂl{n(x,,@ﬂ b;} —

i=1

2I~

,3 {m; +K/1bi}:| +0,(n" '), (4.5)

l

where 71; = (x;, yi; @), k) =

~E{:(X: )} [ {p0ho(X, 17)] " and

gi(x;9) = —¢7T(X :¢)

1 .
_ )P [ / {m - l}h(x, VARG | x)dy] 4.6)

Also, we can apply the Taylor linearization to 6, 5(¢) with respect to ¢ to get

N

be (@) = iNZ {X;‘Bz + i_[ (J’i - Xiﬁz)}

i=1

N
Z i 2m (1 — ) (v — x;ﬁz)h;] (g, - ¢,) +o,(n1?)

4.7)

i

N
1 N 8i A , _
=5 2 {b b 2 (5= B =) | 0,071

where

ey = E{ (v = < Bomx. vy [ £ bComx. )]

and ho(X, Y) = h(X, N{l —=(X, N}.
Combining (4.5) and (4.7), we obtain

N

OpL = Z { 3+ ( j’,(l))} + Op(nfl/z), (4.8)

where

P = BiiA(xi; ) + biic1) + X B, + blic
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and
(1) = Bi (i + bi1) + X, B, + bk

The linearization formula (4.8) shows that the EL estimator is asymptotically equivalent to a version
of regression estimator but we use 7 (x;; ¢) instead of ; = 7 (x;; yi; @) in j}fo) because y; are observed
only in the sample. The uncertainty associated with B is asymptotically negligibls:.

The linearization formula can be used to develop the variance estimation for g . We can use

-1

N N
R ==Y gi(xi:d) 1D i@ — Dbk 4.9)
i=1 i=1

and

@) = Zs,-(ﬁ;l—l) (3 = x;Bo) B § 436 (77" = 1) by (4.10)

to compute the linearization variance estimator.

5. An lllustrative Example

We use a toy example to demonstrate the method and describe the computational details. Suppose
that we have two auxiliary variables, X7 and X3, and the PS model is given by

_ exp(go + d1x1 + ¢2y)
P@E=1]x,x,y) = P ren——— m(x1, y; ). (5.1)

Parameter ¢ = (¢, ¢1, ¢2) 1s estimated by solving

N

. 1 8 B
U;,(q&)zﬁg{m—l}bi_o (5.2)

where b; = b(x;) is a vector such that the solution to (5.2) exists almost everywhere.
The Newton method for solving (5.2) can be written as

N N
A (141) ~(1)
" =¢"+1> 50 b:m, Z

— 1l (5.3)
i=1 i=1 n(xluyza¢ )

where O = {w(x;, 71: ")) — 1 = exp(=4} — §{"x1; — ${ ) and h; = (1, x1;. 7). Because
{Zi:l 8; 0}” b,-h;-} is not symmetric, the computation for (5.3) can be unstable.
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One way to avoid the computational problem is to make the parameter estimation problem an
optimization problem. One way is to compute ¢ by finding the minimizer of

0(¢) = Uy(p) Uy(9).

In this case, the Newton method can be expressed by

n ~ (1)

—1
¢“*”=&S‘”—{Ub(és(’)ﬂ'fb(és"))} 0@y 03"

Y U@ ) (5.4)
where

A (1)

N
2 — (
Uy "y =—N"Y " 50"bh.
i=1

Now, let us discuss how to compute the smoothed propensity score function 7 (x;¢) in (3.4).
Since ¢ is obtained by solving (5.2), it satisfies

N N
Y Sio(xi, yi $Ib(xi) = Y b(x).
i=1 i=1
Thus, by (3.5), the smoothed weight &(x; ¢) = [ o(x, y; 43);’1 (¥ | x)dy should also satisfy
N N
> sid(xi:@)b(xi) = Y b(x;) (5.5)
i=1 i=1
which is the calibration equation for b(x). That is, the smoothed weights should satisfy the same

calibration equation as the original weights.
Since (X, y; @) = 1 + exp(—¢o — ¢p1x1 — ¢p2)), one way to achieve (5.5) easily is to use

Jir1%) = ——=—exp {—7 (- x/&)z} (5.6)

1
V2o

for some & and 6%. We can use the moment-generating function formula of Gaussian distribution
to compute

. 1
/ exXp (—23) /i (v | X) dy = exp (—@x’a + §¢§&2) : (57)
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We can use constraint (5.5) to compute & and 62. That is, & is the solution to the following estimating
equation:

N N

N N n 1.
E 811 +exp <—¢o — ¢1x1; — PrXjo + —¢§&2> b; = E b;. (5.8
i=1 2 i=1

To obtain the unique solution, we may set 6> = 1. Once & is computed from (5.8), we can obtain

-1

(X3 9) = !1 + exp (-@0 — v — ézxi& + %&%52>}

Once we obtain 7 (x; ¢), we can apply the EL method to obtain the final PS weights. The actual
computation for the EL weighting can be implemented using the method of Chen et al.). Once
pi are obtained by the optimization problem using the bias calibration constraint (4.1) and the
balancing constraint (2.2), we can construct the maximum EL estimator of 6 by fg; = Y ies Divi-

To compute the linearization variance estimator, we need to compute £; and &, in (4.9) and
(4.10), respectively. To compute £, we need to compute g(x; ¢) in (4.6). Since h(x, y) = (1, x1, »)/,
we can express

g(x;9) = (R (x:9))° {fw(x, yi) (L x, y) iy | X)dy — 1} = (21,8, 8).
Since 7 (x; ¢) satisfies (5.5), we can obtain
& = (F )P { [ ot )7t 1 0y - 1}

f oo g2 |
R B il
w(x;¢) {1 - 7(x: ¢)}

and
o =x-7x¢){l —F(x:¢)}.
Now, to compute g3, note that
2 = {#A(x: ) / exp(—¢o — $1x1 — ¢y fi(y | X)dy

= {#(x; $)}* exp(—¢o — $1x1) / exp(—¢2 )y fi(y | X)dy.
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A

If y| (x,8 =1) ~ N(X'&, 6%), then we can obtain

V2ré
S 2 1 1 /A ~2 2
= {7(x; )} eXp(—¢o—¢1x1)/y- m@(p{—@(y—xwra @) }dy

1 1
23 = {7 (x; $)}” exp(—o — ¢1x1) / exp(—$2))y - —=— exp {—@(y - X/&)Z} dy

1 1
X exp {—6—2(;1&)2 + 272(:5& - &2¢2)2}
1
= {#(x; $)}> exp(—o — ¢1x1) exp (545%52 - (X/&)¢2) . (X/& - ¢252)
- (x’& _ ¢26—2) A ) {1 -7 9)),

where the last equality follows from (5.7).

6. Simulation Study

To evaluate the performance of the proposed methods, we performed a limited simulation study. We
consider two outcome models for the simulation study:

I. Ml:y; =—44x;; + x5 +e
2. M2: Vi = 0.5 x (X],' + X0 — 5)2 —1.5 + e

We use xp;, X3 ~ N(2,1) and ¢; ~ N(0, 1). Regarding the response mechanism, we used §; ~
Bernoulli(rr;) where

_ exp(¢o + d1x1; + d21)
1 + exp(¢o + d1x1; + h21i)

i

where (¢g, @1, ¢2) = (=2, 1.0, 0.5). We generated a sample of (xy;, x2;, i, 8;) from the above mech-
anism with sample size N = 5, 000. The overall sampling rate is 50 per cent in both scenarios. We
repeat the Monte Carlo sampling independently B = 1, 000 times.

From each sample, we computed four estimators.

1. (EL-MAR) The EL estimator assuming

exp(¢o + d1x1; + d2x27)
1 + exp(¢o + ¢p1x1; + P2x27)

(X, y;¢0) =

as the response model. Note that the response model is MAR and incorrectly specified.
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Table I. Monte Carlo Biases, Variance, and Mean Squared Error (MSE)
of the Estimators Computed from 1,000 Monte Carlo Samples

Scenario Method Bias Var(x 1000) MSE(x 1000)
MI Full 0.00 0.55 0.55
EL (MAR) 0.25 1.34 61.11
PS 0.00 2.09 2.11
EL-1 0.00 1.94 1.95
EL-2 0.0l 2.03 2.08
M2 Full 0.00 0.93 0.93
EL (MAR) 0.62 2.24 386.14
PS 0.00 2.75 2.75
EL-1 0.00 2.73 2.73
EL-2 0.00 2.72 2.72

2. (PS) The PS estimator in (3.9) under the correct model. The parameter ¢ for the PS model
is estimated by solving

é(n(xl,,y,,qs) 1> (?1‘) B (8)

where X; = (xy;, x;)'.

3. (EL-1) The maximum EL estimator using the estimated 7; in the correct model with the bias
calibration condition in (4.1).

4. (EL-2) The maximum EL estimator using estimated 7; under the correct model and satisfy-
ing the calibration constraint (2.2) in addition to (4.1).

The simulation results for the point estimators are summarized in Table 1. The performance is as
expected. The EL method assuming the MAR model is severely biased. The EL method improves
the efficiency over the PS method under the correct model, but the efficiency gain is not high in this
simulation setup.

In addition to point estimators, we also calculated the normal-based interval estimator for the
proposed EL-2 estimator with 95 per cent nominal coverage rate. The realized coverage rates are 95
per cent and 96 per cent for Scenarios M1 and M2, respectively. Under M2, the linearized variance
estimator is slightly overestimated with a relative bias equal to 8 per cent approximately. The slight
overestimation of variance for M2 seems to come from the fact that the linear regression model
7i(y | x) given by (5.6) in computing 7 (x; ¢) through (3.4) is incorrectly specified under M2. Under
M1, the normal model assumption for fi(y | x) is roughly satisfied and the linearization variance
estimator is nearly unbiased.
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7. Extension to a Semiparametric PS Model

In this section, we briefly present ideas for an extension to the semiparametric propensity score
model. The parametric model approach presented in Section 3 is easy to derive the theory but may
be subject to the bias due to model mis-specification. To resolve the problem, we can consider a
more flexible propensity score model. One possible model is

exp {g(x;) + ¢i}
1+ exp{g(x;) + ¢}’

rX, y)=Pr6=11x,3)= (7.1)

where g(x) is completely unspecified. The semiparametric PS model in (7.1) is first considered by
Kim and Yu!'® and further discussed by Franks et al..''l. Model (7.1) implies that

exp (v i)
Joi 1xi) = fi (i | x) x , (7.2)
E{exp(yY) | x;, 8; = 1}
where y = —¢ and f5 (y; [ X)) = f (i | i, 8; = 9).
Under this model, we can use
)
E { —1] x} =0
(X, )
to obtain
_ E{dexp(yy) | x}
exp{g(x)} = E—51x)
For known y case, we can use kernel regression estimator
. Do 8 exp(y y) Kn(x — xi)
exp{g, (x)} = l_n
PL ) = S (= 80K — )
to obtain the following profile PS function
R exp{gy (xi) — vy i}
fp(Xis yisy) = z (7.3)

1+ exp{g,(x;) — vy}

For estimation of y, Shao and Wang®®! suggested using the GMM method based on some
moment conditions. We can use the profile log likelihood to find the maximum likelihood estimator

of y:

N
Cpy) = Z [8: log{7 ,(xi, yi; )} + (1 — 8) log{l — 7, (x;: )} ] (7.4)

i=1
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where
R -1
(X)) = U{ﬁp(x, vyl A X)dy} :

See Uehara et al.?8! for more details of the profile maximum likelihood estimator of . Once y is
obtained by finding the maximizer of £,(y) in (7.4), we can apply the same EL method to find the
final weights. That is, we find the maximizer of

Up) =" _log(p)

ieS

subjectto ), g pi =1,

N
> pidp(xi i 7) = NY wp(xiP),

ieS i=1

and (2.2). Investigating the asymptotic properties of the resulting EL estimator is beyond the scope
of the article and will be presented elsewhere.

8. Concluding Remarks

We have developed an EL-based approach to propensity score estimation with an unknown propen-
sity score function. Assuming that the PS model is correctly specified, we can obtain a consistent
estimator of the PS model parameters and construct the final EL weights. The final EL weights can
incorporate the benchmarking calibration constraints in addition to the bias correction constraint.
The two-step linearization method described in Section 4 can be used to develop a linearized vari-
ance estimator of the maximum EL estimator of the population mean. If the PS model is unknown,
we may consider a more flexible model, as discussed in Section 7.

There are several possible extensions. Instead of using a single PS model, we can consider multi-
ple PS models and include multiple constraints for bias correction in the EL estimation. Also, the
proposed method can be extended to data integration problems (Yang and KimP!), combining a
voluntary sample with a probability sample. Such extensions will be presented elsewhere.

Appendix

A. Proof of (2.4)

The EL optimization problem can be expressed as maximizing £(p) = ) ;_.slog(p;) subject to
Y ies Pi = 1, bias calibration constraint (2.1), and the benchmarking constraint (2.2). To incor-
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porate the three constraints, the EL weights can be written as

. 1 1 A
Di=— - = — = pi(}),
1+ a(m — W)+ A (x; — Xy)

where &’ = (A1, ):/2) satisfies U; () = 0 and Uh(X) = 0, and

O =3 pim = W,

ieS
() = Z Pi)xi — Xy.
ieS
Now, under some regularity conditions, we can show that A converges in probability to A* =

(A*, A5 'Y, where X =1/ Wand A5 = 0. Since we can express QEL = Ziesi’i%’ = 9EL():) where p; =
pi(X), we can apply Taylor linearization around A = 1* to get

Op = O (V) — B1 UI(AY) — BLU() + 0,(n'12) (8.1)

where (81, B5) satisfies

GO B OO (5 (Bl 0) ‘s
E( 00 B0y | \B2) = \ Bl fe ) (52
Thus, using W= N"'"Y"N 7, = n/N + 0,(n"'/?), we can express (8.1) as
P v, 1 g W | , L
EL__,EZS N; 7B+ X;B,) _7§n_i(niﬁl+xiﬂ2)+0!’(n )
1 & S:
= N {(mﬂl + X;ﬂz) + ;’ (y,~ — B — x;ﬂ2)} + Op(n_l/z). (8.3)

Now, to estimate B, note that (8.2) can be written as

A R () -z ()

Therefore, (2.4) is proved.
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B. Proof of (3.10)

The consistency of ¢ to ¢ can be obtained by showing E{U,(¢o)} = 0 with some regularity condi-
tions. Let fpg(¢p) = N~! Y ies Vi/m(Xi, yis ¢). By applying Taylor linearization, we obtain

Os = Ops(90) + [E{a%yéps(@” <¢ - ¢o> +0,(n"'?)
= 1 & - [E{YhO(X, Y)’}] (é _ %) +o,(n"1),

where b; = b(x;; ¢) and ho(x, y;¢) = h(x, y; $){1 — 7 (x, y; )}
Also, by Taylor linearization of U,(¢) = 0, we obtain

-1
¢ —do=— [E{a%),ffb(%)}] Us(o) + 0,(n~"7?)

-1 1 N 8,’
= I:E{b(X)hO(X Y)/}] N Z {m - 1}bi + 0,,(1’171/2).
i=1 1y Vi

Thus, combining the two results, we can obtain
N
. 1 o1 { d; } ~1/2
Ops = — —— = — L 1ty +0,(n?),
Y Ll N; T (Xi, yis @) !
where
7 / / _1
y' = E{mo(x, v} [E{bC0ORa(x, 1}]

Therefore, (3.10) is established.

Acknowledgements

The article has some overlap with the contents in the paper of Wang, Shao, and Kim (2014) published in Statistica
Sinica (doi:10.5705/s5.2012.074), particularly in the introduction section. The authors thank the guest editor,
Professor Partha Lahiri, for invitation to the special issue and for the constructive comments.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of
this article.



26 Calcutta Statistical Association Bulletin 75(1)

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of
this article: Research by the first author was partially supported by a grant from the lowa Agriculture and Home
Economics Experiment Station, Ames, lowa. Research by the second author was supported by JSPS Grant-in-Aid
for Scientific Research(A) 23H0046 and MEXT Project for Seismology toward Research Innovation with Data of
Earthquake (STAR-E) Grant Number JPJ010217.

References

1. Baker R, Brick JM, Bates NA, Battaglia M, Couper MP, Dever JA, Gile KJ and Tourangeau R. Summary
report of the AAPOR task force on non-probability sampling. J Sur Stat Meth 2013; 1: 90—143.
2. Berger YG and Torres ODLR. An empirical likelihood approach for inference under complex sampling
design. J Royal Stat Soc, Series B 2016; 78: 319-341.
3. Cao W, Tsiatis AA and Davidian M. Improving efficiency and robustness of the doubly robust estimator
for a population mean with incomplete data. Biometrika 2009; 96: 723-734.
4. Chen J, Sitter R and Wu C. Using empirical likelihood method to obtain range restricted weights in
regression estimators for surveys. Biometrika 2002; 89: 230-237.
5. Cochran WG. Sampling techniques (3rd ed.). John Wiley & Sons 1977.
6. Copas JB and Eguchi S. Local sensitivity approximations for selectivity bias. J Royal Stat Soc: Series B
2001; 63: 871-895.
7. Copas JB and Li HG. Inference for non-random samples. J Royal Stat Soc: Series B 1997; 59: 55-95.
8. Dever JA and Valliant R. General regression estimation adjusted for undercoverage and estimated control
totals. J Surv Stat Meth 2016; 4: 289-318.
9. Elliott M and Valliant R. Inference for nonprobability samples. Stat Sci 2017; 32: 249-264.
10.  Firth D and Bennett KE. Robust models in probability sampling. J Royal Stat Soc, Series B 1998; 60:
3-21.
11.  Franks AM, Airoldi EM and Rubin DB. Nonstandard conditionally specified models for nonignorable
missing data. Proc National Acad of Sci 2022; 117: 19045-19053.
12.  Fuller WA. Sampling statistics. Hoboken, NJ: John Wiley & Sons, Inc 2009.
13.  Kim JK. Calibration estimation using empirical likelihood in survey sampling. Stat Sinica 2009; 19: 145—
158.
14. Kim JK and Shao J. Statistical methods for handling incomplete data (2nd ed.). CRC press 2021.
15.  Kim JK and Skinner CJ. Weighting in survey analysis under informative sampling. Biometrika 2013; 100:
358-398.
16. Kim JK and Yu CL. A semi-parametric estimation of mean functionals with non-ignorable missing data.
J Amer Stat Assoc 2011; 106: 157-165.
17.  Kott PS and Chang T. Using calibration weighting to adjust for nonignorable unit nonresponse. J Amer
Stat Assoc 2010; 105: 1265-1275.
18.  Morikawa K and Kim JK. Semiparametric optimal estimation with nonignorable nonresponse data. Ann
Stat 2021; 49: 2991-3014.
19. Morikawa K, Kim JK and Kano Y. Semiparametric maximum likelihood estimation under nonignorable
nonresponse. Canadian J Stat 2017; 45: 393-409.
20. Pfeffermann D and Sikov A. Imputation and estimation under nonignorable nonresponse in household
surveys with missing covariate information. J Off Stat 2011; 27: 181-209.
21. Pfeffermann D and Sverchkov M. Parametric and semiparametric estimation of regression models fitted
to survey data. Sankhya, Series B 1999; 61: 166-186.



Kim and Morikawa 27

22.

23.

24.
25.

26.

27.
28.

29.

30.

31.

Qin J, Leung D and Shao J. Estimation with survey data under non-ignorable nonresponse or informative
sampling. J Amer Stat Assoc 2002; 97: 193-200.

Riddles MK, Kim JK and Im J. Propensity-score-adjustment method for nonignorable nonresponse. J
Surv Stat Meth 2016; 4: 215-245.

Rubin DB. Inference and missing data. Biometrika 1976; 63: 581-592.

Sérndal CE, Cassel CM and Wretman JH. Model assisted survey sampling. New York: Springer-Verlag
1992.

Shao J and Wang L. Semiparametric inverse propensity weighting for nonignorable missing data.
Biometrika 2016; 103: 175-187.

Tille Y. Sampling and estimation from finite populations. John Wiley & Sons 2020.

Uehara M, Lee D and Kim JK. Semiparametric response model with nonignorable nonresponse. Scan-
dinavian J Stat 2023. doi: 10.1111/sjos.12652.

Wang S, Shao J and Kim JK. An instrument variable approach for identification and estimation with
nonignorable nonresponse. Stat Sinica 2014; 24: 1097-1116.

Wu C and Sitter RR. A model-calibration approach to using complete auxiliary information from survey
data. J Amer Stat Assoc 2001; 96: 185-193.

Yang S and Kim JK. Statistical data integration in survey sampling: A review. Japanese J Stat Data Sci
2020; 3: 625-650.



