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Abstract—In this letter, we describe some of the most
important objectives and needs in pandemic control. We
identify the main open problems in the different stages of
the decision making process, as well as the most signif-
icant challenges to overcome them, leading to promising
future research directions. We provide a concise review of
the most recent literature describing such challenges, high-
lighting the main results, achievements and methodologies
that can be employed to address them. In particular, we
discuss some promising recent techniques that have been
successfully applied to the Covid-19 pandemic and could
be very valuable in the design of novel methodologies to
face future pandemics.

Index Terms—Biological systems, emerging control
applications, healthcare and medical systems, modeling,
network analysis and control.

. INTRODUCTION

N MODERN epidemiology, society is modelled as a highly
complex spatially distributed network in which pathogens
may spread. The emergence of a lethal infectious pathogen
can lead to a pandemic, resulting in a serious global health
emergency. For decision-makers, it is crucial to monitor and
anticipate the epidemic evolution, so as to plan multi-pronged
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interventions aiming at reducing the diverse impacts of the
pandemic. The challenges raised by a pandemic require the
interplay between Epidemiology, Data Science and Control
Theory. Epidemiology is crucial to understand the mechanisms
that govern the spread of a disease. Data Science provides
techniques, often in a Big Data context, to develop forecasting
tools and spatio-temporal analysis. Finally, the results from
the Control Theory community are used to design optimal
mitigation and/or resource allocation strategies.

Many challenges, of disparate nature, must be addressed
when monitoring, modelling and managing the evolution of a
pandemic (see Figure 1). Here, we identify and discuss the
most critical needs and objectives in the control of epidemics
at different stages of the decision-making process, highlighting
the main open problems and promising techniques.

Some of the most relevant challenges are:

1) Data accessibility and quality (e.g., lack of transparency,
inconsistencies, different formats, reconciling monitor-
ing and privacy).

Modelling issues (e.g., system complexity, non-
identifiability issues, non-linearity, spatial distribution,
time-varying and heterogeneous dynamics, the cru-
cial role of delays, multiple pathogen strains, possible
asymptomatic population).

Challenges in planning interventions and epidemic con-
trol (including physical distancing, non-pharmaceutical
interventions, testing, contact tracing, drug distribution
and vaccination campaigns), predicting their effective-
ness, and choosing the most suitable criteria in the
presence of multiple needs and limited resources.
Challenges in the design of implementable interventions,
taking into account the complexity of human behavior,
logistic, administrative and political issues.

Our selection of fundamental -challenges, promising
approaches and relevant directions for future research is
focused on how to take advantage of available data and
advanced methodologies so as to better understand, predict
and control a pandemic in a highly interconnected and tech-
nological society.

The letter is organized as follows. Section II analyses the
main challenges and methods for real-time monitoring of pan-
demics. Section IIT addresses the problem of estimating the
state of an epidemic, focusing on testing, contact tracing and

2)

3)

4)

2475-1456 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on February 22,2024 at 18:27:45 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-0623-8146
https://orcid.org/0000-0002-6129-0094
https://orcid.org/0000-0002-2481-5058
https://orcid.org/0000-0001-9998-8730
https://orcid.org/0000-0002-8600-1738

ALAMO et al.: CHALLENGES AND FUTURE DIRECTIONS IN PANDEMIC CONTROL 723

Difficulties
M
o |Pata transparency [1] M| Spatially distributed [10] M | Uncertainty [8]
N | Asymptomatic population [7] o| Time-varying nature 8] A [Delays [2]
| | Observability issues [13] p| Population heterogeneity [9] N | Limited resources [10]
1 |Privacy issues [4] g| Complex human behaviour [18] A | Multicriteria nature [29]
0o |Inconsistent data sets 1] L | Non-identifiability issues [13] g Global scale vaccine logistics [30]
R
Promising techniques and methods
M . In-Host modelling [19] Trigger control [16], [27]
Contact-t 4 M /
(0] G(I)g jﬁ d ];?gl%it[a] 5], [6] M| Spatial epidemiology [5],[6],[10] A | Distributed MPC [29]
N Spatial - ’1 s 15 O| Temporal network epidemiology [6] N | Robust MPC 8]
[ | Spatial sentiment analysis [5] D| Social networks [10] Structural svstem th (28]
e ocial networks A ructural system theory
T Sl olsmelt sl E| Multiscale stochastic models [21] G | Optimal resource allocation
o, dentifiability [13] L[ Uncertainty quantification [25],[26] g | in networks [10]
R Data-driven forecasting [24]
Fig. 1. Difficulties, as well as promising techniques and methods, in the control of a pandemic.

observability/identifiability of mechanistic models. The poten-
tial of multi-scale integrated modelling and its open challenges
are described in Section IV. The control objectives in the con-
text of an epidemic are detailed in Section V. Section VI deals
with control-oriented models, whereas Section VII analyses
available epidemic control techniques and their limitations.
Section VIII analyses the techniques for the optimal allocation
of resources to fight pandemics. Finally, the main conclusions
are summarised in Section IX.

II. REAL TIME EPIDEMIOLOGY

The vast amount of real-time data streams describing the
evolution of epidemics in the 21st century offers many oppor-
tunities and challenges. Data sources are fundamental to
achieve different goals [1].

(i) Detecting a novel epidemic outbreak in a surveillance

system.

(i) Monitoring the epidemic incidence and the strain on the
healthcare system.

Assessing the socioeconomic impact of the epidemic,
e.g., in terms of mobility, adherence of the population
to interventions and economic indicators.

Including fundamental auxiliary information (such as
demographics, weather and climate, air-transport con-
nectivity) within predictive models.

(v) Analysing the effectiveness of countermeasures and

planning of suitable control strategies.
Inferring meaningful information from the present data del-
uge is very challenging. First of all, the available data sources
exhibit important limitations [1, Sec. 4]: a wide variety of data
formats and structures, variability in criteria for data collec-
tion and availability, lack of transparency related to the real
impact of the pandemic, and unreliable information relative
to low-to-middle-income countries, among others. Secondly,
highly resource-consuming big-data techniques are required
to process spatially distributed information from mobility data
sources, social networks, etc. In this context, data curation

(iii)

@iv)

is crucial to ensure active management of data over its life
cycle, guaranteeing that it meets the necessary quality require-
ments for its practical usage. Data-driven methods to monitor,
model and manage an epidemic require that data is trustworthy,
accessible, reusable, and frequently updated.

When monitoring the epidemic, aspects that can heavily bias
the estimated infection incidence, making it deviate from the
actual one, are the limited availability of tests, the variety in
reporting behaviors (e.g., the number of infected is underes-
timated when only people with serious symptoms seek for
medical advice and get tested), and the delays in detecting
and reporting new infections [2]. Strategies such as pool test-
ing can help maximise the number of performed tests even
with scarce resources [3]. Early detection of local outbreaks
can be achieved by monitoring wastewater systems, as well as
through digital surveillance [4], which however poses privacy
issues.

Generating consolidated time series through pre-processing
raw data, data reconciliation, data fusion, clustering methods,
and time-series theory is a fundamental step in developing
data-driven methodologies. The objectives are i) to correct
possible inconsistencies and enhance the quality of the raw
time-series; ii) to combine data from different sources; iii) to
restructure data into clusters with similar characteristics.

Geographic Information Systems (GIS) and big data tech-
nologies are fundamental for the rapid aggregation of multi-
source big data to synthesize mobility indexes, assess the
adherence of the population to interventions and determine
the spatial segmentation of the epidemic risk [5]. At the
technical level, spatio-temporal analysis methods for big data
are emerging [5], [6]. Promising techniques in this field are
spatio-temporal clustering, multilevel modelling for small area
estimation, and Bayesian approaches to disease mapping; see
the review in [6]. For the decision-making process, spatial
sentiment analysis techniques [5] are emerging to monitor the
social impact of an epidemic and to anticipate the potential
effectiveness of a given intervention, taking the complex nature
of human behavior into account.
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[1I. ESTIMATING THE STATE OF THE EPIDEMIC

Estimating the epidemic size plays an important role in
assessing the clinical severity of the disease (e.g., case fatal-
ity rate), the attained population-level immunity (which can be
estimated through seroepidemiological studies and serosurveil-
lance), and the epidemic evolution. Real-time estimation of
the epidemic incidence allows us to understand the most com-
mon transmission vectors (in-house, in-hospital, at-work, etc.)
and identify the contexts or scenarios with the highest risk
of contagion, as well as those geographical areas with high
community transmission. It also plays an important role in the
predictions of future epidemic waves, along with the time and
magnitude of the associated peaks.

Efficient approaches for testing and contact tracing are
required to assess the epidemic situation in real time,
which is critical while containing the contagion. Since
contact tracing can only be effective at low enough
case numbers, it is an effective countermeasure jointly
with other non-pharmaceutical interventions, like physical
distancing [7], [8].

Powerful tools to estimate the state of an epidemic are
offered by compartmental and mechanistic models that emu-
late how the disease spreads. The classical approach parti-
tions a population into different compartments and employs
mechanistic differential-equation models to describe the tran-
sitions between compartments. The SIR compartmental model
includes Susceptible, Infected and Recovered/Removed com-
partments, while SEIR models include an Exposed compart-
ment to model the latent period after the infection; different
extensions to these compartmental models include extra com-
partments to characterize asymptomatic but still contagious
population, population in quarantine, or hospitalised patients,
just to name a few [9]. Also, networked models are adopted
to take spatial heterogeneity and individual interactions into
account [10], [11]. All epidemiological models depend on
several parameters (such as the contact rate, the transmission
probability, the average infectious period) that can be either
constant or time-varying [12].

The state variables associated with some compartments
are directly measurable, such as the number of hospitalised
patients, while others, such as the number of asymptomatic
infection cases, are impossible (or at least impractical) to
measure. Asymptomatic transmission is a crucial issue for
several pathogens, including SARS-CoV-2, Zika virus and
HIV. Similar considerations can be made with respect to
the model parameters. Therefore, estimating unmeasured state
variables and parameters based on available measurements
is key. Structural observability/identifiability [13] plays here
a crucial role: for a given compartmental model and mea-
surable outputs, it allows to determine which compartments
and parameters can be respectively observed and identified.
Thus, this kind of analysis provides excellent tools to choose
among different models and estimation goals depending on
the situation, and prevents the use of unreliable combinations
of measurements, models, and estimation goals that can lead
to poor predictions, conflicting conclusions, and distrust of
epidemiological models.

An additional challenge in state estimation arises when time
delays are explicitly considered. Delays affect, among others,
the process of detecting/reporting contagions [2] or the latency
between infection and infectiousness. Delays are often incor-
porated in compartmental models, whose observability can be
analysed resorting to the backward shift operator and rewrit-
ing the equations in differential form to determine whether
strong, regular, or weak observability holds (see [14] for an
application to the Covid-19 pandemic).

The most common situation in epidemic modelling is
to have only partial information about the recovery and
infection events (incomplete epidemic data). In this context,
Markov Chain Monte Carlo methods (MCMC) and Expected
Maximization (EM) algorithms are valuable methodologies
to make Bayesian inferences about the missing data and the
unknown parameters [12, Sec. 4].

Fitting the model parameters to the data available can be
challenging even for medium-complexity models because of
possible non-identifiability issues: different sets of parameters,
yielding a similar fit to data, may provide a significantly dif-
ferent estimate of the main epidemic features, such as peak
size or reproduction number [13], [8, Sec. 2.2]. This is critical,
since very different control outputs could be proposed depend-
ing on the selected set of parameters. A promising approach to
address this issue is to employ large-scale convex optimization
to fit spatially distributed data in network modelling. The main
idea is to use data reconciliation and regularization techniques,
assuming that the spread of the disease is similar in locations
with analogous characteristics [15]. In this way, the degrees
of freedom in the identification process can be reduced to a
level at which the obtained results are robust and consistent.

When both observability and identifiability analyses are cor-
rectly performed, the state estimation of the pandemic can
provide essential information, such as, e.g., the (possibly time-
varying) rates of transmission and recovery, the latent period,
and the fractions of asymptomatic population or exposed
population.

IV. MULTI-SCALE INTEGRATED MODELLING

Modelling epidemics is challenging due to the complex
nature of the spreading phenomena, which are intrinsically
nonlinear and typically time-varying [7], [9], spatially dis-
tributed [10], [16] and large-scale, since they result from the
interactions among myriads of agents. Delays (e.g., in symp-
tom onset, in reporting infections) have a crucial role in the
ensuing dynamics, which can be further complexified by the
concurrent presence of multiple pathogen strains [17] and on-
going mass vaccination. Other challenges are due to population
heterogeneity, since the incidence and the clinical evolution of
the disease can vary depending on demographic factors (such
as age, gender, ethnicity), and to the need of accounting for
unpredictable human behaviours [18].

To better understand, predict and control epidemics, we need
multi-scale mathematical models that describe the interplay
between the in-host and between-host evolution of infectious
diseases. In-host dynamic captures the biological characteris-
tics of the pathogen and its biochemical interactions with the
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host cells and immune system [19]. Between-host dynamic
captures the spread of the disease in a population, describing
the evolution of contagion both through aggregate compart-
mental models [7], [9] and through agent-based or networked
models of the population [10].

To capture the spread of the disease considering the
complex web of interactions between individuals, promis-
ing techniques are offered by spatial and network-based
epidemiology [6], [10], often relying on big data [5], to
infer realistic mobility/contact patterns, as well as temporal
network epidemiology [6], [11]. Originating in statistical
physics, percolation theory is a large branch of network theory
concerned with the outcome of deleting nodes or edges from
networks. It constitutes a powerful tool to understand the
stochastic spread of an epidemic in a complex time-varying
network [11, Sec. 6]. Another possibility to analyse the com-
plex non-linear spatio-temporal spread is to resort to Dynamic
Mode Decomposition and Koopman Operator Theory;
preliminary results along these lines can be found in [20].

A holistic multi-scale perspective, embracing both in-host
and between-host dynamics and taking into account the inter-
actions between them, as well as including psychological,
social and economic effects of the epidemic and the adopted
countermeasures, is fundamental for a thorough understand-
ing of the epidemic phenomenon as a whole. It also enables
the design of optimal control interventions both at the patient
level (pharmaceutical interventions, such as vaccines or tar-
geted drugs) and at the population level (non-pharmaceutical
interventions, such as lockdown, physical distancing, use of
protective equipment, testing and contact tracing), which take
into account the epidemiological and public-health perspec-
tive along with the impact on society at large. In this context,
multi-scale stochastic models for epidemics have been recently
put forth [21]. A fore-running attempt for multi-scale epi-
demic modelling that integrates epidemiology, immunology
and economy is sketched in [22], but holistic multi-scale mod-
els are still in their infancy and constitute a promising direction
for future interdisciplinary research.

Another open challenge is to devise novel integrated model-
based and data-based approaches that are tailored to nonlinear
spreading dynamics. Through an integrated model-and-data
framework [12], we could both leverage insights provided by
first-principle knowledge about the epidemic phenomena and
the current availability of huge amounts of data, which are,
however, often inaccurate, incomplete or uncertain, and from
which further knowledge can be extracted through learning
approaches.

V. CONTROL OBJECTIVES

In order to contain the spread of an epidemic, it is necessary
to decide on the most effective timing and stringency of inter-
ventions, and the optimal distribution of available resources.
This is a multifaceted problem that, in most cases, can be
stated as a constrained optimization problem [10], [23]. Taking
a holistic perspective, the objective function should account
for health, social and financial impacts of the pandemic. From
a public health viewpoint, the goal is to minimize the total

number of deaths due to the disease, or the total number of
infections (or proxy variables, such as the reproduction num-
ber). From a financial perspective, the aim is to minimize
the impact of the disease on both the economy and finan-
cial agents; the economic consequences of an epidemic can
be measured through indexes related to wealth creation and
job destruction. The temporal persistence of the disease is
a major factor in this direction; in fact, it impacts the three
facets mentioned above: health, society, and finance. Hence,
the optimization problem should not only minimize the total
number of deaths (or of infections), but it should do so in the
shortest possible time.

To achieve these objectives, decision makers have at their
disposal a wide array of tools. At the earliest stage of a new
epidemic, pharmaceutical interventions are often not available
and the main mechanism to contain the disease is movement
restrictions within a region, traffic control across regions, and
social distancing measures, which come at a social and eco-
nomic cost. In this scenario, a decision maker needs current
estimates of the epidemic state and predictive models of the
disease to assess the situation and the risks, and implement
movement restrictions aimed at creating firewalls around areas
with high prevalence, as well as social distancing measures to
reduce the spread of infections. As mentioned above, these
complex decisions can be made aided by optimization tools,
intended for reducing the total number of infections/deaths
while minimizing the socioeconomic costs of the imple-
mented measures [10]. To formulate a suitable optimization
problem, we need reliable and robust models able to predict
the impact of different countermeasures on the future epidemic
evolution [7], [8]. We also need appropriate cost functions
accounting for the socioeconomic costs of these countermea-
sures. The optimization problem can then be formulated in
three closely related ways: (1) finding a point in a Pareto
boundary by choosing the relative importance of health, social,
and economic factors; (2) setting mathematical bounds on the
levels of acceptable social/economic costs and then determin-
ing the optimal resource distribution to minimise the impact
on health; (3) setting bounds on the healthcare system strain
(such as bounds on the number of occupied ward or intensive-
care-unit beds in hospitals) and minimising the socioeconomic
impact.

VI. CONTROL-ORIENTED PREDICTIVE MODELS

Prior to developing a control strategy, it is important to
implement predictive models to assess the impact of inter-
ventions on the spread of the pathogen, the healthcare system,
the mortality rate, and so on. In this regard, it is important to
have access not only to the data corresponding to epidemio-
logical variables, but also to keep track of the implemented
non-pharmaceutical interventions [1, Sec. 8.2].

Both the time-varying and stochastic nature of the epi-
demic phenomenon require not only the design of forecasting
tools [24, Sec. 4], but also the quantification of the uncer-
tainty related to the obtained predictions [25]. The accuracy
limitations of the predictive models are due to different fac-
tors, like gaps in our mechanistic understanding of disease
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transmission, low quality data, and fundamental limits to the
predictability of complex epidemic processes [25]. Another
relevant source of uncertainty is the interplay between dis-
ease and human behavior, which can lead to outcomes that
are difficult to predict [18]. This is fueled by social media,
fear-reinforcing 24/7 news, and political polarization.

Sensitivity analysis, Monte Carlo methods, generalized
polynomial chaos are examples of uncertainty quantification
techniques [26] that are often used in epidemiology. An emerg-
ing technology in epidemic modelling is the use of positive
systems theory: since populations in a compartmental model
are non-negative, it is possible to develop guaranteed interval
predictions that account for all the range of variability of the
uncertain parameters [8, Sec. 5].

In order to develop control strategies, it is of paramount
importance to develop predictive models well-suited for the
implementation of effective decision making in the context
of an epidemic outbreak. There is a trade-off between highly
complex models and oversimplified ones. For example, not
considering the asymptomatic population in the Covid-19 pan-
demic can result in an excessive oversimplification, while too
complex networked models might hinder the numerical solu-
tion of the optimization problems that arise in an optimal
control formulation. Medium-complexity compartmental mod-
els have been often used as predictive models for control in
the Covid-19 pandemic (e.g., the SIDARTHE model [7] in
the model predictive control formulation proposed in [8] and
the switching approach in [27]). The focus is on the robust
achievement of various epidemic objectives, and not on the
development of a precise model.

VII. CONTROL TECHNIQUES

In a control setting, an epidemic is a time-varying uncertain
process in which adaptive feedback strategies are required to
compensate for uncertainty, model mismatch and time-varying
nature.

To make decisions in such a highly uncertain context, where
exact parameter values are hardly known, it would be impor-
tant to identify scale-invariant and parameter-independent
features of epidemiological models, based on which robust
decisions could be safely enforced even with poor knowledge
of the system parameters; to this aim, structural approaches tai-
lored to biological and epidemiological models, such as those
surveyed in [28], could be exploited.

The need to enforce restrictions during an epidemic, com-
bined with behavioral fatigue due to their socioeconomic
consequences, is likely to trigger intermittent containment
measures, with the alternation between higher-transmission
and lower-transmission phases. Promising techniques for the
design of intermittent restrictions (trigger control) are outlined
in [16], [27]. In this setting, as commented before, the control
goals are often stated in terms of a multi-objective formula-
tion. Trigger control of an epidemic can be addressed by means
of oracle-based approaches: given a particular epidemiological
situation, the oracle answers yes or no to the question whether
a given intervention should be adopted (see, e.g., [8, Sec.
3.1.2]). In this context, the decision problem can be viewed

as a classification problem (supervised learning), for which
many approaches from machine learning exist (support vector
machines, random forest, neuronal networks, etc.) In this case,
interpretable classification techniques are preferable, because
they not only provide an answer, but also motivate it.

Model Predictive Control (MPC) formulations are particu-
larly flexible, because they can explicitly consider constraints
(e.g., bounds to prevent the saturation of the healthcare system)
and support decisions by identifying the optimal timing and
intensity of interventions [8], [29].

The output of a model predictive controller is adaptive,
in the sense that it takes into account the latest available
information on the epidemic state; MPC schemes can cope
with model uncertainty and/or disturbances. Moreover, some
MPC formulations explicitly consider the uncertainty affect-
ing the parameters of the epidemic model [8]. Because of
the spatially clustered distribution of an epidemic [10], spe-
cific control techniques from the field of distributed model
predictive control can be applied, as in [29].

VIIl. OPTIMAL RESOURCE ALLOCATION:
TESTING AND VACCINATION

At the early stage of a pandemic, the optimal distribution
of medical tests is of utmost importance. Since the adopted
policies are decided based on the available estimates of the
epidemic state, it is of critical importance to design an effi-
cient strategy to distribute tests throughout the population. This
problem can be posed as an optimization program where the
objective is to maximize the amount of collected information
about the state of the disease, while satisfying constraints on
the number of available tests [3]. An appropriate distribution of
tests not only better informs health agencies about the state
of the disease, but can also be used as a tool for early detection
of new outbreaks. Since outbreaks tend to grow exponentially
at the early stages, an effective system for early detection
of outbreaks can drastically reduce both social and economic
impacts.

The production and distribution of vaccines is another essen-
tial pillar in the suppression of an epidemic, especially for
a pandemic that demands global-scale vaccine logistics [30].
The distribution of vaccines should be strategically designed
to minimize the total number of deaths at the end of the
vaccination campaign. To this aim, not only fabrication and
distribution limits should be taken into account, but also an
allocation strategy should be carefully designed to decide
which subpopulations should be vaccinated first. Obviously,
those with a higher mortality rate should have a priority
in the vaccination process; however, to face an infectious
disease, the optimal strategy might be to also vaccinate poten-
tial superspreaders, such as frontline workers, at an early
stage. Furthermore, the optimal distribution of different types
of vaccines, each with a different price, efficacy, and fab-
rication/distribution limits, requires the solution of a large
optimization program. Another challenge in this scenario is
the emergence of different pathogen strains during the vacci-
nation roll-out, as in the Covid-19 pandemic, against which
different available vaccines may be differently effective.
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IX. CONCLUDING DISCUSSION

We have selected the main objectives and challenges when
addressing epidemics, and pandemics, from a systems-and-
control perspective. Adopting a holistic approach, we have
described and discussed the main tasks required for data-driven
management of an epidemic: i) monitoring the disease spread,
ii) developing control-oriented predictive models, iii) making
optimal decisions for planning both interventions and alloca-
tion of resources. We have highlighted the most promising
emerging methodologies to address the different challenges
raised by present and future epidemics of the 21st cen-
tury. The general methodologies proposed in our references,
although often applied to the topical case study of Covid-
19, could be adopted as well to deal with other infectious
diseases. Useful tools for an improved management of pan-
demics from a systems-and-control perspective can be inspired
by the theory of the robust control of positive systems, struc-
tural approaches to assess properties of systems even in highly
uncertain settings, polynomial chaos techniques for uncertainty
quantification, percolation theory to effectively assess the
evolution of epidemics through complex network-based mod-
els, approaches for large-scale optimization suitably tailored
to exploit the specific features of epidemiological models.
Promising avenues for future interdisciplinary research are
opened by the need of holistic, integrated models that bridge
multiple resolution scales and incorporate the multi-faceted
impact of epidemics on healthcare as well as the social, psy-
chological, economic consequences of the contagion and of
the necessary countermeasures to stop its spread.

REFERENCES

[1] T. Alamo, D. G. Reina, M. Mammarella, and A. Abella, “Covid-
19: Open-data resources for monitoring, modeling, and forecasting the
epidemic,” Electronics, vol. 9, no. 5, p. 827, 2020.

[2] M. E. Kretzschmar, G. Rozhnova, M. C. J. Bootsma, M. van Boven,
J. H. H. M. van de Wijgert, and M. J. Bonten, “Impact of delays on
effectiveness of contact tracing strategies for COVID-19: A modelling
study,” Lancet Public Health, vol. 5, no. 8, pp. e452-e459, 2020.

[3] L Yelin et al., “Evaluation of COVID-19 RT-qPCR test in multi sample
pools,” Clin. Infectious Dis., vol. 71, no. 16, pp. 2073-2078, Nov. 2020.

[4] L. Ferretti et al., “Quantifying SARS-CoV-2 transmission suggests epi-
demic control with digital contact tracing,” Science, vol. 368, no. 6491,
p. eabb6936, 2020.

[5] C. Zhou et al., “COVID-19: Challenges to GIS with big data,” Geogr.
Sustain., vol. 1, no. 1, pp. 77-87, 2020.

[6] R.S.Kirby, E. Delmelle, and J. M. Eberth, “Advances in spatial epidemi-
ology and geographic information systems,” Ann. Epidemiol., vol. 27,
no. 1, pp. 1-9, 2017.

[7]1 G. Giordano et al., “Modelling the COVID-19 epidemic and implemen-
tation of population-wide interventions in Italy,” Nat. Med., vol. 26,
pp. 855-860, Apr. 2020.

[8] J. Kohler, L. Schwenkel, A. Koch, J. Berberich, P. Pauli, and
F. Allgéwer, “Robust and optimal predictive control of the COVID-
19 outbreak,” Annu. Rev. Control, to be published. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S136757882030078X

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]
[28]

[29]

(30]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population
Biology and Epidemiology, 2nd ed. New York, NY, USA: Springer,
2012.

C. Nowzari, V. M. Preciado, and G. J. Pappas, “Analysis and control
of epidemics: A survey of spreading processes on complex networks,”
IEEE Control Syst., vol. 36, no. 1, pp. 26-46, Feb. 2016.

I. Z. Kiss, J. C. Miller, and P. L. Simon, “Mathematics of epidemics on
networks,” in From Exact ot Approximate Models. Cham, Switzerland:
Springer Nature, 2017.

T. Britton, E. Pardoux, F. Ball, C. Laredo, D. Sirl, and V. C. Tran,
Stochastic Epidemic Models with Inference. Cham, Switzerland:
Springer Nature, 2019.

G. Massonis, J. R. Banga, and A. F. Villaverde, “Structural identifi-
ability and observability of compartmental models of the COVID-19
pandemic,” Annu. Rev. Control, to be published.

E. Scharbarg, C. H. Moog, N. Mauduit, and C. Califano, “From the
hospital scale to nationwide: Observability and identification of mod-
els for the COVID-19 epidemic waves,” Annu. Rev. Control, vol. 50,
pp- 409-416, Oct. 2020.

P. Abry et al., “Spatial and temporal regularization to estimate COVID-
19 reproduction number R(t): Promoting piecewise smoothness via con-
vex optimization,” PLoS ONE, vol. 15, no. 8, 2020, Art. no. €0237901.
F. D. Rossa et al,, “A network model of Italy shows that intermit-
tent regional strategies can alleviate the COVID-19 epidemic,” Nat.
Commun., vol. 11, pp. 1-9, Oct. 2020.

V. Priesemann et al., “An action plan for pan-European defence against
new SARS-CoV-2 variants,” Lancet, vol. 397, no. 10273, pp. 469—470,
2021.

R. C. Tyson, S. D. Hamilton, A. S. Lo, B. O. Baumgaertner, and
S. M. Krone, “The timing and nature of behavioural responses affect
the course of an epidemic,” Bull. Math. Biol., vol. 82, no. 1, pp. 1-28,
2020.

E. A. Hernandez-Vargas and J. X. Velasco-Hernandez, “In-host mathe-
matical modelling of COVID-19 in humans,” Annu. Rev. Control, vol. 50,
pp. 448-456, Sep. 2020.

J. L. Proctor and P. A. Eckhoff, “Discovering dynamic patterns from
infectious disease data using dynamic mode decomposition,” Int. Health,
vol. 7, no. 2, pp. 139-145, 2015.

E. A. Hernandez-Vargas, A. Y. Alanis, and J. Tetteh, “A new view of
multiscale stochastic impulsive systems for modeling and control of
epidemics,” Annu. Rev. Control, vol. 48, pp. 242-249, Jun. 2019.

N. Bellomo et al., “A multiscale model of virus pandemic:
Heterogeneous interactive entities in a globally connected world,” Math.
Models Methods Appl. Sci., vol. 30, no. 08, pp. 1591-1651, 2020.

V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and
G. J. Pappas, “Optimal resource allocation for network protection against
spreading processes,” IEEE Trans. Control Netw. Syst., vol. 1, no. 1,
pp- 99-108, Mar. 2014.

T. Alamo, D. G. Reina, P. M. Gata, V. M. Preciado, and G. Giordano,
“Data-driven methods for present and future pandemics: Monitoring,
modelling and managing,” 2021. [Online]. Available: arXiv: 2102.13130.
S. V. Scarpino and G. Petri, “On the predictability of infectious disease
outbreaks,” Nat. Commun., vol. 10, no. 1, pp. 1-8, 2019.

R. G. McClarren, “Uncertainty quantification and predictive computa-
tional science,” in A Foundation for Physical Scientists and Engineers.
Cham, Switzerland: Springer Nature, 2018.

M. Bin et al., “Post-lockdown abatement of COVID-19 by fast periodic
switching,” PLoS Comput. Biol., vol. 17, no. 1, pp. 1-34, Jan. 2021.
F. Blanchini and G. Giordano, “Structural analysis in biology: A control-
theoretic approach,” Automatica, vol. 126, Apr. 2021, Art. no. 109376.
R. Carli, G. Cavone, N. Epicoco, P. Scarabaggio, and M. Dotoli,
“Model predictive control to mitigate the COVID-19 outbreak in
a multi-region scenario,” Annu. Rev. Control, vol. 50, pp. 373-393,
Oct. 2020.

W. W. Gibbs, “This is how to vaccinate the world: We can manufacture
and distribute enough doses to protect humanity from COVID-19,” I[EEE
Spectr., vol. 58, no. 1, pp. 32-37, Jan. 2021.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on February 22,2024 at 18:27:45 UTC from IEEE Xplore. Restrictions apply.



