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Abstract

In this work, we employ structured input-output analysis to study the flow
patterns in transitional plane Couette-Poiseuille flow (CPF). First, we focus
on the well-studied intermediate laminar profile, which balances the shear and
pressure effects. We show that the highest structured gain corresponds to
perturbations with wavelengths associated with the oblique turbulent bands
observed in experiments. In addition, the inclination angles of these struc-
tures show a Reynolds number dependence consistent with experimentally
observed trends. We then examine the Reynolds number scaling of the max-
imal structured frequency response as the velocity profile varies from plane
Couette to Poiseuille low. Our results demonstrate that, as expected, the
scaling exponent increases over this range, but this increase is not monotonic.
We attribute this scaling variation to the change in flow patterns that domi-
nate each flow regime. We then focus on the particular case of plane Couette
flow and compute the structured response modes. Their behavior and struc-
tural features are consistent with results obtained through direct numerical
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simulation (DNS) studies. Finally, we employ the structured analysis frame-
work to examine the temporal evolution of the dominant structures. For the
well-studied cases of plane Couette and plane Poiseuille flows, the computed
advection speeds of the oblique structures are consistent with those predicted
through DNS.

Keywords: Structured Input-Output Analysis, Laminar-Turbulent
Patterns, Couette-Poiseuille Flow

1. Introduction

A coexistence of turbulent and laminar behavior has been observed in
wall-bounded shear flows as they transition from a laminar to a turbulent
regime [Tuckerman et al., 2020]. Previous studies have shown that this tran-
sitional state usually takes the form of banded laminar and turbulent regions
with an oblique angle relative to the streamwise direction [Prigent et al.,
2003, Kanazawa, 2018]. Numerical simulations [Tuckerman and Barkley,
2011, Tuckerman et al., 2014, Fukudome and Tida, 2012] and experiments
[Prigent et al., 2003] have indicated that both the wavelengths and incli-
nation angles of these structures depend on the Reynolds number. These
structures have also been used as initial conditions to induce turbulence in
direct numerical simulations (DNS) [Tao et al., 2018].

While the prevalence and large amplification of oblique turbulent bands
in transitional wall-bounded shear flows has been widely observed, a compre-
hensive understanding of their underlying dynamics and role in transition has
yet to be realized. The large channel sizes (~ O(100) channel half-heights),
which is required to observe such patterns, complicates the study of these
structures, see e.g., [Prigent et al., 2002, Tuckerman and Barkley, 2011, Kim
et al., 2020]. Computations of exact coherent structures in channel flows
also highlight the large domain sizes required to characterize the laminar-
turbulent interface of these flow patterns [Schneider et al., 2010]. These large
channel extents increase the computational costs of DNS and the complexity
of experiments that are needed to study these structures further.

The recently introduced structured input-output analysis has been shown
to predict large amplification of oblique structures in transitional plane Cou-
ette flow (PCF) and plane Poiseuille flow (PPF) [Liu and Gayme, 2021] at
a similar computational cost to traditional input-output analysis. Struc-
tured input-output analysis builds upon traditional approaches that analyze



the spatiotemporal frequency response of the linearized Navier-Stokes (LNS)
equations, see, e.g., Bamieh and Dahleh [2001], Jovanovi¢ and Bamieh [2005],
through the addition of a feedback loop with a structured model of the non-
linear interactions. Analysis of this feedback interconnection predicts max-
imally amplified structures with features consistent with nonlinear optimal
perturbations [Rabin et al., 2012, Farano et al., 2015] and DNS studies [Reddy
et al., 1998, Tuckerman et al., 2020]. It also identifies the oblique turbulent
bands observed in experiments [Prigent et al., 2003] and DNS [Kanazawa,
2018] of channel flows, as well as those seen in both stratified [Liu et al.,
2022] and rotating plane Couette flow [Liu, 2021].

This work builds on the study of Shuai et al. [2022], which uses structured
input-output analysis to analyze transitional plane Couette-Poiseuille flows
(CPF). In this flow configuration, the laminar base flow is parameterized by
n € [—1,1] to adjust the ratio of background shear to pressure driving. Plane
Couette flow and Poiseuille flow correspond to the two extremes of the pa-
rameter range, respectively n = —1 and n = 1. We first focus on the widely
studied intermediate case (n = 0) in which the shear and pressure gradient
forcing are equally weighted [Klotz and Wesfreid, 2017, Klotz et al., 2021,
Liu et al., 2021]. Our results indicate that the oblique laminar-turbulent pat-
terns with nonzero streamwise and spanwise wavenumbers show the highest
structured gain. The associated wavenumber ranges of the predicted oblique
turbulent bands are consistent with recent experimental observations [Klotz
et al., 2021]. In addition, the wavenumbers and inclination angles associated
with the highest structured gain vary as a function of Reynolds number,
which is consistent with trends observed in related wall-bounded shear flows,
see, e.g., Prigent et al. [2003].

We obtain the scaling of the highest structured gain for this intermediate
base flow as ~ O(Re®) with a = 1.3, which is halfway between the respective
values of aw = 1.1 for plane Couette flow and 1.5 for plane Poiseuille [Liu and
Gayme, 2021]. However, the increase in the exponent as the flow smoothly
transitions from purely shear (plane Couette flow) to purely pressure driving
(plane Poiseuille flow) is not monotonic. Our analysis indicates that changes
in the slope of the curve correspond to changes in the most amplified flow
structures, i.e., the emergence of different optimal perturbation structures.

We further study the structural features of the oblique turbulent bands by
computing the response modes associated with the optimal perturbations for
the particular case of plane Couette flow. The resulting wall-normal profiles
and velocity field are consistent with previous numerical results [Xiao and
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Song, 2020b, Chantry et al., 2016].

In the last section of the paper, we describe how the structured input-
output analysis framework can be adapted to estimate the downstream advec-
tion speed of structures associated with a particular spatio-temporal wavenum-
ber triplet. The advection speeds of the oblique turbulent bands predicted
through these computations compare favorably to measurements based on
DNS of plane Couette and plane Poiseuille flows [Xiao and Song, 2020a,
Tuckerman et al., 2014, Lu et al., 2019, Fukudome and lida, 2012]. We
then apply this computation to numerically evaluate the dependence of the
structured frequency response on the phase speed.

We organize the remainder of this paper as follows. In section 2, we intro-
duce the plane Couette-Poiseuille flow equations and describe the procedure
for computing the structured input-output gain for this system. We then
compute the structured response for the intermediate CPF profile and com-
pare its behavior to results from traditional input-output analysis in section
3. The Reynolds number scaling and types of structures with the highest
response as the flow transitions from plane Couette to plane Poiseuille flow
are evaluated and discussed in section 4. In section 5 we provide a method
for computing the structured modes, which we use to study the wall-normal
variation and velocity field associated with the oblique waves for the partic-
ular case of plane Couette flow. We then describe how to use the structured
input-output approach to estimate the advection speed of spatial structures
in section 6. The paper concludes in section 7, where we summarize the
results and outline further research directions.

2. Structured input-output analysis formulation

We consider incompressible flow between two infinite parallel plates with
streamwise, wall-normal, spanwise, and time coordinates (z,y, z,t), respec-
tively. The total velocity is decomposed into a laminar base flow and fluc-
tuations about that base flow, i.e., wi; = [U(y),0,0]" + u. The pressure is
similarly decomposed as p;,; = P+ p. We employ the laminar base flow from
Klotz and Wesfreid [2017], which is given by

3(1+n)

ez -+ ()

Uly) = 5

The parameter 1 € [—1, 1] determines the relative contribution of shear ver-
sus pressure gradient with 7 = —1 corresponding to plane Couette flow with
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laminar profile U(y) = y, and n = 1 corresponding to plane Poiseuille flow
with laminar profile U(y) = 1.5y? — 0.5. Here, the streamwise velocity is
normalized by the upper-plate speed U* corresponding to the flow regime
that is purely plane Couette flow. The length is normalized by the channel
half-height h, leading to a wall-normal domain of y € [—1,1]. The Reynolds
number is defined as Re := UT*h, where v denotes the kinematic viscosity.

The dynamics of the velocity fluctuations w := [u, v, w|T are governed
by the Navier-Stokes equations (NSE). Following Liu and Gayme [2021], we
decompose the NSE into the linearized dynamics about the laminar base
flow plus nonlinear terms, which are treated as forcing f := —u - Vu =
[fes [y, f-]T. We then replace this nonlinearity with the following input-
output model

—’U,ET VU fx’g
ff = —’U,g Vv | = fy,£ s (2)
—ug Vuw fz,{

where u¢ represents an input-output gain from the modeled forcing fe to the
velocity gradient Vu. Writing the nonlinearity in terms of this gain oper-
ator allows the model to remain linear in the velocity, thereby simplifying
the representation and analysis. Although the model has a simplified rep-
resentation, it preserves the componentwise structure of the nonlinear inter-
actions of the NSE since all elements outside of the block-diagonal elements
uz = diag(—u, —u;, —uy) are zero.

We employ the standard transformation to write the governing equations
in terms of the fluctuating wall-normal velocity and vorticity [v, w,]’. We
then perform the triple Fourier transform

(/‘5(3/3 ke, kzyw) ZI/ / / (N, y, z, t)e  kerthztwD guagodgr. (3)

Here k, and k. are the respective streamwise and spanwise wavenumbers, w
is the temporal frequency, and i = \A/—_l.A The transformed linearized NSE
driven by the modeled forcing fe = [fr¢, fye, [T for each (ky, k., w) triplet
is then given by

7]~ (9], 5 Jes
m{A]:A {A}Ha Foel s (4a)
fz,£
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—C F} (4b)

where the operators /T, B and C are defined following [Jovanovié¢ and Bamieh,
2005] as

~ | =ik UV? 4 ik,U” + V4 Re 0
A =M ! e ’ - ) o
ik U —ik,U + V2/Re (5)
5 1 [-ik.0, —(K2+K?) —ik.0, (w20
Bi=M [ ik, 0 ik, | M 0 ) (5b)
. k0, —ik,
= E+EkE 0 ) (5¢)
2 2 xX z
AR ke, ik

No-penetration and no-slip boundary conditions v(y = £1) = 0v/dy (y =
+1) = w,(y = £1) = 0 are employed. The spatio-temporal frequency re-
sponse operator mapping the modeled input forcing fg(y7 ke, k,,w) to the
velocity fluctuations w(y; k., k., w) is

~

H(y; ko, ks, w) == C(iwl — A)'B, (6)

where I is the identity operator.

In order to compute the structured response, we must first combine the
modeled nonlinearity with the spatio-temporal frequency response. We ac-
complish this by first defining a modified response operator [Liu and Gayme,
2021]

Ho(y; ke, koyw) = diag(%, %, 6)7—[(3/; kg, kyyw). (7)

This modification leads results in different output, %’E, but enables us to
isolate the expression uz, which represents the input-output gain for the
model of the nonlinearity in (2). More specifically, the reformulated system,
shown in Fig. 1, is defined in terms of the feedback interconnection between

Hy and the block-diagonal structured gain uz := diag(—u;, -], —uU; ).
The output
Vi = Hy fe (8)

A~ A~

is the 9-by-1 vectorized velocity gradient Vi := [(%a)T, (Vo)L (Va)T)T.
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Figure 1: Illustration of the structured feedback interconnection between the modified
frequency response operator Hy := dlag(V V V)H (comprlsmg blocks inside the red
solid line —) and the structured uncertainty u=z := diag(— ug, ug,—ug) (the block

inside the purple dashed line —--). The modeled forcing term fg = s £ fy £ fz T =
U=V, where Va = [(V2)T, (VD)T, (Vi)T]T is the 9-by-1 vectorized velocity gradient.

We then define the structured input-output response [Liu and Gayme,
2021] as
|Hv |l (kz, k) := sup K- [Hy (k) k2, w)] 9)

weR

where

1/min{7 [6i=] : 6= € Uz, det [I — Hyaiz] = 0},
tg, Hy] == R (10)
0, if v ag € UE, det [H — Hv’l/zg] # 0

is the structured singular value of Hy (k,, k., w) for each triplet (k,, k,,w) as-
sociated with structured uncertainty set ﬁ; [Packard and Doyle, 1993]. Here
the symbol 7[-] represents the largest singular value of the argument, det|[-] is
the determinant of the argument, and Hy denotes the discretized spatiotem-
poral frequency response operator computed based on the discretization of
the operators in (10) along the wall-normal direction. The subscript of u
in eq.(9), ie., Us = {diag(—u;, —u/, —uf) : —u; € CMv3* W} s the set
of wall-normally discretized structured uncertainties with the same block-
diagonal structure as uz, and N, denotes the number collocation points ex-
cluding boundary points. From the definition above, the structured singular
value can be interpreted as the maximum perturbation that the feedback in-
terconnection in Fig. 1 can withstand while maintaining stability in the sense
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defined by the small gain theorem Zhou et al. [1996], which is provided in
Appendix A. Further discussion regarding the definition and interpretation
of the structured response for wall-bounded shear flows can be found in Liu
and Gayme [2021].

This work uses the Chebyshev collocation method [Weideman and Reddy,
2000] with N, = 30 collocation points in the wall-normal direction. We use
50 x 90 logarithmically spaced points in the spatial wavenumber domain
k, € [107,10°%] and k, € [1072,10'?]. This configuration matches that
in Liu and Gayme [2021], who found this number of points sufficient for
convergence of the results.

The accurate computation of structured singular values p is NP hard, see,
e.g., Packard et al. [1988], Young and Doyle [1990], and thus computationally
expensive. Therefore, we instead compute an upper bound of the response in
(9) using the mussv command in MATLAB. The current version of this tool-
box does not enable us to impose the condition = := diag(—u; , —u;, —u; ),
wherein the three diagonal blocks are identical (i.e., there is a repeated block
structure). We instead relax this constraint and compute eq.(10) while en-
forcing only a block diagonal structure, i.e., we allow three different values of
—af. This relaxation was previously used in Liu and Gayme [2021], where
the structures that were predicted most likely to induce transition were con-
sistent with experiments of [Prigent et al., 2003], DNS [Reddy et al., 1998]
and NLOP [Rabin et al., 2012, Farano et al., 2015] for both plane Couette
and Poiseuille flow. Predictions that were similarly consistent with nonlin-
ear analysis were seen in the analysis of stratified plane Couette flow in Liu
et al. [2022]. Recent work in Mushtaq et al. [2022] provides algorithms for
computing lower and upper bounds on the structured singular value for sys-
tems with repeated blocks. However, these iterative algorithms substantially
increase the computational cost. Implementing these method and examining
the trade-off between the efficiency and accuracy of algorithms for comput-
ing structured singular values for wall-bounded shear flows is a direction of
ongoing work.

3. Structured frequency response

In this section, we use the method described in the previous section to
analyze transitional structures in Couette-Poiseuille flow for the intermedi-
ate case n = 0, where the laminar profile (1) has an equal weighting of the
contributions from plane Couette and plane Poiseuille flow. This profile is
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Figure 2: Contour plots of (a) logo[||Hv|.(kz,k2)], (b) logio[|H|lec(kz, k2)] and (c)
log1o[|Hv ||so (kz, k2)] for plane Couette-Poiseuille flow U(y) = 3(y*> — 1) + 2(y + 1) at
Re =610 and n = 0 in (1). Here, the black triangle (A) marks A, &~ 93 and A\, ~ 48 which
are the wavelengths of the observed oblique turbulent band at Re = 610 [Klotz et al., 2021].
The blue asterisk (%) in (a) represents the wavelengths (A;, A,) = (16.72,6.79) associated
with the highest structured response ||Hy|,. The black solid line (-) A\, = A, tan(27°)
corresponds to a 27° oblique angle of the oblique turbulent band.

linearly stable for all Reynolds numbers [Balakumar, 1997]. We compare our
results to two similar quantities that would be obtained through traditional
(unstructured) input-output analysis. The first is the worst-case amplifica-
tion of velocity fluctuations over harmonic input forcing, which is represented
by the maximal gain of the frequency response operator H over all temporal
frequencies and computed as

| H oo (K, k2) == sug& H(ky, k., w)]. (11)
we
We also compute the unstructured amplification of the modified frequency
response operator

| He oo (ke, k2) := Sgg& Hy (kg k., w)] . (12)
Neither of the quantities in eq.(11) and (12) include the model of the nonlin-
earity (i.e., do not impose any structure on the forcing for the input-output
response). Comparing ||Hv||, and |[|[Hy|l enables us to isolate the effect
of the block-diagonal structure imposed in the nonlinearity versus that of
the modified frequency response operator, i.e., to investigate the effect of
structured uncertainty in the closed loop (see Fig.1).
Fig.2(a) shows || Hy||,.(ks, k.) at Re = 610, which was selected to match
that in Klotz et al. [2021]. The peak region of the structured frequency
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response ||Hv|| (ks k2) is centered at (A;, A.) = (16.72,6.79), see the blue
asterisk in the figure. The wavelengths A\, ~ 9345 and )\, ~ 48+5 (the black
triangles (A) in all panels of Fig.2) corresponding to the oblique turbulent
bands observed in Fig. 20 of Klotz et al. [2021] lie just outside the peak region
and are about six times larger than the peak of the structured response. This
agreement, while not perfect suggests an improvement in the predictions of
the structured response over the traditional linear input-output approach.
In particular, the structured approach captures the streamwise variation of
these structures and their aspect ratio. Given that our method models, rather
than resolves, the nonlinear interactions, exact agreement is not expected.
The benefit of the structured method is its success in capturing the fact
that oblique flow patterns (i.e., k, far away from 0) rather than streamwise
constant ones (i.e., k, ~ 0) are associated with the dominant response, at a
reduced computational cost compared to DNS. The shape of the peak region
in Fig.2(a) also reflects the same inclination angle as the experimentally
observed band 6 := tan~'()\,/\,) = tan"'(48/93) ~ 27° (the black solid
line in Fig.2). This favorable comparison of our results with the literature
shows that structured input-output analysis captures the critical features and
inclination angles of the dominant flow structures for this intermediate case
of plane CPF.

Fig. 2(b) and (c) provide the respective plots of ||H||« and ||Hv| o for the
same Reynolds number and flow configuration. Compared with the struc-
tured approach, these unstructured responses place more emphasis on the
streamwise elongated structures, which are associated with a completely
different range of the streamwise wavenumber k, =~ 0. These results also
indicate that the change in the response is due to the structured feedback in-
terconnection rather than the modified frequency response operator. These
differences between the structured and the traditional unstructured input-
output response are similar to those seen in previous studies of plane Couette
and plane Poiseuille flow, where the change in the structures obtained under
the structured feedback interconnection was related to a weakening of the
lift-up mechanism [Liu and Gayme, 2021] that dominates the unstructured
response.

We next study how the structured frequency response for the Couette-
Poiseuille flow with n = 0 varies with the Reynolds number. Fig.3(a) and
(b) depict || Hvy||, at Re = 2000 and 20000, respectively. These plots indi-
cate that as the Reynolds number increases, the region of peak frequency
response dilates and shifts towards larger streamwise and spanwise wave-
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Figure 3: (a-b) Contour plots showing the relative location of regions associated with peak
structured frequency response at (a) Re = 2000 and (b) 20000 with n = 0. The blue aster-
isks (k) in panels (a) and (b) indicate the wavenumber pairs (kM kM) = (0.25,0.67)
and (kM kM) = (0.08,0.29) corresponding to the highest structured frequency re-
sponse ||Hyll)' at respective Reynolds numbers. The black solid line (—) represents
Az = Mg tan(22°) in panel (a) and A\, = A, tan(15°) in (b) respectively, which corre-
sponds to the inclination angle of these structures. (c) The wavenumbers corresponding
to the highest structured response as a function of Reynolds number Re € [300,20000],
with corresponding scalings kM ~ Re=%4! and kM ~ Re=°3* shown with black and red

solid lines respectively.

lengths (smaller wavenumbers). We further investigate how the peak loca-
tion varies with Reynolds number by first denoting the wavenumbers of the
largest structured response as kX and kY which are computed as

(M EMY = arg max | Hy ||, (Ke, k2)- (13)
This leads to (kX kM) = (0.25,0.67) at Re = 2000 and (kM kM) = (0.08, 0.29)
at Re = 20000; the values for the full range of Reynolds number Re €
[300,20000] is provided in Fig.3(c). We then compute the ratio kM /kM
and find that it decreases as Re increases, which indicates a reduction in
the inclination angle 6 := tan=!(kM /kM) associated with the corresponding
dominant flow patterns from approximately 28° to 15° over the Reynolds
number range shown.

In particular, the angles of § = 22° and 6 = 15°, respectively correspond-
ing to Re = 2000 and Re = 20000 are both lower than the inclination angle
of 27° at Re = 610 as shown in Fig.2(a). This decreasing trend is consis-
tent with previous studies of laminar-turbulent patterns in plane Couette
flow [Prigent et al., 2003]. We next quantify the rate of this decrease with
Reynolds number using a fit of the form ~ O(Re®). The results in Fig. 3(c)
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show that kY ~ Re™0" and kM ~ Re™%3 indicating a difference in the dec-
lination rate of the streamwise and spanwise wavenumbers as Re increases.
These trends further support the notion that the inclination angle decreases
as a function of the Reynolds number over this range.

4. Reynolds number scaling

In this section, we examine the Reynolds number scalings of the maximal
values of the structured and unstructured frequency responses as a function
of n. For a given Reynolds number, these maximal frequency responses over
spatial wavenumber domain (k,, k,) can be respectively quantified as

[ 2 = mas e, (ke b2), (14a)
[ = ma [ (ke B2, (140)
[ = mes [ 4] b, B, (14c)

xTHivz

Fig.4(a) plots these quantities for Re € [300,20000], where we again
obtain their respective Reynolds number scalings through a fit to O(Re?).
The results reveal that both || Hy || and ||H||Y scale as Re?, the same scaling
seen in both plane Couette and plane Poiseuille flows, see e.g. Trefethen et al.
[1993], Jovanovié¢ [2004]. However, ||Hyl||}’ ~ Re'?, and this lower scaling
exponent versus the unstructured response is similar to previous results that
showed [|Hy]| ~ Re"! for plane Couette flow (with laminar profile U(y) =
y) corresponding to n = —1 and ||[Hy|}} ~ Re'® for plane Poiseuille flow
(with laminar profile) U(y) = 1 —y? corresponding to = 1 [Liu and Gayme,
2021]. This lower amplification of the structured response is consistent with
previous observations that the structured feedback weakens the amplification
of the lift-up mechanism in a manner similar to that of nonlinear effects in
plane Couette and plane Poiseuille flows [Liu and Gayme, 2021].

We next explore how the scaling and structural features vary as a function
of . Fig.4(b) shows the scaling exponents of the maximal structured fre-
quency response H’Hvﬂfy ~ Re®™ with laminar profiles defined by equation
(1) with n = [—1, 1] computed at steps of 0.1 over the Reynolds number range
Re € [300,4000]. Here, the range of Reynolds numbers Re € [300,4000] is
smaller than previous ones to avoid unstable modes, which correspond to
infinite frequency responses. These results indicate that o grows from 1.1 to
1.35 as 7 increases roughly from —1 to 0.3 and then declines at a low rate
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Figure 4: (a) Reynolds number dependence of the maximal structured and unstructured
frequency response for Re € [300,20000] and 1 = 0. Fitted trends indicate ||Hv |} ~
Rel3) |Hv|M ~ Re? and |[H||2 ~ Re?. (b) The dependence of the scaling exponent
a in |[Hy|[}’ ~ Re® on the parameter 1) € [—1,1] with the range of Reynolds numbers
Re € [300,4000] which determines the shape of laminar base flow U(y) = W(y2 -1+
1*?’7(9; — 1) + 1. The data points marked with red squares ((J) in panel are obtained at
n = —1,-0.5,0, while those with blue triangles (A) are at n = 0.3,0.5,0.7,0.9, 1.

in the range 0.3 < n < 0.7, before finally climbing to « = 1.5 at n = 1. In
contrast, the scalings of both ||Hy||2 and ||[H[|} are Re? for all n € [—1,1]
(note: since the value remains constant, the corresponding points are not
included in Fig.4(b)). Related scalings of the minimal amplitude of external
perturbations that can trigger transition have previously been derived based
on simulations [Reddy et al., 1998] and asymptotic analysis [Chapman, 2002]
for the special cases of plane Couette (n = —1) and plane Poiseuille (n = 1)
flow. The analysis based on DNS data predicted minimal perturbation ampli-
tudes of O(Re™!?) for plane Couette flow and O(Re™ ") for Poiseuille flow,
while the asymptotic analysis of Chapman [2002] derived respective scalings
of O(Re™') and O(Re™1?%). A similar Reynolds number scaling of transition-
inducing perturbations can be computed from our results as the reciprocal of
the structured input-output response using the small gain theorem (provided
in Appendix A). The resulting scalings of O(Re ') for plane Couette flow
and O(Re~ 1) for plane Poiseuille flow lie with the range of the scalings pre-
dicted using DNS data and asymptotic analysis. The corresponding scalings
of transition-inducing perturbations associated with ||Hy || and ||H||* ob-
tained using a similar small gain theorem based analysis is O(Re™?) for both
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Figure 5: Plots of logo[||Hv||.(kz, k2)] at Re = 500 with (a) n = —1, (b) n = —0.5, (c)
n=0,(d)n=03, () n=05 (f) n =07, (g) n =0.9, and (h) n = 1. The shape of
laminar flow n associated with panels (a)—(c) correspond to the black dots marked with
red squares while panels (d)—(h) match with the dots with blue triangles in Fig. 4(b).

flow configurations. This scaling exponent is outside the range predicted
by DNS and asymptotic analysis for both flows. It also remains the same
for both Couette and Poiseuille flow, which is not consistent with physical
arguments in previous work Chapman [2002].

While the scalings of structured responses at 1 = =£1 are consistent
with previous scalings associated with plane Couette and Poiseuille flow,
the non-monotonic growth of the scaling exponent was unexpected. In or-
der to analyze thistrend, we examine the structural features associated with
the different regimes by computing ||Hv||,(ks, k.) for laminar profiles with
n = —1,-0.5,0,0.3,0.5,0.7,0.9, and 1 at Re = 500, which are shown in
Fig.5. Panels (a) — (c) indicate that there is a single peak frequency re-
sponse region (kg,k.) ~ (1071 1) associated with oblique flow structures
when —1 <17 < 0. In this region, the scaling increases at a roughly constant
rate, and the angle associated with these structures appears to also grow
with 7. Fig.4(b) and Figs. 5(d)-(h) indicate that as the base flow becomes
more pressure-driven, i.e., in the range 0.3 < n < 0.7, a new wavenumber re-
gion (k;, k) =~ (1,0) corresponding to a Tollmien-Schlichting (T'S) response
emerges, and the scaling stops increasing. Given that the laminar flow is no
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longer linearly stable for all Reynolds numbers for n > 0.309 [Balakumar,
1997], these are likely associated with the TS waves that become unstable
at higher Reynolds numbers. This T'S-wave related peak becomes sharper
for n > 0.7. In addition, the shape of the peak response region associated
with the dominant oblique pattern changes for n > 0.7. This change in
flow structure may be associated with the change in Re scaling observed in

Fig. 4(b).

5. Response modes associated with the oblique turbulent bands

We next compute structured response modes and use them to explore the
features of the most amplified flow structures. In general, the response modes
associated with Hy can be obtained from a singular value decomposition
(SVD) of the discretized frequency response operator, see, e.g., chapter 8 in
Jovanovié¢ [2004] for details. In this work, we adapt this idea to compute the
response modes of associated with the feedback interconnection of Hy and
the block-diagonal uncertainty w=, which represents the gain in our model
of the nonlinearity. To this end, we perform the structured singular value
decomposition (see Definition B.2 in Appendix B) to obtain

D"’Hy(DF?) ' = #X0*,

and extract the column vectors ¢, (n = 1,2,...,9N,) of the matrix ®. Here,
D7" and D" are the scaling matrices of Hy, see Definition B.1 in Appendix
B.

The column vectors ¢,(n = 1,2,...,9N,) are the left structured singular
vectors of Hy, i.e., those associated with the vectorized velocity gradients
(Va)T, (Vo) (VW)Y Noting that Vu = [ik,u,du/dy,ik.u]t € C3*v,
we can extract the wall-normally varying structured singular modes of the
velocity fluctuations @ (along with v and @ similarly) from the elements of

On as:

Un(y) = D1, Pn2s oo On, )"/ (k) € TV,

U(Y) = [Bnan,+1, PrgNy12s - Onan, ] /(ikz) € CN, (15)

W (Y) = [n6N, 11 DN, 42, --r Pnn, )"/ (i) € CNY,
n=12.9N,

where ¢, ; is the j'™ element of ¢,; i.e., ¢, = [Pn1, Pn2, .o, Pnon,]" - In the
following context, we will focus on the primary response modes, i.e., u;(y),
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Figure 6: (a)-(c) Primary wall-normal modes @, 1 and @; of velocity fluctuations that
are obtained using structured singular value decomposition. (d)-(f) Primary velocity
modes 1, v; and w; obtained from (unstructured) singular vectors of Hy. Both groups
of singular vectors correspond to the oblique laminar-turbulent pattern with the triplet
(kz, k. ,w) = (0.0675,0.1422,0) in plane Couette flow at Re = 350 [Chantry et al., 2016].
The red (—), green (—) and blue solid lines (—) represent the real, imaginary part and
magnitude of these modes as functions of the wall-normal coordinate, y.

v1(y) and w;(y), since they are associated with the largest singular value
of the frequency response operator. We also obtain the primary velocity
modes without scaling the frequency response operator to show the difference
between structured and unstructured response modes. The unstructured
response modes are computed following the same procedure described above
in eqgs.(B.4) and (15), expect that D7”"Hy(D%")~! is replaced by Hy. The
corresponding unscaled primary modes are denoted as u; (y), v1(y) and w; (y).

Fig. 6 shows the wall-normal profiles of the structured (in panels (a)-(c))
and unstructured (in panels (d)-(f)) primary velocity modes at Re = 350
and n = —1. This base flow corresponds to the plane Couette flow U(y) =y
case studied using DNS in Chantry et al. [2016]. That work focused on the
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wall-normal structures of an oblique turbulent band with %k, ~ 0.0675 and
k. =~ 0.1422, and we those values here for direct comparison. Since we have
no data describing the temporal frequency of this flow structure, we estimate

w by computing arg max pg_ [Hy(ks, k., w)] and argmax o [Hy (K., k., w)],
wER - weR
which leads to w = 0 in both cases. Fig.6 shows that both the structured

and unstructured singular modes associated with this wavenumber triplet
reach their maximal amplitude close to the channel center y = 0, meaning
that the bulk region of the turbulent band has approximately zero traveling
speed. This behavior is consistent with previous findings, which indicate
that laminar-turbulent patterns advect at speeds close to that of the bulk
velocity U at the location where this velocity approaches that of the laminar
velocity U(y) [Fukudome and lida, 2012]. We note that the structured and
unstructured singular modes of the same velocity component are identical in
shape but differ in their relative magnitudes. This similarity suggests that
both methods perform similarly in capturing the wall-normal variation of
primary singular modes of the three velocity components for the particular
wavenumber pair of interest.

We next use the singular vectors to reconstruct the velocity fluctuations
u(z,y, z,t),v(z,y, z,t) and w(zx,y, z,t) following the approach in Moarref
et al. [2013] which ensures the resulting structures satisfy the incompress-
ibility condition. These fluctuations are given by

3N,

u(x,y, 2,t) = Z 0 cos(kz2)Re (T (y; ka, ki, w)e R0y (16a)
n=1
3N,

v(z,y,2,t) = Z o cos(k.2)Re (T (y; ky, ko, w) el e =)y (16b)

n=1
3Ny

w(x,y,z,t) = — Z 0 i (b, 2)In(@, (y; kg, Kz w) o= (16¢)

n=1

where Re and Im represent the real and imaginary part of the argument (-),
respectively. o, is the ny, singular value of DY*Hg(DZ?)™!, and @, Uy,
and w,, are obtained from the ng, structured singular vector ¢,, (see eq.(15)).
Since the largest singular value of the scaled frequency response matrix is
much larger than the others, it is reasonable to use only the associated modes
U1, v; and w; to approximate the large-scale characteristics of the velocity
fluctuations corresponding to the oblique flow patterns with (k,, k.,w) =
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Figure 7: Reconstruction of the large-scale velocity fluctuations for the same oblique
turbulent band as in Fig.6 based on structured response modes. This two-dimensional
slice represents the r; — y plane across the center of turbulent band region. The black
arrows (—) mark two velocity components (v ,u,), while the background contour shows
u) parallel to the direction of the band, with positive value (red region) indicating that
the projection of the three-dimensional velocity in this direction points to the downstream
side.

(0.0675,0.1422,0).

Fig. 7 shows our reproduction of the velocity field corresponding to the
wavenumbers associated with the oblique turbulent bands studied in [Chantry
et al., 2016] using the structured response modes. Since the optimal re-
sponse corresponds to w = 0, our reconstructed velocity fluctuations are
time-invariant and thus can be interpreted as time-averaged velocity fields
associated with this oblique band. To compare our prediction of velocity fluc-
tuations with the numerical results in Chantry et al. [2016] that are computed
in the tilted domain, we convert our spatial coordinate framework (z,y, 2)
to (ri,y,r), where r| is the coordinate perpendicular to the direction of
the oblique turbulent band and 7| is associated with the direction along the
band. The velocity components in this new framework are given by

uy = —sin(f)u + cos(f)w, (17a)
w) = cos(#)u + sin(f)w, (17b)

where 6 ~ 25.4° is the inclination angle of the turbulent band according to
Chantry et al. [2016]. Compared to the velocity fields in Fig. 3(a) of Chantry
et al. [2016], our results in Fig. 7 reproduce the same circular vortex.

The consistency between our prediction of velocity fluctuations and the
DNS data motivates the application of this method to predict the wall-normal
structure of the oblique turbulent bands in other wall-bounded flows. First,
we study the band in plane Couette-Poiseuille flow at Re = 610 with the in-
termediate laminar profile, i.e., 7 = 0 in eq.(1). Since the experiments of this
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Figure 8: Wall-normal profiles of velocity modes from structured SVD: (a) primary stream-
wise velocity mode u; with parameters (k,, k,,w) = (0.0676,0.1309, ~ 0) associated with
the oblique turbulent band in Klotz et al. [2021]. The black dashed line (--) at the wall-
normal location y = 0.33 marks the point of the strongest transient growth [Klotz and
Wesfreid, 2017]. The red triangle (A) at y = 0.3285 marks the maximal amplitude point
of the velocity mode. (b)-(c) The primary streamwise %; and spanwise velocity mode w;
with parameters (k;, k,,w) = (0.1887,0.0897, —0.1615) associated with oblique turbulent
band in plane Poiseuille flow [Song and Xiao, 2020]. The red, green, and blue solid lines
again represent the real and imaginary part and the magnitude of velocity modes respec-
tively.

flow in Klotz et al. [2021] have shown that the wavenumbers of the oblique
band are k, ~ 0.0676 and k, ~ 0.1309, we use these parameters along with

our estimated temporal frequency arg max g5_ [Hy (kg k., w)] = —0.005 =~ 0.
w€eR -
Fig. 8(a) shows the wall-normal profile of the primary singular mode u; asso-

ciated with the streamwise velocity fluctuation. We find that it reaches the
maximum when y = 0.33 as marked with the red triangle in the figure, which
is also the maximal amplitude point (black dashed line) of the streamwise
streaks (k, = 0 and k, = 1.83), i.e., where they achieve the strongest tran-
sient growth [Klotz and Wesfreid, 2017]. We next estimate the wall-normal
structure of the velocity fluctuations in the oblique turbulent bands in plane
Poiseuille flow U(y) = 1 — y* at Re = 750, which was investigated by DNS
in Song and Xiao [2020]. A comparison of the structured singular modes
computed with the mean fluctuations from DNS data (see Fig. 7 in Song and
Xiao [2020]) shows that we obtain similar wall-normal variations (i.e., profile
shapes). More specifically, the computed wall-normal profile of our primary
mode has the same inflectional feature and similar shape to those obtained
from the simulation data. This result again indicates that structured input-
output analysis is capable of predicting the wall-normal profile of the velocity
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fluctuations associated with the oblique turbulent bands.

6. Oblique turbulent band propagation speeds

In order to study the temporal behavior (advection) of the most amplified
structures, we estimate their phase speeds using our structured method. We
limit the analysis to the case where the temporal frequency w € R, since any
time-dependent flow structure can be represented by integrating its Fourier
components over real temporal frequencies [Trefethen et al., 1993]. The ad-
vection speed u. of a given oblique flow structure with (k,, k,) # 0 is then
estimated using the phase speed ¢ := —w/k, associated with the highest
structured response

Ue(ky, k) = _ki arg r%ax pg. Hy (ke bz w)] (18)
T we

i.e., the phase speed associated with the optimal temporal frequency w for

a given (k;, k.) wavenumber pair. In the following discussion, ¢ and u, are

normalized using the characteristic velocity scale, which defines the Reynolds

number for each flow configuration.

In order to validate the approach we focus our investigation on the advec-
tion speeds of flow patterns in plane Couette and plane Poiseuille flow, which
have been previously studied [Fukudome and Iida, 2012, Tuckerman et al.,
2014, Lu et al., 2019, Xiao and Song, 2020a]. Table 1 provides a compari-
son between the advection speeds of the laminar-turbulent patterns (oblique
turbulent bands) predicted from our approach with results computed from
DNS [Fukudome and Tida, 2012, Tuckerman et al., 2014, Lu et al., 2019, Xiao
and Song, 2020a]. The oblique turbulent band wavenumbers (k,, k) reported
were extracted from snapshots of DNS results from Lu et al., 2019, Fig. 3 (b);
Tuckerman et al., 2014, Fig. 4 (a); Xiao & Song, 2020, Fig. 1 (a), respectively.
We note that the laminar profile of plane Poiseuille flow, as well as the defini-
tions of Reynolds number in Xiao and Song [2020a] and Fukudome and Iida
[2012] (row 1 and 2 in Table 1) differ from ours in eq.(1). In order to compare
with those results, we renormalize the velocity uniformly using the centerline
speed of the base flow, U, . Consequently, here the plane Poiseuille flow
is redefined as U(y) = 1 — ¢?, and the Reynolds numbers in these previous
studies [Xiao and Song, 2020a, Fukudome and Iida, 2012] are also converted
to the value shown in Table 1 according to the definition Re := U} h/v.
The numerical results in Tuckerman et al. [2014] and Lu et al. [2019] (row
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Table 1: Advection speeds u. of laminar-turbulent patterns in plane Couette-Poiseuille
flows obtained by predictions of structured and standard input-output analysis. The
laminar profiles U(y), Reynolds numbers Re, and wavenumbers (k;,k,) of these flow
patterns are selected to match comparison cases from the literature. We note that the
Reynolds numbers for all cases shown were converted from those in the references to match
the Reynolds number definition in this work. The wavenumbers are obtained from Fig. 1(a)
in Xiao and Song [2020b], Fig. 2(b) in Fukudome and Iida [2012], Fig. 2(a) in Tuckerman
et al. [2014], and Fig. 3(b) in Lu et al. [2019] respectively, while the DNS results predicting
u. are respectively taken from Fig.1, Fig. 6, Fig. 4, and Fig. 4. of these references

Estimations of u., Estimations by

Uly) Re (ks, k) by structured unstructured ~ DNS
approach approach

1—y?> 750 (0.15,0.10) 0.92 0.90 0.85

1—¢? 1242 (0.09,0.19) 0.71 0.73 0.68

=242 1100 (0.06,0.14) ~ 0 ~ 0 0.07

Yy 317 (0.04,0.05) ~ 0 ~ 0 ~ 0

3 and 4 in Table 1) are based on the same characteristic length and velocity
scales as our analysis, so their laminar profiles correspond to the cases where
n = 1 and n = —1 respectively, so we can directly compare to their results
by matching the Reynolds numbers. The results in Table 1 indicate that all
of the estimated values are within a reasonable error range when compared
to these DNS results. This success in predicting the traveling speeds of the
given structures indicates that our framework is can be used to estimate the
advection speed of different flow structures.

Table 1 also shows the convective velocities predicted using the unstruc-
tured frequency response, which is obtained by substituting the largest sin-
gular value 6[Hy (k,, k.,w)] in eq. (18). A similar computation was carried
out using the frequency response operator H(k,, k,,w), which yielded the
same results (these repeated values are not shown in Table 1). The convec-
tive velocities predicted using the standard input-output approach are within
5% of those obtained using the structured approach proposed herein for the
given wavenumbers. This similarity suggests that, for this case, once the
wavenumber pair of interest is identified (through, e.g., DNS, experiments,
or the SIOA approach), the unstructured and structured spatio-temporal
frequency response operators may provide similar estimates of convective ve-
locities. These results are consistent with previous studies showing that the
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Figure 9: Plots of the structured singular value of discretized frequency response operator
g [Hy] (red solid lines —) and the largest unstructured singular values of its three diag-
onal components 5[Hy,;] (black —), [Hvyyy] (blue —), and 6[Hy,,,] (magenta —). The
wavenumbers (k2, k2) belongs to the oblique turbulent band observed in the experiment
of plane Couette-Poiseuille flow at Re = 610 [Klotz et al., 2021]. The black dashed line
representing ¢ ~ 0.15 marks the optimal phase speed associated with the largest struc-
tured singular value of Hy .

spatio-temporal frequency response operator of the linearized N-S equations
can accurately predict convective velocities over a range of length scales, see,
e.g., [Liu and Gayme, 2020]. Understanding the similarities in predicting
the convective velocity from SIOA and traditional IO across the full range of
scales, particularly the smallest scales where nonlinear interactions may play
a larger role, is a topic of ongoing work.

The agreement in our prediction using the optimal phase speed ¢ to esti-
mate the advection speed u, indicates that the structured singular value of
the frequency response operator pg_[Hy (kg k., c)] is closely related to the
optimal phase speed ¢ when the wavenumbers (ky, k) are given. In order
to investigate the dependence of i on the phase speed of a given flow pat-
tern, we again set Re = 610 and select the wavenumbers of oblique band
(k2,k2) = (0.07,0.13), based on the values estimated in the of experiments
in [Klotz et al., 2021]. We then vary ¢ = —w/k, from U(y)mm = —0.33 to
U(Y)max = 1 and obtain the dependence of structured singular value on the
phase speed. The results are shown in Fig. 9 as the red solid line, and indicate
that ug_[Hy] is strongly influenced by c¢. Moreover, the red solid line has a
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notable peak around ¢ = 0.15, which suggests that the estimated advection
speed of this flow pattern should approximate this value.

We next examine the relationship of this phase speed dependence in the
structured versus unstructured singular values of Hy. We start from the
following inequality proven in [Liu and Gayme, 2021, equation (3.6)]

||HV||M(1€$7 kz) Z maX[HHVu;tHooy ||HVUy||ooa ||HszHoo]7 (19>

where
Hi; =Ci(iwns — A)'B;, (20a)
Hyij :ﬁHij, i=u,v,w, j=2x,9,2, (20Db)
B..=B[T 0 0]',B,-=B[0 T 0]",B.:=B[0 0 7]',  (20c)
C..=[Z 0 0]C, C,:=[0 T 0]C, C,:==[0 0 Z]C. (20d)

following the definitions in Jovanovi¢ and Bamieh [2005], Liu and Gayme
[2021]. This indicates that the structured frequency response is closely re-
lated to the unstructured responses associated with the input-output path-
ways f, — u, fy, = v, and f,, — 2. Such a connection inspires us to com-
pute the corresponding unstructured singular values, i.e., [Hyvyz|(ks, ks, €),
d[Hvyy|(ky, k2, ¢) and 6[Hvy.](ks, k2, ¢), and compare their dependence on
¢ with that of the structured singular value. Fig.9 displays these quantities
and their variation with phase speed. We first notice that as ¢ varies, we
always have the following inequality

/J/ﬁE [HV] (k27 km C) 2 maX{a-[HVux](kxa kza C), 5-[HVvy} (k:ra kza C),

_ (21)
0[Hyw:|(ks, k2, )}, Ve € [Unin, Umax),
for a given (k,,k,). This relationship suggests that we may be able to gen-
eralize the inequality (19) obtained in Liu and Gayme [2021] from the case
of optimal ¢ to any phase speed within the range. In particular, we find that
both ¢[Hy.,] and 6[Hy,.| have similar magnitude and phase speed depen-
dence compared to pp_[Hy|, which indicates a strong correlation between
these componentwise unstructured and structured singular values.
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7. Conclusions and directions for future Work

In this paper, we apply structured input-output analysis to study transi-
tional plane Couette-Poiseuille flow (CPF). The wavelengths associated with
largeest structured response are found to be consistent with the oblique tur-
bulent bands observed in recent experiments with equally weighted com-
ponents of plane Couette and plane Poiseuille flow in the laminar profile
(n = 0) [Klotz et al., 2021]. As the Reynolds number increases, the most
energetic streamwise and spanwise wavenumbers of the oblique patterns as-
sociated with the highest structured gain decrease with respective scalings
kM ~ Re 04 and kM ~ Re %34, The inclination angles of the associated
oblique turbulent bands also decline as the Reynolds number increases, con-
sistent with results from experiments of plane Couette flow [Prigent et al.,
2003].

The Reynolds number scaling of the maximal structured amplification
I Hv|| ff changes non-monotonically as the laminar base profile is varied from
plane Couette flow (n = —1) to plane Poiseuille flow (7 = 1). Our analysis
shows that as the pressure gradient contribution to the laminar profile ex-
ceeds the limit 2 0.3, another region of large structured frequency response
corresponding to the wavenumbers of Tollmien-Schlichting waves emerges,
and the scaling exponent decreases slightly.

We then extract the response modes associated with the largest structured
response. The wall-normal variation of the oblique modes and corresponding
physical structures share similarities with those predicted through DNS [Xiao
and Song, 2020b, Chantry et al., 2016].

Finally, we use structured input-output analysis to predict the advection
speeds of oblique turbulent bands for plane Couette and plane Poiseuille
flow configurations, which are special cases of plane Couette-Poiseuille flow.
The results are consistent with DNS observations [Fukudome and lida, 2012,
Tuckerman et al., 2014, Lu et al., 2019, Xiao and Song, 2020b|. We then apply
this computation to numerically evaluate the dependence of the structured
frequency response on the phase speed. The results enable us to generalize
a previously known inequality focusing on the optimal phase speed to allow
evaluation at arbitrary phase speeds.

The above results demonstrate the promise of structured input-output
analysis of both pressure and shear driven transitional flows between parallel
plates. Ongoing work will exploit new tools that enable the computation
of structured singular values associated with structured uncertainties in the
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form of repeated complex blocks Mushtaq et al. [2022]. Using these tools
to extract frequency response modes of the feedback interconnection [Mush-
taq et al., 2023], as well as analyzing differences in the obtained optimal
perturbations [Liu et al., arXiv:2303.10498], may also enable further insight.
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Appendix A. Small gain theorem

In this appendix, we present the small gain theorem, which is used to
derived the relationship in (10), see e.g. Zhou et al. [1996], Liu and Gayme
[2021] for further details.

Proposition 1 (Small Gain Theorem). Given 0 < § < +o00 and the wavenum-
ber pair (ky, k). The feedback loop is bounded-input bounded-output stable
for all uz € Uz with ||uz||« = supaluz] < 87! if and only if:

w€eR

||HV||IJ«(k$7 kZ) = SuguﬁE[HV(kxa k27w>] S /87
we
where p is the structured singular value defined in eq.(10).

Appendix B. Structured singular value decomposition

In this appendix we provide the definition of scaling matrices associated
with the frequency response operator Hy and the specific process of struc-
tured singular value decomposition.

Definition B.1 (Scaling Matrix). Suppose that Hy is the discretized fre-
quency response operator mapping forcing term to the velocity gradients, we
define scaling matrices D} and D*[Packard and Doyle, 1993] as:

D’ DY? := argmin 6(D;,HyD3'), (B.1)
D.,Dgr
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where

D, :=diag(dilsy,, d2Isn, , dslsn,) € RN Ny dy, dy > 0, (B.2a)
Dy :=diag(diLy,, doly,, dsly,) € R* 3N, (B-2b)

satisfying
ﬁEDL = DRﬁE (BZC)
and & (-) represents the largest singular value.

Here, the specific structure of Dy and Dpg is determined based on our
structured uncertainty uz (see Packard and Doyle [1993]). For this discussion
and in the computations we again relax the constraint imposing repeated
block structure as discussed in Section 2. The following known relation (see
e.g. Young and Doyle [1990], Young et al. [1992], Packard and Doyle [1993])

pg.[Hy] = g [D HeD,'] < 6[D HyD}'], (B.3)

indicates that these scaling matrices enable us to approximate p with its
upper bound &.

In this work, we extract D} and D%” from the output VSigma of the
mussvextract command in MATLAB[Young et al., 1992]. Then we perform
SVD on the scaled frequency response matrix D7"”Hy (D%?)~! to obtain sin-
gular modes associated with the structured response. The structured singular
value decomposition is then defined as follows:

Definition B.2 (Structured Singular Value Decomposition). Suppose that
Hy is the frequency response operator mapping structured forcing to the
velocity gradients and that D}, D" are the scaling matrices, then its left

and right structured singular vector matrix ®, ¥ are defined as:

D”"Hy(DP?) ! = #X0*, (B.4)

where
® = [¢1,..., Pon,], 4 € CONv, i =1,2,...,9N,, (B.5a)
U = [, .., 03n,], 0 € C*Nv, i = 1,2, ..., 3N,, (B.5b)

/
Y= { E ] , X' = diag(o1, 09, ..., 03n,), 01 > 02 > ... > 03y, (B.5c)
O, x3N,

and O is the zero matrix, and the asterisk superscript on ¥ represents the
conjugate transpose.
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