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A B S T R A C T   

Quantifying uncertainty in forest assessments is challenging because of the number of sources of error and the 
many possible approaches to quantify and propagate them. The uncertainty in allometric equations has some
times been represented by propagating uncertainty only in the prediction of individuals, but at large scales with 
large numbers of trees uncertainty in model fit is more important than uncertainty in individuals. We compared 
four different approaches to representing model uncertainty: a formula for the confidence interval, Monte Carlo 
sampling of the slope and intercept of the regression, bootstrap resampling of the allometric data, and a Bayesian 
approach. We applied these approaches to propagating model uncertainty at four different scales of tree in
ventory (10 to 10,000 trees) for four study sites with varying allometry and model fit statistics, ranging from a 
monocultural plantation to a multi-species shrubland with multi-stemmed trees. We found that the four ap
proaches to quantifying uncertainty in model fit were in good agreement, except that bootstrapping resulted in 
higher uncertainty at the site with the fewest trees in the allometric data set (48), because outliers could be 
represented multiple times or not at all in each sample. The uncertainty in model fit did not vary with the number 
of trees in the inventory to which it was applied. In contrast, the uncertainty in predicting individuals was higher 
than model fit uncertainty when applied to small numbers of trees, but became negligible with 10,000 trees. The 
importance of this uncertainty source varied with the forest type, being largest for the shrubland, where the 
model fit was most poor. Low uncertainties were observed where model fit was high, as was the case in the 
monoculture plantation and in the subtropical jungle where hundreds of trees contributed to the allometric 
model. In all cases, propagating uncertainty only in the prediction of individuals would underestimate allometric 
uncertainty. It will always be most correct to include both uncertainty in predicting individuals and uncertainty 
in model fit, but when large numbers of individuals are involved, as in the case of national forest inventories, the 
contribution of uncertainty in predicting individuals can be ignored. When the number of trees is small, as may 
be the case in forest manipulation studies, both sources of allometric uncertainty are likely important and should 
be accounted for.   

1. Introduction 

As one of the nature-based climate solutions, forests have the ca
pacity to store and accumulate carbon, offsetting greenhouse gas emis
sions (Fargione et al., 2018). To incorporate the forest sector into 
climate mitigation efforts, it is important to quantify their carbon stocks 
and fluxes of greenhouse gases (IPCC, 2019). Reporting forest carbon 
emission reductions is required by international commitments, such as 
the Paris Agreement, to achieve global mitigation efforts (UNFCCC, 

2011). Quantifying forest carbon is also needed to evaluate progress 
towards land-based sustainable development goals such as sustainable 
forest management (Jandl et al., 2015). 

Estimating forest carbon stocks and fluxes is challenging at any scale, 
from forest stands to entire countries, and there are many sources of 
uncertainty in the estimates. Quantifying uncertainty is essential to 
understanding the significance of differences, including those associated 
with efforts to reduce deforestation and degradation. Countries 
participating in Reducing Deforestation and Forest Degradation 
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(REDD+) programs are required to include uncertainty in their reports, 
and the uncertainties can affect the payments made for the reported 
emission reductions (Yanai et al., 2020). 

Sources of uncertainty in forest carbon stocks include measurement 
error, sampling error, and allometric equation error (Cunia 1987; Hill 
et al., 2013). Measurement error is normally controlled through quality 
assurance procedures (Pollard et al., 2005; Ferretti et al., 2009; Barker 
et al., 2015; Birigazzi et al., 2019), which can be used to quantify this 
source (Campbell et al., 2019; Yanai et al., 2022). Sampling error de
pends on the variability in forest biomass across the landscape and on 
sample size and sampling design (Köhl et al., 2011). Converting forest 
inventory data to forest biomass requires allometric equations, which 
also have uncertainty, although this source is rarely propagated (Chave 
et al., 2004; Wayson et al., 2015; McRoberts and Westfall, 2016). Un
certainty associated with the choice of which allometric equations to use 
is even more rarely addressed (Melson et al., 2011; Picard et al., 2015). 

One reason that allometric uncertainty is rarely considered in forest 
carbon accounting is that it is more difficult to quantify than measure
ment error or sampling error. One source of confusion is whether to 
propagate uncertainty in the prediction of individuals (Paré et al., 2013) 
or in the model fit (Yanai et al., 2010). Presumably, the uncertainty in 
individuals is most important in experimental studies where sample 
sizes are small, while estimates at the scale of landscapes or entire 
countries should consider model fit (Yanai et al., in review). To our 
knowledge, there has been no systematic evaluation of the importance of 
these two sources of allometric uncertainty—prediction of individuals 
vs. model fit—in any forest system. 

The purpose of this paper is to explore the relative importance of the 
uncertainty in the allometric model fit compared with the uncertainty in 
predicting the biomass of individual trees. We expected to demonstrate 

that individual random error becomes negligible with large numbers of 
trees, while model uncertainty is not reduced by applying the calcula
tion to larger samples. We also compared four different approaches to 
representing model uncertainty: a formula for the confidence interval, 
Monte Carlo sampling of the slope and intercept of the regression, 
bootstrapping the model fit, and a Bayesian approach. We applied these 
approaches to model uncertainty in four study sites with varying 
allometry and model fit statistics, ranging from a monocultural planta
tion to a multi-species shrubland with multi-stemmed trees. 

2. Methods 

2.1. Study sites 

We used previously collected data from four sites (Fig. 1) that 
differed in stand characteristics (Table 1). Each site had tree inventory 
data and allometric equations based on a harvested sample of trees 
(Fig. 2). 

2.1.1. Plantation (Hawaii) 
The site is a tropical Eucalyptus plantation located at 450–510 m 

elevation on the northeast coast of the island of Hawaii (19◦30′ N, 
155◦15′ W). Annual rainfall is ~ 4000 mm, and the mean annual tem
perature is 21 ◦C. The soils are classified as thixotropic isomesic Typic 
Hydrudands formed in volcanic ash (Kaiwiki series). Eucalyptus saligna 
were planted in a randomized complete block design with four blocks 
and seven levels of an N-fixing plant (Falcataria mollucana) at 2 m × 2 m 
spacing in January 1982 after plowing and herbiciding (Boyden et al., 
2005). 

Trees from these sites have been used to describe tree allometry 

Fig. 1. Images of the study sites: an even-aged Eucalyptus plantation in Hawaii, secondary, semi-deciduous tropical forest on the Yucatán Peninsula, a subtropical 
jungle in the Selva Paranaense, and multi-stemmed individuals in the semi-arid Chaco. 
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(Debell et al., 1989; DeBell et al., 1997; Whitesell et al., 1988). We used 
a dataset of 93 Eucalyptus trees that cover the full range of tree diameters 
(3–82 cm dbh) (Binkley, personal communication). 

For the tree inventory, we used the four replicate 30 m × 30 m plots 
that were Eucalyptus only (i.e., the 0% Falcataria treatment; Binkley 
et al., 2003; Boyden et al., 2005), resulting in 1850 trees in the inventory 
data set, at a density of trees with DBH > 0.5 cm DBH was 1528 stems 
ha−1. 

2.1.2. Young tropical (Yucatán) 
This secondary, semi-deciduous tropical forest (Ochoa-Franco et al., 

2019) is located in the municipality of Felipe Carrillo Puerto in Quintana 
Roo, Mexico, on the Yucatán Peninsula (88◦14′W, 18◦53′N). The climate 
is lowland tropical monsoonal, with annual rainfall of 1200 mm 
concentrated from May to October (Hernández-Stefanoni et al., 2014) 
and mean annual temperature of 26 ◦C. The soils are classified as 
gleysols, vertic cambisols and vertic luvisols. Common species include 
Manikara zapota, Bursera simaruba, Metopium brownei, Lysiloma 
latisiliquum, and Piscidia piscipula, among others. 

This study was conducted with data from the Mexican network of 
Intensive Carbon Monitoring Sites (MEX-SMIC) which includes forested 
sites located in strategic landscapes for REDD+ activities. The area 

includes three land uses: slash and burn agriculture, selective logging, 
and fire-affected forest. 

To develop the allometric equation, 48 trees were selected in pro
portion to their abundance in diameter classes 20 cm wide (Table 1). 
These trees were felled during selective logging in areas under man
agement plans and with landowner permission in areas not subject to 
logging plans. 

The tree inventory involved 32 cluster plots, each 0.22 ha in size, 
distributed over an area of 9 km2, following the design of Mexico’s na
tional forest inventory (CONAFOR, 2010). The location of the plots was 
systematic with some adjustment to avoid the boundaries between the 
land-use types. In each cluster plot, trees 2.5–7.5 cm DBH were 
measured on 0.032 ha, trees 7.5–20 cm were measured on 0.16 ha, and 
trees > 20 cm were measured on 0.22 ha. The combined stem density of 
trees with DBH > 2.5 cm was 6558 ha−1. 

2.1.3. Subtropical (Paranaense) 
This type of jungle occurs in the northeast region of Argentina 

(25◦30́-29◦7́S and 53◦40́-57◦1́W) and continues through eastern 
Paraguay and Brazil. The climate is warm and humid, with rainfall 
throughout the year, with a total that varies from 1564 mm to 2012 mm 
per year. The average annual temperature varies between 20 and 21 ◦C; 

Table 1 
Characteristics of the four study sites. Diameter was taken at breast height (DBH, in cm), except at Chaco, where crown area (m2) was measured.  

Study site Forest type Mean annual  
temperature (C◦) 

Mean annual  
precipitation (mm) 

Allometric data Inventory data 

Tree  
number 

DBH or crown  
area (range) 

Tree  
number 

DBH or crown  
area (range) 

Hawaii Eucalyptus plantation 21  4000 93  3.5–81.7 1850  0.5–49.7 
Yucatán Young tropical moist forest 26  1200 48  3.2–160 21,871  2.5–105.1 
Paranaense Subtropical moist mixed forest 21  1600–2000 655  10.4–107.7 6732  10–190.9 
Chaco Subtropical semi-arid forest/open woodland 18  350–540 245  0.1–16.1 1070  0.9–195.9  

Fig. 2. Size distribution of trees in the forest inventory at each study site (crown area for Chaco, diameter for the other sites). The density is the fraction of trees in 
each size interval; the sizes were divided into 70 bins of equal width for each site. 
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winters are mild and summers are not excessively hot due to frequent 
rainfall (Cabrera 1971). The topography of the region is irregular, with 
low mountain peaks. The soils are lateritic, red and acid, and fine 
textured (Montagnini et al., 2006). The predominant vegetation type is 
subtropical jungle. Common species include Nectandra sp., Balfour
odendron riedelianum, Aspidosperma polyneuron and Araucaria angustifolia 
(Cabrera 1994). The area includes different states of forest degradation 
and has been subjected to extensive logging with 20-year rotation 
periods. 

Trees for volume models were chosen across the study area keeping 
climatic and soil conditions as constant as possible. Approximately 26 
individuals for each of 25 species were selected to represent the wide 
range of plant sizes and the most abundant tree species of the Para
naense jungle (Secretaría de Desarrollo Sustentable y Política Ambi
ental, 2001). The interquartile range of tree heights was 17 m to 23 m. 
The range of tree diameters is given in Table 1. 

For the inventory dataset, we used 6732 trees from 108 plots in this 
forest region from the First Argentinian National Inventory dataset 
(Secretaría de Ambiente y Desarrollo Sustentable, 2007). Trees ≥ 30 cm 
DBH were sampled on subplots of 0.5 ha and trees between 10 and 30 cm 
DBH were sampled on 0.2 ha subplots. The density of trees > 10 cm DBH 
was 191 ha−1. The interquartile range of tree heights was 11 m to 24 m; 
the range of tree diameters is given in Table 1. 

2.1.4. Semi-arid (Chaco) 
This type of forest is located in central-western Argentina (31◦16′– 

31◦37′S, 65◦25′–65◦32′W). Soils are mainly sandy loam Aridisols of al
luvial origin. Annual rainfall ranges between 250 and 540 mm, and the 
mean annual temperature is 18 ◦C. In this semiarid environment, the 

typical vegetation is xerophytic and often dominated by multi-stemmed 
shrubs. Common species include Aspidosperma quebracho blanco, Proso
pis flexuosa, Mimozyganthus carinatus, Senegalia gilliesii, and Larrea 
divaricata (Cabido et al., 1992; Zuloaga et al., 2008). The study area 
includes fragments of conserved forest within a mosaic of different land 
uses, mainly logging and grazing (Zak et al., 2004; Baumann et al., 
2018). 

Individuals for biomass models were chosen across the study area 
keeping climatic and soil conditions as constant as possible. An average 
of 30 individuals per species were selected to include the range of plant 
sizes observed in the field (Conti et al., 2013). Several variables often 
used in allometric estimations of shrub biomass were measured prior to 
destructive sampling. In the present study, crown area was used in the 
biomass model, calculated from the maximum crown diameter (CD1) 
and its perpendicular diameter (CD2) as πCD1⋅CD2

4 . 
For the inventory data set, we used 1070 trees from 93 plots in this 

forest region from the Argentinian National Inventory dataset (Secre
taría de Gobierno de Ambiente y Desarrollo Sustentable de la Nación, 
2019). These were multi-stemmed trees with the crown diameter mea
surements needed for biomass estimation using the equation of Conti 
et al. (2013). Inventory plots were located on a grid. At each plot, trees ≥
10 cm DBH were tallied in a 0.1 ha area; trees 5 to 10 cm DBH were 
tallied in a smaller concentric plot of 0.025 ha. Density was 322 in
dividuals ha−1, most of them multi-stemmed. Single-stemmed trees are 
not represented in our calculation of forest biomass, because they are 
modeled with a different allometric equation; these trees represent 
about 16% of the total biomass. 

Fig. 3. Size distribution of harvested trees used for allometric models in the four study sites. The best fit regression lines are shown in blue. The grey area indicates 
the confidence in the model, while red dashed lines represent the confidence in predicting individuals. 
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2.2. Allometric models 

The allometric models predicting tree biomass or volume from 
various non-destructive measurements were obtained by linear fitting 
approaches (Fig. 3). In the case of the Selva Paranaense, the response 
variable was stem volume, and tree size was the predictor variable, 
represented by the stem diameter squared times tree height. In the other 
three sites, the response variable was the logarithm of aboveground 
biomass. For the Yucatán and the Hawaiian sites, the predictor variable 
was the logarithm of stem diameter; for the Chaco site, the predictor 
variable was the logarithm of crown area, calculated from the longest 
crown diameter and its perpendicular diameter. 

To propagate uncertainty, the model residual variance, σ2, is needed, 
along with the sum of squared deviations of the predictor variables. 
Since these statistics were not published in previous publications from 
our sites, we fit the equations to the original data (Table 2). Model fits 
were best for Hawaii, followed by Paranaense, Yucatán, and then Chaco 
(Table 2). 

2.3. Approaches to error propagation 

Monte Carlo error propagation involves multiple iterations of a 
calculation, in which each iteration uses a random sample of the inputs. 
We used 10,000 Monte Carlo iterations for each of five approaches to 
error propagation (four for confidence in the model and one for pre
diction of individuals) applied to each of four forests with each of four 
inventory sample sizes, as detailed below. We characterized the uncer
tainty in the outputs by the coefficient of variation (CV), which is the 
standard deviation divided by the mean. Code and data to reproduce the 
analysis are publicly available (Lin et al., 2023) 

2.3.1. Confidence in the model: Analytical approach 
Uncertainty in the model fit can be described analytically using 

Equation (1) (Snedecor and Cochran 1989, p. 164): 

σ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n

+
(x0 − x̄2)

∑
(xi − x̄2)

√

(1)  

where σ is the standard deviation of the model residuals; n is the sample 
size used to develop the regression model; x0 is the value of the 
explanatory variable of the individual for which the prediction is to be 
made; and ̄x is the mean of the explanatory variables of all individuals xi 
in the allometric data set used to develop the regression model. This 
equation assumes homoscedasticity in the residuals. We used Monte 
Carlo simulation to propagate uncertainty in the model, randomly 
sampling one value of σ for each iteration to be applied to all the trees in 
each iteration. 

2.3.2. Confidence in the model: Slope-intercept sampling 
Alternatively, uncertainty in the model can be described by propa

gation of uncertainty in the model coefficients. Model coefficients in 
allometric equations cannot be assumed to be independent. In the case 
of linear equations, the intercept and slope are negatively correlated 
(Zapata-Cuartas et al., 2012). We represented the covariance between 
the slope and intercept using the variance–covariance 

∑
matrix derived 

from regression (Lande et al., 2003):
∑

= σ2(X’X)
−1 where X denotes a 

matrix of model explanatory variables with a preceding column of 1′s 
representing the intercept term. By assuming a multivariate normal 
distribution N(β,

∑
) using the derived 

∑
matrix and means β equal to 

the original vector of model coefficients, we randomly obtained 10,000 
sets of model coefficients for each allometric model. We then applied the 
10,000 sets of model coefficients to the inventory trees to calculate 
10,000 model outputs, and the CV of the output was reported. 

2.3.3. Confidence in the model: Bootstrapping 
To represent confidence in the model using bootstrapping, we 

resampled the entire number of allometric trees in each site with 
replacement, and then refitted a regression equation to the sample, from 
which we obtained one set of allometric model coefficients. We repeated 
the process to obtain 10,000 sets of model coefficients, which we then 
applied to the inventory trees to calculate 10,000 model outputs, from 
which the output CVs were estimated. 

2.3.4. Confidence in the model: Bayesian approach 
This method uses probability distributions to determine the uncer

tainty in the model parameters. A Markov Chain Monte Carlo algorithm 
was used to generate marginal posterior distributions for each of the 
model parameters using Metropolis-Hastings sampling (Metropolis 
et al., 1953, Hastings 1970). We calculated a maximum likelihood 
estimator of allometric model fit by using uninformative priors, which 
were distributed normally for the slope and intercept but uniformly for 
sigma to avoid initial negative values, following Réjou-Méchain et al. 
(2017). We then repeated the following stepwise procedure to obtain 
10,000 sets of model parameters. (1) We assumed that the slope, 
intercept, and sigma followed normal distributions (because the likeli
hood of sigma being negative was now negligible) with means equal to 
the values from the previous step and standard deviations of 0.01 for 
slope, 0.002 for intercept, and 0.01 for sigma, and we obtained one 
random set of parameter values and calculated a new maximum likeli
hood estimator of the allometric model fit. (2) If the difference between 
the maximum likelihood estimators was greater than a random value 
between 0 and 1, then we accepted the new estimator. (3) We repeated 
this process using the new parameter values. Because we used uninfor
mative priors, we discarded the first 10% of iterations as a burn-in 
period given the potentially poor fit. For the remaining parameter 
sets, we used 1 of every 1000 iterations to avoid autocorrelation in the 
data because each iteration was built based on the previous iteration. 
The details about the uninformative priors and the reasoning behind the 
default standard deviation values are presented in the R package 
“BIOMASS” (Réjou-Méchain et al., 2017). 

2.3.5. Uncertainty in the prediction of individuals 
The uncertainty in prediction of individuals can be described 

analytically using Equation 3 (Snedecor and Cochran 1989, p. 166), 
under the assumptions of homoscedasticity, as in the case of the un
certainty in model fit: 

σ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
1
n

+
(X0 − X̄)

2

∑
(Xi − X̄)

2

√

(2)  

with variables defined as in Equation (1). The uncertainty of prediction 
of individuals was then propagated using Monte Carlo simulation. For 

Table 2 
Allometric models for the four case studies. σ is the residual standard deviation.  

Study site Equation R2
adj Number of 

trees 
σ 

Hawaii log(AGB) = 3.07 + 2.68 • log(DBH) 0.99 93  0.194 
Yucatán log(AGB) = −0.456 + 1.66 • log(DBH) 0.92 48  0.461 
Paranaense V = 0.0207 + 0.3161 • DBH2 • Height  0.95 655  0.307 
Chaco log(AGB) = −13.1 + 1.39 • log(CA) 0.79 245  0.706  
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each tree, we added a random error with a mean of 0 and a standard 
deviation defined by Equation (2). We repeated the calculation 10,000 
times to generate 10,000 model predictions, from which the output CVs 
were estimated. 

2.4. Applying tree allometry to forest inventory data 

For each study site, we randomly sampled 10, 100, 1000, and 10,000 
trees from the population represented by the inventory data. We 
sampled with replacement, because we were limited by the number of 
trees in the inventory (1,850 trees for Hawaii, 6,732 for Selva Para
naense, 11,019 for Yucatán, and 1,070 for Chaco). Except in Hawaii, 
nested sampling was used, with small trees measured in smaller plots 
than large trees (as described above). To represent the population, we 
repeated the small trees by the ratio of expansion factors for the various 
size classes (10 or 40 for Chaco, 10 or 25 for Selva Paranaense, 18 or 25 
or 125 for Yucatán). To replicate the diameter distribution of the pop
ulation, we sampled from 10 strata defined by tree diameter with equal 
numbers of trees in each stratum. This stratification was important for 
small sample sizes, where the uncertainty varied depending on which 
trees were selected. In the case of only 10 trees, the biomass estimate 
was sensitive to the biggest tree sampled, and therefore we had to be 
careful to select a sample that gave a similar total biomass to the original 
data set. We intended the four data sets to illustrate the effect of dif
ferences in the forests, and this approach reduced the effect of random 
sampling of trees within each forest. 

3. Results 

3.1. Confidence in the model 

There was close agreement in the four approaches to characterizing 
uncertainty in model fit: the analytical approach, random sampling of the 
slope and intercept, bootstrap refitting of the model, and the Bayesian 

approach (Figs. 4 and 5). The four sites, however, differed dramatically in 
uncertainty in model fit and were generally lowest where more trees were 
used in the construction of the allometric equations and where the model 
fit was good. Specifically, Selva Paranaense had the lowest uncertainty, 
with R2

adj = 0.95 and 655 trees, followed by Hawaii, which had only 93 
trees but an extremely high R2

adj (0.99), because the trees in this mono
culture plantation were more uniform in their allometry (Fig. 3). The other 
two sites had larger uncertainties: Chaco had a poor model fit (R2

adj = 0.79) 
because the tree allometry was extremely variable and the model was 
based on crown diameters. Yucatán had only 48 trees to fit the allometric 
model (Table 2). 

Although the approaches to quantifying uncertainty in the model 
were in general agreement, some differences deserve attention. Boot
strapping in the Yucatán data set departed from the other approaches in 
giving a higher uncertainty (Fig. 5). Because the sample size was small 
(48 trees), bootstrap sampling was sensitive to outliers, which might be 
represented repeatedly or not at all in each bootstrap sample (Fig. 6). 

We did not expect confidence in the model to depend on the number 
of trees to which it was applied. In fact, increasing the numbers of trees 
in the inventory sample from 10, 100, 1000 to 10,000 did not affect the 
overall uncertainty in the application of the models (see CVs in Fig. 4 
and flat lines in Fig. 5). 

3.2. Confidence in the prediction of individuals 

In addition to describing the uncertainty of forest biomass using four 
different methods, we also described the uncertainty in predicting 
biomass of individual trees (Figs. 4 and 5). The uncertainty declined 
with the number of trees in the inventory sample, with the estimate of 
the uncertainty becoming negligible when many trees were measured. 
Clearly, when the number of inventoried trees is large, the uncertainty 
due to predicting individuals is insufficient to represent the uncertainty 
in the models correctly. 

Fig. 4. Frequency distributions of estimates of forest biomass (or volume, in the Selva Paranaense) per hectare based on 10,000 Monte Carlo iterations for 4 sites, 4 
scenarios of inventory sample sizes, and 5 approaches to characterizing uncertainty in the estimates. CV indicates coefficients of variation (%). 
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Forest biomass calculated by predicting individual trees had a higher 
mean than that calculated accounting for uncertainty in the model fit, 
except in the Selva Paranaense, where the allometric model was not 
based on log-transformed values. This bias arises from the application of 

the linear fit in log–log space, due to a lack of proper weighting of re
siduals: high values tend to inflate the estimated mean. This bias can be 
avoided by using non-linear fitting approaches that account for the 
dependence of the variance of the residuals upon tree diameter. 

Fig. 5. Uncertainty in biomass estimates, indicated by the coefficients of variation (CV) across 4 sites, 4 scenarios of tree numbers, and 5 approaches to charac
terizing uncertainty in the estimates. 

Fig. 6. The sampled trees from the Yucatán site are shown in red along with 10,000 possible regression lines based on (a) bootstrap fitting, based on 48 data points, 
randomly sampled with replacement and (b) random samples of the slope and intercept based on their variance and covariance. Uncertainty characterized by 
bootstrapping (a) is higher than by slope-intercept sampling (b; Figs. 4 and 5). 
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4. Discussion 

4.1. Prediction of individuals vs. Confidence in the model 

Calculating uncertainty in estimates of forest biomass is complicated, 
involving sampling error, allometric models, and sometimes wood 
density and carbon fraction (Lu et al 2012, Temesgen et al 2015, Yanai 
et al. 2020). Correctly representing the uncertainty in tree allometry is 
especially challenging. The confidence interval is the standard mea
surement of error when reporting forest resources (Birigazzi et al., 
2019), but there has been some confusion about when to propagate the 
confidence in the prediction of individuals versus the confidence in the 
model. 

When an allometric model is applied to a small number of trees, the 
uncertainty of predicting individuals is important, because the confi
dence interval around predicting the mass of an individual tree is always 
larger than the confidence interval around the best-fit model (Fig. 2; 
Picard et al., 2012). In our case studies, for an extremely small inventory 
of only 10 trees, the uncertainty in predicting individuals was always 
more important than the uncertainty in the model fit, and in most cases 
this was true for 100 trees (Fig. 5). Only in the case of the Chaco forest, 
with the greatest allometric uncertainty, was the uncertainty in pre
dicting individuals important for an inventory of 1000 trees. Thus, it is 
important to address the uncertainty in predicting individuals when 
small numbers of trees are involved, as is sometimes the case in 
expensive manipulation studies. The precise number of trees required to 
make this source of uncertainty negligible depends on specifics of the 
case. 

In applications such as national forest inventories, involving very 
large numbers of trees, it is more important to represent the uncertainty 
in the model; individual uncertainties become unimportant due to the 
law of large numbers, where CV ∼ n−1

2 (Fig. 4). In cases such as these, it 
is incorrect and potentially very misleading to propagate the uncertainty 
in individuals and ignore the uncertainty in model fit. For example, 
when large numbers of trees are sampled by remote sensing, this 
approach can produce highly certain estimates of forest carbon (95% <
1% error), despite using allometric regressions with considerable un
certainty (Gonzalez et al., 2010). 

4.2. Cross-site differences in allometric uncertainty 

We chose four case studies that differed in the nature of the allo
metric relationship. The allometry of trees of consistent form and size (e. 
g., Eucalyptus plantation in Hawaii) can be characterized with high 
confidence with a small number of trees. Trees in the Paranaense forest 
are not very uniform, but a very large number of trees were used to 
construct the allometric equation. These two case studies were charac
terized by allometries with high R2

adj values and low residual standard 
deviations (Table 2) and correspondingly low biomass uncertainty (CV’s 
near 3%; Fig. 5). The other two case studies had allometries with lower 
R2

adj values and higher residual standard deviations (Yucatán and Chaco; 
Table 2) and correspondingly high biomass uncertainty (CV’s near 10%; 
Fig. 5). 

The semi-arid Chaco site was interesting, given that the multi- 
stemmed nature of the trees precluded the use of a dbh-based allom
etry. The allometry based on crown area was inherently more variable 
than the dbh-allometries used at the other sites, such that the uncer
tainty associated with the mean value was higher than the Hawaiian and 
Paranaense sites and similar to the Yucatán site. The highly variable 
allometry of the Chaco site made the uncertainty associated with the 
predictions of individuals more important, even at relatively large in
ventory sizes of ~ 1000 trees. The Chaco allometry was able to capture 
the growth form of these multi-stemmed trees, but individual variation 
was still high and important relative to other sites. 

4.3. Approaches to quantifying confidence in the model 

In our case studies, all four approaches to propagating uncertainty in 
the allometric model gave generally similar results (Fig. 5). The biggest 
difference was for the young tropical forest in the Yucatán site, where 
bootstrapping differed from the other three approaches, producing 
higher estimates of uncertainty. The allometric model at this site was 
poorly constrained at the low end of tree diameter and biomass (Fig. 3); 
only 4 small trees were sampled (of 48 trees in total) and these 4 were in 
poor agreement. In situations such as this, adding observations to the 
allometric dataset may be useful. Bootstrapping allows outliers in a data 
set to be omitted by chance in some iterations and represented multiple 
times in others (Fig. 6). The other three approaches all use the allometric 
sample set to describe the model uncertainty, whereas bootstrapping 
represents the possibility that the allometric sample is not representative 
of the underlying population. 

The other three approaches produced consistent estimates of un
certainty in model fit. Practical considerations might affect the choice of 
approach. Affordability and ownership of the analytical process are 
important to the sustainability of forest monitoring systems (FAO, 
2020), thus simpler approaches may be preferred in countries with low 
capacities. The analytical approach is amenable to implementation in 
Excel (Yanai et al. 2010), while Bayesian and slope-intercept approaches 
require specialized software packages. Monte Carlo and bootstrapping 
approaches can be implemented in Excel (FCPF, 2021) but are easier to 
manage in a more powerful programming language. 

4.4. Implications for policy and larger research communities 

Allometric calculations of carbon sequestration from forest inventory 
assessments are increasingly used at national scales as part of interna
tional carbon emission trading agreements (e.g., REDD+). These 
agreements often require an assessment of uncertainty of reported 
emission reductions (Pelletier et al., 2013). A wide range of methods 
have been employed to quantify this uncertainty, some of them egre
giously wrong (Yanai et al., 2020). We hope that this paper will 
contribute to more accurate estimates of uncertainty in allometric re
lationships (Picard et al., 2012) and their use when applied to large-scale 
forest inventories. 

National forest inventories are common frameworks for forest 
monitoring and international reporting for climate mitigation and na
tional forest policy formulation. It is crucial that reporting institutions 
understand when and how to report uncertainties. Our case-study based 
approach aims to support continuing efforts to address technical gaps 
through capacity development (Romijn et al. 2015, Neeff et al. 2017) 
and to highlight the need to appropriately address uncertainties given 
the wildly variable quality in uncertainty reporting to date. 

In this study, we showed how the quality of the allometric data af
fects the importance of the uncertainty of the prediction of individuals 
when scaling up to whole inventories. In most cases, this source of un
certainty can be ignored at large scales. In contrast, confidence in the 
model should always be reported, in addition to other sources of error, of 
which sampling error is generally the most important (Phillips et al. 
2000). We showed that there are multiple options for adequately ac
counting for uncertainty in model fit (analytical approach, slope- 
intercept sampling, bootstrapping, and Bayesian analysis), but that ac
counting for uncertainty based only on predicting individuals seriously 
underestimates allometric uncertainty when the number of trees is large, 
as is certainly the case in national forest inventories. 
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