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COMPLETE LOGARITHMIC SOBOLEV INEQUALITIES VIA RICCI
CURVATURE BOUNDED BELOW

MICHAEL BRANNAN, LT GAO, AND MARIUS JUNGE

ABSTRACT. We prove that for a symmetric Markov semigroup, Ricci curvature bounded
from below by a non-positive constant combined with a finite L,-mixing time implies the
modified log-Sobolev inequality. Such L,.-mixing time estimates always hold for Markov
semigroups that have spectral gap and finite Varopoulos dimension. Our results apply to
non-ergodic quantum Markov semigroups with noncommutative Ricci curvature bounds
recently introduced by Carlen and Maas. As an application, we prove that the heat
semigroup on a compact Riemannian manifold admits a uniform modified log-Sobolev
inequality for all its matrix-valued extensions.

1. INTRODUCTION

In differential geometry, Ricci curvature lower bounds have many applications in topol-
ogy, geometry and analysis. One pioneering work that connects Ricci curvature with
analysis of heat semigroups is the Bakry-Emery theorem [1]. It implies that if the Ricci
curvature of a compact Riemannian manifold (), g) is bounded from below by a positive
constant, then the heat semigroup satisfies a logarithmic Sobolev inequality. In this pa-
per, motivated by quantum information theory, we present a uniform approach to obtain
logarithmic Sobolev inequalities from a non-positive Ricci curvature lower bound for both
classical and quantum Markov semigroups. Indeed, we show that a non-positive Ricci cur-
vature lower bound plus a L..-time to equilibrium implies logarithmic Sobolev inequality
in the noncommutative non-ergodic setting.

In the past decades, the notion of Ricci curvature lower bound has been largely ex-
tended beyond Riemannain manifolds using ideas from optimal transport. Motivated by
Gromov’s Precompactness theorem [22], Lott-Villani [36] and Strum [49] independently
introduced a notion of Ricci curvature lower bound for metric measures spaces. Such a
space has Ricci curvature bounded below by a constant A if the entropy, as a functional
on the state space (space of probability measures), is A-convex along geodesics of the
Lo-Wasserstein distance. Later, similar ideas were extended to Markov semigroups on
discrete spaces and noncommutative spaces. The key ingredient is to construct an analog
of the Wasserstein distance W on the state space such that the semigroup is the gradi-

ent flow of the entropy functional with respect to W. Such gradient flow constructions
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were obtained independently in [37, 38, 10] for Markov process on finite state spaces, and
6, 7, 39, 41] for finite dimensional quantum systems. More recently, the noncommuta-
tive Wasserstein metric has been further studied on finite von Neumann algebras [54, 26].
Based on these, the notions of Ricci curvature lower bound via A-convexity of entropy has
been studied by Erbar-Maas [18] for discrete spaces and by Carlen-Maas [8], Datta-Rousé
[12] and Wirth [54] for noncommuative spaces. Thanks to the gradient flow structure, the
connection between Ricci curvature and functional inequalities, including the extensions
of the Bakry-Emery theorem, have been obtained in all the above settings.

The logarithmic Sobolev inequalities were first introduced by Gross [24, 23] as a refor-
mulation of hypercontractivity, and have been intensively studied since then (see [25] for
an overview). The focus of this paper is the Li-version of the log-Sobolev inequality, also
called the modified log-Sobolev inequality. Indeed, let T; = e~ : L oo(Q, i) — Loo(Q, 1)
be a Markov semigroup with Dirichlet form E(f) = (f, Af). We say T, satisfies a A-
modified log-Sobolev inequality (A\-MLSI) if for any probability density function f,

2A/flogfdu <E(flogf) . V> 0,/fdu=1

The integral on the left hand side of the above inequality is the entropy H(f) = [ flog fdu
and the right hand side is called the Fisher information I(f) = [(Af)log fdu, which
describes the rate of decrease of entropy: I(T,f) = —<% H(T;(f)). Intuitively, MLSI char-
acterizes the exponential decay of entropy along the time evolution of the semigroup. In
the smooth setting, MLSI is equivalent to the more common Ls-log-Sobolev inequality

A/gzlogfdué%(g,g), VgZO,/fdu:l- (1)

However, it is weaker than (1) in discrete and noncommutative cases. See [32] for a
review article on the interplay between spectral gap, log-Sobolev inequalities and Ricci
curvature. More recently, Otto-Villani [43] proved that MLSI also implies Talagrand’s
transport cost inequality, which further bounds spectral gap and derives concentration
of measure phenomena. Recently these application of MLSI has also been extended to
(finite dimensional) quantum Markov semigroups [7, 46], which suggest a uniform picture
of functional inequalities for both classical and noncommutative settings.

Quantum Markov semigroups are noncommutative generalization of classical Markov
semigroups, where the underlying function space is replaced by matrix algebras or op-
erators algebras. A quantum Markov semigroup on a von Neumann algebra M is an
ultra-weakly continuous family (7;);>0 : M — M of normal unital completely positive
maps. When M = B(H) is the bounded operators on a Hilbert space H, quantum
Markov semigroups models the time evolution of dissipative open quantum system. In op-
erator algebras, quantum Markov semigroups have been widely studied in the context of
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approximation properties, structure theory, and noncommutative harmonic analysis (see
e.g. [9, 28]). In this paper, we will focus on symmetric quantum Markov semigroup on
finite von Neumann algebras. That is, M is a von Neumann algebra equipped with a nor-
mal faithful tracial state 7, and the semigroup T; : M — M is given by self-adjoint maps
with respect to the 7-inner product. This setting avoids the techicalities of TomitaTake-
saki theory, but is still broad enough to cover many examples of wide interest, such as
classical Markov semigroups on probability spaces, finite dimensional dissipative systems
in quantum information theory, and also various infinite dimensional examples in operator
algebras.

One of the main motivations for this work is to prove a MLSI for quantum Markov
semigroups that is stable under tensor products. For classical Markov semigroups, it is
known that if a pair of semigroups S;, T} satisfy A-MLSI, then S; ® T; satisfies \-MLSI.
Tensorization is a useful property that allows us to obtain MLSI for composite systems
by studying smaller, more tractable subsystems. In the noncommutative setting, tensor
stability of MLSI generally requires not only MLSI but a “completely bounded” version of
MLST: 7; is said to satisfy a A-complete log-Sobolev inequality (A-CLSI) if all of its matrix-
valued extensions 7} ® id,y, satisfy A-MLSI. For quantum Markov semigroups, CLSI has
the tensor-stability property that S; and 7} satisfy A-CLSI = S, ® T satisfies A-CLSI [20].
For classical Markov semigroups, CLSI simply means an uniform MLSI constant for all
matrix-valued functions, and for quantum Markov semigroups, CLSI has applications in
estimating decay rates of entanglement. The study of CLSI naturally leads us to consider
non-ergodic semigroups, because T; ® id always has non-trivial fixed-point space.

We now describe the content of paper and state our main results. Section 2 reviews
the basic definitions and proves some preliminary lemmas.

The main theorem of this paper is discussed in Section 3, which we illustrate here
using the example of the heat semigroup. Let 7, = e 2! be the heat semigroup on a
compact manifold (M, g). There are two key ingredients in our proof. The first one is
(displaced) monotonicity of Fisher information. The idea goes back to the Bakry-Emery
theorem, in the proof of which they actually showed the implications

AER

{Ricci curvature lower bound )\} = {I(th) < e PMI(f)vt > 0} 229 \-MLSL. (2)

We call the middle inequality “A-Fisher monotonicity”, as for A = 0, it asserts that (T} f)
is non-increasing in t. For A > 0, this immediately implies A-MLSI. For A < 0, we will
need a second ingredient, which is the finiteness of the following L..-mixing time

ty =inf{t > 0| | T, — B : Ly(M,du) — Loo(M, dp) || < 1/2} < 0o

Here E(f) = ([ fdu)l is the averaging map. We prove that this L..-mixing time is
the half-decay time for entropy H(7T;f), and t. is always finite by the spectral gap of
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A and standard heat kernel estimates. All the notions mentioned above including the
implication (2) are fully adapted to the noncommutative non-ergodic setting, which leads
to the statement of our main theorem.

Theorem 1.1 (c.f. Theorem 3.6). Let Ty : M — M be a symmetric quantum Markov
semigroup and E : M — N be the conditional expectation onto its fized point algebra N .
Suppose

i) T; satisfies \-Fisher monotonicity for some X € R: for all densities p,
I(Ti(p)) < e ™MI(p) .Yt >0
ii) Ty has finite completely bounded return time:
ta =inf{t > 0| || T, — E: LN C M) = Loo(M)||0< 1/2} < 00
Then Ty-satisfies (X, tay)-MSLI for k(A t) = 57—

For classical Markov semigroups, it is well-known that the L..-mixing time itself im-
plies the log-Sobolev inequality (see [15]). Nevertheless, this standard approach via hy-
percontractivity does not apply to the matrix-valued setting because the famous Rothaus
Lemma as a crucial step is no longer valid. We emphasis that our main theorem, using
ideas from quantum information theory, applies to fully non-ergodic noncommutative set-
ting. It allows one to derive MSLI for matrix-valued functions or endomorphism maps on
vector bundle, and also the tensor-stable CLSI for quantum Markov semigroups.

In Section 4 we apply the main theorem to various examples in both the classical
and quantum contexts. Section 4.1 discusses the connection to Bakry-Emery’s curvature
dimension condition for Markov diffusion semigroups. An important class of such semi-
groups are heat semigroups on (weighted) Riemannian manifolds. For heat semigroups,
we have the following result

Theorem 1.2 (c.f. Theorem 4.4). Every heat semigroup on a connected compact (weighted)
Riemannian manifold satisfies CLSI.

In Section 4.3, we show that any “central” semigroup on a compact group has entropy
curvature bound zero, and based on that, we estimate the optimal CLSI constant for the
heat semigroup on d-torus T¢. For noncommutative examples, Section 4.4 studies entropy
Ricci curvature bounds and MLSI constants for depolarizing semigroups. We also consider
Schur multiplier semigroups and semigroups of random unitary channels in Section 4.5 &
4.6. We end our paper discussion with an appendix on approximations of relative entropy.
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tion 4.16. Michael Brannan was partially supported by NSF Grants DMS-2000331 and
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2. PRELIMINARIES

2.1. Entropy and Relative Entropy. Throughout the paper, we let M be a finite von
Neumann algebra equipped with a normal faithful finite tracial state 7. For 0 < p < oo,
the L,-space L,(M) is defined as the completion of M with respect to the norm

lall,= r(lal")"""
We identify Lo (M) := M and the predual space M, = L;(M) via the duality
a€ Li(M)— ¢, € My, ¢o(x) =T1(ax).

We say p € Li1(M) is a density operator (or simply density) if p > 0 and 7(p) = 1. The
set of all densities correspond to the normal states of M, which we denote by S(M).
Throughout the paper, states always mean normal states and are identified with their
density operators.

Recall that for two normal positive linear functionals p and o, the Umegaki relative
entropy is

_ [0 log Alp.0)|p*?),if supp(p) < supp(o)
D(pllo) = i
00, otherwise.

where A(p, 0)(x) = pro~! is the relative modular operator and |p'/2) is the vector of p!/?

in Ly(M). In the tracial setting

D(pllo) = 7(plog p — plogo) ,

provided plog p, plogo € Li(M). The entropy of p is then given by H(p) = D(p||1).
(Note that H is actually the Boltzmann H-function, which differs with the usual entropy
in information theory by a negative sign). We say a linear map ¢ : L;(M) — Ly(M) is
completely positive trace preserving (CPTP) if its adjoint ® : M — M is normal, unital,
and completely positive (UCP). The monotonicity of the relative entropy under CPTP
maps (also called the data processing inequality) states that for any CPTP & and any two
states p, o,

D(pllo) = D(®(p)||®(0)) -
In particular, we have D(p||o) > 0 for any p and o, and the equality D(p||o) = 0 holds if
and only if p = 0.
Let N' C M be a von Neumann subalgebra. The conditional expectation £ : M — N
on to A is the (unique) completely positive unital and trace preserving map determined
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by
7(xy) = 7(zE(y)),Vr e N,y e M.

E is normal and its pre-adjoint map gives an embedding L;(N') C L;(M). For a state p,
the relative entropy with respect to N is defined as follows

D(p||N) := (pllo) = D(pl|E(p)) -
where the infimum is always attained by F(p). Indeed, we have the identity that o € S(N)

D(pllo) = D(pl|E(p)) + D(E(p)l|o) ,

and the infimum is attained if and only if D(E(p)||o) is zero. If H(p) = D(p||1) < oo is
finite, so does

inf D
ceSN)

H(E(p)) = D(E(p)[[1) < D(pl[1) = H(p) < o0

and

D(p||N) = 7(plog p — plog E(p)) = 7(plog p) — T(E(p) log E(p)) = H(p) — H(E(p)) .
If ®is CPTP and ®(L;(N)) C Li(N) (or equivalently ®T(N) C N), we have the data
processing inequality for D(p||N),

D(@(p)[IN) < D(2(p)l|® o E(p)) < D(pl|E(p)) = D(pl|IN) .

Here the second inequality follows from ® o F(p) € S(N). As already seen in [3, 20],
the relative entropy D(p||N) is crucial in functional inequalities for non-ergodic Markov
semigroups.

2.2. Quantum Markov Semigroups. A quantum Markov semigroup is a family of lin-
ear maps (7})¢>0 : M — M with the following properties

i) T; is a normal UCP map for all ¢ > 0.

ii) T, 0Ty = Tsyy for any t, s > 0 and T = id.

iii) for each z € M, t — T}(x) is continuous in ultra-weak topology.
The generator of the semigroup is defined as

Ax:w*—limLTt(x) LT, =e A,
t—0 t

where A is a closable densely defined operator on Ly(M). We say a quantum Markov
semigroup (73) is symmetric if for any t, T; is a self-adjoint map for the 7-inner product,

(" Ty (y)) = 7(Ti(x)"y) , =,y € M.

We refer to [13] for the basic properties of symmetric quantum Markov semigroups. A
symmetric quantum Markov semigroup is determined by its Dirichlet form

E:Ly(M) = [0,00], E(x,z) = T(2" Ax) .
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We write dom(A) for the domain of A and dom(A'/2?) for the domain of £. The Dirichlet
subalgebra Ag := dom(A'?) N M is a dense *-subalgebra of M and a core of A2 [13].
For symmetric semigroups, T; = TtT are unital completely positive and trace preserving (in
short, UCPTP), and the generator A is self-adjoint and positive. Let N be the common
multiplicative domain for (7}), defined as follows

N ={a € M| Ty(a")Ti(a) = Ty(a*a) and Ty(a)Ti(a*) = Ty(aa®) ,V t > 0} (3)
Let E be the conditional expectation onto /. For symmetric (7}), we have
TioE=FoTl,=F.

Then N = {x € M |T)(z) = z,Vt} is the fixed-point subalgebra, and each T} is an N-
bimodule map,

Ty(axb) = aTy(z)b, Va,be N,z € M

In particular, we have A(N) =0 and N C Ag.

We say (T}) is ergodic if NV = C1 is trivial. This means the semigroup admits an
unique invariant state. We specify the conditional expectation onto the scalars C1 as
E.(p) = 7(p)l. Throughout the paper, we will focus on symmetric quantum Markov
semigroups that are not necessarily ergodic. Recall that the gradient form (or carré du
champ) of the generator A is the operator given by

1 * * *
D(r,y) = 5 ((Ae")y + 2" Ay — A(a"y)) ()
' is a (completely) positive sesquilinear form because
1
I'(z,2) =lim —(Ty(a"z) — Ty (z") Ty (x)) ,
t—0 ¢

where the right hand side is always positive by the Kadison-Schwarz inequality for unital
completely positive maps. We recall the following fundamental Markov dilation result
from the preprint [30].

Theorem 2.1 ([30]). Let Ty = e~ : M — M be a symmetric quantum Markov semi-
group. Suppose T'(z,x) € Li(M) for all x € dom(AY2). Then there exists a trace-
preserving embedding M C (M T) into a ﬁmte von Neumann algebra M, and a closed
symmetric derivation & : dom(AY?) — Ly(M), meaning that

i) 8 : dom(AY2) = Ly(M) is a closed linear map such that §(z*) = 6(x)*.

ii) & satisfies the Leibniz rule: for any a,b € dom(AY?)N M,

d(ab) = 0(a)b+ ad(b) .

Moreover, the gradient form I' and the derivation ¢ are related through
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iii) for all z € M,
T(C(x,y)2) = 7(5(2)"0(y)2) - (5)

Equivalently, En(6(z)*0(y)) = T(x,y) where Eng : M — M is the conditional
expectation. As a consequence, A = 0*0 as an operator on Lo(M).

The construction of the derivation in Theorem 2.1 is stronger than the representation
theorem for completely Dirichlet forms by Cipriani and Sauvageot [11]. Instead of having a
larger von Neumann algebra M, [11, Theorems 8.2 & 8.3] ensures the existence of a closed
derivation 0 : dom(A'/?) — H into a Hilbert M-bimodule. The derivation 0 satisfies the
Leibniz rule with respect to the bimodule action and

T(T(z,y)z) = (20(x),0(y))u ,V,2 € M,x,y € dom(Al/z)

which is analogous to the property (5). The derivation construction in this setting is used
in [54] and [26] to construct the noncommutative Wasserstein distance. Throughout the
paper, we will focus on symmetric quantum Markov semigroups in order to ensure the
existence of the derivation ¢ in Theorem 2.1, making heavy use of (5) and also the von
Neumann algebra structure of M. These ideas are close to the works [7, 8] by Carlen and
Maas (and also [12]). Nevertheless, our setting using Theorem 2.1 is a special case of [11,
Theorem 8.2 & 8.3|, which enables us to apply the results from [11] and [54]. We recall
the following definition from [33].

Definition 2.2. We say (.A,M, 0) is a derwation triple for T, : M — M if
i) (6, M) satisfies properties i)-iii) in the Theorem 2.1
ii) A C M is a w*-dense subalgebra such that A C dom(AY?) T,(A) C A.

Note that Dirichlet subalgebra As = dom(AY/2) N M always satisfies ii). Then it is
guaranteed by Theorem 2.1 that derivation triples always exist for symmetric semigroups.
It was proved in [11, Lemma 7.2] that Ag is closed under C''-functional calculus. Indeed,
let = € M be self-adjoint with spectrum spec(z) C (a,b) and let f : (a,b) — R be a
function with continuous bounded derivative. We have f(z) € Ag and its gradient is
given by the double operator integral,

S(1(@) = J50(@) = [ [ FlpdBs@yiE
R JR
where F is spectral projection of x and F' is the bi-variable function

[0 i g2y
F:RxR—R,F(s,t) = s=to7 7 .
f'(s), if s =t.
For concrete examples, it maybe more convenient to work with some smaller algebra
A C Ag usually with strong regularity. Indeed, for most of examples in our discussions,
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the derivation triple (.A,M,é) will be concretely described. In general, by assumption
A C Ag always holds. Thus the C'-functional calculus is also applicable for A (with f(x)
in Ag). It follows from Kaplansky density theorem (c.f. [50, Theorem I11.4.8]) that A is
norm dense in L; (M) and Ly (M). Moreover, denote Ay = U;»¢T:(A). Then Ay C dom(A)
is w*-dense in M and norm-dense in L,(M) for all 1 < p < oo (see [13, Proposition 2.14
& 3.1

2.3. Modified logarithmic Sobolev inequalities. Let 7, = e 4 : M — M be a
symmetric quantum Markov semigroup and let (A, M, §) be a derivation triple of T;. We
first specify some subsets of states space.

Su(M) = {p e SIM) | H(p) < oo},

SpM) ={pe SM)| Al <p<ul, for some u>0}

SB(.A()) == SB(M) N .A(] .
Here Sy (M) are states with finite entropy, Sp(M) are states with bounded invertible
density and Sp(Ap) are bounded invertible densities in Ay = (J,.,7:(A). Are the three

are norm-dense subset of the state space S(M). Recall that the Fisher information for
p € Sp(Ap) is defined as

I(p) == 7((Ap) log p)

Definition 2.3. We say a quantum Markov semigroup T, = e~* satisfies the A\-modified
logarithmic Sobolev inequality (in short, \-MLSI) for A > 0 if

2AD(plIN) < I(p) , Yp € Sp(Ao)

Note that we have the constant 2 in the definition to match with curvature constant
introduced later. The definition of Fisher information and the derivative relation (6) can
be further extended to p € dom(A'/?) as

I(p) == lim &(p,log, p)

n—oo

where log,, is the function log,(z) = log(z + e ") A n. See [54, Definition 5.17 &
Proposition 5.23]. Nevertheless, it suffices (is more convenient) to consider p € Sp(Ap)
for MLSI.

Proposition 2.4. A semigroup T; satisfies A\-MLSI if and only if
D(T(p)|IN) < e*MD(p|IN) , ¥ p € S(M).

The proof of the above proposition is a standard density argument included in Appen-
dix and here we illustrate the heuristic. The Fisher information is the negative derivative
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of (relative) entropy along the semigroup flow

d d

1(p) = = DT (N om0 = =2 H(T()lico - (6)

where the second equality follows from

D(Ti(p)lIN) = D(Tu(p)[| E(p)) = H(Ti(p)) — H(E(p)) -

In particular, we have I(p) > 0 by the data processing inequality D(7;(p)||N) < D(p||N).
Then by Gronwall’s Lemma, MLSI is equivalent to exponential decay of relative entropy
(see [20, 3])

D(Ty(p)[IN) < e™D(p|IN) ,¥p € Sp(A). (7)

The intuition here is that for non-ergodic semigroups, the semigroup flow 7;(p) for an
initial state p does not converge to one unique equilibrium state, but to its conditional
expectation E(p). Thus only the relative entropy D(Ti(p)||IN) = D(Ti(p)||E(p)) decay
to 0, and the entropy H(Ty(p)) = D(Ti(p)||1) does not converges to 0. Based on the
non-ergodic MLSI, we introduce the complete bounded version of MLSI.

Definition 2.5. We say (1i)i>0 satisfies A\-complete logarithmic Sobolev inequality (-
CLSI) if idgr ®T; satisfy \-MLSI for any finite von Neumann algebra R.

Note that CLSI was studied in [20] under the definition that idys, ®7; satisfy A-MLSI
for every matrix algebra M,,. Here in this paper, we will work with the stronger definition
that R can be any finite von Neumann algebra. The MLSI is a L;-version of the Gross’
logarithmic Sobolev inequality that is usually stated for Ls-elements. For an ergodic
symmetric Markov semigroup T;, T; is said to satisfies A-logarithmic Sobolev inequality
(A-LSI) if for any positive x € dom(A'/?) with ||z ||,= 1,

NH (2?) < 2E(x, ) .

It was proved in [31, Section III.A.1] that all (finite dimensional) symmetric quantum
Markov semigroup satisfies strong L;-regularity: 4&(p'/?, p'/?) < I(p). Thus we have \-
LSI = A-MLSI for ergodic symmetric Markov semigroups. On the other hand, it was
pointed out in [20, Section 7.4] and [4, Theorem 5.1] that for non-ergodic cases, LSI does
not holds for the basic example such as A = I — E. This suggests that LSI may not holds
for many non-ergodic cases and hence neither the complete version, in contrast to MLSI
and its complete version CLSI (see [20, Section 5] for a density result).

2.4. Noncommutative Wassersetin Distance. Let T, : M — M be a symmetric
quantum Markov semigroup and (A, M, J) be a derivation triple for T;. For simplicity of
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notation, we write 7 for the trace on both M and M. For a state p € S(M), define the
operator

o= [ ot = Ryo f(8)(a)

Here R, (resp. L,) is the right (resp. left) multiplication operator and A, = L,,Rp_1
is the modular operator of p. f(A,) is the functional calculus of A, for the function
= fol w®ds = (w — 1)/ logw. The inverse operator (on the support of p) is
1 [e.e]
[p] e =R, o ?(A ) =J (x) = / (p+5)"w(p+s)ds,
0
where Jp is the double operator integral for the function f(¢) = logt and operator p.
The last equahty follows from w = [ (x + s) 7 (y + s)"'ds. We define the weighted
Lo-(semi)norm on M by

@m:@mmmﬂ=/<w“w>

Denote H, C Ly(M, p) as the closure of 6(Ag). Let I be an interval. Following [54], we
say a curve v : (a,b) — S(M) is admissible if
i) for any a € A, s = 7(ay(s)) is locally absolutely continuous.
i) there exists € € L2, ((a,b), H.)) such that
d
257(07(3)) = (9a,&(s)), , a.e. s € (a,0) (8)

Such ¢ is unique since §(.A) is dense in H,, and we write this as £(s) = Dy(s).

Definition 2.6. For p,o € S(M), the noncommutative Wasserstein distance is defined

as .

—inf [ D3 o d
where the infimum is taken over all admissible curves v : [0,1] = S(M) such that v(0) =
p,v(1) = 0.

We say an admissible curve 7 : [0,1] — (S(M), W) is a geodesic if v attains the infi-
mum of W (v(0),v(1)). We say that « is a geodesic with constant speed if W (vy(s),~(t)) =
|s — t{W (~(0),~(1)). It was proved in [54, Lemma 4.19] that under the assumption that
the smooth subalgebra A is dense and L;(M) is separable, then the infimum above can
be taken to be over smooth curves.

For simplicity, we now illustrate the Riemannian metric for smooth curves on Sg(M)
as in [7]. The Wasserstein distance induces a pseudo-metric on Sg(M): for z € M,

12llg,p = = L [IE]], [ 07([p]€) = =} -



12 MICHAEL BRANNAN, LI GAO, AND MARIUS JUNGE

where 6* is the adjoint of § : Ly(M,T) = Ly(M, 7). The infimum is taken over all £ € M
satisfying the continuity equation z = §*([p]¢). Here the Lo-closure of §*(AJ(.A)) is exactly
(I — E)Ly(M) = Lo(N)L, the orthogonal complement of Ly(N). So for z ¢ Ly(N)*,
| 2 ||g,,)= +00. Thus we only need to consider the metric || -||,,, restricted to

H={a—FE(a)|a=a" €M}

which is the horizantal direction on Sp(M). Indeed, for any z € H there exists a unique
self-adjoint element & € ran(d) = ker(d*)* € Ly(M) such that

2= 0"([p16) , [ 2llgpo=lI€ s - (9)

(see [7, Theorem 7.3] and [20, Lemma 6.2]). Thus for an admissible smooth curve = :
(a,b) — Sp(M), we have

7(5) = 6" ([V()]1DY(5)) s [17'(5) lg.v(sy=1 Dv(5) [l

The Wasserstein distance is then the (sub-)Riemannian distance induced by the metric

<"'>gvp>
1
W(p, ) = int / 17(5) oo ds

where the infimum is taken over admissible smooth curve v € C'([0,1], Sgp(M)). In the
following we denote by H, the closure of H with respect to the || -||,, norm. #, should
be thought of as the horizantal tangent space at the point p € Sg(M), equippied with
sub-Riemannian metric || - [|;,. The element z € H, are in one to one correspondence with
€ € H, by the relation (9).

Let F': Sp(M) — C be a function. We say F' admits a (horizantal) gradient at p if
there exists a vector & € H, such that for every smooth path p : (—¢,¢) — Sp(M) with
p(0) = p,

JO =5 (e) = SO0 = (€8,
and we write { = grad,F". By the relation (9), this is equivalent to the gradient for the
metric ||-||;, in the usual Riemannian sense,

ZF( ()limo = (0'(0),5"([plgrad,F)),,, -

An admissible smooth curve v : I — Sp(M) in the bounded density space is said to
follow the path of steepest descent or gradient flow with respect to F if for any a € A and
€ (a,b)

%T(av(s)) = —(d(a), grad, () F)(s)
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or equivalently, v'(s) = —d"([y(s)]grad, (s)F') weakly. One immediate consequence is that
along a gradient flow -,

dF(y(s))
ds
Now we take F'(p) = H(p) as the entropy functional. It is equivalent to take the rel-

= —llo"([v(s)]grad, () )5 o) = —llgrad, o Fll5) - (10)

g,7(s) v(s)

ative entropy D(p||N) because an admissible curve F(v(s)) is independent of s and
D(y(s)|IN) = H(y(s)) — H(E(y(s))). The next lemma shows that for p € Sp(Ay),
pr = T;(p) is the gradient flow of H as well as other convenient properties of p;. The key
point is that it suffices to consider p € Sp(Ap) for functional inequalities and we do not
need assume curvature condition comparing to [54],.

Lemma 2.7. Let p € Sp(Ag) and denote p, = T;(p). Then

i) (pt) is an admissible curve with D(p;) = 6(log pr) and || D(pe) || .= L(pt)-
) t— I(py) is continuous and (p;) is the gradient flow with respect to entropy H.
iii) For any t, W(ps, p) < oo and tlim W(ps, p) = 0.
—00
)

iv) lim [[p; — E(p)|l2= 0 and lim D(p,||]N') = 0.
t—o0 t—00

i

Proof. By assumption on A, we have T;(p) C AN dom(A) and logp € dom(AY/2). Then
we have the derivative

%pt = Ap; = 6*0(py) = 6" ([pe)6 (log pr)) -

By definition (8), this implies D(p;) = d(log pt).
16(1og pe) I17,=(lpe)d (log pe), 6(log pr))
=([pdlpe] ~'6(p), 0 (log pi))
=7(0(pe)"0(log p)) = E(pr,log pr) = 1(pt)

where we have used the derivation relation d(log p) = Ji,(6(p)) = [p]'(p). The admissi-
bility of (p;) follows from the continuity of ¢ — I(p;). Indeed, by assumption 11 < p < ol
and Ap € Ly(M). By the continuity of semigroup [13, Proposition 3.1], we have p; — p
and Ap, = T;(Ap) — Ap in Ly. Since f(x) = logx is a Lipschitz continuous on [p1, ],
lirrol ||log pr — log p|l2= 0 by [14, Corollary 7.5]. Then for the Fisher information,
_>
lim I (p;) — 1(p) =lim 7(Ap; log p) — 7(Aplog p)

<lim7(Api(log p; —log p)) + 7((Ap; — Ap)log p)

=lim7(T;(Ap)(log pr —log p)) + 7((T:(Ap) — Ap)log p)

<lim |[T,(Ap) |2[[log pr —log p |2 +7([| Ti(Ap) = Ap|l2[|log p|[>= 0
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Applying semigroup property, we have t — I(p;) is continuous. For the gradient flow,
given a self-adjoint 5 = §*([p|&) ,
d «
(P +tB)lizo = 7(Blogp) = (5" ([pléo), log p)-

=([p]€0, 6(log p))~ = (&0, 0(log p)), -
Thus grad,H = d(log p) and the gradient flow for H(-) is given by the equation

p(t) = =0"([p(t)]lgrad,, H) = —0"([p(t)]6(log p(t)))

= =" ([p@®][p(®)]3(p(1)) = —Alp(?)) ,

whose solution is the semigroup flow p(t) = T;(p(0)). For iii), since s — ps is admissible

t t
. . T 1/2 .
iy 7 () < lmy [ 1Dl ds =iy [ 1(0.) s =0,

For iv), we first show the Lg-convergence. Consider A as a positive self-adjoint operator
on Ly(M) and denote e, (resp. ey) as the spectral projection for the spectrum [0, s) (resp.
{0}). Clearly, eq(La(M)) = Ly(N). Write p = p — E(p). We have

peer, IpllZllpllz, Tilp) — E(p) = Ti(p) -
Then lim,_, || es(p)|]2= 0. For any e > 0, we can find s > 0 and then large enough ¢ such
| es(p) |la< € and e || p||a< €. Thus

1T:(p) = E(p) o= 1 T:(p) 2= Ties(p)) lla + 1 T2(p — s(p)) [l2
<e+e | pll2< 2e.

Therefore lim; o || 7:(p) — E(p) |[2= 0. This further implies lim; o || T3:(p) — E(p) 1= 0
and by Lemma A.2,

lim D(T(p)|IN) = D(E(p)[|N) = 0. .

3. FISHER MONOTONICITY AND CB-RETURN TIME

3.1. Monotonicity of Fisher Information. Our first ingredient is the monotonicity of
Fisher information, which can be equivalently characterized by the following conditions.

Proposition 3.1. Let A € R. For a state p € S(M), denote T (p) = pi. The following
conditions are equivalent

i) for any p € Sp(Ap) and t >0,
I(p) < e (p).
ii) for any p € Syp(M) and s,t >0,
D(pe]|N) = D(pss|IN) < e72M(D(p]|N) = D(ps]|N)) -



COMPLETE LOGARITHMIC SOBOLEV INEQUALITIES VIA RICCI CURVATURE BOUNDED BELOWS
iii) for any p € Syp(M) and s,t > 0,
H(py) = H(psye) < e M (H(p) — H(ps)) -
Proof. Let p € Sp(Ap). Combined Lemma (2.7) with [54, Proposition 5.23]), we have for
p € Sp(Ao)
DI — DAY = Hp) ~ Hip) = [ 1(p)

t—0 t

Then ii) follows from i) since for p € Sp(Ay),

D(plIA") — D(ps|IN) = / Ip)du > / TN () du

= ([ Hpdu) = (DN = DlpesiIN)

For general p € Sy (M), we use the approximation in Lemma A.3. On the other hand, i)
follows from ii) since for p € Sp(Ay),

D(plV) = D(ps||V)

I(p) = lim

s
> lim e2>‘tD(ptHN) — D(psii||N)

> 62>\tl(pt) )
s—0 S

The equivalence to iii) follows from the fact that D(p||N) = H(p) — H(E(p)) for p €
Su(M) and E(p) = E(Ti(p))- u

Definition 3.2. We say a semigroup T; is \-Fisher monotone for A € R (in short, \-FM)
if Ty satisfies one of the above conditions in Proposition (3.1). We say Ty is A\-complete
Fisher monotone (A\-CFM) if for any finite von Neumann algebra R, idg ® T; is A\-FM.
For A =0, we simply say Ty is (complete) Fisher monotone.

The idea of following proposition goes back to the I'-calculus in [1].
Proposition 3.3. For A > 0, \-FM implies A\-MLSI.

Proof. For p € Sp(Ayp), denote f(t) = D(p||N) — D(p¢||N') and hence I(p;) = f'(t). Then
A-FM means that

fi(t) < e f(0)
Integrating both sides from 0 to t,

6—2)\t_1
D(plIN) = D(pi||N) < TI(P)
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Taking t — oo,
2AD(pl|N') = lim 2X(D(plIN) — D(pilIA) < Jim (1 — e )1 (p) = I(p)

which this is A-MLSI. Here we used the assumption A > 0 and the property tlim D(ps|IN) =0
—00

from 2.7. [ |

3.2. Complete bounded return time. Let M be a finite von Neumann algebra and

N C M be a subalgebra. The conditional L; space L' (N C M) is defined as the
completion of M with respect to the norm

2]y wern= sup lazb]s ,
abeLa(N) Jlalla=|bll2=1

where the supremum takes over all a,b € Ly(N') with |lalla = ||b||2 = 1. The operator
space structure of L. (N C M) is given by

M (Lio(N € M) = Lo (My(N) € My (M)) .

(see [29] and [19, Appendix]). We consider again T : M — M be a symmetric quantum
Markov semigroup and A be the fixed point subalgebra with conditional expectation E.
We define the complete bounded (CB) return time of 7; as follows

ta=mf{t>0] |1} — E: LL(N CM) = Loo(M)||a< 1/2}
If such ¢ does not exist, we write ¢, = +00. Recall the following lemma from [20].

Lemma 3.4 (Lemma 3.15 of [20]). Let T' : M — M be a unital completely positive
N -bimodule map such that

—_

IT—E:LL(NCM) - M, < =.

\)

Then T >, %E, re. T — %E 1s completely positive.

We refer [20] for the complete proof and illustrate here the argument for the ergodic
case. Namely, we consider N’ = C1 and L! (N € M) = L;(M). The CB return time
becomes
This completely bounded norm is by no means abstract. Indeed, by Effros-Ruan Theorem
(see [16] and also [5]),

1T Ly(M) = Loo (M) [lev=I| O | maergaa

where C7 is the kernel of T' (also called Choi matrix, in finite dimensions) given by the
relation
T(a) =7®id(Cr(a®1)),a € L1(M) = (M?),.
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Here M°P is the opposite algebra of M. Moreover, the correspondence T <+ C7r is also
order preserving: T is completely positive if and only if Cr as a operator is positive in
MPRM. In particular, the conditional expectation onto scalars F,(a) = 7(a)1 has kernel
as the identity 1 ® 1 € MPRM. For this special case,

| T —E;: LiM) = M||a<1/2 <= ||Cr — 1@ 1| porgm< 1/2

1
:>CT§§1®1 <~ CTZcp1/20E7—7

where the implication “=" is evident from spectrum calculus for a self-adjoint operator
Cr. This proves the above lemma for the special case N' = C1. The general case for
non-trivial AV is an extension for bimodule maps.

The next lemma shows t., is the half-life for the decay of relative entropy.

Lemma 3.5. Let N' C M be a subalgebra and E be the condition expectation onto N .
Suppose for a € (0,1), ® — aF is a positive map and ®(L1(N)) C Li(N). Then for any
p € SM),

D(®(p)||N) = (1 = a)D(p||N). (12)
If in additional, ® —aE is a completely positive map, the same assertion holds for ® ®idg.
Proof. Define ¥ := ﬁ(@ — aF). By assumption that & — «F is positive , U is a positive
trace preserving map such that W(L;(N)) C Ly(N). Thus ® = (1 —a)¥ + «F. Note that

the data processing inequality holds for positive trace preserving maps [27]. Then by the
convexity of relative entropy and the data processing inequality of D(-||N) give

D(®(p)||N) =D((1 = a)¥(p) + aE(p)[IN) < (1 = ) D(¥(p)|IN) + aD(E(p)||N)
~(1 = a)D(U(P)|IN) < (1 - a)D(p|IN)
The same argument applies to ¢ ® idg. [ |

We now prove our main technical theorem that (complete) Fisher monotonicity plus
CB-return time implies MLSI (resp. CLSI). Define the function

L 1 s
m, 1f)\7£0

For each t, A\ — k(A t) is continuous at 0.

Theorem 3.6. Let T, : M — M be a symmetric quantum Markov semigroup. Suppose
i) Ty satisfies \-FM for some A € R
ii) Ty has finite CB-return time ty, < 00.

Then T;-satisfies k(A te)-MSLI. The same assertions holds replacing “FM” with “CFM”
and “MLSI” with “CLSI”.
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Proof. Write ty, = ty. As a consequence of Lemma 3.5, we have
1
DT, (p)IN) < 5D(pIIN)

Let n > 1 be an integer and write T;(p) = p;. For A < 0, we have

[asry

n—

1
5 D(IIV) < D(lIN) = Dlpi[|[N) =} D(patg [[N) = D(psnio [INV)

|
-
<
Il
o

3 _onIto

<D e (D(lIN) - D(ps ||N))
J
1— 6—2>\t0

= ——m (D(lIN) = D(pw [IN)

_onko
1—¢e 2)\n

Il
=)

where we used \-FM in the second inequality. Rearranging the terms, we have

_ _o)to
—e 2Ato _I_%_‘_%e 2)\n
1 _ 6—2)\t0

D(plINV)

Dlpw|W) <

For p € Sp(Ay), t — D(p||N) is differentiable and < D(p;||N)|;—o = —I(p). Taking the
limit n — oo, we have

flo) =1, i
n
_ _9nto
‘ e 2>\t0_|_%_|_%6 210
> lim —(1 — )
n—oo { 1 — e—2XMo
1_1,-2x%
n. 5 — 3€ A

D(plINV)

N—s 00 tO 1 _ 6—2)\t0 ) 1 _ 6—2)\t0

which is m—MLSI. The argument above remains valid for A = 0 and T; ® idg. This

completes the proof. [ |

Remark 3.7. For the ergodic classical Markov semigroups, it was proved by Diaconis and
Saloff-Coste in [15, Theorem 3.10] that the bound return time (the complete boundness is
automatic here)
too :={t>0]| || T, — E: L1(Q) = Loo(Q) | < 1}
1

itself implies E—LSI, which further implies MLSI. Nevertheless, their argument went

through hypercontractive estimate that does not apply to non-commutative non-ergodic
setting.

The CB-return time can be estimated by standard argument.
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Proposition 3.8. Let T, = e=4* : M — M be a symmetric quantum Markov semigroup
and N be its fized-point subalgebra. Suppose

i) for somety >0, [Ty, : LN C M) = Loo(M)l < C.
ii) the generator A has spectral gap o > 0, that is
JA (A=) : Lo(M) = Ly(M)]| < 7"
Then fort > tg,
1T, = E: Ly (N € M) = Loo(M) || < Cem70)
As a consequence, tg, < 0 (log2C) + ty.
Proof. Note that T, — E is an N-bimodule map. We have for t > ¢,
ITi = B+ LN € M) = Log(M) [l
=T = E: LN C M) = LN c M) G,
=Ty : LyN € M) = LNV C M) G| Tita — B+ LN € M) = LN € M)IG,
=T : LN € M) = Loo(M) || izt — E': Lo(M) = La(M) |5,
—(Ceoltt0)

Y

Here the first equality uses [20, Lemma 3.13] and the third equality uses [20, Lemma
3.12). m

The above estimates has the following two corollaries. The first one is the non-ergodic
version of [20, Proposition 3.2]. It basically says that the spectral gap plus a non-ergodic
Varopoulos dimension condition implies finite CB-return time.

Lemma 3.9. Let T, : M — M be a symmetric quantum Markov semigroup and N C M
be the fixed-point subalgebra. Suppose

i) || T} : LN C M) = Loo(M)||oy < et~ for some ¢,d >0 and all 0 <t < 1;
ii) the generator A has spectral gap o > 0

Then the CB-return time satisfies
d—1

1 1
tey < =+ log2 + —logc
2 o
Proof. Choose ty = 1/2 in Lemma 3.8. [ |

The second cases is related to finite von Neumann subalgebra index. Recall that for
two states p,w, the maximal relative entropy is

Do (pllw) =loginf{a>0|p<aw}.
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For an inclusion N/ C M of finite von Neumann algebras, the maximal relative entropy
Dy, of M to N and its CB-version Do, o is defined as

Doo(MIIN) = sup Deo(pllN) ; Do, MIIN) = 5 Doo (M (M)]| M1 ()

pES(M)
It was proved in [19, Theorem 3.9] that

Do f( M|IN) =log ||id : LL(N C M) = Loo(M) || -

The next proposition gives the estimate of ¢, given that D o(M]|N) is finite and spectral
gap is positive.

Proposition 3.10. Let T, : M — M be a symmetric quantum Markov semigroup and N
be its fized-point subalgebra. Suppose D, oo(M||IN') < o0 is finite and T; has spectral gap
o >0. Then

|7, — E : LL (N C M) = Log(M) || < ePereMIN) g=0t
As a consequence, top < 07N Dep oo (MI|IN) + log 2).
Proof. Choose t; = 0 in Lemma 3.8. [ |

The the maximal relative entropy D, oo (M]|AN) connects to the von Neumann algebra
subalgebra index and is explicit for many examples. It was proved in [19, Theorem 3.1]
that Do (M|IN) =log A(M : )~ for M, N being II; factors or finite dimensional, where
A(M : N) is the Pimsner-Popa index in [44]. In particular, for II; factors, D oo(M||N) =
log[M : N| where [M : N is the Jones subfactor index; for M, N finite dimensional, the
explicit formula of Do, (M||N) is calculated in [44, Theorem 6.1], from which D, oo (M||N)
are also known. For example,

Depoo(My]|C) = 210g 0, Depoo(Mpl|I%,) = logn, Deyso(I%||C) = logn.
For any N C an ch,oo(MnHN) S ch,oo<Mn||Cl) = 210gn

3.3. Entropy Ricci curvature bound. We shall now discuss the connection between
Fisher monotonicity and Ricci curvature lower bound and give a non-egordic version of
Bakry-Emery theorem. Following [17], we call Ricci curvature bound defined through
geodesic convexity of D as entropy Ricci curvature bound. We first review the different
formulations of entropy Ricci curvature bound discussed in [54, 8, 12]. For a function
f:]0,a) = oo, we introduce the notation

-

Ef = lim sup %(f(t) — £(0)) .

t—0

Recall that Sy(p) = {p € S(M) | H(p) < oo} is the state space with finite entropy and
we write p; = Ti(p)
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Definition 3.11. Let T, = e 4 be a symmetric quantum Markov semigroup and let
(A, 0, M) be a derivation triple of T,. For A € R, define the following conditions

i) Gradient Estimate: we say T, satisfies a A-gradient estimate (A\-GE) if for any
p € S(M) and x € dom(AY?) with E(z) = 0,

16(Ti@) 15 e [[o(x) [I7, , ¥t > 0.

pt 7

ii) Evolution Variational Inequality: we say T, satisfies a A-evolution variational in-
equality (A\-EVI) if for all p,o € Sg(M) with W(p,o) < oo andt >0

1d*

2 dt

iii) Displacement Convezity: we say the entropy functional H is geodesically A-convex
if for any constant speed geodesic v : [0,1] = (Sy(M), W),

A1 —s)s
2

When M is a finite dimensional C*-algebra and T} being a primitive semigroup (in-
cluding non-symmetric cases), all three of the above conditions are proved to be equivalent
and are referred to as a A-Ricci lower bound in [12, 8]. For finite von Neumann algebras
M, it has been proved in [54, Theorem 7.12] that

W (o0 + 5W (o) + Hip) < H(o)

H(vy(s)) < (1 = s)H(¥(0)) + sH(v(1)) — W (7(0),7(1)).

(i) = W is non-degenerate and (ii) = (S (M), W) is a geodesic space and (iii)

For this reason, we take the gradient estimate condition A-GE as our working definition
of entropy Ricci curvature bound.

Remark 3.12. For EVI and displacement convexity above, it is equivalent to replace
the entropy H(p) by the relative entropy D(p||N). This is because for p € Sg(M),
D(p||E(p)) = H(p) — H(E(p)) < oo. For »-EVI, W(p, o) < oo implies E(p) = E(o) and
hence

1d* A
537V (p0) + 5W(pr,0)° + D(p|IN) < D(o|IN) . (13)
For A-displacement convexity, E(v(s)) = E(v(t)) for any admissible curve v and hence

D((s)|IN) < (1= s)D(7(0)||N) + sD(v(1)||N) — @

Remark 3.13. A semigroup 7; can admit distinct derivation triples (A, 5,M). For ex-
ample, let My be 2 x 2 matrix algebra and consider the depolarizing semigroup

D;: My — My, Di(p) =e "p+(1—e")71(p)1,



22 MICHAEL BRANNAN, LI GAO, AND MARIUS JUNGE

where 7 is the normalized trace 7(p) = 1Tr(p). It was discussed in [8, Section 5.6] that
D; admits a derivation

§: My — &3 My, 0(a) = (i[X, a),i[Y, a),i[Z,a]) .

1
2v2
where XY, Z are Pauli matrices. This follows from that the depolarizing map E is an
average of unitary conjugation by Pauli matrices,

trip), _ 1

> 1=l
On the other hand, the depolarizing map E can also be seen as the following average of
unitary conjugations over the unitary group U(2) C M,

B() = [ wpudutw
U(@2)
where p is the Haar measure on U(2). Then one can construct an alternative derivation

0 My — Loo(U(2), My) ,0(a)(u) = ilu,a] ,

where L. (U(2), M) is the Ms-valued function on the Lie group U(2). For more examples
of distinct derivation triple, see Example 4.14.

E(p) = p+ XpX +YpY + ZpZ).

The next proposition shows that the gradient estimate is independent of the choice of
derivation triple (A, M, J).

Proposition 3.14. The definition of the gradient estimate is independent of the choice of
derivation.

Proof. We show that the norm

160) 3, 50,0~ [ 7(6) 06()0 s

is independent of 6. Recall that the Dirichlet algebra Ag = dom(AY?) N M is a core for §
and closed under C!-functional calculus. For x,p € Ag, we have p* € Ag and by Leibniz
rule

p*6(z) = 6(xp®) — 8(p*)x , x € dom(AY?) .
Then for each s € [0, 1],
1

7(0(z)"p*0(x)p' ™) =1 (0(2)"d(p°x)p' ™) — T(3(x)"(p")zp' ")
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which is completely determined by gradient form I'. We now show for general p,z, {||
() ||, (x1,)} can be approximated by p,z € Ag. For z € dom(A'?), we chose a sequence
%, — x in the graph norm of §. In particular, 6(x,) — 0(x) in Ly. Then for p € Ag,

lim 7(3 ()"0 (a0)p' =) = lim || o726 (a,) o2 |3
n—00 n—00

= [ p*26(2) " =2 |[5= (6 ()" po () ')
For any p € S(M), we take sequence p, = pAn € Ag and p, /" pin L;. Then for any
r € dom(A'/?), we apply the Fatou lemma
limsup 7(8(x)* p0(x) py, *) <limsup 7(3(x)"pjd(x)p' )

n—oo n—oo

<7(d(x)"pd(x)p' ") < liminf 7(d(x)"p}0(x)p, ")

n—o0

which implies 7(6(x)*p26(x)pt=*) 7 7(6(x)*p*6(x)p'~). Then by monotone convergence

theorem, lim,, || §(x) ||2Lz(/\9r,pn):H 5(x) Hig(/&up)’ That completes the proof. |

The next proposition shows that entropy Ricci curvature bound implies Fisher mono-
tonicity.

Proposition 3.15. For any symmetric quantum Markov semigroup T, : M — M and
A € R, A\-GFE implies A\-FM.

Proof. Let p € Sp(Ap) and p, = Ti(p) be the semigroup path. By Lemma 2.7, (p;) is an
admissible curve with

1 Dpe *=l6(0g pe) lI5,= 1(pe)
and t — I(p;) is continuous. Then it follows from [54, Theorem 6.9] that for any s > 0

I(Telp) = I(Tp0) = DT(00) o < 2 [ Dot o= 1 (p) . m

For A > 0, the above Proposition and Proposition 3.3 combined gives \-GE = A-FM
= A-MLSI, which is a noncommutative non-ergodic version of Bakry-Emery theorem. In
the following, we take an another approach using Otto-Villani’s HWI inequality introduced
in [43]. The quantum HWI inequality is obtained in [12, Corollary 2] for finite dimensional
ergodic case (see also [8]). For finite von Neumann algebra, this idea is also used in [54,
Proposition 7.9]. Here the major difference to [54] is that we do not need to assume \-GE
for some A > 0.

Theorem 3.16. Let T; be a semigroup satisfying \-EVI for A € R: for any p,o € Sg(M)
with W (p, o) < 00,

1 dt , A )
§EW(M’U) +§W(Pt’0) + H(pr) < H(o).
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Then T, satisfies the following A\-HWI inequality: for any p € Sp(Ag),o € Sy(M) with
W(p,0) < oo,

H(p) H( <Wp7 \/ __va )

Proof. By Lemma 2.7, we know that for p € Sp(Ag), t — I(p;) is continuous and t — p;
is an admissible curve with || Dp, [|2,= I(p;). By triangle inequality,

d+
it W (pt+s,0) <limsup — W(pt—l—sv o) —Wi(ps,0)
t—0
1
<limsup - W (pe+s, ps) < limsup 2 / I Dpess llpee ds =/ 1(ps)
t—0 t
Therefore,
10l+w > _ i inf — (1 P-W 2
537 Ve 0)” =liminf = (W(p,0)° = W(pi,0)°)
. 1
< Timsup (W (p;, p)* + 2W (pr, )W (p1, 7))
t—0 2t

. 1 1
< limsup W (p;, p)* + W (ps, )W (p, )
t—0 2t t

< W(p,0) /T ().
where in the last inequality we used Lemma 2.7 iii),

lim W (pr, p) = 0, Im W (pr, o) <Tim W (py, p) + W(p, ) = W(p,0) . u
Proposition 3.17. For A > 0, \-HWI implies \-MLSI.

Proof. Since W (p,T(p)) < [y I(pe)*?dt < oo, we can choose o = T;(p) in HWI inequality
for any s > 0. By Lemma 2.7 (iv),

lim H(T.(0)) — H(E(p)) = lim D(L.(p)|E(p)) = 0.
Then for any p € Sp(Ap), we apply HWI inequality for o = Ts(p)
D(pl|lN) =H(p) — H(E(p)) = H(p) — lim H(T\(p))

< lim W p7 \/ - _W pv ))

S—00
1
I(p
<o 1(p)
Here, in the last step we used the elementary inequality

y?
xygc:)s2+?,x,y,c>0.
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for & = Wi(p,Ts(p)),y = 1(p),c = A/2. u

Remark 3.18. Here we can not choose ¢ = E(p) because in general we do not know
Wi(p, E(p)) < oo for p € Sg(Ap). In particular, the finite distance for p € Sy(M) and
E(p) is a consequence of MLSI via the transport cost inequality (See [20, Section 6]) as
follows,

2D(p||E(p))
Wip, E(p)) <\ ———

We call the above inequality (14) A-transport cost inequality or in short A-TC.

(14)

Now we have two ways to reach Bakry-Emery Theorem.
Corollary 3.19 (Non-ergodic Bakry-Emery Theorem). For A > 0, \-GE implies \-MLSI
Proof. We can either use A-GE = A\-FM = A-MSLI or A-GE = \-HWI = \-MSLI. =

Beyond positive curvature lower bound, we also have two ways for MLSI. The first
one is to apply our Theorem 3.6 with the above discussion. Recall that the function

k(A1) = A2 — 2e2A) 7L,

Corollary 3.20. Let T, : M — M be a symmetric quantum Markov semigroup. Suppose
i) T} satisfies \-GE for some X\ € R;
ii) Ty has finite CB-return time ty < 00.

Then Ty-satisfies k(X te)-MLSI.

Remark 3.21. Note that for At > Inv/2, (A, t) > A. This means when the CB-return

time tp, < A~'ln+/2, Corollary 3.20 gives stronger MLSI-constant than Bakry-Emery
Theorem. Also for A > 0, k(\,t) — A\/2 when ¢4 — 00.

One can compare the above corollary to the approach in [43, Corollary 3.1] using the
transport inequality.
Corollary 3.22. Let T, : M — M be a symmetric quantum Markov semigroup. Suppose
i) T; satisfies \-GE for some A € R;
ii) T} satisfies y-transport cost inequality in (14) for v > max{—X\, 0}
Then Ty-satisfies a-MLSI for o = max{\, 7(1 + %)2}
The proof is similar to [43, Corollary 3.1]. One could also replace “TC” in condition
ii) by the so called “MLSI+TC” inequality

W (o, E(p)) < @ (15)

to obtain a similar estimate as in [43, Corollary 3.2].
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3.4. Bochner’s Inequality. We shall now discuss the curvature lower bound condition
introduced in [33]. Let T} : M — M be a symmetric quantum Markov semigroup and
(A, M, d) be a derivation triple for T,. Denote Qs as the closure of AS(A) in Ly(M). Tt
follows from Leibniz rule that s is a A-bimodule. To distinguish with the entropy Ricci
curvature lower bound, we refer the following notion from [33] as geometric Ricci curvature
lower bound.

Definition 3.23. We say (A,M,é) satisfies a geometric Ricci curvature lower bound \
for A € R (in short GRic > X) if there exists a symmetric quantum Markov semigroup

T, = e M — M with generator A such that
i) Ty|p =Ty for anyt > 0.

ii) 0(Ag) C dom(A) and there exists a A-bimodule operator Ric : Qs — Lo(M) such
that for x € Ay,

Ric(0(z)) = Ad(x) — 6A(x). (16)
i) for any y € Q;,
(y, Ric(y)) = My, y) - (17)
where (-,-) is the trace inner product of (M, ).

We call the bimodule map Ric “Ricci operator” as an analog of Ricci tensor in geom-
etry. The above definition is of course an imitation of BochnerWeitzenbockLichnerowicz
formula (c.f. pp374 [52])

~A+VV*+Ric=0. (18)

where A = V*V is the Laplace-Beltrami operator on a Riemannian manifold and V is the
gradient operator. When acting on a gradient V f, (18) becomes

—A(Vf)+V(Af)+Ric(Vf)=0,

which is the motivation for (16). Note that the above Definition (3.23) adds a little flexi-
bility that A can be any generator extending A on M. We discuss more on the connection
to classic Ricci curvature in Section 4.2

On the other hand, we emphasize that Definition 3.23 is different from the entropy
Ricci lower bound in Definition 3.11. One major difference is that Definition 3.23 is
automatically “complete” in the sense that if 7; has GRic > A (in our sense), then T; ®idg
has GRic > A for any finite von Neumann algebra R. Indeed, both the algebraic equation
(16) and the Lo inequality (17) naturally extends to T; ® idg. In contrast, we will discuss
in Section 4.4 that the 2-dimensional depolarizing semigroup has sharp entropy curvature
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lower bound by 1, but S; ® id does not. This implies entropy curvature bound is not
automatic complete.
We recall the following results from [33].

Theorem 3.24 (Theorem 3.6 of [33]). For A € R, T; has GRic > X\ implies that T; ® idg
has \-GE for any finite von Neumann algebra R.

The next theorem is inspired by the discussion in [7, Section 8.3] (see also [8, Theorem
10.8] and [12, Proposition 5]).

Theorem 3.25. Let T, : M — M be a symmetric quantum Markov semigroup and let
(A, M, 6) be a derivation triple of Ty. Suppose that there exists a symmetric quantum
Markov semigroup Ty : M — M such that for any t > 0,

T~t|M:Tt,cmd50Tt:e_’\tTt05 (19)

for some A € R. Then T; satisfies GRic > A. Moreover, the Ricci operator GRic can be
taken to a constant multiple of the identity operator.

Proof. Let A be the generator of Tt For z € Aq,
Y

A A

fim (e T4 (6(2) — 5(2)) =i C(F(5()) — 6(2) + 1 (e 5(x) — 6())

=Ad(z) — No(z) .

which converges in w*-topology because §(Ag) C dom(fl). On the other hand, for y €
d(Ap) and §*§(y) = Ay € Ly(M),

fim © (r(43(2)) — 7(u(T()))) =limn 7 (+(5" (9)2) — (5" () T(2)))
(5 (1) A)).

which implies 111% %(5(Tt(:c)) —d(z)) = §(A(x)) weakly. Thus we have for z € Ay,
§(A(z)) = Ad(z) — No(z) .
which means the Ricci operator is constant Ric(§(z)) = Ad(x). |

As we see in the above proof, the relation (19) is equivalent to the Ricci operator in
(16) equaling to a multiple of the identity. We emphasize this special case by giving the
following definition.

Definition 3.26. We say a semigroup T; satisifies constant A\-Ricci curvature condition
(A-GRic) if Ty admits a derivation triple satisfying (19).
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We remark that the A\-GRic relation deos not gives the meaning that Ricci curvature is
constant A but still just a lower bound by A. We revisit the Orstein-Unlenbeck semigroup
discussed in [7].

Example 3.27. Let R" be the n-dimensional real Euclidean space and p the standard
Gaussian distribution. The Orstein-Unlenbeck (OU) semigroup Ty = e~ : Lo (R™, ) —
Loo(R™, dp) is given by

i) = [ Je et VI=eTy)uty),

Denote 0, = % be the partial derivative. The generator of the OU semigroup is given by

A=A+2-V=V'V+z V=Y (-0 +u1,0).

j=1
Consider the derivation
§:CR") = @1, C(R™), o(f) = (0; ) -
As observed in [7, Section 8.1, we have the relation [0;, —A+2z-V] =0, forj=1,...,n.
This translates to the equality
(A®id)od—Aod =14,

where A = A ®id is the extension of A to ®F_,C*(R") = C*(R") ® I%,, which is clearly
the generator of the semigroup 7, = T, ® id on Loo(R™) ® I".. In particular, this gives
a derivation triple for the OU semigroup that satisfies 1-GRic. Moreover since T; has

spectral gap 1, we can therefore conclude the sharp complete version result that 7T} ® idg
satisfies 1 — G F for any finite von Neumann algebra R, and T; satisfies 1-CFM and 1-CLSI

We have a complete version of Corollary 3.20

Corollary 3.28. Let T, : M — M be a symmetric quantum Markov semigroup. Suppose

i) T} satisfies GRic > X\ for some A € R;
ii) Ty has finite CB-return time ty, < 00.

Then Ty-satisfies k(A te)-CLSI.

4. EXAMPLES

In this section, we discuss applications to classical Markov semigroups and finite di-
mensional quantum Markov semigroups.
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4.1. Diffusion Semigroups. Our motivation for Fisher monotonicity was from Bakry-
Emery’s curvature dimension condition for diffusion Markov semigroup. We refer to [2]
for more information on classical diffusion Markov semigroup.

Let (2, 1) be a Borel space equipped with a Borel probability measure p. Let T; :
Loo(2, 1) — Loo(€2, 1) be an ergodic Markov semigroup and A be its generator. We say
T, satisty diffusion property if its gradient form I satisfies the following product rule,

L(fh,g) = fT(h,g) + hL(f,g) . (20)

Denote I'(f) :=T'(f, f). It then follows from polynomial approximation that for a smooth
function ¥ : R — R,

LW(f).9) =¥ (NHT(f,9) . T(@(f) =¥ (f)°T(f.9)

For a density function f € Lo (€2, i), the entropy H(f) (also called Boltzman H-functional)
and the Fisher information I(f) are given by

H(p) = D(p||1) = / plog p du

1) =~ [(An)tog fdu= [ T(s.1og f)d = [ £100g £)d
Recall that the I'; operator is defined as
La(f.9) = 5 (T(Af.0) + T(f, Ag) — AT(1.0)) .

Denote I's(f) := Iy (f, f). Tz can be realized as
L,(I(f)) = P(T()

PZ(.f) = 11_{% n )
The derivative of Fisher information is
dI(T,
<d ;f> _ / T, fT2(log Tof dp (21)

Recall that T; satisfies (), oo)-curvature dimension condition for A € R (in short, CD(A,00))
if for any f € dom(A)

La(f) = AL(S) -
It follows immediately C'D(\, oo) implies A-FM. For A > 0, it is the Barky-Emery theorem
that CD()\, 00) = A\-FM = A-MLSI. For general A € R, we have the following theorem
for diffusion Markov semigroups.

Theorem 4.1. Let Ty : Loo(, 1) = Loo(2, 1) be an ergodic symmetric diffusion Markov
semigroup. Suppose Ty satisfies curvature-dimension condition CD(\, 00). If in addition,
we assume

i) | Ty : Li(R2) = Loo(Q)]| < ct=¥2 for some ¢,d >0 and all 0 < t < 1;
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ii) the generator A satisfies spectral gap o > 0.
Then T;-satisfies m(\)-MLSI for

-1
(2+2(d— 1)1og2+§1ogc> CifA=0
2 -1
)\<2 _ 21_(d_1))‘c_7> , if A 0.

m(\) =

Proof. The condition i) is the Varopoulos’ dimension condition. Here the CB-norm esti-
mate is automatic:

1Ty = B La(€) = Loo(Q)|| = |y = Er = L1(€) = Loo () cr-

This is because Lo (£2) is a commutative space (see [45, Proposition 1.10]). The assertions
follows from Theorem 3.6 and the return time estimates in Lemma 3.9. ]

Remark 4.2. It is well known that if T, f(z) = / ki(z,y) f(y)du is given by the kernel
Q
function k¢ (z,y). Then

| T — E7 0 L1(Q) = Loo(Q) =1 B — 1| -
is a kernel estimate.

4.2. Heat semigroups. We shall now discuss the heat semigroups. We refer to [52] for
more information on analysis of heat semigroups on manifolds. Let (M, g) be a complete
compact Riemannian manifold equipped with Riemannian metric g. Let A be the Laplace-
Beltrami operator given by
Af=V'Vf.
where V is the gradient operator and V* = div is the divergence. The heat semigroup
T, = et : Loo(M,dvol) — Ly (M,dvol) is a Markov semigroup with respect to the
volume form dvol induced by g. Recall the BochnerWeitzenbockLichnerowicz formula
that for the vector field Vo,

1 .
—§A|V<Z5|2 + Vo - V(Ap)+ | Vo5 +Ric(Vo, Vo) =0,
which translates to
-A+VV*+Ric=0. (22)

The C*°(M)-bimodule property of Ric is exactly the fact that the Ricci curvature is a
smooth tensor over M.
The same argument applies to weighted Riemannian manifolds (M, g, e~ dvol) where

e~ is a smooth density function with respect to dvol. The weighted Laplacian is

Ay =V'V=A-VIW.V.
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where V* is adjoint of V with respect to Ly(M,e="du) and Ay is a self-adjoint operator
on Ly(M, e "du). Then the weighted heat semigroup T, = e~*W? is an ergodic symmetric
Markov semigroup with the unique invariant measure e~"dp. In this case,

Ay — VV* = Ricy .

where Ricy = Ric, + VVIW is the sum of Ricci curvature tensor of the metric g and
the Hessen of the function W. The weighted Ricci curvature bound Ricy, > A is that
Ricw (£,€) > Ag(&, &) for any vector field € € TM. When A > 0, Ricyy > A implies
T, = e~2w? gatisfies A-MLSI by the Bakry-Emery Theorem.

It is proved in [33, Section 4] that Ricy, > A actually implies GRic > A, which implies
a complete version of Bakry-Emery theorem.

Theorem 4.3 ([33]). If Ricw (&, &) > Ag(§,€) for any & € TM, then the weighted heat
semigroup Ty = e~ 2wt satisfies GRic > X. In particular, if Ricyy > X > 0, T, = e~
satisfies A\-CLSI.

The proof uses the Clifford bundle C1(M) as the quantization of tangent bundle 7M.
Then the GRic > A is a realization of the Bochner identity on CI(M). We refer to [33] for
details.

Now we apply our method for general compact weighted manifolds. It follows from
compactness and continuity that Ricy, > A always holds for some real A. Indeed, for each
xr € M, Ricy at x is a real symmetric matrix with respect to an orthonormal basis of g.
Hence

Here A\uin(z) is the smallest eigenvalue of (Ricy ), with respect to metric g, which is
continuous depending on € M. Define that Ric(Ay) = mingey Amin(2) as the global
minimum of i, (7). Thus the heat semigroup T; = e~?W?! always satisfies GRic > A for
some real A = Ric(Ay ). The following is an application of Theorem 3.28.

Theorem 4.4. Let (M, g,e"Wdvol) be a compact connected weighted Riemannian mani-
fold. Then the weighted heat semigroup T, = e~ satisfies \-CLSI for some X > 0.

Proof. We know from Theorem 4.3 that T; = e~2"* always satisfies GRic > Ric(Ay) € R.
On the other hand, both spectral gap and finite Varopoulos dimension of Ay, are well-
known for compact weighted manifolds. See [21, Theorem 10.23] for spectral gap and
[21, Theorem 14.19 & Exercise 15.2] for Varopoulos dimension. Indeed, the T} = e=2w?
satisfies the ultra-contractive estimates of dimension n = dim(M),

T, : Li(M, dvol) — Lo (M, dvol)||< ct™™?, 0<t <1, .
I
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Then it follows from Lemma 3.9 and Corollary 3.28 that T, = e “w?! satisfies A\-CLSI
where \ is determined by Ric(Ay ), spectral gap of Ay, and the ultra-contractive estimate
of e~ 2wt [ |

The above theorem has the following refined form.

Theorem 4.5. Let (M, g) be a connected compact Riemannian manifold and let A be the
Laplace-Beltrami operator. Suppose the Ricci curvature of M is bounded below by K for
some K € R.

(i) the heat semigroup Ty = =2t satisfies \-CLSI for
K, if K >0
N — (4 + §1og(201))_1, ifK =0 (23)
K<2 - e—2K(M)—¥)_1, if K < 0.

where o is the spectral gap of A, V is the minimum volume of radius 1 ball in
M, Cy is a universal constant and Co(K,n) only depends on K and the dimension
n = dim(M).

(ii) Let W be a smooth function on M such that e is a probability density function
for the volume form dvol. Then the weighted heat semigroup T, = e ! satisfies
cA-CLSI where ) is given in (23) and ¢ = e™nW—maxW

Proof. The case K > 0 is in Theorem 4.3. We argue for the case K < 0. Denote
E:Mx M xR, — R as the heat kernel. Recall the famous Li-Yau estimate that for a
complete Riemannian manifold with Ricci curvature bounded below by Ric(M) > —K for
some K > 0, the heat kernel satisfies

Cl d(l‘, y)2
k(x,y,t) < exp | CoKt — )
\/V(x, VOV (y, V1) < ot )

where d(x,y) is the Riemannian distance, V' (z, v/t) is the volume of geodesic ball center
at = with radius v/¢, C} is some universal constant and Cs only depends on the dimension
dim(M) = n. (We choose the parameter ¢ = 1 in statement of [34, Corollary 3.1]). On
diagonal x = y, we have

k(x,z,t) <

G
~ V(v

Take V' = mingep V' (2, 1) as the minimum volume of radius 1 ball in M. Then for ¢t = 1,

exp (CgKt) .

k(z,2,1) < C1V(z, 1) exp <C2Kt> < o(K,n)V7Y,
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where ¢(K,n) = C} exp(CyK) is a constant only depending on dim(M) = n and curvature
bound K (for K =0, C(0,n) is also independent of n). The ultra-contractive estimate is
given by heat kernel on the diagonal,

| Ty : Li(M,dvol) — Loo(M, dvol) ||=sup k(z,z,1) < ¢(K,n)V ",
Let o be the spectral gap of A. By Lemma 3.8, we have
1
tgy <14+ —log(2¢(K,n)V 1)
o

The assertion follows from Corollary 3.28. This proves i). ii) follows from the change
measure [33, Lemma 2.11]. Indeed, for smooth (operator-valued) function f

In, (f) = /(Vf,Vlogf>e—deol > e‘maXW/<Vf,Vlogf)dvol = IA(f),

where I is the Fisher information for the standard Laplacian and Ia, for the weighted
Laplacian Ay,. The comparison for relative entropy follows from [33, Lemma 2.8]. [ |

4.3. Central semigroups on compact groups. In this subsection, we consider Markov
semigroups on compact groups. Let G be a compact group. We denote by C(G) (resp.
C*(@)) the space of continuous (resp. smooth) functions on G and denote by L. (G) =
Lo(G,m) the L.,-space with respect to the Haar probability measure m. Let L, :
Loo(G) = Loo(G) (resp. R,) be the left (resp. right) translation operator.

(Lgf)(h) = f(gh), (Ryf)(h) = f(hg) .

We say a Markov semigroup 7} : Loo(G) — Loo(G) is left (resp. right) invariant if L,oT, =
TioL, (resp. Ry0Ty =TioR,) for all g € G. We say T} is central if it is both left and right
invariant. Recall that a function k € L,(G) is central if k(sgs™!) = k(g) for a.e. g,s € G.
This is equivalent to the condition fxk = kx f for all f € Li(G), where * denotes the
convolution product on L;(G). We denote the subalgebra of central functions in L;(G) by
ZLi(G). It is well known that a Markov semigroup 7; on L. (G) is central if and only if
there exists a convolution semigroup of central probability densities (k;);>0 C ZL1(G)

T(0) = (F+k0)(0) = | FEG 9)dm(y), f € Lu(©),
Now consider the the co-multiplication map « : Loo(G,m) — Loo(G X G,m x m),

a(f)(g.h) = f(gh), a(f)(g.") = Lgf ,a(f)(-,h) = Rnf

It is clear that « is a m to m x m measure preserving *-monomorphism. Moreover, if T} is
a left invariant semigroup we have the commution relation oo T; = (id ®7}) o av. Indeed,

a(Tif)(g,-) = Ly(Tof) = Tu(Ly f) = id QT3 (a(f))(g; )
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Similarly, if 7} is right invariant, we have aoT; = (T;®id)o«. Thus for a central semigroup
T;, we have the following commutative diagram
Lo(G x @) Me®linlide 1 Gx @)
T o T« . (24)
Loo(G) i Loo(G)
This is a crucial point in the following lemma.

Lemma 4.6. Let G be a compact group and T; : Loo(G) — Lx(G) be a central Markov
semigroup. Then T, satisfies GRic > 0 and hence complete Fisher monotonicity .

Proof. Let A be the generator of T; and (Ag, M, §) be a derivation triple for 7;. That is,
d: Ag — Ly(M) is a *-preserving derivation such that
E(6(x)"6(y)) = Ta(z,y) .

where E is the conditional expectation on to Lo (G) € M, and Ag = Lo (G) Ndom(A'/?)
is the Dirichlet subalgebra. We show that

0=(0®id)oa: Lo(G) = Leo(G,M) =2 MRLo(G)
is also a derivation for T;. Let E, : Loo(G X G) — L (G) be the conditional expectation
obtained as the adjoint of «. Using the commutative diagram (24), we have E,(A®id)a =
A, which follows by differentiating « o T; = (T; ® id) o a. Then for the gradient forms
associated to A and A ® id (the latter which acts on a(Ag) C a(Loo(G))), we have

Pa(z,y) = 2" Ay + (Az)"y — A(z"y)

=1"Ey(A®id)a(y) + (E.(A®@id)a(z)) 'y — Eu(A @ id)a(z"y)

= Ea(a(z)" (A®@id)a(y) + (A @id)a(z) a(y) — (A ® id)a(z"y))

= Eo(Tagia(a(z), a(y)))

=FE,0(E®id)((0 ® id)a(x)" (6 ®@id)a(y))

= Eo o (E®1d)(0(2)"0(y))
where we have used the fact (0 ® id) is a derivation for 7; ® id. Here E, o (E ® id) is

exactly the conditional expectation onto a(Ls(G)) C Leo(G, M). Thus we have shown
that (Ae, Loo(G, M), ) is a new derivation triple for 7;. Now for this derivation, we have

80,1_;5 :(5®idg)0040ﬂ: (5®ldg)(ldg®ﬂ)oa
=(idp @T})(0 @ id) 0 @ = (idpy ®T})0 .

where idg ®T; (resp. idy ®T;) is the extension semigroup of 7, on L..(G x G) (resp.
M®L(G)). Note that here we used the other part of (24) a o Ty = (idg ®T}) o a by
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the right invariance of T;. This verifies the algebraic relation in Theorem 3.25 for A = 0,
which implies the assertions. [ |

Example 4.7 (Heat semigroups). Let G be a compact Lie group and g be its Lie algebra
of left invariant vector fields. Let X = {Xj,..., X} be an orthonormal basis of g with
respect to its Killing form. We consider the heat semigroup 7; = e~2! generated by the
Casimir operator A =3 X2. The natural derivation for A is the gradient

V:C0¥(G) = @i_,C™(G) ,V(f) = (X;f)j=

It is known from representation theory that A =" X j2 as a generator is central. Indeed,
recall that for an irreducible continuous representation © : G — B(H,) on the Hilbert
space H, the coefficient function space associated to 7 is the finite-dimensional subspace

E(G)={feC(G): f(g) = (h,m(g)h2)m, | hi,ha € Hr } C Ly(G) .

Denote E, as the Hilbert projection from Lo(G) to the closure of £;(G). The Casimir
operator A then admits a spectral decomposition of the form

A= Z M\ E,

welrr(G)

where the summation is over all irreducible representation 7 and A, is the common eigen-
value for all coefficient functions of 7. Since the E, is invariant for both left translation
and right translation, this implies A and the semigroup e~2 are central. By the construc-
tion in Theorem 4.6, the algebraic relation curvature relation 0-GRic is satisfied with the
following alternative derivation

§: C%(G) = &_,0%(G x G),0f = (V @id)a(f)(g, ) = (X; F(gh))]_,

Combined with the heat kernel estimate and spectral gap (see e.g. [51]), we have the
following corollary.

Theorem 4.8. Let G be a compact Lie group and let A be the Casimir operator. For
r € (0,1], denote T/ = e 2" : Loo(G) = Loo(G) as the heat semigroup (r = 1) and its
subordinated semigroup (0 < r < 1). Then for each r € (0,1], 1T} satisfies GRic > 0,
complete Fisher monotonicity, and \(r)-CLSI for

Ar) = (4 + 407" log(2¢(r,n) + —1))_1 .

where C' is an absolute constant, c(r,n) is a constant only depending on 0 < r < 1 and
n = dim(G), o is the spectral gap of A and Vi is the volume of unit geodesic ball.
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Proof. For all r € (0,1], A™ = Y>> X E. is a central generator. Thus T} are central
semigroup hence has 0-GRic. It is well known (see e.g. [51]) that the heat semigroup
T} = =A% has ultra-contractive estimate

1Ty : L1(G,m) = Loo(G,m)||=Ct™% ,0<t <1

where n = dim(G). By the discussion in [51, Section II.3], the subordinated semigroup
T has spectral gap ¢” and Varopoulos dimension * dim(G). Then assertions follows from
Theorem 3.28.

We now give the concrete ultra-contractive estimates of 7} for each r. Let V; be
the volume of geodesic ball of radius ¢. Since G has nonnegative Ricci curvature, by
Bishop-Gromov volume comparison theorem (c.f. [47, Theorem 5.6.4]), for 0 < ¢ < 1,
V(t) > V(1)t™. Then for r = 1 and T} := T/, using the Li-Yau estimate [34, Corollary 3.1]
again,

T} : Li(G) = Loo(G) ||= k(z, 2, 1) < < < gt—% .

Vi~ Wi
where C' is some absolute constant, k(z,y,t) is the heat kernel of T, = is some point in G,
and V4 (resp. V4) is the volume of geodesic ball in G with radius v/¢ (resp. 1). Denote
Cy = C/V;. For the subordinated semigroup, we the use the argument from [51, Section
11.3],

T =e 2% = / fa(0)T /adv .
0

s

where f, is the function whose Laplace transform is s — e™* . In particular, f, > 0 and

2 falv)dv = 1. Then for t =1,
117 : Li(G) = Leo(G) |

</ TR T Li(G) > Lu(G) | do
< [ R0 IT L@ = L@l vt [ fu0) 1T, 14(G) = L) do

S/ fa(v)v‘gvar/oofa(v) IT1 : Li(G) = Lao(G)| dv

/ falv)v™2dv + C, / falv

<c(a,n) + C4

where c(a, n) fo fa)o™2dv < [ fo(v)v™"%dv < co. By Lemma 3.8, we have

tey < 1+0"%log (2c(a n) + ‘i)
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The assertion follows from Corollary 3.28 [ |

Remark 4.9. a) In [40, Section 7] Milnor proved that for any bi-invariant metric on G,
the Ricci curvature is non-negative. Theorem 4.6 recovers the non-negativity of Ricci
curvature for all heat semigroups with bi-invariant metric. Furthermore, it also applies to
subordinated semigroup beyond the Laplacian case.

b) Based on the derivation of heat semigroup 7, = e~2*, derivation triple for subordinated
group can be constructed as in [11, Section 10.4]. Note that the CLSI of subordinate
semigroup was obtained in [20] using a completely different method.

c¢) By Theorem 4.5, the constant for the heat semigroup 7} has the following explicit form

A1) = (2 +2(n—1)log2 + glog(g))_l

where o is the spectral gap, V is the volume of unit ball and C' is some absolute constant.

It was also pointed out in [40] that Ricci curvature of a left invariant metric is strictly
positive if the fundamental group of G is finite. It means for semi-simple Lie groups
Theorem 4.3 usually gives better CLSI constant than Theorem 4.6. Nevertheless, for non
semi-simple Lie group with zero curvature lower bound, Theorem 4.6 gives us an effective
way to obtain lower bounds of CLSI constant.

Example 4.10 (Circle). Let T = {z € C | |z]| = 1} be the unit circle. Then {z"|n € Z} is
a orthonormal basis of Ly(T). The heat semigroup is given by

E(Zm) — 6—m2tzm’

and the associated heat kernel is given by ki(z) = > ., e~ ™tzm Now we estimate the

cb-return time of T;}:

1Ty — B« Ly(T) = Lo(D) || =I| Y ™™ 2w ™™ |1 x2)
meZ\{0}

2
= > e lrm

meZ\{0}
=l ke = Tlzoecm
= l{:t(e) —1

[e.e]
=2 E e M
m=1

In the above, the first equality follows from the isometric identification

L)% L(MELu(T) 2 BT, La(D)s (& 0)1) = ( [ wtw)f(w)dw)
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The third equality follows from the fact that k; is a positive definite function on T. Denote
) =23 e so that

to, = inf{t|f(t) < 1/2} .

Using standard heat kernel estimates, we have

26t < f(t) = y(0) — 1 < —C

—1—et

These estimates yield concrete bounds of the form

(t>1).

1.38629 ~ In4 < t4 < In5 ~ 1.60944.

Numerical calculation shows that t,, < 1.41 < 1.5, and therefore the heat semigroup on T
1
has E—CLSI.

Example 4.11 (d-Torus). Let T¢ = {z = (21, 20, - ,2q) € C¢||zs] = 1,i = 1,--- ,d} be

the d-Torus. For a multi-index m = (my, - ,mq) € Z%, write |m|?> = m? + m3 + - - +m?
and define the polynomials 2™ := 2]"25" - - - 2", The set {z™|m € Z¢} is an orthonormal

basis of Ly(T). The heat kernel k‘gd) and heat semigroup 7} on T? are given by
KO (z) = 3 el gi(em) = e

meZd

We then proceed as in the previous example to compute the CB-return time:

—m2 m —m
IT; = Br s Li(T) = Lo (T | =l D e™ 0™ o granrs)

meZ4 m#0

2
=l Z € mthHLoo(ﬂrd)

meZd m=#0
d
L P
= kPe) -1

= @3 = f(y

where f(t) := 23 _ e ™" is as in the previous example. Thus we have a CB-return
time estimate depending on the dimension d

tw(d) = inf{t | f(t) <274} .
Using the same heat kernel estimates as in the previous example, we then conclude that

(1+ é) In2 < tp(d) < In(20+2) + 1),
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For example, t,(2) < 1.35 and 4(3) < 1.26. (Numerical suggests t,(2) < 1.08 and
t(3) < 0.98).

Note that the CLSI constant (4¢.)~" obtained from the above approach is monotone
increasing for d, which is better than tenzorisation. This leads to the following dimension
free estimates.

Theorem 4.12. Let d > 1 and T? be the unit d-torus. The heat semigroup on T? (in the
above normalization) satisfies complete Fisher monotonicity and A-CLSI for A\ = (41n3)~!.

Proof. Denote Tpa; as the semigroup on T<¢. Denote CLSI(Tra,) as the optimal CLSI
constant of Ta ;. Then by example 4.11, we have
1 1

CLSI(Ta ) > (4 inf{¢] (23 e < 1/2 }) > (4 In(20+4) + 1)>_

m=1

For m < d, T = T™ x T¢"™. Consider the embedding ,, 4 : C(T™) — C(T9)
Tma(f) = f @ lam , f € C(T™) .

where 14_,, is the identity function on T%™. Namely, 7, a(f)(z1, -+, 24) = (21, 2m).-
It is clear that
Tm,d © Lrm g = Tpa 4 © Ty g -

Hence the heat semigroup Tym; on m-torus is a sub-semigroup for Tra, on d-torus. We
have for any d > m,

-1
CLSI(Tpn ) > CLSI(Tha,) > (4 In(20+9 4 1)) .
Taking d — oo, we have CLSI(Trm ;) > (41n3)~! for any m. That completes the proof. ®

Remark 4.13. It was proved by Weissler [53] that on the circle T, both the heat semigroup
Ty(z™) = e=™ 2™ and the Possion semigroup P;(z™) = e~ !"™/*2™ satisfies sharp 1-LSI hence
sharp 1-MLSI (because spectral gap is 1). We will show in the second part of this series
that the Possion semigroup P, on T satisfies sharp GRic > 1 and hence sharp 1-CLSI.

Example 4.14 (Finite Groups). Let G be a finite group and [, (G) be the function space
on GG equipped with counting probability measure. Let

T, 1u(G) = 1o(G) . (Tif)(g) = > kulg™ ') f(h)
geG

be a symmetric central Markov semigroup with kernel function k;, € Z1;(G). Let A be
generator of T}, which acts on the l5(G):

A l(G) = 1(G), Aler) = Y Agneg

geG
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The entries of A are given by
Agh = Zh#gwg’h’ ith=g
’ —Wg by otherwise.
where wy;, > 0 are the transition rates. If 7} is symmetric and central,
Wy h = Wh,g = Wsg sh = Wys, hs ,\V/ S, 9, hedG.

Here we use the derivation of finite Markov chain from [18]. Denote B =3~ __; \/W0gn€q,n,
where e, ), are matrix units in B(l3(G)). Consider the standard embedding 7 : I(G) —
B(ly(G)) as diagonal matrices 7(f) = >_, f(g)ey,y- We have the following derivation.

0 :1(G) = B(L(G)) , 6(f) =D _byn(f(h) = £(9))egn = i[B, ()]

For the gradient form,
2l (eg, 1) = (e;(Aeh) + (Aey)ep, — A(egeh))

— {Zs;ﬁg wsyg(es + 69)? if 9= h

—wy n(eg + €n), otherwise.

Note that [B, m(eg)] = 3., /Wsg(€sg — €gs). Then for g # h

B((B,n(e,))' (B w(en)]) = E((Y (e — €s)) (Y Vralern = ens))

s#g r#h

=FE ( Z \ WrhA/Wr g€g h — Z V Ws,g/Wg h€s h
r s

- Z vV wh,g\/ wr,heg,r + 5g,h Z vV ws,g\/ wr,ges,r>
r s,T

= —Wg,hn — Wh,gCy

For g = h,
B((B,n(e,))' (B w(en)]) = E((Y vrglens = €ss))(Y_ Vralers = ens))
s#g r#h
= Z Wy g€g + Z Wg g€
r#g s#g

= Z wsg(es + €4)

Thus we have verified that
[(eg,en) = E(d(eg)*d(en)) -
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which extends bi-linearly to o (G) X l(G). Now we have

doTy(e,) = 5(2 ki(r)eg—1)
=D hlr) 30 VTt = o)

s#gr—1

=S 1)U (32 V(o — 00) ) Us

sT#g
= > k(n)U; (3(ey) ) U,
=T,0 d(eg)

In the third equality above we used the central property wg g1 = ws. 4. The extension
semigroup on B(l(G)) is

Ti(p) = ku(r)U,pU;

where U,e, = U, ey, is the right shifting unitary. T, is a extension of T} : lo(G) = l(G)
on B(l3(G)). Indeed,

Ti(egg) = D ki(r)egrg = k(r)UregUis =Y ki(r)Uleg U, .

This verifies that T, satisfies 0-GRic via a construction different from Lemma 4.6.

Corollary 4.15. Let T} : l(G) = l(G) be a central Markov semigroup with spectral gap
o. Then Ty satisfies GRic > 0, complete Fisher monotonicity and \-CLSI for

g

A= —— .
4(log 2|GY)
Proof. This follows from Theorem 3.28, Proposition 3.10 and D (l(G)||C) = |G]. |

4.4. Generalized Depolarizing Semigroups. Let N' C M be a subalgebra and let
E : M — N be the conditional expectation. We now discuss curvature bounds and MLSI
(resp. CLSI) constants for the generalized depolarizing semigroup

T(p) =eMp+(1—e)E(p) .

The generator is A = A\(I—F) whose spectral gap is clearly A (here [ is the identity operator
on Ly(M)). In the following we show that T, has A/2-GE. This result is independently
obtained by Melchior Wirth and Haonan Zhang and the case for ergodic depolarizing
semigroup on matrix algebras was obtained in [12, Section 3.4].
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Theorem 4.16. The generalizing depolarizing semigroup
T(p) =eMp+(1—e)E(p) .
satisfies (\/2)-GE.
Proof. Let (A, M, d) be a derivation triple of T}. Since §(z) = 0 for z € N, we have for

T € A,
§(Ty(z)) = 0(e M(z — E(z)) + E(z)) = e M5(z) .

Then we have
16(Ta(2)) Ip=ll e () [lp= €= [|6(2) II7,
where .
I66) = [ +(6a)p5a)o! s
It follows from Lieb’s concavity theorem [35] that for each s € [0, 1],
(p.0) = 7(8(x)"p0(x)0" )
is jointly concave for (p, o). For p; := Ty(p) = e + (1 — ) E(p),
T(8(x)"pi8(2)py ") 2 e M7 (3(x) p*0(2)p' ™) + (L — )7 (5(2)" E(p)*d(2) E(p)' ™)

Integrating over s,

10(2) 17,y €™ 18(2) [} +(1 =€) [16(2) mpy= e [13(2) I} -
Then
16(To()) 3= e |6(2) [Ip< e [|6(2) [l = e~ [ 6(2) Iz 0)
which proves the gradient estimates. [ |

Remark 4.17. In an upcoming paper, we will prove a stronger result that 7, = e /=Bt

satisfies GRic > \/2 based the free product property discussed there.
Note that the above theorem implies the generator A = (I — E) has 1/2-CLSI. This

can be verified directly via its Fisher information
I(p) =7((I — E)(p)log p) = T(plog p) — 7(E(p) log p)
=7(plogp — plog E(p)) + 7(plog E(p) — E(p)log p)
=7(plog p — plog E(p)) + 7(E(p) log E(p) — E(p)log p)
=D(pl|E(p)) + D(E(p)llp) = D(pl|E(p)) (25)

where in the third equality we used the definition of the conditional expectation. It
follows from D(E(p)||p) > 0 that A = (I — E) has 1/2-MLSI and also 1/2-CLSI by the
same argument for (I — E) ® id. In the following discussion, we denote M.SLI(A) (resp.
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CLSI(A) and GE(A)) as the optimal constant A of MSLI (resp. CLSI and GE) for the
generator A.

Example 4.18 (Depolarizing Semigroup). Let M, be the algebra of d x d matrix. Consider
the depolarizing semigroup

Dy: Mg — My, Di(p) = e_tp +(1- 6_t)’7‘d(p)1,

where 74(z) = 1Tr(z) is the normalized matrix trace on M. It is proved in [31] that the
optimal LSI constant is
92— 4/d
LSI(I — =—— LSI(I — =1
(I =74) log(d — 1)’ (I=7)
This implies
92— 4/d
MLSI(I — >
(I=74) 2 log(d — 1)’

For curvature bounds, Melchior and Zhang proves that GE(I — 74) > % + %. Here we
show that GE(/ — m35) < MLSI(/ — 73) < 1. In Mj, we choose the normalized density
p= %el + %62 + %63 where eq, e, e3 are orthogonal rank one projections. Then

D(pl|1) = 3 log(3/2) + 3 log(3/4) + § loa(3/4) = 3 log(9/8) = log(3/2v/2)

D(1]]p) = %log(2/3) + % log(4/3) + % log(4/3) — %10g(32/27) — log(27/3/3) < log(3/2V2)
This means D(p||1) > D(1]|p) and
I(p) = D(pl|1) + D(1|p) < 2D(p[[1)

This implies on M3, the depolarizing semigroup A = I — 73 does not have 1-MLSI nor
1-GE. Similar examples can be found for other d > 3.

Remark 4.19. By (25), the optimal MLSI constant is

. D(1]p)
inf
pes(Ma) D(p||1)

MLSI(T — 7,) = ~(1 4

2 )

It is clear that (I —74) has the same MLSI constant for the classical depolarizing semigroup
Syl =1L S(f)y=etf+(1- e_t>7(2i§(1)>1 :
Maas and Erbar showed in [18] that GE(S;) > 1 + 2.

We show that the above GE constant also holds for M,,. We are indebt to Melchior
Wirth for pointing out our earlier mistake on the following proposition.
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Proposition 4.20. The d-dimensional depolarizing semigroup

Dy Mg — My, Di(p) = e 'p+ (1 —e")1a(p)l
satisfies % + 2—1d—G'E.
Proof. Note that for any derivation ¢ of T3,

d(a) = d(a — 1a(a)) ,6(Ti(a)) = e™"(a — 7a(a)) .
Then

16(T () 17, 0= € N0(@) 17, 1,

Let o > 0. The D, satisfies % + i—GE means that for any a € My,

_ _o(l, 1
8@ 12, 0= ST @) 2, g0 < €25 16(0) 2, i

This is equivalent to the function

h(t) = e [8(a) 17, vimm)
is increasing. Denote the function f(t) :=||d(a)||? L (MU (0) . Write p, = T;(p) for a density
p. We have the derivative,
d

Pt —(I =7)(p) =(1-p)
and (7 is the trace on the derivation triple)

PO = oo [ 70000 0i105)

-/ (a6 i) s

Let p=>] ; bje; be the orthogonal decomposition of p. By double operator integral,

d P; — Di
JPil=0 = Z ’ ej(1—p)ex
-77

e Pi — Pk
P; — i
=(1—0p J eier
( >§pj_pky

and similarly £p;7%,_g = A(1 — s)(1 — ,0),0_3. For a bi-viariable function F' : (0,00) X

(0,00) — (0, 00), we introduce the notation

[F,p(X) = Z F(pjapk)erek )

gk
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Then

%(pi_s5(a)p§)lt:o = (1= p)lr,p(0(a)) + La,,p(6(a))(1 = p)

where Fy(z,y) = (1 —s)(1 — z)z~*y* and G, = sz'*y*~1(1 — y). Integrating over s on
0, 1], we have

Do =heal [ 7000k s(0I01a)
= [ 7000 1 0(0) + 71000 T, o5
= (500 Tnp(0(2))

where H is the function given by

(z —y)(z —y — ay(log(z) — log(y)))
zy(log(z) — log(y))?
_ (—y)  (z—y—ay(log(x) —log(y)))
log(z) — log(y) zy(log(z) — log(y))
N Gt ) ( (z —y) _1>
log(z) — log(y) \zy(log(z) — log(y))

H(z,y) = /0 Fy(z,y) + Gs(z,y)ds =

here log is natural log. On the other hand,

£(0) = / r(8(a)* P 6(a)s’)

=7(0(a)"11,0(a))
where J(z,y) = ﬁ. Then the derivative of h(t) = e~ f(¢) is
W(0) =(1 = D)f(0) + 70
=(1- é)T(é(x)*]J,p(é(x))) +7(0(2)" Li,p(5(x)))
Thus it suffices to require (1— é)J + H is a positive function on the spectrum of p. Indeed,
(1= é)J(ZE’ y)+ Hy)=(1- é)log(g : ?lJo)g(y) log(i : i))gy (:Ey(lo(gxat_—yiog y) 1)

N Gt ) ( 1
logz —logy \zy(logz — logy) «

(z —y) _1)
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(x—y)
log z—logy

> 0, it suffices to require

(z—y) IR

zy(logz —logy) «

Because

or equivalently
1 —1
rylogz —logy) _ |
r—y
Here for My, the domain of (x,y) is contained in Sy := {0 < z,y < d} since z,y are
eigenvalues of a normalized density p € M. By elementary calculus, one can show

logz — 1
- zy(log x —logy) s

(:B7y)esd €r — y

Thus « can be d and we finishes the proof. [ |

We now use a similar idea to consider the MLSI constant of D; ® idy : My ® My —
My ® My where D, is the depolarizing on M. Let E @ My ® My — My @ My, E(p) =
(T ®id(p)) ® 1 be the partial trace map. Consider the basis of Bell states

1 1

|01) = ﬁ(\0>\0> +DIN), [d2) = ﬁ(\0>\0> - D)
1 1

|03) = %(\OHD +10[1), [da) = %(\OHD —0)I1))

Using the identification
|0)10) = [1),[0)[1) = [2) , [1)]0) — [3), [1)[1) — [4)

we have the densities in My = My ® M, represented as

r 1 1 1 1 7
3 00 35 3 00 —3
0000 0 00 0
=10 0 0 0 2= 5 00 0
1004 300 4
[0 0 0 07 [0 0 0 0]
0% 10 o L _1 g
¢3:()ii() ¢4:0_21120
2 2 2 2
00 0 0 (0 0 0 0]

Now we choose the state p = g¢1 + é(ng + ¢3 + ¢4). The reduced density is

1
Lol 1 1
E(p)z[é 1}@95:11@1-
2
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Thus
DPIE(p) = Dipl7) = 2 log(5/2) + 2 log(1/2) ~ 0313
D(E(p)|Io) = D(31lp) = 7 108(2/3) + 2 log2 ~ 0.291

Then we have D(p||E(p)) > D(E(p)||p), which implies that GE((I — ) ® idy,) <
MLSI(({ — 72) ®idas,) < 1. Note that MLSI(/ — 75) = 1. We have the following corollary.

Proposition 4.21. Let D, be the depolarizing semigroup on My and (I — 3) be its gen-
erator. Then

MLSI(I — 75) @ idyy,) < 1 = MLSI(I — )
In particular, CLSI(I — 1) < MLSI(I — 13).

For classical Markov semigroups, the MLSI is stable under tensorisation. The above
example shows that tensorisation of MLSI does not holds for quantum cases if we allow
non-ergodic semigroup.

4.5. Schur multipliers. Let M,, be the m x m matrix algebra and a = (a;;){"—; € My,
The Schur multiplier of a is

To: My — My, To(zi;) = (aixi;)

Consider a semigroup of Schur multiplier T} : M, — M, , Ty((z;;)) = (e s'z;;). The
generator is the Schur multiplier of b = (b;5),

A(w5)) = (bijzij) -

By Schoenberg’s theorem [48], T} is a symmetric quantum Markov semigroup (unital com-
pletely positive and self-adjoint) if and only if b; = 0,b;; = b;; > 0 and conditionally

negative definite, i.e. for any real sequence (¢, -+ ,¢y,) with D" ¢; =0,

Z Cicjbij S 0.

ij=1
Moreover, there exists a real Hilbert space H and a family of vector b(1),--- ,b(n) € H
such that

bij =11b(i) = b(5) |* -
For T}, the fixed point subalgebra N is

N = {(ZIZ'U) c Mn | xij =0 fOl" all (Z,]) that bij 7& O} s
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where e;; € M, are the matrix units. It is clear that the diagonal matrices I C N. Thus
T} are always non-ergodic. Because e;; are eigenvectors of the generator A with eigenvalue
b;j, the spectral gap is
a:mln{bw\bm#O}
The gradient form is given by
1
I'(eij, er) = 552'1(52']' + by, — bji)eji -

Here 0;; is the Kroenecker-delta notation. For ¢ = [, we have
1 _ . . .
[(es, ein) = 5(1[0(1) = b(j) 12+ 116(1) = b(k) > = [[6(5) — b(k) [[*)e;n

= %(Ilb(i) = b(7) 1" + [16(3) — b(R)II* = 11b(5) — b(k) [I*)esu
= (b(1) = b(7), b(2) — b(k))eju

Recall that for a real Hilbert space H, an H-isonormal process on a standard probability
space (£2,m) is a linear mapping W : H — Lo(Q) satisfying the following properties:
i) for any v € H, the random variable W (v) is a centered real Gaussian.
ii) for any vy, vy € H, we have Eq(W (v)W (v2)) = (v1,v2) g
iii) The linear span of the products {W (v )W (vg)--- W (vy,) | v1,- -+ ,v, € H} is dense
in the real Hilbert space Ly(€2)

Here Ly(€2) denote the space of measurable functions on 2. Now we define the derivation
0 My = My ® La(Q) ,0(eij) = e ® V=1(W (b(3)) = W(b(1))) -
We verify that ¢§ is a derivation,
0(eij)ejn + €0 (esn) = e ® V=1(W(b(i)) — W(b(j))) + e ® V=1(W(b(j)) — W (b(k)))
= ex @ VLW (b(i)) — W(b(k))) = d(ea) = d(esjezn).

Moreover for the gradient form
B(8(es)"dew)) = B (ess ® (W(B(0) = WH())) (e © (W (b)) = W (b(k))))

= Saese @ B((W(b(D) — W(0(G)) W (b() — W (b(K))))
= 0u(b(i) — b(7), b(z) — b(k))ejn -
Then it is readily seen that
doT, = (T, ®idg) 00,

where T; ® idg is the extension of T; on M,, ® L. (€2). By Theorem 3.25, this implies T
satisfies 0-GRic. Combined with CB-return time estimates in Proposition 3.10, we have
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Theorem 4.22. Let T} : M,, — M,,,T,((zi;)) = (e bi'z;;) be a symmetric quantum
Markov semigroup of Schur multipliers. Then T; satisfies 0-GRic and complete Fisher
monotonicity. Denote o = min{b;; | b;; # 0} as the spectral gap of T;. Then T} satisfies

A-CLSIT with constant
o

In particular, Dgy(Mp,||IN) < Dey(M,y,]|I7) = logm.

A:

4.6. Random unitary channels. A CPTP map T : M,, — M,, is called a random
unitary channel if it is a convex combination of unitary conjugations,

T(p) = ijUij; (pi >0, Zpi =1).
J=1 i

In this subsection, we discuss semigroups of random unitary channels arising from group
representations. Let GG be a finite group. Recall that a projective unitary representation
U:G — U(M,,) satisfies

UUy,=0(9,h) Uy, , Vg, h € G

where 0 : G x G — C is a group 2-cocycle with |o(g, h)| = 1. Let T} : M,, — M,, be the
quantum Markov semigroup given by

1 *
o) = & > ki(9)UgpUy
9
where k;(g) is the weight function that satisfies ki(g) > 0, > ki(g) = 1 and
1
kiis(g) = @l > ki(ghT k() = (k% k) (g) -
h

Thus k; forms the right invariant kernel on G. Let

St loo(G) = 1o(G), Si(F)(9) = Y ke(gh™ ) f(h) .

be the right invariant Markov semigroup on Il (G). We have the transference

Lo(G, M,y 2% (@M,
ta ta . (26)
M, LN M,,

where a : M,, — loo(G, My,),a(z)(g) = UyzU; is a trace preserving *-monomorphism.
Thus T; = (S¢ ® id)|a(u,,) is a subsystem of the semigroup (S; ® iday,, ).
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Theorem 4.23. Let G be a finite group and let U : G — M, be a projective unitary
representation. Let T, : M,, — M,, be the a quantum Markov semigroup given by

| *
o) = &1 > kilg)UypUy -
g

Suppose k; is central and T, has spectral gap o. Then T} satisfies complete Fisher mono-
tonicity and \-CLSI with constant

o
4(log 2m?)

Proof. 1f k, are central, it follows from Theorem 4.6 that the classical semigroup S; satisfies
complete Fisher monotonicity. which pass to T; as a subsystem. The CLSI constant follows
from Proposition 3.10 and Dy,(M,,||N) < Dey(M,,||C) = m2. |

Example 4.24. Recall the m-dimensional generalized Pauli matrices are

27ij

Xy =1i+1),Z]j) =e1j) -

It is clear that {X*Z'} forms a projective representation of Z2,. Since Z2, is abelian, so
every function on Z? is a central. Thus the above theorem applies to every semigroup of

random Pauli unitaries

1 ‘ . N
Tip) = — S WG DX Zp(XZ')"

3l
APPENDIX A.

In this appendix we provide the approximation lemmas in terms of entropy. We start
with a standard density argument.

Lemma A.1. Suppose A C M is a w*-dense unital *-subalgebra A C M. Denote B as
the unit ball of M. Then A is norm dense in Ly(M) and Ly(M). Moreover, the positive
part A, (resp. Ay N B) is dense in Li(M)y (resp. Li(M)y N B).

Proof. By Kaplansky density theorem (c.f. [50, Theorem 4.8]), ANB is also strong operator
topology (SOT) dense in M N B. Then for any £ € Ly(M), we have a net (z,) C A such
that z, — & in SOT topology and hence norm dense in Ly(M). For Ly, it suffices to show
that A is Li-norm dense in L;(M)NM. Indeed, for any positive p € L(M)N B, we take
To — p/? in SOT topology and in Ly(M) N B. Then for any subsequence (z,) C (z4),

lim ||2}2n = plh< ll2hzn — p 220 1 + 10220 — oIk
n—oo

1/2 1/2 T, ||2: 0

< lim ||, = o2 lall2a [l + 1107 [l21l o

Then z}x, — p € L1(M) and z}z, € AN B since A is a *-subalgebra. |
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The next lemma shows that the relative entropy is continuous in L;-norm for bounded
invertible densities.

Lemma A.2. Let p € Sp(M) and p, be a sequence in Li(M)y such that || p, — p|l1= 0.
Suppose there exist m, M > 0 such that m1 < p, < M1 for any n. Then lim H(p,) =
n—oo

H(p) and lim D(pu]IN) = D(p|A).

Proof. We assume that m1 < p < M1. The lower semi-continuity inherited from relative
entropy,

H(p) = D(p||1) < liminf D(p,||1) = liminf H(p)
n—o0 n—oo
For the upper continuity, we use Klein’s inequality [54, Theorem 5.9] for h(s) = slog s

H(pyn) — H(p) = 7(h(pn) — h(p)) < 7(W(pu)(pn — p));

where h/(s) = 1 + logs is the derivative of h. Because ml < p, < M1, we have
| 7 (pn) ||oo< max{log M, —logm} + 1 is uniform bounded for n. Thus

limsup H(p,) — H(p) <limsup 7(h'(pn)(pn — p))

n—o0 n—oo

<limsup (max{log M, —logm} + 1) || p — p|1= 0,

n—oo

which implies lim sup,, H(p,) < limsup,, H(p,) = H(p). For D(p||N') we use the decom-
position D(p||N) = H(p) — H(E(p)). Note that m1 = mFE(1) < E(p) < ME(1) = M1
and

lmn | E(p,) — E(p) 1< lim || o = p= 0.
By the same argument, we obtain H(E(p)) = lim,, H(E(p,)). |

Now we can show that \-MLST inequality for density in Sp(.A) is equivalent to entropy
decay property for all density in S(M). Recall that Sp(Ay) = Sp(M) N Ay where Ay =
Uia0 T2 (A) C dom(A). Note that by the continuity of T; on L; (see [13, Proposition 2.14]),
the positive part (Ap); is norm dense in A, hence by Lemma A.1 also dense in Ly (M)
Moreover, since Ay is a linear subspace containing unit, Sg(.Ag) is norm dense in S(M).

Proposition A.3. A semigroup T; satisfies A\-MLSI if and only if
D(Ty(p)|IN) < eMD(p||N) , ¥ p € S(M).

Proof. By the heuristic discussion and the equation (11), we know that our Definition 2.3
of A-MLSI is equivalent to

D(p]IN) < e D(pl|N) ,¥p € Sp(Ao) .
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To extend the exponential decay to all of S(M), it suffices to show that for any p € S(M),
there exists a sequence of p, € Sp(Ag) such that

pn = pin weakly Ly, lim D(pn||N) = D(p[|N) - (27)

This is because by the lower semicontinuity of relative entropy (c.f. [42, Corollary 5.12])
w.r.t to Li-norm,

D(Ty(p)|IN) < lim inf D(Ty(pa)||N) < liminf e D(p,|IN) = e D(p||N) .

which implies the assertion. We verify the claim by two steps: (1) for any p € S(M),
there exists a sequence p, € Sg(M) satisfying (27); (2) for any p € Sp(M), there exists a
sequence p, € Sp(Ap) satisfying (27). We first proves (2). By Lemma A.1, for p € Sp(M)
with p < M1, there exists a sequence p, € S(A) such that p, — p in L; and p, < M1.
Since T}, (pn) — pn in L1, we can assume p, € S(Ag) by replacing p,, by T3, (p,) for some
small ¢,,. For any 0 < € < 1, we define
Pre=(1—¢€p,+e€l,p.=(1—€)p+el.

Then for each €, we have p, . — p. in L; and by Lemma A.2, lim,, D(p, (||[N) = D(p||N)
because €1 < p, . < M1. Moreover, by convexity and lower semi-continuity

lim sup D(p[|N) < limsup(1 — €) D(p||N) = D(p[|N) < Timinf D(pe[|N) .
e—0 €

e—0
Thus D(p||N) = lir% D(p:||N) and this proves (2). For (1), we denote e, as the spectral
e—

projection of E(p) for the spectrum [1/n,n] and e- = 1 — e,. Without losing generosity,
we assume p is faithful otherwise we restrict the discussion on its support. Note that
|eX]i= 7(et) — 0. For each n, we define CPTP map

Py : Li(M) = Li(M), P(x) = e ze, + T(zepr)1
We have P,(L1(N)) C Li(N) and hence by data processing
D(Eu(p)[IN) < D(pl|N) , ¥n. (28)

On the other hand, E(P,(p)) = e, E(p)e, +7(E(p)e)1 converges to E(p) in Li-norm and
P,(p) — p in weakly. Indeed, for any y € M

lim |7 (py) — 7(enpeny)| <lim|r(e;py)| + [ (enpery)]
<tim [l ([l pllallylloc + ez lall o[l ]y lloo=0-
Thus by the lower semicontinuity again
D(pllN) = D(pl|E(p)) <lim inf D(pu||E(pn)) = D(pnl|lN) -
Combined with (28), we have lim,, D(p,||N') = D(p||N'). That completes the proof. ~ H
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