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restrictions that both curb the epidemic and minimize the economic costs associated with implementing non-
pharmaceutical interventions. We develop an extension of the SEIR epidemic model that captures the effects
of changes in human mobility on the spread of the disease. The parameters of the model are learned using
a multitask learning approach that leverages both data on the number of deaths across a set of regions,
and cellphone data on individuals’ mobility patterns specific to each region. Using this model, we propose a
nonlinear optimal control problem aiming to find the optimal mobility-based intervention strategy that curbs
the spread of the epidemic while obeying a budget on the economic cost incurred. We also show that the
solution to this nonlinear optimal control problem can be efficiently found, in polynomial time, using tools
from geometric programming. Furthermore, in the absence of a straightforward mapping from human mobility
data to economic costs, we propose a practical method by which a budget on economic losses incurred may be
chosen to eliminate excess deaths due to over-utilization of hospital resources. Our results are demonstrated
with numerical simulations using real data from the COVID-19 pandemic in the Philadelphia metropolitan
area.

1. Introduction resounding waves, as we are currently observing for the case of COVID-

19. In fact, as long as enough people in the population are susceptible,

Ever since the first COVID-19 case was reported on December 31st
2019 (World Health Organization, 2020a), the SARS-CoV-2 pandemic
has spread world-wide, reaching alarming levels of spread and severity
(World Health Organization, 2020b). The response to the first wave
of COVID-19 by governments was the implementation of large scale
non-pharmaceutical interventions (NPIs) ranging from contact tracing,
quarantines and mask usage, to more aggressive measures like city
wide shelter-in-place orders, air-travel restrictions and closures of non-
essential businesses (Wu, Smith, Khurana, Siemaszko, & DeJesus-Banos,
2020). In the absence of pharmaceutical treatment, prevention, or herd
immunity, NPIs remain the only tool to curb the spread of an epidemic
in its earlier stages. In the case of COVID-19, governments across
the world have implemented strategies to relax mobility restriction
measures and reactivate the economy (Kaplan & Frias, 2020) while,
at the same time, preventing the collapse of healthcare systems. How-
ever, relaxing mobility restrictions too fast or carelessly can result in

the danger of recurrent waves is not only real, but probable. In this
situation, it is of utmost societal importance to develop reopening
strategies in a principled manner utilizing the wealth of data readily
available.

Several epidemic models have been proposed in the recent literature
to simulate the effects of social distancing on the evolution of the
pandemic; see, e.g., Achterberg et al. (2020), Bhouri et al. (2021),
Chang et al. (2021). Although the majority of epidemic models in
recent years are variations of the seminal mathematical models on the-
oretical epidemiology (see Nowzari, Preciado, and Pappas (2016) and
references therein), the availability of rich datasets describing human
mobility and behavior is rapidly changing the field of mathematical
modeling of epidemics. Companies like Google, Foursquare, Safegraph,
Baidu, and others, have provided public access to massive datasets
describing human mobility, enabling the development of data-driven
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epidemic models capturing the effects of mobility restrictions. Indeed,
the choices faced by decision makers regarding disease management
involve the use of multiple control actuations such as vaccination, quar-
antine, treatment or, as is the case for COVID-19, non-pharmaceutical
interventions such as social distancing. These decisions must face the
trade-off of minimizing the impact of the disease and the economic cost
associated with their implementation.

In order to increase predictive power and utility for policy decision-
makers, epidemic models have gradually increased their complexity
to account for a multitude of features of real epidemics such as
disease-specific compartmental models (Van den Broeck et al., 2011),
resurgence (Watts, Muhamad, Medina, & Dodds, 2005), multi-scale
effects (Hayhoe, Alajaji, & Gharesifard, 2018), seasonality (Balcan
et al., 2010), differential risk structure in the population (Ferguson
et al., 2020), healthcare system capacity (Piguillem & Shi, 2020), and
uncertainty in testing data (Morato, Bastos, Cajueiro, & Normey-Rico,
2020), among others. This increased sophistication in the modeling
often comes at the cost of mathematical intractability, a limitation often
circumvented by formulating policies based on heuristics and/or simu-
lations (Achterberg et al., 2020; Aleta et al., 2020; Balcan et al., 2010;
Chang et al., 2021; Ferguson et al., 2020; Lorch et al., 2020). Although
informative for certain scenarios, these proposed interventions are
not the result of rigorously formulated optimal control problems and,
thus, lack the guarantees and flexibility of mathematical optimization
frameworks.

Conversely, the control of epidemics does not usually admit straight-
forward solutions from optimal control theory due to the presence
of nonlinearities and/or the lack of convexity (Nowzari et al., 2016).
There are important theoretical results in optimal control of epidemics
which achieve mathematical tractability; for example, optimal resource
allocation aiming to asymptotically drive the epidemic to extinction
(Birge, Candogan, & Feng, 2020; Hota, Godbole, Bhariya, & Paré,
2020; Nowzari, Preciado, & Pappas, 2015; Preciado, Zargham, Enyioha,
Jadbabaie, & Pappas, 2013, 2014; Van Mieghem, Omic, & Kooij, 2009;
Wang, Chakrabarti, Wang, & Faloutsos, 2003). Other theoretical re-
sults are concerned with applications of Pontryagin’s maximum prin-
ciple (PMP), and find exact solutions to resource allocation problems
under some variations of the SIS and SEIR, for example in Eshghi,
Khouzani, Sarkar, and Venkatesh (2015), Khouzani, Venkatesh, and
Sarkar (2011), Yan and Zou (2008). In contrast, data-driven control
frameworks in real epidemics have found limited applicability due to
the difficulty in incorporating real data and the challenges in solving
non-convex programs exactly. Recent work Birge et al. (2020) has
proposed a solution to the problem of optimal social distancing with
economic constraints using a static convex program which seeks to
ensure the decrease of the epidemic at all times; a condition that is
too stringent and fails to consider more efficient dynamic strategies. In
Piguillem and Shi (2020), an optimal quarantine and testing policy is
derived in an optimal control framework, but the control actions and
objective functions are restrictive and chosen ad-hoc for tractability.
Other recent applications have tackled the non-convex optimal control
of social distancing policies using model predictive control (MPC), an
approach which has been applied to a plethora of non-linear control
problems in industry (Garcia, Prett, & Morari, 1989). For example, in
Kohler et al. (2020) the authors propose an optimal predictive control
problem where a control input representing social distancing affects the
infectivity rates directly and the number of fatalities is approximately
minimized using a nonlinear program solver. A related application of
MPC for optimal social distancing policies is found in Morato et al.
(2020), in which, instead of controlling the infectivity rates directly,
the control input represents a binary lockdown policy enacted by the
government which has a delayed effect in the population’s level of
isolation, in turn affecting the infectivity rate.

A practical concern is whether it may be possible to design optimal
control strategies based on mobility restrictions that are fully data-
driven, in the sense that human mobility is measured and explicitly
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incorporated in the epidemic model. In this paper, we propose a model
of the spread of COVID-19 and a data-driven optimal control problem
that directly minimizes the number of predicted cumulative deaths
by implementing mobility restrictions in the population. We use real
mobility data from Google (Google, 2020) to learn a nonlinear mapping
representing the impact of human mobility on the parameters of a
dynamical epidemic model and propose a novel nonlinear optimal con-
trol problem that can be solved efficiently using tools from geometric
programming (Boyd, Kim, Vandenberghe, & Hassibi, 2007).

Our model consists of an extension of the classic SEIR model, aug-
mented with compartments for asymptomatic and hospitalized agents.
We assume that the rate at which agents become infected in any given
day is a function of the mobility trends in the population for that
same day, reflecting the fact that an increase in mobility leads to
more infections. We rely on data regarding case counts and deaths
from The New York Times (New York Times, 2020) and from Google’s
COVID-19 Community Mobility Reports (Google, 2020) to capture the
changes in visitation patterns to different Places of Interest (POIs). The
mobility data consists of several time series measuring visits to various
categories of places such as Retail & Recreation, Grocery & Pharmacy,
and Workplaces. The dataset is organized into separate time series
for all counties in the United States, and measures visits to multiple
categories of places against a benchmark established in January and
February of 2020. The key observation is that a decision maker can
enforce restrictions on visits to each of these categories to reduce the
spread of the epidemic while incurring a cost to the economy. Hence,
our objective is to design optimal strategies for mobility restrictions
to contain the spread of COVID-19 while taking in to account the
associated economic cost.

Our approach is similar to that in Kohler et al. (2020), Morato
et al. (2020) in that we solve the problem of optimal social distancing
policies to curb an epidemic under state constraints, which can be im-
plemented with a receding horizon. However, we stress two important
differences: first, we explicitly model and learn the impact of human
mobility on the evolution of the disease spread using real mobility data
and can formulate granular continuous mobility restriction policies
that vary across economic sectors; second, unlike Kohler et al. (2020),
Morato et al. (2020) our optimization problem is reduced to a convex
program which can be solved with great efficiency, has global optimal-
ity guarantees, and can accommodate a large number of variables and
longer optimization horizons.

The structure of the paper is as follows. In Section 2 we introduce
the notation used as well as some necessary background in geometric
programming. In Section 3 we discuss the specifics of our data-driven
model, consisting of a mobility layer and an epidemic layer. In Sec-
tion 4 we discuss the details of our learning strategy to identify the
parameters of the model. In Section 5 we present our optimal control
framework and present simulations showing the effectiveness of our
method. In Section 6 we conclude and discuss possibilities for further
research. Appendix A includes additional results of practical interest,
and Appendix B contains proofs of the results herein.

2. Background and notation

Throughout this paper bold characters are used to denote vectors
and upper-case characters denote either matrices or compartments of
the epidemic model. For the following definitions let x|, ..., x, > 0 de-
note n non-negative variables, and let x = (xy, ..., x,). When considering
our epidemic model we use tildes for the states of the true (nonlinear)

model, e.g. $(7), and omit the tildes for the linearized model, e.g., S().

Definition 1 (Monomial). A function f(x) is called a monomial if it has
the form

a,
xn

a a
F) = ex'x?ox,,

for ay,...,a, € Rand ¢ > 0.
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Definition 2 (Posynomial). A sum of one or more monomials is called
a posynomial, that is, a function of the form

k

fx=7Yc

i=1

¢ flh 1 x;x.z x‘;r’,n.

Since posynomials admit negative exponents but do not admit neg-
ative coefficients they are not necessarily polynomials, and vice versa.
We remark that posynomials are closed under addition, multiplication,
and positive scalar multiplication. This implies that if the entries of two
matrices A € R" and B € R¥*" are posynomials of the same variables,
then so are the entries of their product AB, since [AB], ; Z,_ i1Bjs
which is a sum of products of posynomials. This result extends trivially
to the product of an arbitrary number of matrices with posynomial
entries.

Definition 3 (Convex in log-scale). A function f(x) is convex in log-scale
if the function F(y) := log f(exp(y)) is convex (where the exponentia-
tion is component wise).

A careful application of Holder’s inequality shows that posynomials
are convex in log-scale.

We solve the epidemic control problems presented herein using
a quasi-convex optimization framework called geometric programming
(Boyd et al., 2007; Boyd & Vandenberghe, 2004), which has found wide
applicability in fields such as communication systems (Chiang, 2005),
epidemiology (Preciado et al., 2014), and control (Ogura, Kishida, &
Lam, 2019), among others. A geometric program (GP) is a mathematical
optimization program of the form

minimize f(x)
X

subject to ¢;(x) <1 foriel,...m

hi(x)=1 foriel,...p,

where f(x),q;(x),...,q,(X) are posynomials and h(x),...,h,(x) are
monomials. Due to the convexity in log-scale, one can exactly trans-
form' a GP to a convex program by means of the logarithmic change
of variables y; = log(x;) and transforming the objective and constraints
with the logarithmic transformations F(y) = log f(exp(y)), Q;(y) =
log g;(exp(y)) and H;(y) = log h;(exp(y)) to obtain

minimize F(y)
y
subject to Q;(y) <0
Hi(y)=0

foriel,...m
foriel,...p

which is a convex program that can be efficiently solved using, for
example, primal-dual interior-point methods; see Dahl and Andersen
(2021) for more details. In practice, geometric programs with tens of
thousands of decision variables and constraints can be solved to find the
global optimum in a matter of seconds on a standard laptop computer.

3. Model

We now describe the epidemiological model under analysis. We
consider a region with N individuals and propose a population model
with homogeneous mixing, i.e., every pair of individuals come in contact
with a probability that depends on aggregated mobility variables.
Population models are commonly used in the absence of granular data
on the network of social contacts in a region (Nowzari et al., 2016).
We assume that each individual can visit POIs belonging to different
categories 1,2, ..., K; let m(t) = (m;(t),my(¢), ..., mg (1)) denote a vector
of human mobility variables capturing the percentage change in volume
of visits to each of those categories at a particular discrete time ¢

1 In particular, we remark that the globally optimal solution to this convex
program corresponds to the globally optimal solution of the original GP.
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Fig. 1. Illustration of the epidemic model under consideration.

(e.g., days) relative to a pre-established baseline; hence, m, (1) € [0, o).
In particular, we use publicly available mobility data from Google’s
COVID-19 Community Mobility Reports (Google, 2020) which capture
daily changes in visitation patterns to public places, for example, Retail
& recreation, Grocery & pharmacy, and Parks, as well as time spent at
work. For each category, Google reports the relative change in visits
compared to a baseline of mobility measured before the lockdown
measures took place. This baseline corresponds to the median daily
visits to each category over the period comprising January 3 through
February 6, 2020.

Our model consists of two layers: a mobility layer and an epidemic
layer. The mobility layer captures the effect of human mobility on
the spread of the disease and influences the dynamics taking place on
the epidemic layer. In the epidemic layer, we consider an extension
of the classic SEIR epidemic model (Brauer, Castillo-Chavez, & Feng,
2019; Martcheva, 2015) which explicitly accounts for asymptomatic
hosts and hospitalizations, as in Giordano et al. (2020). Each of the
individuals in a region belongs to one of seven possible compartments
described below. In this model, S(z) represents the number of individu-
als susceptible to becoming infected at a discrete time z. In our optimal
control problems, we will consider a finite horizon T, over which
we can assume an almost constant number of susceptible individuals;
hence, in these problems we assume S(t) ~ S, forall 0 < ¢t < T,,
which linearizes the model. The variable E(f) represents the number
of individuals who have contracted the virus (exposed) but are in
an incubation period at time . After the incubation period, agents
can move to one of the infectious compartments; I(r) represents the
number of symptomatic individuals and A() represents the number of
asymptomatic individuals. The asymptomatic compartment is included
since asymptomatic individuals play a crucial role in the spread of
COVID-19, with transmission rates that are different from symptomatic
individuals (Giordano et al., 2020; Gandhi, Yokoe, & Havlir, 2020).
Asymptomatic individuals eventually recover on their own and move
on to the recovered compartment, represented by the variable R(r).
Symptomatic individuals can recover on their own, or their symptoms
can worsen and they subsequently require hospitalization, in which
case they are moved into a hospitalized compartment, represented by
the variable H(r). Since hospital capacity is a principal concern with
the treatment of COVID-19, we include this compartment to constrain
the control problems described in Section 5. In particular, our mobility-
based control input will be constrained to prevent a hospital capacity
overflow. Finally, agents that are hospitalized may either recover and
transition to the compartment represented by R(f) or may die, and
subsequently transition to the compartment represented by D(t). With
explicit data on the number of deaths in every region, we may train
our model to predict the population of this compartment. We make
the simplifying assumption that only individuals with severe symptoms
are at a risk of dying and, hence, all of them have been previously
hospitalized.

All parameters related to the dynamics of this model are summa-
rized in Table 1. Using these parameters, the discrete-time evolution of
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the number of individuals in each compartment, illustrated in Fig. 1, is
given by:

S@+1)=S0) - SOB ) (v, AW + T (1)), )
Et+1)=(1=pp;—ppa) EQ+SOBO G A0 + T 1)), @
Te+ D)= (1=prr=pru) T O+ pprE@), (3)
A+ 1) = (1= psp) A® +ppsE (1), 4
He+1)=(1-pyr) HO+ppl @), (5)
Rt +1)= R+ p;rI() + psrAW) + (1 —ap)pyr H®), (6)
D@t +1)= D)+ appyr HQ). @

In our model, we assume that susceptible individuals can transition
into the exposed compartment when in contact with either Infected
(symptomatic) or Asymptomatic individuals. We assume that the rate
at which asymptomatic individuals infect others is weighted by a
constant (unknown) parameter y,. We also assume that the portion
of hospitalized individuals who die, relative to those that recover, is
equal to an unknown constant aj. In Section 4, we will introduce a
methodology to learn these (and other) unknown parameters in our
model. As mentioned above, this model is intended to solve optimal
control problems over a finite time horizon T, over which the number
of new infected individuals is small compared to the entire population,
so we can assume that the number of susceptible individuals at any
time 0 < ¢t < T,, S(), is well approximated with a constant; hence,
in our control problems we set S(7) = S,,. Moreover, this assumption
linearizes® the dynamics of the states; for notational clarity, we will
omit the tildes when considering the states of the linear model. As we
will see in Section 5, this linearization ensures that the entries of the
state vector at any given time are posynomials on the parameter §(r).
However, we incorporate a non-linear dependency of the parameter
p(t) on the mobility restriction variables, which we will use as our
external control variable, rendering the resulting model non-linear and
multiplicative in the control input. Fortunately, the states of this lin-
earized model upper-bound the states of the true model, as shown in the
lemma below. Appendix A.2 contains simulation results to examine the
tightness of these bounds in practice. Hence, by reducing the number
of deaths in the linearized model, D(r), we are guaranteed to reduce
the number of deaths in the true nonlinear model, D().

Lemma 1. The states of the linearized model (wherein S(t) = S;,)
upper-bound the states of the model in (1)—(7). Thus, for all t > 0,

SH<SnH=S,, E®<E®W, In<Ie),
AN <A, H@W<H®@, R@) <R, D)< D).

Proof. See Appendix B.1. []

The mobility layer of our model incorporates the effects of non-
pharmaceutical interventions, such as social distancing and other forms
of mobility restrictions, which a decision maker may employ to curb the
spread of the epidemic. By reducing human mobility, a decision maker
induces fewer contacts between susceptible and infected individuals
and, thus, reduces the risk of infection. In particular, we relate the
infection rate f(r) to a time series m(¢) of human mobility variables by
means of an unknown function f(-). We choose f to be a parametric
function whose parameters will be learned from data (described in
detail in Section 4.1).

In order to employ non-pharmaceutical interventions, a decision
maker designs a mobility control strategy to set the human mobility
variables m(7) for some finite horizon r € {0,...,7,}. In mathematical

2 In general the resulting dynamics are bilinear due to the terms f(t)A(r) and
A1 (1), but in the original SEIR model f(r) = f V1, rendering these dynamics
linear in the states. For this reason we refer to these dynamics as linear.
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Table 1

Summary of parameters in epidemic model. We assume p;z + p;y < 1, pp; < 1,
par <1, and pyp < 1, since these parameters capture the fraction of individuals
in each compartment that transition to other compartments, which must be less
than one for the model to be meaningful. We also assume y, € [0, 1], reflecting
the fact that asymptomatic individuals are less likely to spread the disease.

Parameter Description

A Rate at which susceptible individuals become infected due to
contacts with infectious individuals at time #; A(z) is a function
of the mobility variables m(r) at time ¢

N Weight representing lower risk of infection when infectious
individuals are asymptomatic

PEI Rate at which exposed individuals become symptomatic

PEA Rate at which exposed individuals become asymptomatic

PR Rate at which symptomatic individuals recover on their own

Pru Rate at which symptomatic individuals develop severe
symptoms and become hospitalized

PAR Rate at which asymptomatic individuals recover on their own

PUR Rate at which hospitalized individuals recover

ap Proportion of hospitalized individuals that die

terms, the decision maker designs an input {u(t)}tT;0 which affects future
values of the mobility variables. For simplicity, we assume an identity
mapping between mobility and the input, so that m(¢) = u(¢), and u(z)
is in some set of admissible actions 7. In other words, we assume
that mobility patterns may be directly actuated to a desired level by
a decision maker, subject to feasibility constraints.

Intuitively, lower values of u(r) correspond to more restrictions on
human mobility. The decision maker may have fine-grained control
over their control strategy, for example by closing individual estab-
lishments, imposing occupancy limits, or restricting hours of operation,
and as such we treat the individual components of the control action
u, () as continuous variables. Moreover, some categories may have
different admissible actions, e.g., it may not be possible to close down
all pharmacies but closing all gyms is reasonable. In mathematical
terms, we will consider a set of allowable control actions U that is
described using posynomial inequalities and monomial equalities.

Furthermore, implementing mobility restrictions in this manner
cannot be done without incurring a financial loss. Closure of businesses
causes economic losses, which need to be taken into consideration
when selecting an appropriate control strategy. In particular, applying
the temporal control strategy u(¢) of mobility restrictions incurs a cost
C,(u()) which we assume to be monotonically decreasing with u and
convex in log-scale, reflecting that the costs on society of restricting
mobility are marginally increasing.

4. Parameter estimation via multitask learning

Several recent epidemic prediction methods opt to set some (or
all) of the parameters in their models to estimations from the medi-
cal and virology literature (e.g. Achterberg et al., 2020; Aleta et al.,
2020; Bhouri et al.,, 2021; Birge et al.,, 2020; Chang et al., 2021).
However, these parameters often have wide confidence intervals and
are commonly inferred from statistical models that do not take into
account the effects of social distancing and hospital capacity (Ali et al.,
2020). Other recent works learn these parameters from data (Bhouri
et al.,, 2021; Van den Broeck et al.,, 2011; Chang et al., 2021; Hota
et al., 2020), but do not explicitly model the infectivity of the epidemic
using mobility patterns, making the design of related control strategies
difficult. In contrast to these approaches, our model is entirely data-
driven in that all parameters used (including initial conditions) are
learned directly from data, and we learn an explicit mapping between
mobility patterns and the spread of the epidemic. In particular, we
employ a multitask learning approach (Caruana, 1997) by leveraging
both data on the number of deaths across a set of regions, and mobility
data describing how often individuals in a region visit different points
of interest. The key idea is to consider each region of interest as
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Fig. 2. The learning pipeline for a given region. Global parameters, learned using all available data, are shown in magenta; initial conditions, learned for each region, are shown
in blue; mobility mapping parameters, again different across regions, are shown in red. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

a separate prediction subtask, while many parameters of the models
describing the evolution of the epidemic are shared across regions.
Indeed, certain parameters of the epidemic model are intrinsic to the
disease; hence, they do not depend on the geographical location from
which data is collected. As such, when calibrating this model to a
given region, we can benefit from the data from other regions by
employing a multitask learning framework, providing better parameter
estimates and avoiding overfitting. Towards this goal, we pool data
from multiple regions (e.g., US counties) and minimize a global cost
function in which the global parameters are shared across regions
but the mobility parameters and initial conditions are specific to each
region. This provides statistical data amplification, as the prediction
subtask for each county is given additional data with which to learn
the global epidemic parameters. Another relevant facet of multitask
learning is representation bias; the learning procedure will avoid local
minima intrinsic to only a few (or just one) of the counties. The learning
pipeline from data to predictions for a single region is shown in Fig. 2.
We fit our models using publicly available mobility data from Google’s
COVID-19 Community Mobility Reports (Google, 2020) which captures
daily changes in visitation patterns to public places, for example, Retail
& Recreation, Grocery & Pharmacy, and Parks, as well as time spent
at Workplaces. This dataset is organized as different time series for
six different categories. For each category, Google reports the relative
change in visits compared to a baseline of mobility measured before
the lockdown measures took place. This baseline corresponds to the
median daily visits to each category over the period comprising January
3 through February 6, 2020. Furthermore, we use public data from The
New York Times, based on reports from state and local health agencies
(New York Times, 2020), consisting of daily and cumulative caseloads
and deaths attributed to COVID-19 in The United States. To account
for inconsistencies and lags in reporting, we compute a 7-day rolling
average on the original time series for the calibration of our model.
As mentioned above, there are two layers to our model, namely
(1) the mobility layer, which is a mapping from mobility data to the
infection rate A(fr) (described in Section 4.1) and (2) the epidemic
layer, which describes the dynamics of the disease itself (discussed
in Section 4.2). Since parameters such as the latency period, ratio of
infected individuals who develop symptoms, and case fatality ratio
are intrinsic to the disease and should not vary greatly based on the
geographical area being studied, we group these together across regions
as global parameters and learn them jointly with all the available
data. However, the mapping from mobility data to the infection rate
and initial conditions of the regional epidemic are dependent on the
locality, and thus they are learned using only the data from their region.

4.1. The mobility layer

To learn the function f : m — f from mobility data to the infection
rate, we must first select an appropriate class of functions for such a

499

mapping. Although we could use any parametric family of functions,
such as neural networks, to estimate f, not all choices are tractable. In
particular, neural networks may provide great prediction performance
but would render an intractable control problem. In order to obtain a
tractable control problem, we chose to model the function f using a
parametric posynomial function (Boyd et al., 2007). As we will show
in Section 5, this choice allows us to use geometric programming to
efficiently solve several nonlinear optimal control problems of interest.
Thus, we model f in a parametric way as

K
fm;0,a,b) =Y Om +b, ®
k=1

where we recall that m; € [0, ). From a practical standpoint, this
posynomial approximation is justified because f can be viewed as
the product of the contact rate (the expected number of contacts
an individual has with others) and the transmission risk, which is
constant over time. Moreover, the number of contacts within a category
should exponentially increase with the number of visits to points of
interest in that category. Since the mobility data is stratified across K
different categories, we allow the parameters to be different across the
categories. Thus, in the parametric function f(m; 0, a, b) the probability
of transmission is captured by 6 = (0,,...,0k) € R>o’ the exponential
growth of infectivity is captured by a = (al, ...,ag) € RK and the bias
term b accounts for potentially unmodeled infections.

Since susceptible individuals may become infected by either symp-
tomatic or asymptomatic individuals, the mobility mapping f is incor-
porated into the epidemic layer in two terms, as seen in (2). Firstly,
it is used to model new infections from symptomatic individuals via
the term p(m())S,I(?); secondly, we include a weighting term y, in
the term y,B(m())SyA(f) to model the rate of new infections from
asymptomatic infectious individuals. Thus, altogether we denote the
set of parameters corresponding to the mobility mapping function for
region i as EF’,‘nDhimy ={0,a,b,74}.
4.2. The epidemic layer

Our model is a latent-space model; hence, the states are not fully
observable. Following common practice with these models, we treat
the unobserved initial conditions as unknown parameters to be iden-
tified from the data. Since the dynamical trajectories of the epidemic
are different across regions (e.g., US counties), for each region i we
learn a set of initial conditions T(') {Si,...,Rg}. As mentioned
previously, we follow a multitask learning approach and, thus, the
remaining global parameters, which we assume to be intrinsic to the
disease, are shared across all regions and learned collectively using data
available from all regions. The set of global parameters is denoted by
¥elobal = {PEasPE PAR: PIH~PIR Pr R @p }» Which includes all clinical
parameters that depend on the nature of the virus alone (i.e., they are
not influenced by social mobility).
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Fig. 3. Example of predicted deaths for several US counties, trained on 90 days of mobility and death count data, and tested on 30 days of the same. Predictions are shown in
blue, and the rolling seven-day averages of real deaths data are shown as dashed lines. The area in white denotes training data, and the area in red denotes test data.

4.3. Simulated predictions for Philadelphia and surrounding counties

In order to validate the predictive accuracy of our data-driven
model, we conducted a case study using counties from the Delaware
Valley metropolitan statistical area (commonly known as the Philadel-
phia metropolitan area), which includes Philadelphia County and nine
surrounding regions, including counties in Maryland, New Jersey, and
Delaware. Using county-level data, we learned both the local mobility
mapping functions and initial conditions, as well as the global clinical
parameters of the epidemic. Due to the known inconsistencies and lags
in reporting of cases and deaths, we use the rolling seven-day average
of cumulative deaths for both training and prediction. Formally, if we
have training data for M counties over T, days, the training loss for
the set of parameters ¥ := ¥, UM V! iy uM ¥ is the following
mean-squared error loss function:

M Ty, ; 5 2
1 X'®O X'®Y)
ftmm(lp)zM—Td22<Ti—T> 5

i=1 t=1 i

©)]

where N; is the population of region i, X'(¢) is the measured rolling
7-day average of cumulative deaths on day ¢ for region i, and X'(t;¥)
is the predicted value for the same region for a set of parameters
¥. We normalize the number of deaths by the population in each
county to avoid biasing our predictions towards counties with a larger
population. Notably, any differentiable loss function may be substituted
in this approach; mean-squared error was chosen for simplicity.

Our model was trained by computing gradients of the loss function
¢ rain With respect to all parameters in ¥ via the automatic differen-
tiation package autograd (Maclaurin, Duvenaud, & Adams, 2015)
and running stochastic gradient descent using adam (Kingma & Ba,
2014) over several independent trials using different initial guesses to
account for the non-convexity of the training problem. In particular,
autograd performs reverse-mode differentiation (i.e., backpropaga-
tion) to compute numerical gradients; hence, differentiability of the loss
function ¢,,,;, and the dynamical equations governing our system help
to ensure the existence of such gradients. Global clinical parameters
were initialized by using plausible values from the medical literature
(Bhouri et al., 2021; Day, 2020; He et al., 2020; Lauer et al., 2020;
Nishiura et al., 2020; Pei, Kandula, & Shaman, 2020; Rahmandad, Lim,
& Sterman, 2020; Woelfel et al., 2020), while local parameters are
initialized randomly in each trial. Different counties are split across
random batches, allowing the global parameters (trained using all data
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in our multitask approach) to converge more quickly, which in turn
allows the local parameters to converge to values which fit more closely
with the global parameters. From these trials, we select the set of
parameters with lowest testing error, and present some examples of
predictions using these chosen parameters in Fig. 3.

5. Optimal control using geometric programming

Traditional optimal control techniques are not directly applicable
to compartmental epidemic models for a number of reasons. First, epi-
demic models are typically nonlinear and the effect of
non-pharmaceutical interventions is not additive, but multiplicative.
Therefore, standard techniques such as LQR cannot be readily em-
ployed. Furthermore, a direct application of Pontryagin’s Maximum
Principle results in a high-dimensional two-point boundary value prob-
lem for which numerical methods have no convergence guarantees and
present scalability issues. Due to the modeling choices proposed in
this paper, we obtain a mobility-driven epidemic dynamics amenable
to solve certain optimal control problems using tools from geometric
programming (Boyd et al., 2007). In particular, we can solve the data-
driven optimal control problems aiming to minimize the final number
of deaths while respecting budget constraints on the economic costs
associated with implementing mobility restrictions, as well as avoiding
hospital overflows, with guarantees of global optimality. In practice, all
people may not exactly follow the desired mobility restrictions; thus,
such a strategy may be implemented in receding horizon. For example,
if a decision maker sets mobility restrictions on a weekly basis, they
may plan ahead for several months, implement a week’s restrictions,
then re-plan the following week and implement the resulting strategy,
and repeat.

In order to employ geometric programming in this setting, it is
necessary that the states can be expressed as posynomial functions
of the control input. The negative term in (1) bars us from directly
using our model; however, the horizon 0 < ¢t < T, over which our
control problem takes place is small enough that the number of new
infected individuals is small relative to the total population, and so we
may assume a nearly constant number of susceptible individuals exist,
i.e., S(1) ~ S,. This assumption linearizes our model, and allows us to
express the states as posynomial functions of the control input; hence,
we will consider this linearized model for the remainder of this section.
Fortunately, this linearization has a modest effect on our predictions;
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indeed, this linearized model upper-bounds the states of the true model,
as illustrated in Lemma 1.

We start our analysis by considering the minimization of the final
number of deaths. Since we will minimize deaths in the linear model,
D(t), we remark by Lemma 1 that we induce conservatism in our control
framework by minimizing an upper bound on the number of deaths in
the nonlinear model, D(r). For completeness in our analysis, we allow
the inclusion of a daily discount factor y; and a terminal cost y,, on
the number of deaths at the end of the horizon T,. Hence, the decision
maker aims to minimize the following objective function:

T,-1

J = z YpppurH® + voappurH(T,).
=1

(10)

We remark from (7) that the incident deaths on day 7, i.e., the number
of new deaths D(r)— D(t — 1), is exactly appy g H(t). The discount factor
vp € (0, 1] is motivated by the uncertainty of deaths in the future which
might be prevented by interventions not available in the present day.
For example, the probability that a vaccine is widely available in the
future increases as time passes. In particular, 1 — y,, can be considered
the probability of a vaccine being widely available on each day in the
future, so the probability of no vaccine being widely available by day
t is v}, and, hence, deaths predicted at day ¢ are only accounted for
if there is not a vaccine that could prevent them. The terminal cost
Y illustrates the desire to keep the number of deaths low beyond the
time horizon in consideration. For example, let us assume that beyond
the time horizon 7, the epidemic has been curbed and the number of
new daily deaths falls below appy g H(T.). In the worst case scenario
we would have H(t) = H(T,) for t > T,, hence,

[so] T(‘

Y
3y H() = H(T,)—2—.
=T, 1- YD

c

Defining y,, yg“/(l —vyp) and y,, = 0 if yp = 1, the dis-
counted number of deaths beyond 7, is given by the terminal cost
YotpPurH(T,)-

Given that the infection rate f(r) depends on mobility, we assume
that a decision maker can restrict mobility dynamically to curb the
number of deaths by designing a mobility strategy u(s) so that (1) =
f(u(®)). Furthermore, we assume that u(z) is constrained to be within a
set U reflecting that essential businesses cannot be severely restricted
and that some mobility restrictions are only partially effective.

These mobility restrictions incur a cost which could be measured
in terms of a pecuniary cost to the economy, absolute number of visits
lost by businesses, or impact on the utility of citizens. In our framework,
we quantify the economic cost of imposing a mobility control strategy
u(#) using a cost function C,(u(r)) which, in general, can be time-
varying; hence, for example, we can use different costs for mobility
restrictions on workdays and weekends. Moreover, such a cost function
may incorporate terminal costs to account for economic losses beyond
the time horizon T,. We choose to model C,(u(r)) as a posynomial on
u(?), since this is amenable to a geometric programming approach.
We investigate the problem of choosing an optimal mobility control
strategy u*(r) that minimizes the number of cumulative deaths while
keeping the total cost of the intervention, given by Z,T;(; ! C,(u(1)), below
a pre-specified budget /3, while obeying a limit on hospitalizations 7.

As we will show, this problem can be expressed as a geometric
program; this stems from the fact that the states H(¢) and D(¢) can be
expressed as posynomial functions of the mobility control variables u(z),
as shown in the following lemma.

Lemma 2. The functions H(t) and D(t), representing the number of
hospitalized individuals and deaths at time t, are posynomials on the entries
of u@) fort=0,1,...,T,.

Proof. See Appendix B.2. []
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Since a positively weighted sum of posynomials is also a posyno-
mial, we obtain our main result below.

Theorem 1. If C,(u(?)) is a posynomial cost function for all t, and the set
of admissible control actions U is described by posynomial inequalities and
monomial equalities, then the following is a geometric program:

T.-1
) Zl Yo H(®) + 7o H(T,)

minimize
u(0),u(l),...,w(T,—1
T,—1
Y G <B
=0
H®) < TH»

u(t) e U,

subject to 1)

T,

w e,
. T.—1

c

Proof. See Appendix B.3. []

The choice of the cost function and the budget B may be difficult
to discern. It may be unclear how reductions of mobility in a given
category impact the economy, and the choice of a budget for those
mobility restrictions engenders an implicit trade-off between minimiz-
ing deaths and economic costs. The choice of these cost functions is
up to the decision maker and, in practice, could leverage available
economic data about employment, revenue losses and social-wellness.
To choose such a budget B once a cost function has been defined,
we propose a principled approach to obtain the minimal budget under
which hospitals remain below capacity, preventing the steep increase
in deaths due to an overwhelmed healthcare system. This is achieved
by solving an auxiliary optimal control problem that aims to find the
minimum cost required to keep the number of hospitalized individuals
H(t) below a threshold 7 at all times. This auxiliary optimal control
problem is also a geometric program as long as the cost functions
C,(u(t)) are posynomials (for example, found via posynomial fitting
(Boyd et al., 2007) on economic data); this is stated in Theorem 2 and
the proof follows from Lemma 2.

Theorem 2. If C,(u(?)) is a posynomial cost function for all 7, and the
set of admissible control actions U is described by posynomial inequal-
ities and monomial equalities, then the minimal budget required to keep
hospitalizations below a given threshold 7y is given by
T,-1
B* = C,(u* (@),
=0

12)

where u* is the solution to the geometric program

T,-1

Y C@)
t=0

subjectto H(t) <7y,
u(t) e U,

minimize
u(0),....u(T.—1) 13)
t=1,...

t=0,...

T,

c

T, — 1.

c

Proof. See Appendix B.4. []

The budget B* obtained from Theorem 2 can be seen as a con-
servative cost which only guarantees that hospital operations remain
within capacity, avoiding overflow. The decision maker should then use
a budget B > B* in implementing the results from Theorem 1 to obtain
a less conservative control input u().

5.1. Practical considerations

As mentioned previously, in practice some individuals may not fol-
low guidance regarding mobility restrictions; thus, our control strategy
may be implemented in receding horizon. Since a decision maker may
wish to set mobility restrictions on a rolling basis (e.g., weekly), they
may plan ahead for several months, implement restrictions within the
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Fig. 4. Minimal-cost control strategy u*(¢) for Philadelphia County, PA, obtained by solving the geometric program (13). For comparison, we plot the true mobility data m(r) over
the same time period in (a). As shown in Lemma 1, the number of hospitalized individuals in the linear model, H(r), upper-bounds the number of hospitalized individuals in the
nonlinear model, H(r). We also include the hospitalizations predicted based on the true mobility data m(f) as a baseline. Parameters of the models used herein were learned as
described in Section 4.3. We obtain the budget 5* to use in geometric program (11) by taking the total cost of the minimal-cost control strategy, i.e., B* = Z;’;El C,(u*(1)). Control

actions in (b) for categories except transit stations are similar, and are overlaid.

time frame of interest, then re-plan at the end of the time period, and
repeat. Since the decision maker may tune the different categories of
mobility variables independently, we allow each of the components
k = 1,...,K of the mobility control action u(f) to vary between a
lower bound u, > 0 (representing full lockdown) and an upper bound
u, (representing no restrictions at all). Moreover, to reflect the fact
that decision makers want to avoid dramatic changes to restrictions
on a consistent basis, we enforce that the policy must remain fixed for
periods of one week (seven days), and that each component of mobility
may change no more than 4%, i.e., (1-A)u, (t—1) < u, (1) < 1+Au;(t-1),
Vk,t € {l,...,T}. However, it may be the case that categories of
mobility are dependent, and cannot be tuned arbitrarily; we explore
this idea in detail in Appendix A.1. These conditions lead to the set of
admissible control actions

U =1{ u(0),...,ug(0), ..., uy(T,), ... ,u (T,) € RK*Te

up(®) € [y, u 1 NI = Duy (= 1), (1 + Au (1= 1], a4

u(s)=u(s + )=--=u(s +6),s € {0,7,...}}.

In practice the cost function C,(u(f)) may be supplied by a decision
maker, or may be found via posynomial fitting (Boyd et al., 2007) using
economic data from a region. In the absence of such data, we choose
a time-invariant cost function C(u(?)) that satisfies the requirements of
being convex in log-scale and decreasing, given by

Koouw =u!
Cu@)) = Z S —"—

k=t B T

(15)

where ¢ = (¢, ..., cg) is a relative cost weighting of the mobility cat-
egories. This relative cost could reflect that visits lost to, for example,
healthcare facilities are more costly than visits lost to retail venues. As

shown in the lemma below, this selection of cost function and set of
allowable control actions renders (11) and (13) geometric programs.

Lemma 3. The set of admissible control actions in (14), where 0 < u e < Uy
foral k € {1,...,K}, A> 0, and the cost function in (15), where ¢, > 0
for all k € {1,...,K}, are sufficient for (11) and (13) to be geometric
programs.

Proof. See Appendix B.5. []
5.2. Control simulations

We demonstrate the effectiveness of our control approach with a
case study for the counties in the greater Philadelphia area, illustrated
in Fig. 4 and Fig. 5. All simulations were performed on a laptop
computer with 16GB of RAM and a 2.2 GHz Intel Core i7 CPU. The
parameters of our compartmental model as well as the mobility map-
ping p(u(?)) are learned from data as described in Section 4.3 using the
proposed multitask learning framework. Our models are trained using
recent data before the widespread usage of vaccines, from August 1st
to October 31st, 2020, and tested from November 1st-30th, 2020. In
particular, in Fig. 5(c) we illustrate the number of cumulative deaths
predicted using the optimal control strategy u*(¢) as compared to the
number of cumulative deaths predicted based on the true mobility
data m(r) from Philadelphia. We invoke Lemma 3 to select the cost
function C,(u(r)) and set of allowable control actions V". To elucidate
the set of allowable control actions U, we select the values u, and u;
independently for each category based on the mobility data used in our
multitask learning framework. We set the limit on the relative change
in mobility, 4, to 10%. We further re-scale the mobility data to be in
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Fig. 5. Optimal minimal-death control strategy u*(r) for Philadelphia County, PA, obtained by solving the minimal-death GP (11), from August 1st to November 30th, 2020. In
Figure (c) we compare the cumulative deaths predicted using the optimal control strategy u*(¢) in the nonlinear model, D(r) (blue line with circle markers), cumulative deaths
predicted in the linear model, D(r) (red line with star markers), and the cumulative deaths predicted based on the true mobility data m(r) as a prediction baseline (green line with
cross markers). Parameters of the models used herein were learned as described in Section 4.3, with the budget B* taken from the solution to the minimal-cost GP (13). Control

actions in Figure (a) for categories except transit stations are similar, and are overlaid.

[0,11X, which has been shown to speed up convergence of learning
methods (Bishop, 2006). For simplicity, we assign equal costs to each
category of mobility, so that ¢, =1 for all k € {1,...,K}.

We show the minimal-cost control action u*(¢) computed by solving
(13) in Fig. 4. As mentioned previously, interior point methods solve
these problems very efficiently; full discussions on the computational
complexity of our approach are in Appendix A.3. Fig. 4(a) illustrates
the measured mobility data m(s) in Philadelphia County in order to
compare with the designed control strategies. In Fig. 4(b) we show the
individual mobility control strategies for each category; recall that a
lower value of u:(t) corresponds to a lower value of mobility allowed
for category k, which incurs a higher cost. In order to trade off between
reduction in infections and economic costs, mobility in parks is allowed
to be larger than all other categories. Mobility is kept consistently low
across the time horizon to keep the number of hospitalized individuals
under control, but allowed to increase later on, reducing the overall
cost as an economic trade-off. In Fig. 4(d) we see the result of Lemma 1,
namely that the number of hospitalizations in the linear model H (z),
which is used in the GP (13), upper-bounds the hospitalizations in
the nonlinear model H(¢). Indeed, we see that our GP is providing a
conservative estimate for the control action u*(f): even though H(r)
is near the hospitalization threshold z, the predicted hospitalizations
under the nonlinear model H(t) are approaching zero at the end of the
time horizon ; we explore this phenomenon further in Appendix A.2.

In Fig. 5 we show the results of Theorem 1 by solving the GP
(11). While this problem is related to the GP (13), the objective in
this case is to minimize deaths subject to the budget B* computed
by solving (13). Hence, while the mobility control strategy u*(r) and
corresponding cost are similar to what is shown in Fig. 4, there is a
sharper initial restriction to mobility which is lifted in a more gradual
manner. Fig. 5(c) shows the number of cumulative deaths using the mo-
bility control action u*(¢) in blue, as compared to the deaths incurred
without any control, i.e., with the measured mobility pattern data m(z).
To confirm the accuracy of these predictions, we also show the number
of deaths recorded in the same time horizon as the dashed black
line. Indeed, by solving the GP (11) and implementing the associated
control strategy, our model predicts over 200 lives could have been
saved between August 1st and November 30th. As before we show the
predictions using the linear model, which upper-bound the predictions
in the nonlinear model; this further illustrates the conservatism of our
control approach.

6. Conclusion and future work

In this paper we presented a multitask learning and nonlinear
optimal control framework that aims to bridge the gap between optimal
control theory of epidemic models and applicable data-driven models
for analyzing the spread of COVID-19 and other future epidemics. To
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identify the parameters of our model, we propose a multitask learning
approach that leverages mobility and epidemic data from multiple
regions to capture how daily changes in mobility patterns affect the
spread of the disease, and to accurately predict the resulting daily and
cumulative deaths. Using this data-driven model we present a nonlinear
optimal control framework using geometric programming to efficiently
design non-pharmaceutical interventions to limit the spread of the epi-
demic while obeying a budget constraint on the economic loss incurred.
Furthermore, we present a principled method for determining such
a budget based on eliminating excess deaths due to over-utilization
of hospital resources. We validate both our model and our control
framework in a case study on the greater Philadelphia area.

In the future, this work could be extended to accommodate for
robustness considerations as well as stochastic transitions in the epi-
demic layer, which introduce the additional challenge of expressing
chance constraints as posynomial functions. The success of geometric
programming in our work comes from expressing states of the system
as posynomials on the mobility variables, allowing for the potential
extension to models with more sophisticated mappings from human-
mobility to epidemic dynamics. For example, generalized geometric
programming admits functions that are max-monomials or posynomials
with fractional exponents (Boyd et al., 2007), which opens the door to
modeling epidemic dynamics and human-mobility using ReLU neural
networks or posynomial approximations to arbitrary functions. Further-
more, since geometric programs can be solved efficiently, our approach
could be applied to models with higher complexity; for example, net-
worked metapopulation models which can make use of more granular
datasets.
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Appendix A. Additional practical results

A.1. Dimensionality reduction

While mobility data may be expressed in terms of several differ-
ent categories, in practice these categories are highly correlated; the
correlation between mobility categories in Philadelphia is shown in
Fig. A.6(a). As such, it may not be reasonable to assume that a deci-
sion maker may tune these categories independently and arbitrarily.
However, it may also be difficult to elucidate the explicit relationships
present from data alone. As a compromise, we may perform dimen-
sionality reduction on the measured mobility pattern data via principal
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Fig. A.6. Exploration of mobility pattern data in Philadelphia county. Analysis of pairwise correlation suggests two correlated groupings, which is supported by two principal

components explaining over 98% of observed variance in the data.
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Fig. A.7. Example of optimal minimal-death control strategy u*(r) with lower-dimensional mobility data for Philadelphia County, PA, obtained by solving the minimal-death
GP (11), from August 1st to November 30th, 2020. In (c) and (d), we plot the prediction using the linear model with the strategy u*(s), H(t) and D(1), predictions using the
nonlinear model with the strategy u*(r), H(r) and D(r), and the predictions using the true mobility data m(r) as a baseline for no intervention, H(t) and D(t). Parameters of the
models used herein were learned as described in Section 4.3 using the principal component projections of mobility data m(s), with the budget B* taken from the solution to the

minimal-cost GP (13).

component analysis (PCA). In particular, since our data is in the form
of time series, we take the first differences of the mobility data m,(¢) :=
m(7) —m(r — 1) to ensure stationarity, find the K X K covariance matrix
C of the K-dimensional observations my(1),...,m,(7,), and compute
the principal components w, of C (Bishop, 2006). We then project into
the space of the mobility pattern data as m() := [wy,...,w,;]Tm(?) for
some number of principal components /. As shown in Fig. A.6(b), the
first two principal components are enough to describe over 98% of the
variance in mobility data in the greater Philadelphia region over the
time period of interest. For this reason, we present additional results
in which this two-dimensional principal component projection, m(r),
is used in place of the full mobility data from the Google Mobility
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Report, m(?). In particular, our multitask learning approach uses m(r)
to learn the mobility mapping f(-), as well as all other parameters in
our model. We then use the mapping and parameters to design control
strategies via the GPs (11) and (13). A reasonable budget B* is deduced
by solving (13) using this two-dimensional mobility data, and then a
control strategy to minimize deaths u*(¢) is designed by solving (11).
These results are illustrated in Fig. A.7. Compared to using the full-
dimensional mobility data, this approach does not control the pandemic
as quickly and, hence, saves fewer lives. These results illustrate that,
should it be possible, it is advantageous to independently control
different categories of mobility. However, even if it is not possible to
execute fine-grained control across many categories of mobility, this
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multitask learning-driven nonlinear optimal control framework is still
able to reduce the number of deaths while respecting limits on the
economic costs incurred.

A.2. Relationship between the linear and nonlinear model

As shown in Lemma 1, the linear epidemic model is always an upper
bound to the nonlinear model. However, it is of practical importance
to investigate how tight this bound may be. As such, we present results
on the gap between the final states in the linear and nonlinear model
in Fig. A.8. For each value of the hospitalization threshold 7, we
solve the minimal cost GP (13) to find the minimal budget B(ry). As
mentioned in Section 5, this budget is minimal in the sense that it is
the lowest cost incurred while respecting the threshold on the number
of hospitalizations, rj, but in practice a larger budget is desirable.
As such, we vary the budget for the minimal death GP (11) between
B(ry) and 108(zy), and record the final number of hospitalizations in
the linear model, H(T,), and the nonlinear model, H(T,), for T = 61
days. We also record the cumulative number of deaths in the linear
and nonlinear models (D(T,) and D(T.), respectively). We then plot the
difference between the quantities for the linear and nonlinear models as
functions of the hospitalization threshold rj; and the respective budgets
B(ry). Lower values of this difference correspond to a smaller gap
between the linear and nonlinear models. As we can see in Fig. A.8,
budgets closer to B(ry), i.e., the minimal feasible budget to respect
7y, lead to a much larger gap between the models; this trend is
consistent across values of 7;;. We observe threshold behavior, whereby
a moderate increase in the budget leads to a dramatic decrease in
the gap between the models. This threshold behavior explains the
difference between the linear and nonlinear models in the simulations
of Section 5 and Appendix A.1, as we employ a budget close to the
minimal cost obtained from solving the GP (13). Hence, there exists a
moderate trade-off between the prescribed budget and the tightness of
the upper bounds given by the states of the linear model. Fortunately,
these results illustrate that implementing the designed strategies on the
true nonlinear system can lead to better outcomes than expected using
any budget.

A.3. Time complexity

In order to validate the efficiency and scalability of our approach,
we present data on the size and time complexity of the GPs constructed
herein in Table A.2. These results are not exhaustive, but meant to
illustrate the practical applicability of our approach. For example,
computational complexity may be reduced by dimensionality reduction
techniques as in Appendix A.1. All experiments were performed on a
laptop with an Intel Core i7 processor running at 2.2 GHz and 16GB
of RAM. These results illustrate the tractability of using geometric pro-
gramming to solve problems with a large number of decision variables
and constraints (see Table A.2).

Appendix B. Proofs

B.1. Proof of Lemma 1

Clearly, since in our model there is no possibility of reinfection, we
have that S(f) < S, = S(t). We now proceed by induction on the time
step t. For the base case t+ = 1, recall that the initial conditions are
identical for both the linearized and the true model. Thus, clearly from
(2)-(7), the compartments of both the linearized and true models have
identical values for r = 1. Now, assuming the bounds hold for t = k-1,
we have

Ek) = (1= pgy = pp)Ek = 1)+ Sk = DOy 4 Ak = 1) + I(k = 1))
S =ppr = pp)Ek = 1) + Sf0)(r 4 Ak — 1) + I(k — 1)) = E(k),
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I =0 =pry —pr) k=) +perEtk—1)
<A =prg—pp)Ik =1+ pg E(k—1) = I(k),
Ay =1 = pyp)Atk = 1)+ pp E(k = 1)
S =pup) Atk = D+ ppa E(k — 1) = A(k),
Hky=( = pyp)H(k = 1)+ pyyg Ik — 1)
<U-pgpHKk-D+pgltk—1)=Hk-1),
R(k)y= Rtk =)+ pjplk = D+ pypAlk = D) + (1 — ap)py g H®
SRk =1+ prrItk = 1)+ purAtk = D+ (1 —ap)pyrHE) = R(k),
D(k) = Dk — )+ appyrHK - 1)
<Dk—-D+appyrH(k—-1)= D(k),

and the result follows.

B.2. Proof of Lemma 2

We can rewrite Egs. (2)—(5) in matrix form by defining a state vector
x(t)=[E@),I{),A(t), H ()] to obtain the dynamics

L= pgr —PEa Sof (u(r)) Y4508 (u(®)) 0
PEI l=pir=Pru 0 0
t+1)= t
X ) PEA 0 1= par 0 O
0 PrH 0 l=pyr
= Mx(?). (B.1)
It follows that
H (1) =[0,0,0, 11 M,_y - M; Mx(0) =: f}, ({u(9)}3) - (B.2)

Recalling that the mobility mapping f(u(s)) is a posynomial, each of
the matrices M, have posynomial entries on f(u(s)), and thus, on u(s);
thus, it follows that the function f%, ({u(s)}" ;%) in (B.2) is a posynomial
on {u(s)}i;% as it is the product of matrices with entries that are
posynomials on u(s) for s € {0,1, ..., — 3}. Moreover, from (7) we can
see that D(¢) is simply a sum of positive constants and positive scalar
multiples of H(¢) and is also a posynomial.

B.3. Proof of Theorem 1

By Lemma 2, the objective function J in (10) is posynomial on
{u(t)}tT:“(;4 as it is the sum of posynomials, since y, € (0,1] and thus
Yoo € [0,00) (defining y,, = 0 when y, = 1). Moreover, the constraint
H(t) < 7y is clearly posynomial on {u(s)};3 foreach1 <r < T,
by Lemma 2. By assumption the cost function C,(u(?)) is posynomial
on the decision variables u(s) for all 0 < ¢+ < T, — 1, and thus the
constraint ZZ; ! C,(u()) < B is posynomial on {u(t)}tT;(;l. Finally, by
assumption the set U is described via posynomial inequalities and
monomial equalities on u(r) for every 0 < t < T, — 1. Thus, (11) is a
geometric program, and the globally optimal solution u* may be found
efficiently.

B.4. Proof of Theorem 2

Similarly to the proof of Theorem 1, we may invoke Lemma 2 to
show that the constraint H(f) < 7 is posynomial on {u(s)}i’=0 for each
1 <t < T,. Again similarly to the proof of Theorem 1, by assumption
on C,(u(?)) the sum Z,T;(; ! C,(u(r)) and, hence, the objective function, is
posynomial on {u(t)}tT;;l, and the set U is described via posynomial
inequalities and monomial equalities on u(¢) for every 0 <t < T, — 1.
Hence, (13) is a geometric program, whose globally optimal solution
u* may be found efficiently. Using this solution, we may compute the

minimal budget to prevent hospital overflow as B* 22;1 C,(u(n).
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Fig. A.8. Difference between final hospitalizations (resp. cumulative deaths) in the linear model, H(T,) (resp. D(T,)), and in the nonlinear model, A(T,) (resp. D(T,)) as a function
of the hospitalization threshold 7, and the budget B(ry). For each value of r,, we solve the minimal-cost GP (13) to find the budget B(zy), then take multiples of this budget
from 1x to 10x. Trends appear consistent across hospitalization thresholds 7, but the difference between the models quickly shrinks as the budget B(z;) grows.

Table A.2

Space and time complexity of the minimal-cost GP (13) and minimal-deaths GP (11) instances solved herein, over multiple
time horizons 7,. Space complexity is measured in terms of the number of decision variables and constraints of the GP in
posynomial form and in the equivalent convex form, the latter of which the solver uses to find the optimal solution. Time
complexity measures the running time for the solver to instantiate and solve the program.

Instance T, Posynomial Posynomial Convex Convex Time (s)
variables constants variables constants

GP (11) 30 16,365 7,291 52,445 29,841 18.2
GP (13) 30 17,287 7,693 55,287 31,443 14.7
GP (11) 60 69,220 31,506 219,660 125,531 104.8
GP (13) 60 71,112 32,338 225,472 128,813 86.4
GP (11) 920 158,570 72,686 501,490 287,011 379.1
GP (13) 90 161,402 73,938 510,162 291,913 380.8
GP (11) 120 294,055 135,296 928,247 531,666 2,204.0
GP (13) 120 297,960 137,017 940,208 538,422 737.2

B.5. Proof Of Lemma 3 Aleta, A., Martin-Corral, D., y Piontti, A. P., Ajelli, M., Litvinova, M., Chinazzi, M., et al.

(2020). Modelling the impact of testing, contact tracing and household quarantine
P . T, - i -
By definition in (14), for all {(ul(t), ’uK(I))},zco € U we have on second waves of COVID-19. Nature Human Behaviour, 4(9), 964-971.

wm™ < g;l, u,(t) < u,, and we may express the other inequalities
as u () 't = 1) < (1 = A7, and w (Hu(r — D! < 1+ 4 for each
k € {1,...,K}. Moreover, the equality constraints may be satisfied
by considering only one decision variable for each seven day period.
Hence, U may be described by posynomial inequalities. Next, notice
that

S wo !
O —
k=l W Tl
K ¢ K m 1
_ k -1 _ k
=Y w0 - Y =
k=1 U~ — Uy k=14~ —u

Clearly, since the values c,,u,, and u, are constant, and 4, < u, implies
ukl _“k > 0, the left-hand term above is a posynomial in the entries of
u(?), and the right-hand term is constant. Hence, the function C,(u(?)) is
a posynomial in u(r) = (u(7), ..., ug(?)) shifted by a constant (which
does not affect the optimal values of u(r) in (13)). Considering the

budget-constraint inequality in (11), from above we have

T.-1 K

ZC(u(t))<B o Z 2

—Oklu

T.-1 K

— w07 < B+ Z >y — .

1=0 k= luk — U

which is clearly a posynomial inequality amenable to geometric pro-
gramming.
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