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Abstract: The COVID-19 pandemic has refocused research on mathematical modeling and
analysis of epidemic dynamics. We analytically investigate a partial differential equation (PDE)
based, compartmental model of spatiotemporal epidemic spread, marked by strongly nonlinear
infection forces representing the infection transmission mechanism. Employing higher-order
perturbation analysis and computing the local Lyapunov exponent, we observe the emergence
of dynamic instabilities induced by stochastic environmental forces driving the epidemic spread.
Notably, the instabilities are uncovered using third-order perturbations whilst they are not
observed under second-order perturbations. Moreover, the onset of instability is more likely
with increasing noise strength of the stochastic environmental forces.
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1. INTRODUCTION

The COVID-19 pandemic underscores the need for accu-
rate predictive mathematical models of epidemic spread
that can also help design control interventions for spread
mitigation. A fruitful modeling approach is to treat an
epidemic as a stochastic dynamic system [Allen (2017)],
the spatiotemporal evolution of which is dictated by a
system of coupled partial differential equations (PDE) of
the reaction-diffusion type. In recent work, two of the co-
authors (S.R. and M.K.) and their colleagues analyzed and
validated such a PDE model using COVID-19 spread data
from Ohio, US [Majid et al. (2022, 2021)]. Here we inves-
tigate the dynamic instabilities of this PDE model using
a higher-order perturbative approach. The motivation is
two-fold:(1) dynamic instabilities can be a powerful tool
in characterizing abrupt and drastic changes in epidemic
spread patterns (e.g. super spreading events), (2) there ex-
ist deep results on such instabilities and pattern formation
in standard reaction-diffusion systems, going back to the
Turing instability which we briefly discuss now.

In 1952, Alan Turing discovered that a homogeneous
steady state of a reaction-diffusion system can become
unstable due to the disparity of diffusion coefficients of
the two reacting species involved [Turing (1952); Painter
et al. (1999); Meinhardt (1982)]. Remarkably, experimen-

⋆ S.R. would like to acknowledge partial support for this work from
NSF Grant No: CMMI 2140405 and M.K. would like to acknowledge
partial support for this work from NSF Grant No: CMMI 2140420

tal evidence for such instability was reported in the 1990s
[Murray (1993)] and has spurred further research ever
since [Riaz et al. (2007); Landge et al. (2020)]. A key
point here is that Turing’s stability analysis is hinged on
the linearization of the dynamics near the steady state.
As such, despite its spectacular success in linear reaction-
diffusion PDE, the Turing approach is silent in the case of
nonlinear systems. However, it has inspired higher-order
perturbative approaches to elucidate the role of nonlin-
earity in determining the instability conditions leading to
pattern formation in stochastic systems [Riaz et al. (2007);
Dutta et al. (2005); Riaz et al. (2005)].

In this paper, we report on the emergence of instabil-
ities and pattern formation in a stochastic version of
the previously mentioned PDE model of epidemic spread,
studied using higher-order perturbative analysis. A central
question - essential to justifying our approach - is the
mechanism by which nonlinearities enter the epidemic
PDE model. While the details are provided later in the
paper, here we present the key idea. The PDE model
is a compartmental model of epidemic spread; a popu-
lation is partitioned into disjoint subsets of Susceptible
(S), Infected (I), and Recovered (R) individuals and an
epidemic evolves as the I compartment gains individuals
due to interaction with the S compartment. Mathemat-
ically, this process of conversion is characterized by the
infection force. Based on empirical evidence and factors
such as human behavior patterns and saturation effects,
the infection force is often best represented by strongly



nonlinear functions [Capasso and Serio (1978); Xiao and
Ruan (2007); Rohith and Devika (2020)]. Consequently,
the epidemic PDE model becomes nonlinear. Moreover,
we consider the PDE for the infected population density
(I) to also be forced by a white noise term. Thus, external
uncertainties - entirely expected to influence the spread of
infection - are taken into account in our stability analysis.

The rest of the paper is set as follows. The analytic
framework and the research methodology are presented
in Section 2. The results are presented in Section 3. The
paper concludes in Section 4 with a discussion of the
results and concluding remarks.

2. ANALYTIC FRAMEWORK AND
METHODOLOGY:

In the compartmental models that provide the basis for
this work, the complete system of reaction-diffusion type
PDEs representing epidemic spread dynamics comprises
of four coupled PDEs - one each for the Susceptible (S),
Latent (L), Infected (I), and Recovered (R) population
densities corresponding to the four respective compart-
ments [Li and Zou (2009); Yang et al. (2022); Bjørnstad
et al. (2020)]. However, re-infections lie outside the scope
of the present analysis, and since L does not contribute
directly to the infection force in the model, the dynamics
of the reduced system of coupled PDEs for S and I may
be fruitfully analyzed for stability. Hence we focus on the
reduced system for our analysis.

Next, we turn to the rate of infection. In basic models
without saturation, the rate of infection is defined as
β(I) = β0I, where β0 represents the per capita contact,
and I is the infected population density. However, upon
taking saturation into account, the rate of infection β(I)
can be modeled as [Xiao and Ruan (2007)]

β(I) =
β0I

1 + αI2
, (1)

where the term 1 + αI2 represents the inhibition effect,
usually interpreted as the ‘psychological’ effect. This psy-
chological effect is usually a consequence of aggressive
governmental measures - represented by α - such as isola-
tion, quarantine, restriction of public movement, aggres-
sive sanitation, and so on [Gumel et al. (2004)]. For lower
values of infection, a population might take an epidemic
less seriously, and this could increase the rate of infection
rapidly. However, as more and more people around get
infected, the population is increasingly likely to respond
positively to protection measures. The term ‘psychological’
effect connotes the behavioral change of the susceptible
public when an epidemic is perceived to be spreading
rapidly. The behavioral change could be manifest in the
increased acceptance of protective measures such as social
distancing, sanitation, self-isolation, and masking. This
behavior is represented as a non-monotonous function,
β(I), as presented in Eq. (1). In this work, α is a positive
constant that represents the rate of saturation.

2.1 Model:

Adopting a nonlinear infection force with saturation effects
(Rohith and Devika (2020)), the reduced system of coupled
PDEs for S and I may be obtained as:

∂S (x, y, t)

∂t
= b− dS − β0 SI

1 + αI2
+D1∇2S, (2a)

∂I (x, y, t)

∂t
=

β0 SI

1 + αI2
− γI +D2∇2I + ξ (t, x, y) , (2b)

where b, the birth rate, d, and γ the death rates, D1,
and D2 are the diffusion coefficients for the population
densities S, and I respectively, ∇2 is the Laplacian, and
ξ(t, x, y) is spatiotemporal Gaussian white noise with

⟨ξ (t1, x1, y1) ξ (t2, x2, y2)⟩
= 2DIδ (x1 − x2) δ (y1 − y2) δ (t1 − t2) . (3)

Let (S0, I0) be the homogeneous steady state of the system
described by Equations (2). The quantities S0, and I0
are obtained by setting the right-hand side of Eq. 2 to
zero, along with vanishing diffusion and noise terms. Thus
(S0, I0) simultaneously satisfies:

b− dS0 −
β0 S0I0
1 + αI20

= 0, (4a)

β0 S0I0
1 + αI20

− γI0 = 0. (4b)

The acceptable nontrivial solution of Eq. (4) is obtained
as

S0 =
γ

β0
+

αγ

β0
I20 ,

I0 = −−β0

αd
+

√(
β0

αd

)2

− 4

(
1

α
− bβ0

αγd

)
.

For I0 > 0, we must have bβ0 > γd. Under noise
free and diffusion-less condition, the solution (S0, I0) is
stable. However, it is seen that competing populations, if
allowed to diffuse, will self-organize in unique patterns.
In other words, pattern formation emerges if diffusion
causes instability in the homogeneous steady solution -
the phenomenon at the core of the Turing instability.
Moreover, as noted previously it may also be possible
that diffusion alone cannot be sufficient for instability in
the epidemic model. However, diffusing populations may
undergo instabilities in the presence of noise of even small
intensity. These aspects are investigated in this work.

2.2 Stability and Moments

In order to analyze stability, we perturb the system from
its uniform steady solutions, i.e., S0 → S0 + δS, and
I0 → I0 + δI. However, we go beyond standard linear
stability analysis and invoke the Taylor series expansion
up to third order in the perturbation around (S0, I0) in
our analysis. We rewrite Eq. (2) in the following form as

∂S (x, y, t)

∂t
= F (S, I) +D1∇2S, (5a)

∂I (x, y, t)

∂t
= G(S, I) +D2∇2I + ξ (t, x, y) , (5b)

where

F (S, I) = b− dS − β0 SI

1 + αI2
(6a)

G(S, I) =
β0 SI

1 + αI2
− γI. (6b)

Then in Eq. (2) under substitution S → S0 + δS, and
I → I0 + δI followed by the Taylor expansion around
(S0, I0), we obtain



∂δS

∂t
= FSδS + FIδI + (1/2)FSSδS

2 + (1/2)FIIδI
2

+ FSIδSδI + (1/6)FSSSδS
3 + (1/6)FIIIδI

3

+ (1/2)FSSIδS
2δI + (1/2)FSIIδSδI

2

+D1(δSxx + δSyy), (7)

where FS = ∂F
∂S evaluated at point (S0, I0). Similarly, we

have

∂δI

∂t
= GSδS +GIδI + (1/2)GSSδS

2 + (1/2)GIIδI
2

+GSIδSδI + (1/6)GSSSδS
3 + (1/6)GIIIδI

3

+ (1/2)GSSIδS
2δI + (1/2)GSIIδSδI

2

+D2(δIxx + δIyy) + ξ(t, x, y). (8)

We discretize the system of equations Eqs. (7), and (8) at
a lattice site (i, j), and obtain

∂δSij

∂t
= FSδSij+FIδIij+(1/2)FSSδS

2
ij+(1/2)FIIδI

2
ij

+ FSIδSijδIij + (1/6)FSSSδS
3
ij + (1/6)FIIIδI

3
ij

+ (1/2)FSSIδS
2
ijδIij + (1/2)FSIIδSijδI

2
ij

− k2D1δSij , (9)

∂δIij
∂t

= GSδSij+GIδIij+(1/2)GSSδS
2
ij+(1/2)GIIδI

2
ij

+GSIδSijδIij + (1/6)GSSSδS
3
ij + (1/6)GIIIδI

3
ij

+ (1/2)GSSIδS
2
ijδIij + (1/2)GSIIδSijδI

2
ij

− k2D2δIij) + ξij(t), (10)

where we have used δS(x, y, t) = p(t) cos kxx cos kyy,
δI(x, y, t) = q(t) cos kxx cos kyy, and k2 = k2x + k2y.

Hence ∇2δS(x, y, t) = −k2δS(x, y, t), and ∇2δI(x, y, t) =
−k2δI(x, y, t) (please see, for instance Riaz et al. (2007).
In discrete form, the correlation of ξ is given by

⟨ξ(t1)ijξ(t2)kl⟩ = 2CIδikδjlδ(t2 − t1), (11)

where CI = DI

LxLy
for a grid size of Lx × Ly. However,

we discard the symbol (ij) from now and we shall assume
that we are dealing at lattice site (ij), i.e., δSij → δS
and it applies to all the variables as well. The statistical
averaging of Eqs. (9), and (10) produces

⟨δS⟩t = FS⟨δS⟩+FI⟨δI⟩+(1/2)FSS⟨δS2⟩+(1/2)FII⟨δI2⟩
+ FSI⟨δSδI⟩+ (1/6)FSSS⟨δS3⟩+ (1/6)FIII⟨δI3⟩

+ (1/2)FSSI⟨δS2δI⟩+ (1/2)FSII⟨δSδI2⟩
− k2D1⟨δS⟩, (12)

and

⟨δI⟩t = GS⟨δS⟩+GI⟨δI⟩+(1/2)GSS⟨δS2⟩+(1/2)GII⟨δI2⟩
+GSI⟨δSδI⟩+ (1/6)GSSS⟨δS3⟩+ (1/6)GIII⟨δI3⟩

+ (1/2)GSSI⟨δS2δI⟩+ (1/2)GSII⟨δSδI2⟩
− k2D2⟨δI⟩. (13)

We also see that Eqs. (12), and (13) have higher order
moments also, to mention,

〈
δS2

〉
,
〈
δI2

〉
, ⟨δIδS⟩,

〈
δS3

〉
,〈

δI3
〉
,
〈
δS2δI

〉
, and

〈
δI2δS

〉
. For the solution of Eqs. (12),

and (13), one must have knowledge of evolution of these
higher moments. We find the equations of motion for
higher moments using Eqs. (7), and (8), for instance, to get
the evolution of

〈
δS2

〉
, we multiply Eq. (7) by 2δS followed

by statistical averaging. Also, we truncate the moments at

third order to break the hierarchy. We encounter term like
⟨2ξδS⟩, that we simplify using Novikov’s theorem for the
Gaussian noise process, i.e.,

⟨F (u)ξ⟩ = CI⟨F (u)F (u′)⟩. (14)

In Eqs. (12), and (13), we substitute the values of partial
derivatives and obtain

⟨δS⟩t = −
[
k2D1 + d+

β0I0
1 + αI20

]
⟨δS⟩

− β0S0(1− αI20 )

(1 + αI20 )
2

⟨δI⟩

+
αβ0S0I0(1− 3αI20 )

(1 + αI20 )
3

⟨δI2⟩

+
β0(1− αI20 )

(1 + αI20 )
2
⟨δSδI⟩

+
αβ0I0(1− 3αI20 )

(1 + αI20 )
3

⟨δSδI2⟩

+ (1/6)αβ0S0
[3(1− αI40 )− 3(3− αI20 )]

(1 + αI20 )
4

⟨δI3⟩. (15)

⟨δI⟩t = −
[
k2D2 + γ − β0S0(1− αI20 )

(1 + αI20 )
2

]
⟨δI⟩

+
β0I0

(1 + αI20 )
⟨δS⟩

+
αβ0S0I0(3− αI20 )

(1 + αI20 )
3

⟨δI2⟩

− β0(1− αI20 )

(1 + αI20 )
2
⟨δSδI⟩

− αβ0I0(1− 3αI20 )

(1 + αI20 )
3

⟨δSδI2⟩

+ (1/6)αβ0S0
[3(1− αI40 )− 3(3− αI20 )]

(1 + αI20 )
4

⟨δI3⟩. (16)

The evolution of higher moments is given as

⟨δS2⟩t = −2

[
k2D1 + d+

β0I0
1 + αI20

]
⟨δS2⟩

− 2
β0S0(1− αI20 )

(1 + αI20 )
2

⟨δIδS⟩

+ 2
αβ0S0I0(1− 3αI20 )

(1 + αI20 )
3

⟨δI2δS⟩

− 2
β0(1− αI20 )

(1 + αI20 )
2
⟨δS2δI⟩. (17)

⟨δI2⟩t = 2CI⟨δI⟩−2

[
k2D2 + γ − β0S0(1− αI20 )

(1 + αI20 )
2

]
⟨δI2⟩

+ 2
β0I0

(1 + αI20 )
⟨δSδI⟩

+ 2
αβ0S0I0(3− αI20 )

(1 + αI20 )
3

⟨δI3⟩

− 2
β0(1− αI20 )

(1 + αI20 )
2
⟨δSδI2⟩. (18)



⟨δIδS⟩t = CI⟨δS⟩

−
[
k2(D1 +D2) + (γ + d)

+
β0I0

1 + αI20
− β0S0(1− αI20 )

(1 + αI20 )
2

]
⟨δIδS⟩

+
αβ0S0I0(3− αI20 )

(1 + αI20 )
3

⟨δI3⟩

+

[
αβ0S0I0(3− αI20 )

(1 + αI20 )
3

− β0(1− αI20 )

(1 + αI20 )
2

]
⟨δI2δS⟩

+
β0I0

(1 + αI20 )
⟨δS2⟩ − β0(1− αI20 )

(1 + αI20 )
2
⟨δS2δI⟩. (19)

⟨δI3⟩t = −3

[
−2CI + k2D2 + γ − β0S0(1− αI20 )

(1 + αI20 )
2

]
⟨δI3⟩

+ 3
β0I0

(1 + αI20 )
⟨δSδI2⟩. (20)

⟨δIδS2⟩t = −
[
k2(D2 + 2D1) + (γ + 2d) +

2β0I0
1 + αI20

−β0S0(1− αI20 )

(1 + αI20 )
2

]
⟨δIδS2⟩

+

[
2CI +

β0I0
1 + αI20

]
⟨δS3⟩

− 2β0S0(1− αI20 )

(1 + αI20 )
2

⟨δI2δS⟩. (21)

⟨δS3⟩t = −3

[
k2D1 + d+

β0I0
1 + αI20

]
⟨δS3⟩

− 3
β0S0(1− αI20 )

(1 + αI20 )
2

⟨δIδS2⟩. (22)

⟨δI2δS⟩t = 2CI⟨δIδS⟩

−
[
k2(D1 + 2D2) + (d+ 2γ) +

β0S0

1 + αI20

−2β0S0(1− αI20 )

(1 + αI20 )
2

]
⟨δI2δS⟩

+ 2
β0I0

1 + αI20
⟨δIδS2⟩

− β0S0(1− αI20 )

(1 + αI20 )
2

⟨δI3⟩. (23)

We can also write these coupled linear equations for
moments are summarized in the following form as:

Ẋ = AX, (24)

where X = (x1, x2, x3, x4, x5, x6, x7, x8, x9)
T , and A is a

9 × 9 matrix. The components xi are given as x1 = ⟨δS⟩,
x2 = ⟨δI⟩, x3 = ⟨δS2⟩, x4 = ⟨δI2⟩, x5 = ⟨δIδS⟩,
x6 = ⟨δS3⟩, x7 = ⟨δI3⟩, x8 = ⟨δS2δI⟩, x9 = ⟨δI2δS⟩.
The matrix A is obtained as

A =



a1 a2 a3 a4 a5 a6 a7 a8 a9
b1 b2 0 a4 a5 0 a7 0 −a9
0 0 2a1 0 2a2 0 0 −2a5 2a4
0 2CI 0 2b2 2b1 0 2a4 0 −2a5
CI 0 b1 0 s1 0 a4 −a5 s2
0 0 0 0 0 3a1 0 3a2 0
0 0 0 0 0 0 s3 0 3b1
0 0 0 0 0 s4 0 s5 2a2
0 0 0 0 2CI 0 a2 2b1 s6


, (25)

where s1 = a1+b2, s2 = a4−a5, s3 = 3b2+6CI , s4 = b1+
2CI , s5 = b2 + 2a1, s6 = a1 + 2b2 and other parameters
are defined as:

a1 = −
[
k2D1 + d+

β0I0
1 + αI20

]
, (26a)

a2 = −
β0S0

(
1− αI20

)
(1 + αI20 )

2 , (26b)

a3 = 0, (26c)

a4 =
αβ0S0I0

(
1− 3αI20

)
(1 + αI20 )

3 , (26d)

a5 =
β0

(
1− αI20

)
(1 + αI20 )

2 , (26e)

a6 = 0, (26f)

a7 =
1

6

αβ0S0

[
3
(
1− αI40

)
− 3

(
3− αI20

)]
1 + αI20

, (26g)

a8 = 0, (26h)

a9 =
αβ0I0

(
1− 3αI20

)
(1 + αI20 )

3 , (26i)

b1 =
β0I0

1 + αI20
, (26j)

b2 = −

[
k2D2 + γ −

β0S0

(
1− αI20

)
(1 + αI20 )

2

]
. (26k)

3. RESULTS

The onset of instability is characterized by the emergence
of a positive eigenvalue (local Lyapunov exponent) of the
matrix A. In order to get a range of values of k over
which instability persists, the dispersion relation Re λ(k2)
is plotted with k2 for three different values of noise
strength (CI) in Fig. 1 for second order Taylor expansion.
Irrespective of the noise level, we do not find any instability
as λ is negative and the uniform solution (S0, I0) is stable.
We also explore the range of saturation parameter α but
we have not found any instability [see, Fig. (2)]. With the
third order stability analysis, in deterministic case, we do
not see the instability [see, Fig. (3), dashed-dot curve.].
However, under the influence of noise, we see that λ > 0 in
a certain range of k. Furthermore, this range of k expands
with increasing values of noise strength (CI) [see, Fig. (3),
solid curve and curve marked with dot]. The range of
saturation parameter (α) for instability can be obtained
from Fig. (4). Thus, these preliminary results suggest the
onset of instabilities (and hence new pattern formations
in spatiotemporal epidemic spread) for the specified range
of k values, in the case of the nonlinear infection force
with saturation effects analyzed. Ongoing investigations
are currently focused on comparing these results with
the case of the infection force without saturation effects.
Finally, these results provide the basis for further stability
analyses of the PDE epidemic model.

4. DISCUSSION AND CONCLUDING REMARKS

For the nonlinear infection force considered (that accounts
for saturation effects), a second-order perturbation analy-
sis did not yield instabilities, both in the deterministic and



Fig. 1. The variation of largest local Lyapunov exponent
(λ) with wave number k for second order. The values
other of parameters are: d = 0.5, γ = 0.4, α = 0.4,
β0 = 0.8, b = 0.3, D1 = 1, and D2 = 0.6

Fig. 2. The variation of largest local Lyapunov exponent
(λ) with the saturation parameter α for second order.
The values other of parameters are: d = 0.5, γ = 0.4,
k2 = 1.5, β0 = 0.8, b = 0.3, D1 = 1, CI = 0.5 and
D2 = 0.6

stochastic cases. Moreover, this absence of instabilities per-
sisted over a range of noise strengths as well as values of the
saturation parameter. However, a third-order perturbation
led to remarkably different conclusions. While no instabil-
ities were observed for deterministic dynamics in this case
as well, instabilities were observed for a certain range of
values of the dispersion parameter k in the stochastic case.
Furthermore, this range of values of k expanded further
with increasing noise strength driving the PDE epidemic
model. That the third-order perturbation uncovered the
instability while the second-order perturbation did not is
the first main result of this work. The expansion in the
range of k values (supporting the onset of instabilities)
with increasing noise intensities is our second main result.
In light of these results, investigating the emergence of
instabilities for other, strongly nonlinear infection forces
is a subject of our ongoing research. In addition, we

Fig. 3. The variation of largest local Lyapunov exponent
(λ) with wave number k for third order. The values
other of parameters are: d = 0.5, γ = 0.4, α = 0.4,
β0 = 0.8, b = 0.3, D1 = 1, and D2 = 0.6

Fig. 4. The variation of largest local Lyapunov exponent
(λ) with the saturation parameter α for third order.
The values other of parameters are: d = 0.5, γ = 0.4,
k2 = 1.5, β0 = 0.8, b = 0.3, D1 = 1, CI = 0.5 and
D2 = 0.6

expect these results to be significant in the context of
other nonlinear dynamic problems represented by similar
PDE systems. We conclude with the hope that the results
presented in this paper open multiple pathways for further
research.
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