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COMPLETE LOGARITHMIC SOBOLEV INEQUALITIES VIA RICCI

CURVATURE BOUNDED BELOW

MICHAEL BRANNAN, LI GAO, AND MARIUS JUNGE

Abstract. We prove that for a symmetric Markov semigroup, Ricci curvature bounded

from below by a non-positive constant combined with a finite L∞-mixing time implies the

modified log-Sobolev inequality. Such L∞-mixing time estimates always hold for Markov

semigroups that have spectral gap and finite Varopoulos dimension. Our results apply to

non-ergodic quantum Markov semigroups with noncommutative Ricci curvature bounds

recently introduced by Carlen and Maas. As an application, we prove that the heat

semigroup on a compact Riemannian manifold admits a uniform modified log-Sobolev

inequality for all its matrix-valued extensions.

1. Introduction

In differential geometry, Ricci curvature lower bounds have many applications in topol-

ogy, geometry and analysis. One pioneering work that connects Ricci curvature with

analysis of heat semigroups is the Bakry-Emery theorem [1]. It implies that if the Ricci

curvature of a compact Riemannian manifold (M, g) is bounded from below by a positive

constant, then the heat semigroup satisfies a logarithmic Sobolev inequality. In this pa-

per, motivated by quantum information theory, we present a uniform approach to obtain

logarithmic Sobolev inequalities from a non-positive Ricci curvature lower bound for both

classical and quantum Markov semigroups. Indeed, we show that a non-positive Ricci cur-

vature lower bound plus a L∞-time to equilibrium implies logarithmic Sobolev inequality

in the noncommutative non-ergodic setting.

In the past decades, the notion of Ricci curvature lower bound has been largely ex-

tended beyond Riemannain manifolds using ideas from optimal transport. Motivated by

Gromov’s Precompactness theorem [22], Lott-Villani [36] and Strum [49] independently

introduced a notion of Ricci curvature lower bound for metric measures spaces. Such a

space has Ricci curvature bounded below by a constant λ if the entropy, as a functional

on the state space (space of probability measures), is λ-convex along geodesics of the

L2-Wasserstein distance. Later, similar ideas were extended to Markov semigroups on

discrete spaces and noncommutative spaces. The key ingredient is to construct an analog

of the Wasserstein distance W on the state space such that the semigroup is the gradi-

ent flow of the entropy functional with respect to W . Such gradient flow constructions
1
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were obtained independently in [37, 38, 10] for Markov process on finite state spaces, and

[6, 7, 39, 41] for finite dimensional quantum systems. More recently, the noncommuta-

tive Wasserstein metric has been further studied on finite von Neumann algebras [54, 26].

Based on these, the notions of Ricci curvature lower bound via λ-convexity of entropy has

been studied by Erbar-Maas [18] for discrete spaces and by Carlen-Maas [8], Datta-Rousé

[12] and Wirth [54] for noncommuative spaces. Thanks to the gradient flow structure, the

connection between Ricci curvature and functional inequalities, including the extensions

of the Bakry-Emery theorem, have been obtained in all the above settings.

The logarithmic Sobolev inequalities were first introduced by Gross [24, 23] as a refor-

mulation of hypercontractivity, and have been intensively studied since then (see [25] for

an overview). The focus of this paper is the L1-version of the log-Sobolev inequality, also

called the modified log-Sobolev inequality. Indeed, let Tt = e−At : L∞(Ω, µ) → L∞(Ω, µ)

be a Markov semigroup with Dirichlet form E(f) = (f, Af). We say Tt satisfies a λ-

modified log-Sobolev inequality (λ-MLSI) if for any probability density function f ,

2λ

∫

f log fdµ ≤ E(f, log f) , ∀ f ≥ 0,

∫

fdµ = 1

The integral on the left hand side of the above inequality is the entropy H(f) =
∫

f log fdµ

and the right hand side is called the Fisher information I(f) =
∫

(Af) log fdµ, which

describes the rate of decrease of entropy: I(Ttf) = − d
dt
H(Tt(f)). Intuitively, MLSI char-

acterizes the exponential decay of entropy along the time evolution of the semigroup. In

the smooth setting, MLSI is equivalent to the more common L2-log-Sobolev inequality

λ

∫

g2 log g2dµ ≤ 2E(g, g) , ∀ g ≥ 0,

∫

g2dµ = 1 . (1)

However, it is weaker than (1) in discrete and noncommutative cases. See [32] for a

review article on the interplay between spectral gap, log-Sobolev inequalities and Ricci

curvature. More recently, Otto-Villani [43] proved that MLSI also implies Talagrand’s

transport cost inequality, which further bounds spectral gap and derives concentration

of measure phenomena. Recently these application of MLSI has also been extended to

(finite dimensional) quantum Markov semigroups [7, 46], which suggest a uniform picture

of functional inequalities for both classical and noncommutative settings.

Quantum Markov semigroups are noncommutative generalization of classical Markov

semigroups, where the underlying function space is replaced by matrix algebras or op-

erators algebras. A quantum Markov semigroup on a von Neumann algebra M is an

ultra-weakly continuous family (Tt)t≥0 : M → M of normal unital completely positive

maps. When M = B(H) is the bounded operators on a Hilbert space H , quantum

Markov semigroups models the time evolution of dissipative open quantum system. In op-

erator algebras, quantum Markov semigroups have been widely studied in the context of
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approximation properties, structure theory, and noncommutative harmonic analysis (see

e.g. [9, 28]). In this paper, we will focus on symmetric quantum Markov semigroup on

finite von Neumann algebras. That is,M is a von Neumann algebra equipped with a nor-

mal faithful tracial state τ , and the semigroup Tt :M→M is given by self-adjoint maps

with respect to the τ -inner product. This setting avoids the techicalities of TomitaTake-

saki theory, but is still broad enough to cover many examples of wide interest, such as

classical Markov semigroups on probability spaces, finite dimensional dissipative systems

in quantum information theory, and also various infinite dimensional examples in operator

algebras.

One of the main motivations for this work is to prove a MLSI for quantum Markov

semigroups that is stable under tensor products. For classical Markov semigroups, it is

known that if a pair of semigroups St, Tt satisfy λ-MLSI, then St ⊗ Tt satisfies λ-MLSI.

Tensorization is a useful property that allows us to obtain MLSI for composite systems

by studying smaller, more tractable subsystems. In the noncommutative setting, tensor

stability of MLSI generally requires not only MLSI but a “completely bounded” version of

MLSI: Tt is said to satisfy a λ-complete log-Sobolev inequality (λ-CLSI) if all of its matrix-

valued extensions Tt ⊗ idMn satisfy λ-MLSI. For quantum Markov semigroups, CLSI has

the tensor-stability property that St and Tt satisfy λ-CLSI⇒ St⊗Tt satisfies λ-CLSI [20].
For classical Markov semigroups, CLSI simply means an uniform MLSI constant for all

matrix-valued functions, and for quantum Markov semigroups, CLSI has applications in

estimating decay rates of entanglement. The study of CLSI naturally leads us to consider

non-ergodic semigroups, because Tt ⊗ id always has non-trivial fixed-point space.

We now describe the content of paper and state our main results. Section 2 reviews

the basic definitions and proves some preliminary lemmas.

The main theorem of this paper is discussed in Section 3, which we illustrate here

using the example of the heat semigroup. Let Tt = e−∆t be the heat semigroup on a

compact manifold (M, g). There are two key ingredients in our proof. The first one is

(displaced) monotonicity of Fisher information. The idea goes back to the Bakry-Emery

theorem, in the proof of which they actually showed the implications
{

Ricci curvature lower bound λ
}

λ∈R
=⇒

{

I(Ttf) ≤ e−2λtI(f) ∀t ≥ 0
}

λ>0
=⇒ λ-MLSI. (2)

We call the middle inequality “λ-Fisher monotonicity”, as for λ = 0, it asserts that I(Ttf)

is non-increasing in t. For λ > 0, this immediately implies λ-MLSI. For λ ≤ 0, we will

need a second ingredient, which is the finiteness of the following L∞-mixing time

tcb = inf{t > 0| ‖Tt − E : L1(M, dµ)→ L∞(M, dµ)‖≤ 1/2} <∞
Here E(f) = (

∫

fdµ)1 is the averaging map. We prove that this L∞-mixing time is

the half-decay time for entropy H(Ttf), and tcb is always finite by the spectral gap of
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∆ and standard heat kernel estimates. All the notions mentioned above including the

implication (2) are fully adapted to the noncommutative non-ergodic setting, which leads

to the statement of our main theorem.

Theorem 1.1 (c.f. Theorem 3.6). Let Tt : M → M be a symmetric quantum Markov

semigroup and E :M→N be the conditional expectation onto its fixed point algebra N .

Suppose

i) Tt satisfies λ-Fisher monotonicity for some λ ∈ R: for all densities ρ,

I(Tt(ρ)) ≤ e−λtI(ρ) , ∀t ≥ 0

ii) Tt has finite completely bounded return time:

tcb = inf{t > 0 | ‖Tt − E : L1
∞(N ⊂M)→ L∞(M)‖cb≤ 1/2} <∞ .

Then Tt-satisfies κ(λ, tcb)-MSLI for κ(λ, t) = λ
2(1−e−2tλ)

For classical Markov semigroups, it is well-known that the L∞-mixing time itself im-

plies the log-Sobolev inequality (see [15]). Nevertheless, this standard approach via hy-

percontractivity does not apply to the matrix-valued setting because the famous Rothaus

Lemma as a crucial step is no longer valid. We emphasis that our main theorem, using

ideas from quantum information theory, applies to fully non-ergodic noncommutative set-

ting. It allows one to derive MSLI for matrix-valued functions or endomorphism maps on

vector bundle, and also the tensor-stable CLSI for quantum Markov semigroups.

In Section 4 we apply the main theorem to various examples in both the classical

and quantum contexts. Section 4.1 discusses the connection to Bakry-Emery’s curvature

dimension condition for Markov diffusion semigroups. An important class of such semi-

groups are heat semigroups on (weighted) Riemannian manifolds. For heat semigroups,

we have the following result

Theorem 1.2 (c.f. Theorem 4.4). Every heat semigroup on a connected compact (weighted)

Riemannian manifold satisfies CLSI.

In Section 4.3, we show that any “central” semigroup on a compact group has entropy

curvature bound zero, and based on that, we estimate the optimal CLSI constant for the

heat semigroup on d-torus Td. For noncommutative examples, Section 4.4 studies entropy

Ricci curvature bounds and MLSI constants for depolarizing semigroups. We also consider

Schur multiplier semigroups and semigroups of random unitary channels in Section 4.5 &

4.6. We end our paper discussion with an appendix on approximations of relative entropy.

Acknowledgements. Li Gao thanks Haonan Zhang for helpful discussions on Propo-

sition 3.15. We thank Melchior Wirth for pointing out a previous mistake on Proposi-

tion 4.16. Michael Brannan was partially supported by NSF Grants DMS-2000331 and
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2. Preliminaries

2.1. Entropy and Relative Entropy. Throughout the paper, we letM be a finite von

Neumann algebra equipped with a normal faithful finite tracial state τ . For 0 < p < ∞,

the Lp-space Lp(M) is defined as the completion ofM with respect to the norm

‖a‖p= τ(|a|p)1/p .
We identify L∞(M) :=M and the predual spaceM∗ ∼= L1(M) via the duality

a ∈ L1(M)←→ φa ∈M∗, φa(x) = τ(ax) .

We say ρ ∈ L1(M) is a density operator (or simply density) if ρ ≥ 0 and τ(ρ) = 1. The

set of all densities correspond to the normal states of M, which we denote by S(M).

Throughout the paper, states always mean normal states and are identified with their

density operators.

Recall that for two normal positive linear functionals ρ and σ, the Umegaki relative

entropy is

D(ρ||σ) =
{

〈ρ1/2| log∆(ρ, σ)|ρ1/2〉, if supp(ρ) ≤ supp(σ)

+∞, otherwise.

where ∆(ρ, σ)(x) = ρxσ−1 is the relative modular operator and |ρ1/2〉 is the vector of ρ1/2
in L2(M). In the tracial setting

D(ρ||σ) = τ(ρ log ρ− ρ log σ) ,
provided ρ log ρ, ρ log σ ∈ L1(M). The entropy of ρ is then given by H(ρ) = D(ρ||1).
(Note that H is actually the Boltzmann H-function, which differs with the usual entropy

in information theory by a negative sign). We say a linear map Φ : L1(M) → L1(M) is

completely positive trace preserving (CPTP) if its adjoint Φ† :M→M is normal, unital,

and completely positive (UCP). The monotonicity of the relative entropy under CPTP

maps (also called the data processing inequality) states that for any CPTP Φ and any two

states ρ, σ,

D(ρ||σ) ≥ D(Φ(ρ)||Φ(σ)) .
In particular, we have D(ρ||σ) ≥ 0 for any ρ and σ, and the equality D(ρ||σ) = 0 holds if

and only if ρ = σ.

Let N ⊂M be a von Neumann subalgebra. The conditional expectation E :M→N
on to N is the (unique) completely positive unital and trace preserving map determined
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by

τ(xy) = τ(xE(y)), ∀x ∈ N , y ∈ M .

E is normal and its pre-adjoint map gives an embedding L1(N ) ⊂ L1(M). For a state ρ,

the relative entropy with respect to N is defined as follows

D(ρ||N ) := inf
σ∈S(N )

D(ρ||σ) = D(ρ||E(ρ)) .

where the infimum is always attained by E(ρ). Indeed, we have the identity that σ ∈ S(N )

D(ρ||σ) = D(ρ||E(ρ)) +D(E(ρ)||σ) ,
and the infimum is attained if and only if D(E(ρ)||σ) is zero. If H(ρ) = D(ρ||1) < ∞ is

finite, so does

H(E(ρ)) = D(E(ρ)||1) ≤ D(ρ||1) = H(ρ) <∞
and

D(ρ||N ) = τ(ρ log ρ− ρ logE(ρ)) = τ(ρ log ρ)− τ(E(ρ) logE(ρ)) = H(ρ)−H(E(ρ)) .

If Φ is CPTP and Φ(L1(N )) ⊂ L1(N ) (or equivalently Φ†(N ) ⊂ N ), we have the data

processing inequality for D(ρ||N ),

D(Φ(ρ)||N ) ≤ D(Φ(ρ)||Φ ◦ E(ρ)) ≤ D(ρ||E(ρ)) = D(ρ||N ) .

Here the second inequality follows from Φ ◦ E(ρ) ∈ S(N ). As already seen in [3, 20],

the relative entropy D(ρ||N ) is crucial in functional inequalities for non-ergodic Markov

semigroups.

2.2. Quantum Markov Semigroups. A quantum Markov semigroup is a family of lin-

ear maps (Tt)t≥0 :M→M with the following properties

i) Tt is a normal UCP map for all t ≥ 0.

ii) Tt ◦ Ts = Ts+t for any t, s ≥ 0 and T0 = id.

iii) for each x ∈M, t 7→ Tt(x) is continuous in ultra-weak topology.

The generator of the semigroup is defined as

Ax = w∗ − lim
t→0

x− Tt(x)
t

, Tt = e−At ,

where A is a closable densely defined operator on L2(M). We say a quantum Markov

semigroup (Tt) is symmetric if for any t, Tt is a self-adjoint map for the τ -inner product,

τ(x∗Tt(y)) = τ(Tt(x)
∗y) , x, y ∈M.

We refer to [13] for the basic properties of symmetric quantum Markov semigroups. A

symmetric quantum Markov semigroup is determined by its Dirichlet form

E : L2(M)→ [0,∞] , E(x, x) = τ(x∗Ax) .
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We write dom(A) for the domain of A and dom(A1/2) for the domain of E . The Dirichlet

subalgebra AE := dom(A1/2) ∩M is a dense ∗-subalgebra of M and a core of A1/2 [13].

For symmetric semigroups, Tt = T †
t are unital completely positive and trace preserving (in

short, UCPTP), and the generator A is self-adjoint and positive. Let N be the common

multiplicative domain for (Tt), defined as follows

N = {a ∈M | Tt(a∗)Tt(a) = Tt(a
∗a) and Tt(a)Tt(a

∗) = Tt(aa
∗) , ∀ t ≥ 0} (3)

Let E be the conditional expectation onto N . For symmetric (Tt), we have

Tt ◦ E = E ◦ Tt = E .

Then N = {x ∈ M | Tt(x) = x, ∀t} is the fixed-point subalgebra, and each Tt is an N -

bimodule map,

Tt(axb) = aTt(x)b , ∀ a, b ∈ N , x ∈M
In particular, we have A(N ) = 0 and N ⊂ AE .

We say (Tt) is ergodic if N = C1 is trivial. This means the semigroup admits an

unique invariant state. We specify the conditional expectation onto the scalars C1 as

Eτ (ρ) = τ(ρ)1. Throughout the paper, we will focus on symmetric quantum Markov

semigroups that are not necessarily ergodic. Recall that the gradient form (or carré du

champ) of the generator A is the operator given by

Γ(x, y) =
1

2

(

(Ax∗)y + x∗Ay −A(x∗y)
)

. (4)

Γ is a (completely) positive sesquilinear form because

Γ(x, x) = lim
t→0

1

t
(Tt(x

∗x)− Tt(x∗)Tt(x)) ,

where the right hand side is always positive by the Kadison-Schwarz inequality for unital

completely positive maps. We recall the following fundamental Markov dilation result

from the preprint [30].

Theorem 2.1 ([30]). Let Tt = e−At : M → M be a symmetric quantum Markov semi-

group. Suppose Γ(x, x) ∈ L1(M) for all x ∈ dom(A1/2). Then there exists a trace-

preserving embedding M ⊆ (M̂, τ) into a finite von Neumann algebra M̂, and a closed

symmetric derivation δ : dom(A1/2)→ L2(M̂), meaning that

i) δ : dom(A1/2)→ L2(M̂) is a closed linear map such that δ(x∗) = δ(x)∗.
ii) δ satisfies the Leibniz rule: for any a, b ∈ dom(A1/2) ∩M,

δ(ab) = δ(a)b+ aδ(b) .

Moreover, the gradient form Γ and the derivation δ are related through
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iii) for all z ∈M,

τ(Γ(x, y)z) = τ̂ (δ(x)∗δ(y)z) . (5)

Equivalently, EM(δ(x)∗δ(y)) = Γ(x, y) where EM : M̂ → M is the conditional

expectation. As a consequence, A = δ∗δ as an operator on L2(M).

The construction of the derivation in Theorem 2.1 is stronger than the representation

theorem for completely Dirichlet forms by Cipriani and Sauvageot [11]. Instead of having a

larger von Neumann algebra M̂, [11, Theorems 8.2 & 8.3] ensures the existence of a closed

derivation ∂ : dom(A1/2)→ H into a HilbertM-bimodule. The derivation ∂ satisfies the

Leibniz rule with respect to the bimodule action and

τ(Γ(x, y)z) = 〈z∂(x), ∂(y)〉H , ∀, z ∈M, x, y ∈ dom(A1/2)

which is analogous to the property (5). The derivation construction in this setting is used

in [54] and [26] to construct the noncommutative Wasserstein distance. Throughout the

paper, we will focus on symmetric quantum Markov semigroups in order to ensure the

existence of the derivation δ in Theorem 2.1, making heavy use of (5) and also the von

Neumann algebra structure of M̂. These ideas are close to the works [7, 8] by Carlen and

Maas (and also [12]). Nevertheless, our setting using Theorem 2.1 is a special case of [11,

Theorem 8.2 & 8.3], which enables us to apply the results from [11] and [54]. We recall

the following definition from [33].

Definition 2.2. We say (A,M̂, δ) is a derivation triple for Tt :M→M if

i) (δ,M̂) satisfies properties i)-iii) in the Theorem 2.1

ii) A ⊂M is a w∗-dense subalgebra such that A ⊂ dom(A1/2) , Tt(A) ⊂ A.
Note that Dirichlet subalgebra AE = dom(A1/2) ∩M always satisfies ii). Then it is

guaranteed by Theorem 2.1 that derivation triples always exist for symmetric semigroups.

It was proved in [11, Lemma 7.2] that AE is closed under C1-functional calculus. Indeed,

let x ∈ M be self-adjoint with spectrum spec(x) ⊂ (a, b) and let f : (a, b) → R be a

function with continuous bounded derivative. We have f(x) ∈ AE and its gradient is

given by the double operator integral,

δ(f(x)) = Jx
F (δ(x)) :=

∫

R

∫

R

F (x, y)dEsδ(x)dEt

where Es is spectral projection of x and F is the bi-variable function

F : R× R→ R , F (s, t) =

{

f(s)−f(t)
s−t

, if s 6= t

f ′(s), if s = t.
.

For concrete examples, it maybe more convenient to work with some smaller algebra

A ⊂ AE usually with strong regularity. Indeed, for most of examples in our discussions,
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the derivation triple (A,M̂, δ) will be concretely described. In general, by assumption

A ⊂ AE always holds. Thus the C1-functional calculus is also applicable for A (with f(x)

in AE). It follows from Kaplansky density theorem (c.f. [50, Theorem II.4.8]) that A is

norm dense in L1(M) and L2(M). Moreover, denoteA0 = ∪t>0Tt(A). Then A0 ⊂ dom(A)

is w∗-dense inM and norm-dense in Lp(M) for all 1 ≤ p <∞ (see [13, Proposition 2.14

& 3.1].)

2.3. Modified logarithmic Sobolev inequalities. Let Tt = e−At : M → M be a

symmetric quantum Markov semigroup and let (A,M̂, δ) be a derivation triple of Tt. We

first specify some subsets of states space.

SH(M) = {ρ ∈ S(M) |H(ρ) <∞} ,
SB(M) = {ρ ∈ S(M) | λ1 ≤ ρ ≤ µ1 , for some λ, µ > 0}
SB(A0) = SB(M) ∩ A0 .

Here SH(M) are states with finite entropy, SB(M) are states with bounded invertible

density and SB(A0) are bounded invertible densities in A0 =
⋃

t>0 Tt(A). Are the three

are norm-dense subset of the state space S(M). Recall that the Fisher information for

ρ ∈ SB(A0) is defined as

I(ρ) := τ
(

(Aρ) log ρ
)

Definition 2.3. We say a quantum Markov semigroup Tt = e−At satisfies the λ-modified

logarithmic Sobolev inequality (in short, λ-MLSI) for λ > 0 if

2λD(ρ||N ) ≤ I(ρ) , ∀ρ ∈ SB(A0)

Note that we have the constant 2 in the definition to match with curvature constant

introduced later. The definition of Fisher information and the derivative relation (6) can

be further extended to ρ ∈ dom(A1/2) as

I(ρ) := lim
n→∞

E(ρ, log(n) ρ)

where log(n) is the function log(n)(x) = log(x + e−n) ∧ n. See [54, Definition 5.17 &

Proposition 5.23]. Nevertheless, it suffices (is more convenient) to consider ρ ∈ SB(A0)

for MLSI.

Proposition 2.4. A semigroup Tt satisfies λ-MLSI if and only if

D(Tt(ρ)||N ) ≤ e−2λtD(ρ||N ) , ∀ ρ ∈ S(M).

The proof of the above proposition is a standard density argument included in Appen-

dix and here we illustrate the heuristic. The Fisher information is the negative derivative
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of (relative) entropy along the semigroup flow

I(ρ) = − d

dt
D(Tt(ρ)||N )|t=0 = −

d

dt
H(Tt(ρ))|t=0 . (6)

where the second equality follows from

D(Tt(ρ)||N ) = D(Tt(ρ)||E(ρ)) = H(Tt(ρ))−H(E(ρ)) .

In particular, we have I(ρ) ≥ 0 by the data processing inequality D(Tt(ρ)||N ) ≤ D(ρ||N ).

Then by Gronwall’s Lemma, MLSI is equivalent to exponential decay of relative entropy

(see [20, 3])

D(Tt(ρ)||N ) ≤ e−λtD(ρ||N ) , ∀ρ ∈ SB(A). (7)

The intuition here is that for non-ergodic semigroups, the semigroup flow Tt(ρ) for an

initial state ρ does not converge to one unique equilibrium state, but to its conditional

expectation E(ρ). Thus only the relative entropy D(Tt(ρ)||N ) = D(Tt(ρ)||E(ρ)) decay

to 0, and the entropy H(Tt(ρ)) = D(Tt(ρ)||1) does not converges to 0. Based on the

non-ergodic MLSI, we introduce the complete bounded version of MLSI.

Definition 2.5. We say (Tt)t≥0 satisfies λ-complete logarithmic Sobolev inequality (λ-

CLSI) if idR⊗Tt satisfy λ-MLSI for any finite von Neumann algebra R.

Note that CLSI was studied in [20] under the definition that idMn ⊗Tt satisfy λ-MLSI

for every matrix algebra Mn. Here in this paper, we will work with the stronger definition

that R can be any finite von Neumann algebra. The MLSI is a L1-version of the Gross’

logarithmic Sobolev inequality that is usually stated for L2-elements. For an ergodic

symmetric Markov semigroup Tt, Tt is said to satisfies λ-logarithmic Sobolev inequality

(λ-LSI) if for any positive x ∈ dom(A1/2) with ‖x‖2= 1,

λH(x2) ≤ 2E(x, x) .

It was proved in [31, Section III.A.1] that all (finite dimensional) symmetric quantum

Markov semigroup satisfies strong L1-regularity: 4E(ρ1/2, ρ1/2) ≤ I(ρ). Thus we have λ-

LSI =⇒ λ-MLSI for ergodic symmetric Markov semigroups. On the other hand, it was

pointed out in [20, Section 7.4] and [4, Theorem 5.1] that for non-ergodic cases, LSI does

not holds for the basic example such as A = I −E. This suggests that LSI may not holds

for many non-ergodic cases and hence neither the complete version, in contrast to MLSI

and its complete version CLSI (see [20, Section 5] for a density result).

2.4. Noncommutative Wassersetin Distance. Let Tt : M → M be a symmetric

quantum Markov semigroup and (A,M̂, δ) be a derivation triple for Tt. For simplicity of
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notation, we write τ for the trace on bothM and M̂. For a state ρ ∈ S(M), define the

operator

[ρ]x :=

∫ 1

0

ρsxρ1−sds = Rρ ◦ f(∆ρ)(x) .

Here Rρ (resp. Lρ) is the right (resp. left) multiplication operator and ∆ρ = LρR
−1
ρ

is the modular operator of ρ. f(∆ρ) is the functional calculus of ∆ρ for the function

f(w) =
∫ 1

0
ωsds = (w − 1)/ logw. The inverse operator (on the support of ρ) is

[ρ]−1x = R−1
ρ ◦

1

f
(∆ρ)x = Jρ

log(x) =

∫ ∞

0

(ρ+ s)−1x(ρ+ s)−1ds,

where Jρ
log is the double operator integral for the function f(t) = log t and operator ρ.

The last equality follows from lnx−ln y
x−y

=
∫∞
0
(x+ s)−1(y + s)−1ds. We define the weighted

L2-(semi)norm on M̂ by

〈ξ, η〉ρ := 〈ξ, [ρ]η〉L2(M̂,τ) =

∫ 1

0

τ(ξ∗ρ1−sηρs)ds .

Denote Ĥρ ⊂ L2(M̂, ρ) as the closure of δ(AE). Let I be an interval. Following [54], we

say a curve γ : (a, b)→ S(M) is admissible if

i) for any a ∈ A, s 7→ τ(aγ(s)) is locally absolutely continuous.

ii) there exists ξ ∈ L2
loc((a, b), Ĥγ(t)) such that

d

ds
τ(aγ(s)) = 〈δa, ξ(s)〉ρ , a.e. s ∈ (a, b) (8)

Such ξ is unique since δ(A) is dense in Ĥρ and we write this as ξ(s) = Dγ(s).

Definition 2.6. For ρ, σ ∈ S(M), the noncommutative Wasserstein distance is defined

as

W (ρ, σ) = inf
γ

∫ 1

0

‖Dγ(s)‖γ(s) ds

where the infimum is taken over all admissible curves γ : [0, 1]→ S(M) such that γ(0) =

ρ, γ(1) = σ.

We say an admissible curve γ : [0, 1]→ (S(M),W ) is a geodesic if γ attains the infi-

mum of W (γ(0), γ(1)). We say that γ is a geodesic with constant speed if W (γ(s), γ(t)) =

|s − t|W (γ(0), γ(1)). It was proved in [54, Lemma 4.19] that under the assumption that

the smooth subalgebra A is dense and L1(M) is separable, then the infimum above can

be taken to be over smooth curves.

For simplicity, we now illustrate the Riemannian metric for smooth curves on SB(M)

as in [7]. The Wasserstein distance induces a pseudo-metric on SB(M): for z ∈M,

‖z‖g,ρ : = inf{ ‖ξ‖ρ | δ∗([ρ]ξ) = z} .
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where δ∗ is the adjoint of δ : L2(M, τ)→ L2(M̂, τ). The infimum is taken over all ξ ∈ M̂
satisfying the continuity equation z = δ∗([ρ]ξ). Here the L2-closure of δ

∗(Aδ(A)) is exactly
(I − E)L2(M) = L2(N )⊥, the orthogonal complement of L2(N ). So for z /∈ L2(N )⊥,
‖z ‖g,ρ= +∞. Thus we only need to consider the metric ‖·‖g,ρ restricted to

H = {a− E(a) | a = a∗ ∈M}

which is the horizantal direction on SB(M). Indeed, for any z ∈ H there exists a unique

self-adjoint element ξ ∈ ran(δ) = ker(δ∗)⊥ ∈ L2(M̂) such that

z = δ∗([ρ]ξ) , ‖z ‖g,ρ=‖ξ ‖ρ . (9)

(see [7, Theorem 7.3] and [20, Lemma 6.2]). Thus for an admissible smooth curve γ :

(a, b)→ SB(M), we have

γ′(s) = δ∗([γ(s)]Dγ(s)) , ‖γ′(s)‖g,γ(s)=‖Dγ(s)‖γ(s) .

The Wasserstein distance is then the (sub-)Riemannian distance induced by the metric

〈·, ·〉g,ρ,

W (ρ, σ) = inf
γ

∫ 1

0

‖γ′(s)‖g,γ(s) ds

where the infimum is taken over admissible smooth curve γ ∈ C1([0, 1], SB(M)). In the

following we denote by Hρ the closure of H with respect to the ‖ · ‖g,ρ norm. Hρ should

be thought of as the horizantal tangent space at the point ρ ∈ SB(M), equippied with

sub-Riemannian metric ‖·‖g,ρ. The element z ∈ Hρ are in one to one correspondence with

ξ ∈ Ĥρ by the relation (9).

Let F : SB(M) → C be a function. We say F admits a (horizantal) gradient at ρ if

there exists a vector ξ ∈ Ĥρ such that for every smooth path ρ : (−ε, ε) → SB(M) with

ρ(0) = ρ,

ρ′(0) = δ∗([ρ]ξ0) =⇒ d

dt
F (ρ(t))|t=0 = 〈ξ, ξ0〉ρ ,

and we write ξ = gradρF . By the relation (9), this is equivalent to the gradient for the

metric ‖·‖g,ρ in the usual Riemannian sense,

d

dt
F (ρ(t))|t=0 = 〈ρ′(0), δ∗([ρ]gradρF )〉g,ρ .

An admissible smooth curve γ : I → SB(M) in the bounded density space is said to

follow the path of steepest descent or gradient flow with respect to F if for any a ∈ A and

s ∈ (a, b)

d

ds
τ(aγ(s)) = −〈δ(a), gradγ(s)F 〉γ(s) ,
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or equivalently, γ′(s) = −δ∗([γ(s)]gradγ(s)F ) weakly. One immediate consequence is that

along a gradient flow γ,

dF (γ(s))

ds
= −‖δ∗([γ(s)]gradγ(s)F )‖2g,γ(s) = −‖gradγ(s)F‖2γ(s) . (10)

Now we take F (ρ) = H(ρ) as the entropy functional. It is equivalent to take the rel-

ative entropy D(ρ||N ) because an admissible curve E(γ(s)) is independent of s and

D(γ(s)||N ) = H(γ(s)) − H(E(γ(s))). The next lemma shows that for ρ ∈ SB(A0),

ρt = Tt(ρ) is the gradient flow of H as well as other convenient properties of ρt. The key

point is that it suffices to consider ρ ∈ SB(A0) for functional inequalities and we do not

need assume curvature condition comparing to [54],.

Lemma 2.7. Let ρ ∈ SB(A0) and denote ρt = Tt(ρ). Then

i) (ρt) is an admissible curve with D(ρt) = δ(log ρt) and ‖D(ρt)‖ρt= I(ρt).

ii) t 7→ I(ρt) is continuous and (ρt) is the gradient flow with respect to entropy H.

iii) For any t, W (ρt, ρ) <∞ and lim
t→∞

W (ρt, ρ) = 0.

iv) lim
t→∞
‖ρt −E(ρ)‖2= 0 and lim

t→∞
D(ρt||N ) = 0.

Proof. By assumption on A, we have Tt(ρ) ⊂ A ∩ dom(A) and log ρ ∈ dom(A1/2). Then

we have the derivative

d

dt
ρt = Aρt = δ∗δ(ρt) = δ∗([ρt]δ(log ρt)) .

By definition (8), this implies D(ρt) = δ(log ρt).

‖δ(log ρt)‖2ρt=〈[ρt]δ(log ρt), δ(log ρt)〉
=〈[ρt][ρt]−1δ(ρt), δ(log ρt)〉
=τ(δ(ρt)

∗δ(log ρt)) = E(ρt, log ρt) = I(ρt)

where we have used the derivation relation δ(log ρ) = Jρ
log(δ(ρ)) = [ρ]−1δ(ρ). The admissi-

bility of (ρt) follows from the continuity of t 7→ I(ρt). Indeed, by assumption µ11 ≤ ρ ≤ µ21

and Aρ ∈ L2(M). By the continuity of semigroup [13, Proposition 3.1], we have ρt 7→ ρ

and Aρt = Tt(Aρ) 7→ Aρ in L2. Since f(x) = log x is a Lipschitz continuous on [µ1, µ2],

lim
t→0
‖ log ρt − log ρ‖2= 0 by [14, Corollary 7.5]. Then for the Fisher information,

lim
t→0

I(ρt)− I(ρ) = lim
t→0

τ(Aρt log ρt)− τ(Aρ log ρ)
≤ lim

t→0
τ(Aρt(log ρt − log ρ)) + τ((Aρt − Aρ) log ρ)

= lim
t→0

τ(Tt(Aρ)(log ρt − log ρ)) + τ((Tt(Aρ)− Aρ) log ρ)
≤ lim

t→0
‖Tt(Aρ)‖2‖ log ρt − log ρ‖2 +τ(‖Tt(Aρ)−Aρ‖2‖ log ρ‖2= 0 .
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Applying semigroup property, we have t 7→ I(ρt) is continuous. For the gradient flow,

given a self-adjoint β = δ∗([ρ]ξ0) ,

d

dt
H(ρ+ tβ)|t=0 = τ(β log ρ) = 〈δ∗([ρ]ξ0), log ρ〉τ

=〈[ρ]ξ0, δ(log ρ)〉τ = 〈ξ0, δ(log ρ)〉ρ .
Thus gradρH = δ(log ρ) and the gradient flow for H(·) is given by the equation

ρ′(t) = −δ∗([ρ(t)]gradρ(t)H) = −δ∗([ρ(t)]δ(log ρ(t)))
= − δ∗([ρ(t)][ρ(t)]−1δ(ρ(t))) = −A(ρ(t)) ,

whose solution is the semigroup flow ρ(t) = Tt(ρ(0)). For iii), since s 7→ ρs is admissible

lim
t→0

W (ρt, ρ) ≤ lim
t→0

∫ t

0

‖Dρs ‖ρs ds = lim
t→0

∫ t

0

I(ρs)
1/2ds = 0 .

For iv), we first show the L2-convergence. Consider A as a positive self-adjoint operator

on L2(M) and denote es (resp. e0) as the spectral projection for the spectrum [0, s) (resp.

{0}). Clearly, e0(L2(M)) = L2(N ). Write
◦
ρ = ρ− E(ρ). We have

◦
ρ ∈ e⊥0 , ‖

◦
ρ‖2≤‖ρ‖2 , Tt(ρ)− E(ρ) = Tt(

◦
ρ) .

Then lims→0 ‖es(
◦
ρ)‖2= 0. For any ǫ > 0, we can find s > 0 and then large enough t such

‖es(
◦
ρ)‖2< ǫ and e−st ‖ρ‖2< ǫ. Thus

‖Tt(ρ)− E(ρ)‖2= ‖Tt(
◦
ρ)‖2≤‖Tt(es(

◦
ρ))‖2 + ‖Tt(

◦
ρ− es(

◦
ρ))‖2

≤ǫ+ e−st ‖ρ‖2≤ 2ǫ .

Therefore limt→∞ ‖Tt(ρ) − E(ρ)‖2= 0. This further implies limt→∞ ‖Tt(ρ)− E(ρ)‖1= 0

and by Lemma A.2,

lim
t→∞

D(Tt(ρ)||N ) = D(E(ρ)||N ) = 0 .

3. Fisher monotonicity and CB-return time

3.1. Monotonicity of Fisher Information. Our first ingredient is the monotonicity of

Fisher information, which can be equivalently characterized by the following conditions.

Proposition 3.1. Let λ ∈ R. For a state ρ ∈ S(M), denote Tt(ρ) = ρt. The following

conditions are equivalent

i) for any ρ ∈ SB(A0) and t ≥ 0,

I(ρt) ≤ e−2λtI(ρ).

ii) for any ρ ∈ SH(M) and s, t ≥ 0,

D(ρt||N )−D(ρs+t||N ) ≤ e−2λt(D(ρ||N )−D(ρs||N )) .
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iii) for any ρ ∈ SH(M) and s, t ≥ 0,

H(ρt)−H(ρs+t) ≤ e−2λt(H(ρ)−H(ρs)) .

Proof. Let ρ ∈ SB(A0). Combined Lemma (2.7) with [54, Proposition 5.23]), we have for

ρ ∈ SB(A0)

D(ρ||N )−D(ρt||N ) = H(ρ)−H(ρt) =

∫ t

0

I(ρu)du,

I(ρ) = lim
t→0

D(ρ||N )−D(ρt||N )

t
. (11)

Then ii) follows from i) since for ρ ∈ SB(A0),

D(ρ||N )−D(ρs||N ) =

∫ s

0

I(ρu)du ≥
∫ s

0

e2λtI(ρt+u)du

= e2λt
(

∫ s+t

t

I(ρu)du
)

= e2λt
(

D(ρt||N )−D(ρs+t||N )
)

.

For general ρ ∈ SH(M), we use the approximation in Lemma A.3. On the other hand, i)

follows from ii) since for ρ ∈ SB(A0),

I(ρ) = lim
s→0

D(ρ||N )−D(ρs||N )

s

≥ lim
s→0

e2λt
D(ρt||N )−D(ρs+t||N )

s
≥ e2λtI(ρt) .

The equivalence to iii) follows from the fact that D(ρ||N ) = H(ρ) − H(E(ρ)) for ρ ∈
SH(M) and E(ρ) = E(Tt(ρ)).

Definition 3.2. We say a semigroup Tt is λ-Fisher monotone for λ ∈ R (in short, λ-FM)

if Tt satisfies one of the above conditions in Proposition (3.1). We say Tt is λ-complete

Fisher monotone (λ-CFM) if for any finite von Neumann algebra R, idR ⊗ Tt is λ-FM.

For λ = 0, we simply say Tt is (complete) Fisher monotone.

The idea of following proposition goes back to the Γ-calculus in [1].

Proposition 3.3. For λ > 0, λ-FM implies λ-MLSI.

Proof. For ρ ∈ SB(A0), denote f(t) = D(ρ||N )−D(ρt||N ) and hence I(ρt) = f ′(t). Then
λ-FM means that

f ′(t) ≤ e−2λtf ′(0)

Integrating both sides from 0 to t,

D(ρ||N )−D(ρt||N ) ≤ e−2λt − 1

−2λ I(ρ)
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Taking t→∞,

2λD(ρ||N ) = lim
t→∞

2λ(D(ρ||N )−D(ρt||N )) ≤ lim
t→∞

(1− e−2λt)I(ρ) = I(ρ) ,

which this is λ-MLSI. Here we used the assumption λ > 0 and the property lim
t→∞

D(ρt||N ) = 0

from 2.7.

3.2. Complete bounded return time. Let M be a finite von Neumann algebra and

N ⊂ M be a subalgebra. The conditional L1 space L1
∞(N ⊂ M) is defined as the

completion ofM with respect to the norm

‖x‖L1
∞
(N⊂M)= sup

a,b∈L2(N ) ,‖a‖2=‖b‖2=1

‖axb‖1 ,

where the supremum takes over all a, b ∈ L2(N ) with ‖a‖2 = ‖b‖2 = 1. The operator

space structure of L1
∞(N ⊂M) is given by

Mn(L
1
∞(N ⊂M)) = L1

∞(Mn(N ) ⊂Mn(M)) .

(see [29] and [19, Appendix]). We consider again Tt :M→M be a symmetric quantum

Markov semigroup and N be the fixed point subalgebra with conditional expectation E.

We define the complete bounded (CB) return time of Tt as follows

tcb = inf{ t ≥ 0 | ‖Tt − E : L1
∞(N ⊂M)→ L∞(M)‖cb≤ 1/2}

If such t does not exist, we write tcb = +∞. Recall the following lemma from [20].

Lemma 3.4 (Lemma 3.15 of [20]). Let T : M → M be a unital completely positive

N -bimodule map such that

‖T − E : L1
∞(N ⊂M)→ M‖cb ≤

1

2
.

Then T ≥cp
1
2
E, i.e. T − 1

2
E is completely positive.

We refer [20] for the complete proof and illustrate here the argument for the ergodic

case. Namely, we consider N = C1 and L1
∞(N ⊂ M) = L1(M). The CB return time

becomes

tcb = inf{ t ≥ 0 | ‖Tt − E : L1(M)→ L∞(M)‖cb≤ 1/2} .
This completely bounded norm is by no means abstract. Indeed, by Effros-Ruan Theorem

(see [16] and also [5]),

‖T : L1(M)→ L∞(M)‖cb=‖CT ‖Mop⊗M

where CT is the kernel of T (also called Choi matrix, in finite dimensions) given by the

relation

T (a) = τ ⊗ id(CT (a⊗ 1)) , a ∈ L1(M) ∼= (Mop)∗ .
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Here Mop is the opposite algebra of M. Moreover, the correspondence T ↔ CT is also

order preserving: T is completely positive if and only if CT as a operator is positive in

Mop⊗M. In particular, the conditional expectation onto scalars Eτ (a) = τ(a)1 has kernel

as the identity 1⊗ 1 ∈Mop⊗M. For this special case,

‖T − Eτ : L1(M)→M‖cb≤ 1/2⇐⇒ ‖CT − 1⊗ 1‖Mop⊗M≤ 1/2

=⇒ CT ≤
1

2
1⊗ 1 ⇐⇒ CT ≥cp 1/2CEτ ,

where the implication “⇒” is evident from spectrum calculus for a self-adjoint operator

CT . This proves the above lemma for the special case N = C1. The general case for

non-trivial N is an extension for bimodule maps.

The next lemma shows tcb is the half-life for the decay of relative entropy.

Lemma 3.5. Let N ⊂ M be a subalgebra and E be the condition expectation onto N .

Suppose for α ∈ (0, 1), Φ − αE is a positive map and Φ(L1(N )) ⊂ L1(N ). Then for any

ρ ∈ S(M),

D(Φ(ρ)||N ) ≤ (1− α)D(ρ||N ) . (12)

If in additional, Φ−αE is a completely positive map, the same assertion holds for Φ⊗ idR.

Proof. Define Ψ := 1
1−α

(Φ−αE). By assumption that Φ−αE is positive , Ψ is a positive

trace preserving map such that Ψ(L1(N )) ⊂ L1(N ). Thus Φ = (1−α)Ψ+αE. Note that

the data processing inequality holds for positive trace preserving maps [27]. Then by the

convexity of relative entropy and the data processing inequality of D(·||N ) give

D(Φ(ρ)||N ) =D((1− α)Ψ(ρ) + αE(ρ)||N ) ≤ (1− α)D(Ψ(ρ)||N ) + αD(E(ρ)||N )

=(1− α)D(Ψ(ρ)||N ) ≤ (1− α)D(ρ||N ) .

The same argument applies to Φ⊗ idR.

We now prove our main technical theorem that (complete) Fisher monotonicity plus

CB-return time implies MLSI (resp. CLSI). Define the function

κ(λ, t) =

{

1
4t
, if λ = 0

λ
2(1−e−2λt)

, if λ 6= 0.
.

For each t, λ 7→ κ(λ, t) is continuous at 0.

Theorem 3.6. Let Tt :M→M be a symmetric quantum Markov semigroup. Suppose

i) Tt satisfies λ-FM for some λ ∈ R

ii) Tt has finite CB-return time tcb <∞.

Then Tt-satisfies κ(λ, tcb)-MSLI. The same assertions holds replacing “FM” with “CFM”

and “MLSI” with “CLSI”.
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Proof. Write tcb = t0. As a consequence of Lemma 3.5, we have

D(Tt0(ρ)||N ) ≤ 1

2
D(ρ||N )

Let n > 1 be an integer and write Tt(ρ) = ρt. For λ < 0, we have

1

2
D(ρ||N ) ≤ D(ρ||N )−D(ρt0 ||N ) =

n−1
∑

j=0

D(ρ jt0
n
||N )−D(ρ (j+1)t0

n

||N )

≤
n−1
∑

j=0

e−2λ
jt0
n (D(ρ||N )−D(ρ jt0

n
||N ))

=
1− e−2λt0

1− e−2λ
t0
n

(D(ρ||N )−D(ρ t0
n
||N ))

where we used λ-FM in the second inequality. Rearranging the terms, we have

D(ρ t0
n
||N ) ≤ −e

−2λt0 + 1
2
+ 1

2
e−2λ

t0
n

1− e−2λt0
D(ρ||N )

For ρ ∈ SB(A0), t 7→ D(ρt||N ) is differentiable and d
dt
D(ρt||N )|t=0 = −I(ρ). Taking the

limit n→∞, we have

I(ρ) = lim
n→∞

D(ρ||N )−D(ρ t0
n
||N )

t0
n

≥ lim
n→∞

n

t0
(1− −e

−2λt0 + 1
2
+ 1

2
e−2λ

t0
n

1− e−2λt0
)

= lim
n→∞

n

t0
(
1
2
− 1

2
e−2λ

t0
n

1− e−2λt0
) =

λ

1− e−2λt0
D(ρ||N )

which is λ
2(1−e−2λt0 )

-MLSI. The argument above remains valid for λ = 0 and Tt⊗ idR. This

completes the proof.

Remark 3.7. For the ergodic classical Markov semigroups, it was proved by Diaconis and

Saloff-Coste in [15, Theorem 3.10] that the bound return time (the complete boundness is

automatic here)

t∞ := {t ≥ 0 | ‖Tt −E : L1(Ω)→ L∞(Ω)‖≤ 1}
itself implies 1

t∞
-LSI, which further implies MLSI. Nevertheless, their argument went

through hypercontractive estimate that does not apply to non-commutative non-ergodic

setting.

The CB-return time can be estimated by standard argument.
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Proposition 3.8. Let Tt = e−At :M→M be a symmetric quantum Markov semigroup

and N be its fixed-point subalgebra. Suppose

i) for some t0 ≥ 0, ‖Tt0 : L1
∞(N ⊂M)→ L∞(M)‖cb ≤ C.

ii) the generator A has spectral gap σ > 0, that is

‖A−1(id−E) : L2(M)→ L2(M)‖ ≤ σ−1 .

Then for t ≥ t0,

‖Tt − E : L1
∞(N ⊂M)→ L∞(M)‖cb≤ Ce−σ(t−t0) .

As a consequence, tcb ≤ σ−1(log 2C) + t0.

Proof. Note that Tt − E is an N -bimodule map. We have for t ≥ t0,

‖Tt − E : L1
∞(N ⊂M)→ L∞(M)‖cb

= ‖T t
2
− E : L1

∞(N ⊂M)→ L2
∞(N ⊂M)‖2cb

= ‖T t0
2
: L1

∞(N ⊂M)→ L2
∞(N ⊂M)‖2cb‖T t−t0

2
− E : L2

∞(N ⊂M)→ L2
∞(N ⊂M)‖2cb

= ‖Tt0 : L1
∞(N ⊂M)→ L∞(M)‖cb‖T t−t0

2
− E : L2(M)→ L2(M)‖2cb

=Ce−σ(t−t0) ,

Here the first equality uses [20, Lemma 3.13] and the third equality uses [20, Lemma

3.12].

The above estimates has the following two corollaries. The first one is the non-ergodic

version of [20, Proposition 3.2]. It basically says that the spectral gap plus a non-ergodic

Varopoulos dimension condition implies finite CB-return time.

Lemma 3.9. Let Tt :M→M be a symmetric quantum Markov semigroup and N ⊂M
be the fixed-point subalgebra. Suppose

i) ‖Tt : L1
∞(N ⊂M)→ L∞(M)‖cb ≤ ct−d/2 for some c, d > 0 and all 0 < t < 1;

ii) the generator A has spectral gap σ > 0

Then the CB-return time satisfies

tcb ≤
1

2
+
d− 1

2
log 2 +

1

σ
log c

Proof. Choose t0 = 1/2 in Lemma 3.8.

The second cases is related to finite von Neumann subalgebra index. Recall that for

two states ρ, ω, the maximal relative entropy is

D∞(ρ||ω) = log inf{ α > 0 | ρ ≤ αω } .
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For an inclusion N ⊂ M of finite von Neumann algebras, the maximal relative entropy

D∞ ofM to N and its CB-version D∞,cb is defined as

D∞(M||N ) = sup
ρ∈S(M)

D∞(ρ||N ) , D∞,cb(M||N ) = sup
m
D∞(Mm(M)||Mm(N ))

It was proved in [19, Theorem 3.9] that

D∞,cb(M||N ) = log ‖ id : L1
∞(N ⊂M)→ L∞(M)‖cb .

The next proposition gives the estimate of tcb given thatD∞,cb(M||N ) is finite and spectral

gap is positive.

Proposition 3.10. Let Tt :M→M be a symmetric quantum Markov semigroup and N
be its fixed-point subalgebra. Suppose Dcb,∞(M||N ) <∞ is finite and Tt has spectral gap

σ > 0. Then

‖Tt −E : L1
∞(N ⊂M)→ L∞(M)‖cb≤ eDcb,∞(M||N )e−σt .

As a consequence, tcb ≤ σ−1(Dcb,∞(M||N ) + log 2).

Proof. Choose t0 = 0 in Lemma 3.8.

The the maximal relative entropy Dcb,∞(M||N ) connects to the von Neumann algebra

subalgebra index and is explicit for many examples. It was proved in [19, Theorem 3.1]

thatD∞(M||N ) = log λ(M : N )−1 forM,N being II1 factors or finite dimensional, where

λ(M : N ) is the Pimsner-Popa index in [44]. In particular, for II1 factors, Dcb,∞(M||N ) =

log[M : N ] where [M : N ] is the Jones subfactor index; forM,N finite dimensional, the

explicit formula ofD∞(M||N ) is calculated in [44, Theorem 6.1], from whichDcb,∞(M||N )

are also known. For example,

Dcb,∞(Mn||C) = 2 logn , Dcb,∞(Mn||ln∞) = log n , Dcb,∞(ln∞||C) = log n.

For any N ⊂Mn, Dcb,∞(Mn||N ) ≤ Dcb,∞(Mn||C1) = 2 logn.

3.3. Entropy Ricci curvature bound. We shall now discuss the connection between

Fisher monotonicity and Ricci curvature lower bound and give a non-egordic version of

Bakry-Emery theorem. Following [17], we call Ricci curvature bound defined through

geodesic convexity of D as entropy Ricci curvature bound. We first review the different

formulations of entropy Ricci curvature bound discussed in [54, 8, 12]. For a function

f : [0, a)→∞, we introduce the notation

d+

dt
f = lim sup

t→0

1

t
(f(t)− f(0)) .

Recall that SH(ρ) = {ρ ∈ S(M) |H(ρ) < ∞} is the state space with finite entropy and

we write ρt = Tt(ρ)
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Definition 3.11. Let Tt = e−At be a symmetric quantum Markov semigroup and let

(A, δ,M̂) be a derivation triple of Tt. For λ ∈ R, define the following conditions

i) Gradient Estimate: we say Tt satisfies a λ-gradient estimate (λ-GE) if for any

ρ ∈ S(M) and x ∈ dom(A1/2) with E(x) = 0,

‖δ(Tt(x))‖2ρ≤ e−2λt ‖δ(x)‖2ρt , ∀t ≥ 0 .

ii) Evolution Variational Inequality: we say Tt satisfies a λ-evolution variational in-

equality (λ-EVI) if for all ρ, σ ∈ SH(M) with W (ρ, σ) <∞ and t ≥ 0

1

2

d+

dt
W (ρt, σ)

2 +
λ

2
W (ρt, σ)

2 +H(ρt) ≤ H(σ) .

iii) Displacement Convexity: we say the entropy functional H is geodesically λ-convex

if for any constant speed geodesic γ : [0, 1]→ (SH(M),W ),

H(γ(s)) ≤ (1− s)H(γ(0)) + sH(γ(1))− λ(1− s)s
2

W (γ(0), γ(1))2 .

When M is a finite dimensional C∗-algebra and Tt being a primitive semigroup (in-

cluding non-symmetric cases), all three of the above conditions are proved to be equivalent

and are referred to as a λ-Ricci lower bound in [12, 8]. For finite von Neumann algebras

M, it has been proved in [54, Theorem 7.12] that

(i)⇒W is non-degenerate and (ii)⇒ (SH(M),W ) is a geodesic space and (iii)

For this reason, we take the gradient estimate condition λ-GE as our working definition

of entropy Ricci curvature bound.

Remark 3.12. For EVI and displacement convexity above, it is equivalent to replace

the entropy H(ρ) by the relative entropy D(ρ||N ). This is because for ρ ∈ SH(M),

D(ρ||E(ρ)) = H(ρ)−H(E(ρ)) < ∞. For λ-EVI, W (ρ, σ) <∞ implies E(ρ) = E(σ) and

hence

1

2

d+

dt
W (ρt, σ)

2 +
λ

2
W (ρt, σ)

2 +D(ρt||N ) ≤ D(σ||N ) . (13)

For λ-displacement convexity, E(γ(s)) = E(γ(t)) for any admissible curve γ and hence

D(γ(s)||N ) ≤ (1− s)D(γ(0)||N ) + sD(γ(1)||N )− λ(1− s)s
2

W (γ(0), γ(1))2 .

Remark 3.13. A semigroup Tt can admit distinct derivation triples (A, δ,M̂). For ex-

ample, let M2 be 2× 2 matrix algebra and consider the depolarizing semigroup

Dt :M2 →M2, Dt(ρ) = e−tρ+ (1− e−t)τ(ρ)1 ,
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where τ is the normalized trace τ(ρ) = 1
2
Tr(ρ). It was discussed in [8, Section 5.6] that

Dt admits a derivation

δ :M2 → ⊕3
j=1M2 , δ(a) =

1

2
√
2
(i[X, a], i[Y, a], i[Z, a]) .

where X, Y, Z are Pauli matrices. This follows from that the depolarizing map E is an

average of unitary conjugation by Pauli matrices,

E(ρ) =
tr(ρ)

2
1 =

1

4
(ρ+XρX + Y ρY + ZρZ) .

On the other hand, the depolarizing map E can also be seen as the following average of

unitary conjugations over the unitary group U(2) ⊂M2,

E(ρ) =

∫

U(2)

u∗ρu dµ(u)

where µ is the Haar measure on U(2). Then one can construct an alternative derivation

δ̃ :M2 → L∞(U(2),M2) , δ̃(a)(u) = i[u, a] ,

where L∞(U(2),M2) is the M2-valued function on the Lie group U(2). For more examples

of distinct derivation triple, see Example 4.14.

The next proposition shows that the gradient estimate is independent of the choice of

derivation triple (A,M̂, δ).

Proposition 3.14. The definition of the gradient estimate is independent of the choice of

derivation.

Proof. We show that the norm

‖δ(x)‖2
L2(M̂,ρ)

=

∫ 1

0

τ(δ(x)∗ρsδ(x)ρ1−s)ds

is independent of δ. Recall that the Dirichlet algebra AE = dom(A1/2)∩M is a core for δ

and closed under C1-functional calculus. For x, ρ ∈ AE , we have ρs ∈ AE and by Leibniz

rule

ρsδ(x) = δ(xρs)− δ(ρs)x , x ∈ dom(A1/2) .

Then for each s ∈ [0, 1],

τ(δ(x)∗ρsδ(x)ρ1−s) =τ(δ(x)∗δ(ρsx)ρ1−s)− τ(δ(x)∗δ(ρs)xρ1−s)

=τ
(

EM (δ(x)∗δ(ρsx)ρ1−s)
)

− τ
(

EM(δ(x)∗δ(ρs)xρ1−s)
)

=τ
(

EM (δ(x)∗δ(ρsx))ρ1−s
)

− τ
(

EM(δ(x)∗δ(ρs))xρ1−s
)

=τ
(

Γ(x, ρsx)ρ1−s
)

− τ
(

Γ(x, ρs)xρ1−s
)

,
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which is completely determined by gradient form Γ. We now show for general ρ, x, {‖
δ(x)‖L2(M̂,ρ)} can be approximated by ρ, x ∈ AE . For x ∈ dom(A1/2), we chose a sequence

xn → x in the graph norm of δ. In particular, δ(xn)→ δ(x) in L2. Then for ρ ∈ AE ,

lim
n→∞

τ(δ(xn)
∗ρsδ(xn)ρ

1−s) = lim
n→∞

‖ρs/2δ(xn)ρ(1−s)/2 ‖22
= ‖ρs/2δ(x)ρ(1−s)/2 ‖22= τ(δ(x)∗ρsδ(x)ρ1−s)

For any ρ ∈ S(M), we take sequence ρn = ρ ∧ n ∈ AE and ρn ր ρ in L1. Then for any

x ∈ dom(A1/2), we apply the Fatou lemma

lim sup
n→∞

τ(δ(x)∗ρsnδ(x)ρ
1−s
n ) ≤ lim sup

n→∞
τ(δ(x)∗ρsnδ(x)ρ

1−s)

≤τ(δ(x)∗ρsδ(x)ρ1−s) ≤ lim inf
n→∞

τ(δ(x)∗ρsnδ(x)ρ
1−s
n )

which implies τ(δ(x)∗ρsnδ(x)ρ
1−s
n ) ր τ(δ(x)∗ρsδ(x)ρ1−s). Then by monotone convergence

theorem, limn ‖δ(x)‖2L2(M̂,ρn)
=‖δ(x)‖2

L2(M̂,ρ)
. That completes the proof.

The next proposition shows that entropy Ricci curvature bound implies Fisher mono-

tonicity.

Proposition 3.15. For any symmetric quantum Markov semigroup Tt : M → M and

λ ∈ R, λ-GE implies λ-FM.

Proof. Let ρ ∈ SB(A0) and ρt = Tt(ρ) be the semigroup path. By Lemma 2.7, (ρt) is an

admissible curve with

‖Dρt ‖2=‖δ(log ρt)‖2ρt= I(ρt) ,

and t 7→ I(ρt) is continuous. Then it follows from [54, Theorem 6.9] that for any s > 0

I(Ts+t(ρ)) = I(Ts(ρt)) =‖DTs(ρt)‖2Ts(ρt)≤ e−2λs ‖Dρt ‖2ρt= e−2λsI(ρt) .

For λ > 0, the above Proposition and Proposition 3.3 combined gives λ-GE ⇒ λ-FM

⇒ λ-MLSI, which is a noncommutative non-ergodic version of Bakry-Emery theorem. In

the following, we take an another approach using Otto-Villani’s HWI inequality introduced

in [43]. The quantum HWI inequality is obtained in [12, Corollary 2] for finite dimensional

ergodic case (see also [8]). For finite von Neumann algebra, this idea is also used in [54,

Proposition 7.9]. Here the major difference to [54] is that we do not need to assume λ-GE

for some λ > 0.

Theorem 3.16. Let Tt be a semigroup satisfying λ-EVI for λ ∈ R: for any ρ, σ ∈ SH(M)

with W (ρ, σ) <∞,

1

2

d+

dt
W (ρt, σ)

2 +
λ

2
W (ρt, σ)

2 +H(ρt) ≤ H(σ) .
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Then Tt satisfies the following λ-HWI inequality: for any ρ ∈ SB(A0), σ ∈ SH(M) with

W (ρ, σ) <∞,

H(ρ)−H(σ) ≤W (ρ, σ)
√

I(ρ)− λ

2
W (ρ, σ)2 ,

Proof. By Lemma 2.7, we know that for ρ ∈ SB(A0), t 7→ I(ρt) is continuous and t 7→ ρt
is an admissible curve with ‖Dρt ‖2ρt= I(ρt). By triangle inequality,

d

dt

+

W (ρt+s, σ) ≤ lim sup
t→0

1

t
W (ρt+s, σ)−W (ρs, σ)

≤ lim sup
t→0

1

t
W (ρt+s, ρs) ≤ lim sup

t→0

1

t

∫ t

0

‖Dρt+s ‖ρt+s ds =
√

I(ρs) ,

Therefore,

−1
2

d+

dt
W (ρt, σ)

2 = lim inf
t→0

1

2t
(W (ρ, σ)2 −W (ρt, σ)

2)

≤ lim sup
t→0

1

2t
(W (ρt, ρ)

2 + 2W (ρt, ρ)W (ρt, σ))

≤ lim sup
t→0

1

2t
W (ρt, ρ)

2 +
1

t
W (ρt, ρ)W (ρt, σ)

≤W (ρ, σ)
√

I(ρt).

where in the last inequality we used Lemma 2.7 iii),

lim
t→0

W (ρt, ρ) = 0 , lim
t→0

W (ρt, σ) ≤ lim
t→0

W (ρt, ρ) +W (ρ, σ) = W (ρ, σ) .

Proposition 3.17. For λ > 0, λ-HWI implies λ-MLSI.

Proof. Since W (ρ, Ts(ρ)) ≤
∫ s

0
I(ρt)

1/2dt <∞, we can choose σ = Ts(ρ) in HWI inequality

for any s > 0. By Lemma 2.7 (iv),

lim
s→∞

H(Ts(ρ))−H(E(ρ)) = lim
s→∞

D(Ts(ρ)||E(ρ)) = 0 .

Then for any ρ ∈ SB(A0), we apply HWI inequality for σ = Ts(ρ)

D(ρ||N ) =H(ρ)−H(E(ρ)) = H(ρ)− lim
s→∞

H(Ts(ρ))

≤ lim
s→∞

W (ρ, Ts(ρ))
√

I(ρ)− λ

2
W (ρ, Ts(ρ))

2

≤ 1

2λ
I(ρ)

Here, in the last step we used the elementary inequality

xy ≤ cx2 +
y2

c
, x, y, c > 0 .
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for x = W (ρ, Ts(ρ)), y = I(ρ), c = λ/2.

Remark 3.18. Here we can not choose σ = E(ρ) because in general we do not know

W (ρ, E(ρ)) < ∞ for ρ ∈ SB(A0). In particular, the finite distance for ρ ∈ SH(M) and

E(ρ) is a consequence of MLSI via the transport cost inequality (See [20, Section 6]) as

follows,

W (ρ, E(ρ)) ≤
√

2D(ρ||E(ρ))
λ

. (14)

We call the above inequality (14) λ-transport cost inequality or in short λ-TC.

Now we have two ways to reach Bakry-Emery Theorem.

Corollary 3.19 (Non-ergodic Bakry-Emery Theorem). For λ > 0, λ-GE implies λ-MLSI

Proof. We can either use λ-GE ⇒ λ-FM ⇒ λ-MSLI or λ-GE ⇒ λ-HWI ⇒ λ-MSLI.

Beyond positive curvature lower bound, we also have two ways for MLSI. The first

one is to apply our Theorem 3.6 with the above discussion. Recall that the function

κ(λ, t) = λ(2− 2e−2λt)−1.

Corollary 3.20. Let Tt :M→M be a symmetric quantum Markov semigroup. Suppose

i) Tt satisfies λ-GE for some λ ∈ R;

ii) Tt has finite CB-return time tcb <∞.

Then Tt-satisfies κ(λ, tcb)-MLSI.

Remark 3.21. Note that for λt > ln
√
2, κ(λ, t) > λ. This means when the CB-return

time tcb < λ−1 ln
√
2, Corollary 3.20 gives stronger MLSI-constant than Bakry-Emery

Theorem. Also for λ > 0, κ(λ, t)→ λ/2 when tcb →∞.

One can compare the above corollary to the approach in [43, Corollary 3.1] using the

transport inequality.

Corollary 3.22. Let Tt :M→M be a symmetric quantum Markov semigroup. Suppose

i) Tt satisfies λ-GE for some λ ∈ R;

ii) Tt satisfies γ-transport cost inequality in (14) for γ ≥ max{−λ, 0}
Then Tt-satisfies α-MLSI for α = max{λ, γ

4
(1 + λ

γ
)2}.

The proof is similar to [43, Corollary 3.1]. One could also replace “TC” in condition

ii) by the so called “MLSI+TC” inequality

W (ρ, E(ρ)) ≤
√

I(ρ)

γ
. (15)

to obtain a similar estimate as in [43, Corollary 3.2].
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3.4. Bochner’s Inequality. We shall now discuss the curvature lower bound condition

introduced in [33]. Let Tt : M → M be a symmetric quantum Markov semigroup and

(A,M̂, δ) be a derivation triple for Tt. Denote Ωδ as the closure of Aδ(A) in L2(M̂). It

follows from Leibniz rule that Ωδ is a A-bimodule. To distinguish with the entropy Ricci

curvature lower bound, we refer the following notion from [33] as geometric Ricci curvature

lower bound.

Definition 3.23. We say (A,M̂, δ) satisfies a geometric Ricci curvature lower bound λ

for λ ∈ R (in short GRic ≥ λ) if there exists a symmetric quantum Markov semigroup

T̂t = e−Ât : M̂ → M̂ with generator Â such that

i) T̂t|M = Tt for any t ≥ 0.

ii) δ(A0) ⊂ dom(Â) and there exists a A-bimodule operator Ric : Ωδ → L2(M̂) such

that for x ∈ A0,

Ric(δ(x)) = Âδ(x)− δA(x). (16)

iii) for any y ∈ Ωδ,

〈y,Ric(y)〉 ≥ λ〈y, y〉 . (17)

where 〈·, ·〉 is the trace inner product of (M̂, τ).

We call the bimodule map Ric “Ricci operator” as an analog of Ricci tensor in geom-

etry. The above definition is of course an imitation of BochnerWeitzenböckLichnerowicz

formula (c.f. pp374 [52])

−∆+∇∇∗ + Ric = 0 . (18)

where ∆ = ∇∗∇ is the Laplace-Beltrami operator on a Riemannian manifold and ∇ is the

gradient operator. When acting on a gradient ∇f , (18) becomes

−∆(∇f) +∇(∆f) + Ric(∇f) = 0 ,

which is the motivation for (16). Note that the above Definition (3.23) adds a little flexi-

bility that Â can be any generator extending A onM. We discuss more on the connection

to classic Ricci curvature in Section 4.2

On the other hand, we emphasize that Definition 3.23 is different from the entropy

Ricci lower bound in Definition 3.11. One major difference is that Definition 3.23 is

automatically “complete” in the sense that if Tt has GRic ≥ λ (in our sense), then Tt⊗ idR
has GRic ≥ λ for any finite von Neumann algebra R. Indeed, both the algebraic equation

(16) and the L2 inequality (17) naturally extends to Tt ⊗ idR. In contrast, we will discuss

in Section 4.4 that the 2-dimensional depolarizing semigroup has sharp entropy curvature



COMPLETE LOGARITHMIC SOBOLEV INEQUALITIES VIA RICCI CURVATURE BOUNDED BELOW27

lower bound by 1, but St ⊗ id does not. This implies entropy curvature bound is not

automatic complete.

We recall the following results from [33].

Theorem 3.24 (Theorem 3.6 of [33]). For λ ∈ R, Tt has GRic ≥ λ implies that Tt ⊗ idR
has λ-GE for any finite von Neumann algebra R.

The next theorem is inspired by the discussion in [7, Section 8.3] (see also [8, Theorem

10.8] and [12, Proposition 5]).

Theorem 3.25. Let Tt : M → M be a symmetric quantum Markov semigroup and let

(A,M̂, δ) be a derivation triple of Tt. Suppose that there exists a symmetric quantum

Markov semigroup T̂t : M̂ → M̂ such that for any t ≥ 0,

T̃t|M = Tt , and δ ◦ Tt = e−λtT̂t ◦ δ (19)

for some λ ∈ R. Then Tt satisfies GRic ≥ λ. Moreover, the Ricci operator GRic can be

taken to a constant multiple of the identity operator.

Proof. Let Â be the generator of T̂t. For x ∈ A0,

lim
t→0

1

t
(e−λtT̂t(δ(x))− δ(x)) = lim

t→0

e−λt

t
(T̂t(δ(x))− δ(x)) +

1

t
(e−λtδ(x)− δ(x))

=Âδ(x)− λδ(x) .

which converges in w∗-topology because δ(A0) ⊂ dom(Â). On the other hand, for y ∈
δ(A0) and δ

∗δ(y) = Ay ∈ L2(M),

lim
t→0

1

t

(

τ(yδ(x))− τ(yδ(Tt(x))
)

) = lim
t→0

1

t

(

τ(δ∗(y)x)− τ(δ∗(y)Tt(x)
)

)

=τ(δ∗(y)A(x)) .

which implies lim
t→0

1

t
(δ(Tt(x))− δ(x)) = δ(A(x)) weakly. Thus we have for x ∈ A0,

δ(A(x)) = Âδ(x)− λδ(x) .

which means the Ricci operator is constant Ric(δ(x)) = λδ(x).

As we see in the above proof, the relation (19) is equivalent to the Ricci operator in

(16) equaling to a multiple of the identity. We emphasize this special case by giving the

following definition.

Definition 3.26. We say a semigroup Tt satisifies constant λ-Ricci curvature condition

(λ-GRic) if Tt admits a derivation triple satisfying (19).
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We remark that the λ-GRic relation deos not gives the meaning that Ricci curvature is

constant λ but still just a lower bound by λ. We revisit the Orstein-Unlenbeck semigroup

discussed in [7].

Example 3.27. Let R
n be the n-dimensional real Euclidean space and µ the standard

Gaussian distribution. The Orstein-Unlenbeck (OU) semigroup Tt = e−At : L∞(Rn, µ) →
L∞(Rn, dµ) is given by

Ttf(x) =

∫

Rn

f(e−tx+
√
1− e−2ty)dµ(y) , .

Denote ∂j =
∂

∂xj
be the partial derivative. The generator of the OU semigroup is given by

A = ∆+ x · ∇ = ∇∗∇+ x · ∇ =
n

∑

j=1

(−∂2j + xj∂j).

Consider the derivation

δ : C∞(Rn)→ ⊕n
j=1C

∞(Rn) , δ(f) = (∂jf)
n
j=1 .

As observed in [7, Section 8.1], we have the relation [∂j ,−∆+ x · ∇] = ∂j for j = 1, . . . , n.

This translates to the equality

(A⊗ id) ◦ δ −A ◦ δ = δ ,

where Â = A⊗ id is the extension of A to ⊕n
j=1C

∞(Rn) ∼= C∞(Rn)⊗ ln∞, which is clearly

the generator of the semigroup T̂t = Tt ⊗ id on L∞(Rn) ⊗ ln∞. In particular, this gives

a derivation triple for the OU semigroup that satisfies 1-GRic. Moreover since Tt has

spectral gap 1, we can therefore conclude the sharp complete version result that Tt ⊗ idR
satisfies 1−GE for any finite von Neumann algebra R, and Tt satisfies 1-CFM and 1-CLSI

We have a complete version of Corollary 3.20

Corollary 3.28. Let Tt :M→M be a symmetric quantum Markov semigroup. Suppose

i) Tt satisfies GRic ≥ λ for some λ ∈ R;

ii) Tt has finite CB-return time tcb <∞.

Then Tt-satisfies κ(λ, tcb)-CLSI.

4. Examples

In this section, we discuss applications to classical Markov semigroups and finite di-

mensional quantum Markov semigroups.
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4.1. Diffusion Semigroups. Our motivation for Fisher monotonicity was from Bakry-

Emery’s curvature dimension condition for diffusion Markov semigroup. We refer to [2]

for more information on classical diffusion Markov semigroup.

Let (Ω, µ) be a Borel space equipped with a Borel probability measure µ. Let Tt :

L∞(Ω, µ) → L∞(Ω, µ) be an ergodic Markov semigroup and A be its generator. We say

Tt satisfy diffusion property if its gradient form Γ satisfies the following product rule,

Γ(fh, g) = fΓ(h, g) + hΓ(f, g) . (20)

Denote Γ(f) := Γ(f, f). It then follows from polynomial approximation that for a smooth

function ψ : R→ R,

Γ(ψ(f), g) = ψ′(f)Γ(f, g) ,Γ(ψ(f)) = ψ′(f)2Γ(f, g)

For a density function f ∈ L∞(Ω, µ), the entropyH(f) (also called BoltzmanH-functional)

and the Fisher information I(f) are given by

H(ρ) = D(ρ||1) =
∫

Ω

ρ log ρ dµ

I(f) = −
∫

(Af) log fdµ =

∫

Γ(f, log f)dµ =

∫

fΓ(log f)dµ

Recall that the Γ2 operator is defined as

Γ2(f, g) =
1

2

(

Γ(Af, g) + Γ(f, Ag)− AΓ(f, g)
)

.

Denote Γ2(f) := Γ2(f, f). Γ2 can be realized as

Γ2(f) = lim
t→0

Tt(Γ(f))− Γ(Tt(f))

t
,

The derivative of Fisher information is

dI(Ttf)

dt
= −2

∫

TtfΓ2(log Ttf)dµ . (21)

Recall that Tt satisfies (λ,∞)-curvature dimension condition for λ ∈ R (in short, CD(λ,∞))

if for any f ∈ dom(A)

Γ2(f) ≥ λΓ(f) .

It follows immediately CD(λ,∞) implies λ-FM. For λ > 0, it is the Barky-Emery theorem

that CD(λ,∞) ⇒ λ-FM ⇒ λ-MLSI. For general λ ∈ R, we have the following theorem

for diffusion Markov semigroups.

Theorem 4.1. Let Tt : L∞(Ω, µ) → L∞(Ω, µ) be an ergodic symmetric diffusion Markov

semigroup. Suppose Tt satisfies curvature-dimension condition CD(λ,∞). If in addition,

we assume

i) ‖Tt : L1(Ω)→ L∞(Ω)‖ ≤ ct−d/2 for some c, d > 0 and all 0 < t < 1;
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ii) the generator A satisfies spectral gap σ > 0.

Then Tt-satisfies m(λ)-MLSI for

m(λ) =







(

2 + 2(d− 1) log 2 + 4
σ
log c

)−1

, if λ = 0

λ
(

2− 21−(d−1)λc−
2λ
σ

)−1

, if λ 6= 0.

Proof. The condition i) is the Varopoulos’ dimension condition. Here the CB-norm esti-

mate is automatic:

‖Tt − Eτ : L1(Ω)→ L∞(Ω)‖ = ‖Tt − Eτ : L1(Ω)→ L∞(Ω)‖cb.
This is because L∞(Ω) is a commutative space (see [45, Proposition 1.10]). The assertions

follows from Theorem 3.6 and the return time estimates in Lemma 3.9.

Remark 4.2. It is well known that if Ttf(x) =

∫

Ω

kt(x, y)f(y)dµ is given by the kernel

function kt(x, y). Then

‖Tt − Eτ : L1(Ω)→ L∞(Ω)‖=‖kt − 1‖∞ .

is a kernel estimate.

4.2. Heat semigroups. We shall now discuss the heat semigroups. We refer to [52] for

more information on analysis of heat semigroups on manifolds. Let (M, g) be a complete

compact Riemannian manifold equipped with Riemannian metric g. Let ∆ be the Laplace-

Beltrami operator given by

∆f = ∇∗∇f .
where ∇ is the gradient operator and ∇∗ = div is the divergence. The heat semigroup

Tt = e−∆t : L∞(M, dvol) → L∞(M, dvol) is a Markov semigroup with respect to the

volume form dvol induced by g. Recall the BochnerWeitzenböckLichnerowicz formula

that for the vector field ∇φ,

−1
2
∆|∇φ|2 +∇φ · ∇(∆φ)+ ‖∇φ‖22 +Ric(∇φ,∇φ) = 0,

which translates to

−∆+∇∇∗ + Ric = 0 . (22)

The C∞(M)-bimodule property of Ric is exactly the fact that the Ricci curvature is a

smooth tensor over M .

The same argument applies to weighted Riemannian manifolds (M, g, e−Wdvol) where

e−W is a smooth density function with respect to dvol. The weighted Laplacian is

∆W = ∇∗∇ = ∆−∇W · ∇ .
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where ∇∗ is adjoint of ∇ with respect to L2(M, e−Wdµ) and ∆W is a self-adjoint operator

on L2(M, e−Wdµ). Then the weighted heat semigroup Tt = e−∆W t is an ergodic symmetric

Markov semigroup with the unique invariant measure e−Wdµ. In this case,

∆W −∇∇∗ = RicW .

where RicW = Ricg + ∇∇W is the sum of Ricci curvature tensor of the metric g and

the Hessen of the function W . The weighted Ricci curvature bound RicW ≥ λ is that

RicW (ξ, ξ) ≥ λg(ξ, ξ) for any vector field ξ ∈ TM . When λ > 0, RicW ≥ λ implies

Tt = e−∆W t satisfies λ-MLSI by the Bakry-Emery Theorem.

It is proved in [33, Section 4] that RicW ≥ λ actually implies GRic ≥ λ, which implies

a complete version of Bakry-Emery theorem.

Theorem 4.3 ([33]). If RicW (ξ, ξ) ≥ λg(ξ, ξ) for any ξ ∈ TM , then the weighted heat

semigroup Tt = e−∆W t satisfies GRic ≥ λ. In particular, if RicW ≥ λ > 0, Tt = e−∆t

satisfies λ-CLSI.

The proof uses the Clifford bundle Cl(M) as the quantization of tangent bundle TM .

Then the GRic ≥ λ is a realization of the Bochner identity on Cl(M). We refer to [33] for

details.

Now we apply our method for general compact weighted manifolds. It follows from

compactness and continuity that RicW ≥ λ always holds for some real λ. Indeed, for each

x ∈ M , RicW at x is a real symmetric matrix with respect to an orthonormal basis of g.

Hence

(RicW )x ≥ λmin(x)g ≥ min
x∈M

λmin(x)g

Here λmin(x) is the smallest eigenvalue of (RicW )x with respect to metric g, which is

continuous depending on x ∈ M . Define that Ric(∆W ) = minx∈M λmin(x) as the global

minimum of λmin(x). Thus the heat semigroup Tt = e−∆W t always satisfies GRic ≥ λ for

some real λ = Ric(∆W ). The following is an application of Theorem 3.28.

Theorem 4.4. Let (M, g, e−Wdvol) be a compact connected weighted Riemannian mani-

fold. Then the weighted heat semigroup Tt = e−∆W t satisfies λ-CLSI for some λ > 0.

Proof. We know from Theorem 4.3 that Tt = e−∆W t always satisfies GRic ≥ Ric(∆W ) ∈ R.

On the other hand, both spectral gap and finite Varopoulos dimension of ∆W are well-

known for compact weighted manifolds. See [21, Theorem 10.23] for spectral gap and

[21, Theorem 14.19 & Exercise 15.2] for Varopoulos dimension. Indeed, the Tt = e−∆W t

satisfies the ultra-contractive estimates of dimension n = dim(M),

‖Tt : L1(M, dvol)→ L∞(M, dvol)‖≤ ct−n/2 , 0 < t ≤ 1, .
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Then it follows from Lemma 3.9 and Corollary 3.28 that Tt = e−∆W t satisfies λ-CLSI

where λ is determined by Ric(∆W ), spectral gap of ∆W and the ultra-contractive estimate

of e−∆W t.

The above theorem has the following refined form.

Theorem 4.5. Let (M, g) be a connected compact Riemannian manifold and let ∆ be the

Laplace-Beltrami operator. Suppose the Ricci curvature of M is bounded below by K for

some K ∈ R.

(i) the heat semigroup Tt = e−∆t satisfies λ-CLSI for

λ =



















K, if K > 0
(

4 + 4
σ
log(2C1)

)−1

, if K = 0

K
(

2− e−2K(2c(K,n)
V

)−
2K
σ

)−1

, if K < 0.

(23)

where σ is the spectral gap of ∆, V is the minimum volume of radius 1 ball in

M , C1 is a universal constant and C2(K, n) only depends on K and the dimension

n = dim(M).

(ii) Let W be a smooth function on M such that e−W is a probability density function

for the volume form dvol. Then the weighted heat semigroup Tt = e−∆W t satisfies

cλ-CLSI where λ is given in (23) and c = eminW−maxW .

Proof. The case K > 0 is in Theorem 4.3. We argue for the case K ≤ 0. Denote

k : M ×M × R+ → R as the heat kernel. Recall the famous Li-Yau estimate that for a

complete Riemannian manifold with Ricci curvature bounded below by Ric(M) ≥ −K for

some K ≥ 0, the heat kernel satisfies

k(x, y, t) ≤ C1
√

V (x,
√
t)V (y,

√
t)
exp

(

C2Kt−
d(x, y)2

5t

)

.

where d(x, y) is the Riemannian distance, V (x,
√
t) is the volume of geodesic ball center

at x with radius
√
t, C1 is some universal constant and C2 only depends on the dimension

dim(M) = n. (We choose the parameter ǫ = 1 in statement of [34, Corollary 3.1]). On

diagonal x = y, we have

k(x, x, t) ≤ C1

V (x,
√
t)

exp
(

C2Kt
)

.

Take V = minx∈M V (x, 1) as the minimum volume of radius 1 ball in M . Then for t = 1,

k(x, x, 1) ≤ C1V (x, 1)−1 exp
(

C2Kt
)

≤ c(K, n)V −1,
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where c(K, n) = C1 exp(C2K) is a constant only depending on dim(M) = n and curvature

bound K (for K = 0, C(0, n) is also independent of n). The ultra-contractive estimate is

given by heat kernel on the diagonal,

‖T1 : L1(M, dvol)→ L∞(M, dvol)‖= sup
x
k(x, x, 1) ≤ c(K, n)V −1 .

Let σ be the spectral gap of ∆. By Lemma 3.8, we have

tcb ≤ 1 +
1

σ
log(2c(K, n)V −1)

The assertion follows from Corollary 3.28. This proves i). ii) follows from the change

measure [33, Lemma 2.11]. Indeed, for smooth (operator-valued) function f

I∆W
(f) =

∫

〈∇f,∇ log f〉e−Wdvol ≥ e−maxW

∫

〈∇f,∇ log f〉dvol = I∆(f) ,

where I∆ is the Fisher information for the standard Laplacian and I∆W
for the weighted

Laplacian ∆W . The comparison for relative entropy follows from [33, Lemma 2.8].

4.3. Central semigroups on compact groups. In this subsection, we consider Markov

semigroups on compact groups. Let G be a compact group. We denote by C(G) (resp.

C∞(G)) the space of continuous (resp. smooth) functions on G and denote by L∞(G) =

L∞(G,m) the L∞-space with respect to the Haar probability measure m. Let Lg :

L∞(G)→ L∞(G) (resp. Rg) be the left (resp. right) translation operator.

(Lgf)(h) = f(gh) , (Rgf)(h) = f(hg) .

We say a Markov semigroup Tt : L∞(G)→ L∞(G) is left (resp. right) invariant if Lg ◦Tt =
Tt ◦Lg (resp. Rg ◦Tt = Tt ◦Rg) for all g ∈ G. We say Tt is central if it is both left and right

invariant. Recall that a function k ∈ L1(G) is central if k(sgs
−1) = k(g) for a.e. g, s ∈ G.

This is equivalent to the condition f ⋆ k = k ⋆ f for all f ∈ L1(G), where ⋆ denotes the

convolution product on L1(G). We denote the subalgebra of central functions in L1(G) by

ZL1(G). It is well known that a Markov semigroup Tt on L∞(G) is central if and only if

there exists a convolution semigroup of central probability densities (kt)t≥0 ⊂ ZL1(G)

Ttf(g) = (f ⋆ kt)(g) =

∫

G

f(y)kt(y
−1g)dm(y), f ∈ L∞(G).

Now consider the the co-multiplication map α : L∞(G,m)→ L∞(G×G,m×m),

α(f)(g, h) = f(gh) , α(f)(g, ·) = Lgf , α(f)(·, h) = Rhf

It is clear that α is a m to m×m measure preserving ∗-monomorphism. Moreover, if Tt is

a left invariant semigroup we have the commution relation α ◦ Tt = (id⊗Tt) ◦ α. Indeed,
α(Ttf)(g, ·) = Lg(Ttf) = Tt(Lgf) = id⊗Tt(α(f))(g, ·)
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Similarly, if Tt is right invariant, we have α◦Tt = (Tt⊗id)◦α. Thus for a central semigroup

Tt, we have the following commutative diagram

L∞(G×G) idG ⊗Tt or Tt⊗idG−→ L∞(G×G)
↑ α ↑ α

L∞(G)
Tt−→ L∞(G)

. (24)

This is a crucial point in the following lemma.

Lemma 4.6. Let G be a compact group and Tt : L∞(G) → L∞(G) be a central Markov

semigroup. Then Tt satisfies GRic ≥ 0 and hence complete Fisher monotonicity .

Proof. Let A be the generator of Tt and (AE ,M, δ) be a derivation triple for Tt. That is,

δ : AE → L2(M) is a ∗-preserving derivation such that

E(δ(x)∗δ(y)) = ΓA(x, y) .

where E is the conditional expectation on to L∞(G) ⊆M, and AE = L∞(G)∩dom(A1/2)

is the Dirichlet subalgebra. We show that

∂ = (δ ⊗ id) ◦ α : L∞(G)→ L∞(G,M) ∼=M⊗̄L∞(G)

is also a derivation for Tt. Let Eα : L∞(G×G)→ L∞(G) be the conditional expectation

obtained as the adjoint of α. Using the commutative diagram (24), we have Eα(A⊗ id)α =

A, which follows by differentiating α ◦ Tt = (Tt ⊗ id) ◦ α. Then for the gradient forms

associated to A and A⊗ id (the latter which acts on α(AE) ⊂ α(L∞(G))), we have

ΓA(x, y) = x∗Ay + (Ax)∗y − A(x∗y)
= x∗Eα(A⊗ id)α(y) + (Eα(A⊗ id)α(x))∗y −Eα(A⊗ id)α(x∗y)

= Eα(α(x)
∗(A⊗ id)α(y) + (A⊗ id)α(x)∗α(y)− (A⊗ id)α(x∗y))

= Eα(ΓA⊗id(α(x), α(y)))

= Eα ◦ (E ⊗ id)((δ ⊗ id)α(x)∗(δ ⊗ id)α(y))
= Eα ◦ (E ⊗ id)(∂(x)∗∂(y))

where we have used the fact (δ ⊗ id) is a derivation for Tt ⊗ id. Here Eα ◦ (E ⊗ id) is

exactly the conditional expectation onto α(L∞(G)) ⊂ L∞(G,M). Thus we have shown

that (AE , L∞(G,M), ∂) is a new derivation triple for Tt. Now for this derivation, we have

∂ ◦ Tt =(δ ⊗ idG) ◦ α ◦ Tt = (δ ⊗ idG)(idG⊗Tt) ◦ α
=(idM⊗Tt)(δ ⊗ id) ◦ α = (idM⊗Tt)∂ .

where idG⊗Tt (resp. idM⊗Tt) is the extension semigroup of Tt on L∞(G × G) (resp.

M⊗L∞(G)). Note that here we used the other part of (24) α ◦ Tt = (idG⊗Tt) ◦ α by
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the right invariance of Tt. This verifies the algebraic relation in Theorem 3.25 for λ = 0,

which implies the assertions.

Example 4.7 (Heat semigroups). Let G be a compact Lie group and g be its Lie algebra

of left invariant vector fields. Let X = {X1, ..., Xr} be an orthonormal basis of g with

respect to its Killing form. We consider the heat semigroup Tt = e−∆t generated by the

Casimir operator ∆ =
∑

j X
2
r . The natural derivation for ∆ is the gradient

∇ : C∞(G)→ ⊕r
j=1C

∞(G) ,∇(f) = (Xjf)
r
j=1

It is known from representation theory that ∆ =
∑

j X
2
j as a generator is central. Indeed,

recall that for an irreducible continuous representation π : G → B(Hπ) on the Hilbert

space Hπ, the coefficient function space associated to π is the finite-dimensional subspace

Eπ(G) = { f ∈ C(G) : f(g) = 〈h1, π(g)h2〉Hπ | h1, h2 ∈ Hπ } ⊂ L2(G) .

Denote Eπ as the Hilbert projection from L2(G) to the closure of Eπ(G). The Casimir

operator ∆ then admits a spectral decomposition of the form

∆ =
∑

π∈Irr(G)

λπEπ

where the summation is over all irreducible representation π and λπ is the common eigen-

value for all coefficient functions of π. Since the Eπ is invariant for both left translation

and right translation, this implies ∆ and the semigroup e−∆t are central. By the construc-

tion in Theorem 4.6, the algebraic relation curvature relation 0-GRic is satisfied with the

following alternative derivation

∂ : C∞(G)→ ⊕r
j=1C

∞(G×G) , ∂f = (∇⊗ id)α(f)(g, h) = (Xjf(gh))
r
j=1 .

Combined with the heat kernel estimate and spectral gap (see e.g. [51]), we have the

following corollary.

Theorem 4.8. Let G be a compact Lie group and let ∆ be the Casimir operator. For

r ∈ (0, 1], denote T r
t = e−∆rt : L∞(G) → L∞(G) as the heat semigroup (r = 1) and its

subordinated semigroup (0 < r < 1). Then for each r ∈ (0, 1], T r
t satisfies GRic ≥ 0,

complete Fisher monotonicity, and λ(r)-CLSI for

λ(r) =
(

4 + 4σ−r log(2c(r, n) +
C

V1
)
)−1

.

where C is an absolute constant, c(r, n) is a constant only depending on 0 < r ≤ 1 and

n = dim(G), σ is the spectral gap of ∆ and V1 is the volume of unit geodesic ball.
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Proof. For all r ∈ (0, 1], ∆r =
∑

π λ
r
πEπ is a central generator. Thus T r

t are central

semigroup hence has 0-GRic. It is well-known (see e.g. [51]) that the heat semigroup

T 1
t = e−∆t has ultra-contractive estimate

‖Tt : L1(G,m)→ L∞(G,m)‖= Ct−
n
2 , 0 < t ≤ 1

where n = dim(G). By the discussion in [51, Section II.3], the subordinated semigroup

T r
t has spectral gap σr and Varopoulos dimension 1

r
dim(G). Then assertions follows from

Theorem 3.28.

We now give the concrete ultra-contractive estimates of T r
t for each r. Let Vt be

the volume of geodesic ball of radius t. Since G has nonnegative Ricci curvature, by

Bishop-Gromov volume comparison theorem (c.f. [47, Theorem 5.6.4]), for 0 < t ≤ 1,

V (t) ≥ V (1)tn. Then for r = 1 and Tt := T r
t , using the Li-Yau estimate [34, Corollary 3.1]

again,

‖Tt : L1(G)→ L∞(G)‖= k(x, x, t) ≤ C

V√t

≤ C

V1
t−

n
2 .

where C is some absolute constant, k(x, y, t) is the heat kernel of Tt, x is some point in G,

and V√t (resp. V1) is the volume of geodesic ball in G with radius
√
t (resp. 1). Denote

C1 = C/V1. For the subordinated semigroup, we the use the argument from [51, Section

II.3],

T r
t = e−∆αt =

∫ ∞

0

fα(v)Tvt1/αdv .

where fα is the function whose Laplace transform is s 7→ e−sα. In particular, fα ≥ 0 and
∫∞
0
fα(v)dv = 1 . Then for t = 1,

‖T r
1 : L1(G)→ L∞(G)‖

≤
∫ ∞

0

fα(v) ‖Tv : L1(G)→ L∞(G)‖ dv

≤
∫ 1

0

fα(v) ‖Tv : L1(G)→ L∞(G)‖ dv +
∫ ∞

1

fα(v) ‖Tv : L1(G)→ L∞(G)‖ dv

≤
∫ 1

0

fα(v)v
−n

2 dv +

∫ ∞

1

fα(v) ‖T1 : L1(G)→ L∞(G)‖ dv

≤
∫ 1

0

fα(v)v
−n/2dv + C1

∫ ∞

1

fα(v)dv

≤c(α, n) + C1

where c(α, n) =
∫ 1

0
fα(v)v

−n/2dv ≤
∫∞
0
fα(v)v

−n/2dv <∞. By Lemma 3.8, we have

tcb ≤ 1 + σ−α log
(

2c(α, n) +
C

V1

)

.
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The assertion follows from Corollary 3.28

Remark 4.9. a) In [40, Section 7] Milnor proved that for any bi-invariant metric on G,

the Ricci curvature is non-negative. Theorem 4.6 recovers the non-negativity of Ricci

curvature for all heat semigroups with bi-invariant metric. Furthermore, it also applies to

subordinated semigroup beyond the Laplacian case.

b) Based on the derivation of heat semigroup Tt = e−∆t, derivation triple for subordinated

group can be constructed as in [11, Section 10.4]. Note that the CLSI of subordinate

semigroup was obtained in [20] using a completely different method.

c) By Theorem 4.5, the constant for the heat semigroup T 1
t has the following explicit form

λ(1) =
(

2 + 2(n− 1) log 2 +
4

σ
log(

C

V
)
)−1

where σ is the spectral gap, V is the volume of unit ball and C is some absolute constant.

It was also pointed out in [40] that Ricci curvature of a left invariant metric is strictly

positive if the fundamental group of G is finite. It means for semi-simple Lie groups

Theorem 4.3 usually gives better CLSI constant than Theorem 4.6. Nevertheless, for non

semi-simple Lie group with zero curvature lower bound, Theorem 4.6 gives us an effective

way to obtain lower bounds of CLSI constant.

Example 4.10 (Circle). Let T = {z ∈ C | |z| = 1} be the unit circle. Then {zn|n ∈ Z} is
a orthonormal basis of L2(T). The heat semigroup is given by

Tt(z
m) = e−m2tzm,

and the associated heat kernel is given by kt(z) =
∑

m∈Z e
−m2tzm. Now we estimate the

cb-return time of Tt:

‖Tt −Eτ : L1(T)→ L∞(T)‖ =‖
∑

m∈Z\{0}
e−m2tzmw−m‖L∞(T2)

=‖
∑

m∈Z\{0}
e−m2tzm ‖L∞(T)

=‖kt − 1‖L∞(T)

= kt(e)− 1

= 2
∞
∑

m=1

e−m2t.

In the above, the first equality follows from the isometric identification

L∞(T2) ∼= L∞(T)⊗̄L∞(T) ∼= B(L1(T), L∞(T)); (ϕ⊗ ψ)(f) =
(

∫

T

ψ(w)f(w)dw
)

ϕ.
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The third equality follows from the fact that kt is a positive definite function on T. Denote

f(t) = 2
∑∞

m=1 e
−m2t, so that

tcb = inf{t|f(t) ≤ 1/2} .
Using standard heat kernel estimates, we have

2e−t ≤ f(t) = kt(0)− 1 ≤ 2e−t

1− e−t
(t > 1).

These estimates yield concrete bounds of the form

1.38629 ∼ ln 4 ≤ tcb ≤ ln 5 ∼ 1.60944.

Numerical calculation shows that tcb ≤ 1.41 < 1.5, and therefore the heat semigroup on T

has
1

6
-CLSI.

Example 4.11 (d-Torus). Let Td = {z = (z1, z2, · · · , zd) ∈ Cd | |zi| = 1, i = 1, · · · , d} be
the d-Torus. For a multi-index m = (m1, · · · , md) ∈ Zd, write |m|2 = m2

1 +m2
2 + · · ·+m2

d

and define the polynomials zm := zm1
1 zm2

2 · · · zmd
d . The set {zm|m ∈ Zd} is an orthonormal

basis of L2(T). The heat kernel k
(d)
t and heat semigroup Tt on Td are given by

k
(d)
t (z) =

∑

m∈Zd

e−|m|2tzm, Tt(z
m) = e−|m|2tzm .

We then proceed as in the previous example to compute the CB-return time:

‖Tt − Eτ : L1(T
d)→ L∞(Td)‖ =‖

∑

m∈Zd,m6=0

e−m2tzmw−m‖L∞(Td×Td)

=‖
∑

m∈Zd,m6=0

e−m2tzm ‖L∞(Td)

=‖k(d)t − 1‖L∞(Td)

= k
(d)
t (e)− 1

= (2
∑

m=1

e−m2t)d = f(t)d.

where f(t) := 2
∑

m=1 e
−m2t is as in the previous example. Thus we have a CB-return

time estimate depending on the dimension d

tcb(d) = inf{t | f(t) ≤ 2−
1
d} .

Using the same heat kernel estimates as in the previous example, we then conclude that

(1 +
1

d
) ln 2 ≤ tcb(d) ≤ ln(2(1+

1
d
) + 1).
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For example, tcb(2) ≤ 1.35 and tcb(3) ≤ 1.26. (Numerical suggests tcb(2) ≤ 1.08 and

tcb(3) ≤ 0.98).

Note that the CLSI constant (4tcb)
−1 obtained from the above approach is monotone

increasing for d, which is better than tenzorisation. This leads to the following dimension

free estimates.

Theorem 4.12. Let d ≥ 1 and Td be the unit d-torus. The heat semigroup on Td (in the

above normalization) satisfies complete Fisher monotonicity and λ-CLSI for λ = (4 ln 3)−1.

Proof. Denote TTd,t as the semigroup on Td. Denote CLSI(TTd ,t) as the optimal CLSI

constant of TTd,t. Then by example 4.11, we have

CLSI(TTd,t) ≥
(

4 inf{ t | (2
∑

m=1

e−m2t)d ≤ 1/2 }
)−1

≥
(

4 ln(2(1+
1
d
) + 1)

)−1

For m ≤ d, Td = Tm × Td−m. Consider the embedding πm,d : C(T
m)→ C(Td)

πm,d(f) = f ⊗ 1d−m , f ∈ C(Tm) .

where 1d−m is the identity function on Td−m. Namely, πm,d(f)(z1, · · · , zd) = f(z1, · · · , zm).
It is clear that

πm,d ◦ TTm,t = TTd,t ◦ πm,d .

Hence the heat semigroup TTm,t on m-torus is a sub-semigroup for TTd,t on d-torus. We

have for any d ≥ m,

CLSI(TTm,t) ≥ CLSI(TTd,t) ≥
(

4 ln(2(1+
1
d
) + 1)

)−1

.

Taking d→∞, we have CLSI(TTm,t) ≥ (4 ln 3)−1 for any m. That completes the proof.

Remark 4.13. It was proved by Weissler [53] that on the circle T, both the heat semigroup

Tt(z
m) = e−m2

zm and the Possion semigroup Pt(z
m) = e−|m|tzm satisfies sharp 1-LSI hence

sharp 1-MLSI (because spectral gap is 1). We will show in the second part of this series

that the Possion semigroup Pt on T satisfies sharp GRic ≥ 1 and hence sharp 1-CLSI.

Example 4.14 (Finite Groups). Let G be a finite group and l∞(G) be the function space

on G equipped with counting probability measure. Let

Tt : l∞(G)→ l∞(G) , (Ttf)(g) =
∑

g∈G
kt(g

−1h)f(h)

be a symmetric central Markov semigroup with kernel function kt ∈ Zl1(G). Let A be

generator of Tt, which acts on the l2(G):

A : l2(G)→ l2(G), A(eh) =
∑

g∈G
Ag,heg
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The entries of A are given by

Ag,h =

{

∑

h 6=g wg,h, if h = g

−wg,h, otherwise.

where wg,h > 0 are the transition rates. If Tt is symmetric and central,

wg,h = wh,g = wsg,sh = wgs,hs , ∀ s, g, h ∈ G .

Here we use the derivation of finite Markov chain from [18]. Denote B =
∑

g 6=h

√
wg,heg,h,

where eg,h are matrix units in B(l2(G)). Consider the standard embedding π : l∞(G) →֒
B(l2(G)) as diagonal matrices π(f) =

∑

g f(g)eg,g. We have the following derivation.

δ : l∞(G)→ B(l2(G)) , δ(f) =
∑

g,h

bg,h(f(h)− f(g))eg,h = i[B, π(f)]

For the gradient form,

2Γ(eg, eh) =
(

e∗g(Aeh) + (Aeg)
∗eh − A(egeh)

)

=

{

∑

s 6=g ws,g(es + eg), if g = h

−wg,h(eg + eh), otherwise.

Note that [B, π(eg)] =
∑

s 6=g

√
ws,g(es,g − eg,s). Then for g 6= h

E([B, π(eg)]
∗[B, π(eh)]) = E

(

(
∑

s 6=g

√
ws,g(eg,s − es,g))(

∑

r 6=h

√
wr,h(er,h − eh,r))

)

= E
(

∑

r

√
wr,h
√
wr,geg,h −

∑

s

√
ws,g
√
wg,hes,h

−
∑

r

√
wh,g
√
wr,heg,r + δg,h

∑

s,r

√
ws,g
√
wr,ges,r

)

= −wg,heh − wh,geg

For g = h,

E([B, π(eg)]
∗[B, π(eh)]) = E

(

(
∑

s 6=g

√
ws,g(eg,s − es,g))(

∑

r 6=h

√
wr,h(er,h − eh,r))

)

=
∑

r 6=g

wr,geg +
∑

s 6=g

ws,ges

=
∑

s

ws,g(es + eg)

Thus we have verified that

Γ(eg, eh) = E(δ(eg)
∗δ(eh)) .
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which extends bi-linearly to l∞(G)× l∞(G). Now we have

δ ◦ Tt(eg) = δ(
∑

r

kt(r)egr−1)

=
∑

r

kt(r)
∑

s 6=gr−1

√
ws,gr−1(es,gr−1 − egr−1,s)

=
∑

r

kt(r)U
∗
r

(

∑

sr 6=g

√
wsr,g(esr,g − eg,sr)

)

Ur

=
∑

r

kt(r)U
∗
r

(

δ(eg)
)

Ur

= T̂t ◦ δ(eg)

In the third equality above we used the central property ws,gr−1 = wsr,g. The extension

semigroup on B(l2(G)) is

T̂t(ρ) =
∑

r

kt(r)UrρU
∗
r ,

where Ureg = Uregr is the right shifting unitary. T̂t is a extension of Tt : l∞(G) → l∞(G)

on B(l2(G)). Indeed,

Tt(eg,g) =
∑

r

kt(r)egr−1,gr−1 =
∑

r

kt(r)Ur−1eg,gU
∗
r−1 =

∑

r

kt(r)U
∗
r eg,gUr .

This verifies that Tt satisfies 0-GRic via a construction different from Lemma 4.6.

Corollary 4.15. Let Tt : l∞(G)→ l∞(G) be a central Markov semigroup with spectral gap

σ. Then Tt satisfies GRic ≥ 0, complete Fisher monotonicity and λ-CLSI for

λ =
σ

4(log 2|G|) .

Proof. This follows from Theorem 3.28, Proposition 3.10 and Dcb(l∞(G)||C) = |G|.

4.4. Generalized Depolarizing Semigroups. Let N ⊂ M be a subalgebra and let

E :M→N be the conditional expectation. We now discuss curvature bounds and MLSI

(resp. CLSI) constants for the generalized depolarizing semigroup

Tt(ρ) = e−λtρ+ (1− e−λt)E(ρ) .

The generator is A = λ(I−E) whose spectral gap is clearly λ (here I is the identity operator

on L2(M)). In the following we show that Tt has λ/2-GE. This result is independently

obtained by Melchior Wirth and Haonan Zhang and the case for ergodic depolarizing

semigroup on matrix algebras was obtained in [12, Section 3.4].
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Theorem 4.16. The generalizing depolarizing semigroup

Tt(ρ) = e−λtρ+ (1− e−λt)E(ρ) .

satisfies (λ/2)-GE.

Proof. Let (A,M̂, δ) be a derivation triple of Tt. Since δ(x) = 0 for x ∈ N , we have for

x ∈ A,
δ(Tt(x)) = δ

(

e−λt(x−E(x)) + E(x)
)

= e−λtδ(x) .

Then we have

‖δ(Tt(x))‖2ρ=‖e−λtδ(x)‖2ρ= e−2λt ‖δ(x)‖2ρ,
where

‖δ(x)‖2ρ=
∫ 1

0

τ(δ(x)∗ρsδ(x)ρ1−s)ds.

It follows from Lieb’s concavity theorem [35] that for each s ∈ [0, 1],

(ρ, σ)→ τ(δ(x)∗ρsδ(x)σ1−s)

is jointly concave for (ρ, σ). For ρt := Tt(ρ) = e−λt + (1− eλt)E(ρ),
τ(δ(x)∗ρstδ(x)ρ

1−s
t ) ≥ e−λtτ(δ(x)∗ρsδ(x)ρ1−s) + (1− eλt)τ(δ(x)∗E(ρ)sδ(x)E(ρ)1−s)

Integrating over s,

‖δ(x)‖2Tt(ρ)≥ e−λt ‖δ(x)‖2ρ +(1− eλt) ‖δ(x)‖E(ρ)≥ e−λt ‖δ(x)‖2ρ .

Then

‖δ(Tt(x))‖2ρ= e−2λt ‖δ(x)‖2ρ≤ e−2λteλt ‖δ(x)‖Tt(ρ)= e−λt ‖δ(x)‖Tt(ρ)

which proves the gradient estimates.

Remark 4.17. In an upcoming paper, we will prove a stronger result that Tt = e−λ(I−E)t

satisfies GRic ≥ λ/2 based the free product property discussed there.

Note that the above theorem implies the generator A = (I − E) has 1/2-CLSI. This
can be verified directly via its Fisher information

I(ρ) =τ((I − E)(ρ) log ρ) = τ(ρ log ρ)− τ(E(ρ) log ρ)
=τ(ρ log ρ− ρ logE(ρ)) + τ(ρ logE(ρ)− E(ρ) log ρ)
=τ(ρ log ρ− ρ logE(ρ)) + τ(E(ρ) logE(ρ)− E(ρ) log ρ)
=D(ρ||E(ρ)) +D(E(ρ)||ρ) ≥ D(ρ||E(ρ)) (25)

where in the third equality we used the definition of the conditional expectation. It

follows from D(E(ρ)||ρ) ≥ 0 that A = (I − E) has 1/2-MLSI and also 1/2-CLSI by the

same argument for (I − E)⊗ id. In the following discussion, we denote MSLI(A) (resp.
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CLSI(A) and GE(A)) as the optimal constant λ of MSLI (resp. CLSI and GE) for the

generator A.

Example 4.18 (Depolarizing Semigroup). LetMd be the algebra of d×dmatrix. Consider

the depolarizing semigroup

Dt :Md →Md , Dt(ρ) = e−tρ+ (1− e−t)τd(ρ)1,

where τd(x) =
1
d
Tr(x) is the normalized matrix trace on Md. It is proved in [31] that the

optimal LSI constant is

LSI(I − τd) =
2− 4/d

log(d− 1)
, LSI(I − τ2) = 1

This implies

MLSI(I − τd) ≥
2− 4/d

log(d− 1)
,

For curvature bounds, Melchior and Zhang proves that GE(I − τd) ≥ 1
2
+ 1

2d
. Here we

show that GE(I − τ3) ≤ MLSI(I − τ3) < 1. In M3, we choose the normalized density

ρ = 3
2
e1 +

3
4
e2 +

3
4
e3 where e1, e2, e3 are orthogonal rank one projections. Then

D(ρ||1) = 1

2
log(3/2) +

1

4
log(3/4) +

1

4
log(3/4) =

1

2
log(9/8) = log(3/2

√
2)

D(1||ρ) = 1

3
log(2/3) +

1

3
log(4/3) +

1

3
log(4/3) =

1

3
log(32/27) = log(25/3/3) < log(3/2

√
2)

This means D(ρ||1) > D(1||ρ) and
I(ρ) = D(ρ||1) +D(1||ρ) < 2D(ρ||1)

This implies on M3, the depolarizing semigroup A = I − τ3 does not have 1-MLSI nor

1-GE. Similar examples can be found for other d ≥ 3.

Remark 4.19. By (25), the optimal MLSI constant is

MLSI(I − τd) =
1

2
(1 + inf

ρ∈S(Md)

D(1||ρ)
D(ρ||1)) .

It is clear that (I−τd) has the same MLSI constant for the classical depolarizing semigroup

St : l
d
∞ → ld∞ , St(f) = e−tf + (1− e−t)

(
∑

i f(i))

d
1 .

Maas and Erbar showed in [18] that GE(St) ≥ 1
2
+ 1

2d
.

We show that the above GE constant also holds for Mn. We are indebt to Melchior

Wirth for pointing out our earlier mistake on the following proposition.
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Proposition 4.20. The d-dimensional depolarizing semigroup

Dt :Md →Md , Dt(ρ) = e−tρ+ (1− e−t)τd(ρ)1

satisfies 1
2
+ 1

2d
-GE.

Proof. Note that for any derivation δ of Tt,

δ(a) = δ(a− τd(a)) , δ(Tt(a)) = e−t(a− τd(a)) .
Then

‖δ(Tt(a))‖2L2(M̂,ρ)
= e−2t ‖δ(a)‖2

L2(M̂,ρ)

Let α > 0. The Dt satisfies
1
2
+ 1

2α
-GE means that for any a ∈Md,

e−2t ‖δ(a)‖2
L2(M̂,ρ)

=‖δ(Tt(a))‖2L2(M̂,ρ)
≤ e−2( 1

2
+ 1

2α
)t ‖δ(a)‖2

L2(M̂,Tt(ρ))

This is equivalent to the function

h(t) := e(1−
1
α
)t ‖δ(a)‖2

L2(M̂,Tt(ρ))

is increasing. Denote the function f(t) :=‖δ(a)‖2
L2(M̂,Tt(ρ))

. Write ρt = Tt(ρ) for a density

ρ. We have the derivative,

d

dt
ρt = −(I − τ)(ρ) = (1− ρ)

and (τ̂ is the trace on the derivation triple)

df(t)

dt
|t=0 =

d

dt
|t=0

(

∫ 1

0

τ̂(δ(a)∗ρ1−s
t δ(a)ρst )ds

)

=

∫ 1

0

( d

dt
|t=0τ̂ (δ(a)

∗ρ1−s
t δ(a)ρst )

)

ds

Let ρ =
∑

j pjej be the orthogonal decomposition of ρ. By double operator integral,

d

dt
ρst |t=0 =

∑

j,k

psj − psk
pj − pk

ej(1− ρ)ek

=(1− ρ)
∑

j,k

psj − psk
pj − pk

ejek

=λs(1− ρ)ρs−1

and similarly d
dt
ρ1−s
t |t=0 = λ(1 − s)(1 − ρ)ρ−s. For a bi-viariable function F : (0,∞) ×

(0,∞)→ (0,∞), we introduce the notation

IF,ρ(X) =
∑

j,k

F (pj, pk)ejXek ,
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Then

d

dt
(ρ1−s

t δ(a)ρst )|t=0 = (1− ρ)IFs,ρ(δ(a)) + IGs,ρ(δ(a))(1− ρ)

where Fs(x, y) = (1 − s)(1 − x)x−sys and Gs = sx1−sys−1(1 − y). Integrating over s on

[0, 1], we have

df(t)

dt
|t=0 =

d

dt
|t=0

(

∫ 1

0

τ̂(δ(x)∗ρ1−s
t δ(x)ρst )ds

)

=

∫ 1

0

τ(δ(x)∗IFs,ρ(δ(x))) + τ(δ(x)∗IGs,ρ(δ(x)))ds

=τ(δ(x)∗IH,ρ(δ(x)))

where H is the function given by

H(x, y) =

∫ 1

0

Fs(x, y) +Gs(x, y)ds =
(x− y)(x− y − xy(log(x)− log(y)))

xy(log(x)− log(y))2

=
(x− y)

log(x)− log(y)

(x− y − xy(log(x)− log(y)))

xy(log(x)− log(y))

=
(x− y)

log(x)− log(y)

( (x− y)
xy(log(x)− log(y))

− 1
)

here log is natural log. On the other hand,

f(0) =

∫ 1

0

τ(δ(a)∗ρ1−sδ(a)ρs) ,

=τ(δ(a)∗IJ,ρδ(a))

where J(x, y) =
x− y

log x− log y
. Then the derivative of h(t) = e(1−

1
α
)tf(t) is

h′(0) =(1− 1

α
)f(0) + f ′(0)

=(1− 1

α
)τ(δ(x)∗IJ,ρ(δ(x))) + τ(δ(x)∗IH,ρ(δ(x)))

Thus it suffices to require (1− 1
α
)J+H is a positive function on the spectrum of ρ. Indeed,

(1− 1

α
)J(x, y) +H(x, y) = (1− 1

α
)

(x− y)
log(x)− log(y)

+
(x− y)

log x− log y

( (x− y)
xy(log x− log y)

− 1
)

=
(x− y)

log x− log y

( (x− y)
xy(log x− log y)

− 1

α

)
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Because (x−y)
log x−log y

≥ 0, it suffices to require

(x− y)
xy(log x− log y)

− 1

α
> 0

or equivalently

xy(log x− log y)

x− y ≤ α .

Here for Md, the domain of (x, y) is contained in Sd := {0 ≤ x, y ≤ d } since x, y are

eigenvalues of a normalized density ρ ∈Md. By elementary calculus, one can show

max
(x,y)∈Sd

xy(log x− log y)

x− y = d .

Thus α can be d and we finishes the proof.

We now use a similar idea to consider the MLSI constant of Dt ⊗ id2 : M2 ⊗M2 →
M2 ⊗M2 where Dt is the depolarizing on M2. Let E : M2 ⊗M2 → M2 ⊗M2 , E(ρ) =
(

τ ⊗ id(ρ)
)

⊗ 1 be the partial trace map. Consider the basis of Bell states

|φ1〉 =
1√
2
(|0〉|0〉+ |1〉|1〉) , |φ2〉 =

1√
2
(|0〉|0〉 − |1〉|1〉)

|φ3〉 =
1√
2
(|0〉|1〉+ |0〉|1〉) , |φ4〉 =

1√
2
(|0〉|1〉 − |0〉|1〉)

Using the identification

|0〉|0〉 → |1〉 , |0〉|1〉 → |2〉 , |1〉|0〉 → |3〉 , |1〉|1〉 → |4〉

we have the densities in M4
∼= M2 ⊗M2 represented as

φ1 =









1
2

0 0 1
2

0 0 0 0

0 0 0 0
1
2

0 0 1
2









φ2 =









1
2

0 0 −1
2

0 0 0 0

0 0 0 0

−1
2

0 0 1
2









φ3 =









0 0 0 0

0 1
2

1
2

0

0 1
2

1
2

0

0 0 0 0









φ4 =









0 0 0 0

0 1
2
−1

2
0

0 −1
2

1
2

0

0 0 0 0









Now we choose the state ρ = 5
8
φ1 +

1
8
(φ2 + φ3 + φ4). The reduced density is

E(ρ) =

[

1
2

0

0 1
2

]

⊗ 1

2
=

1

4
1⊗ 1 .
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Thus

D(ρ||E(ρ)) = D(ρ||1
4
) =

5

8
log(5/2) +

3

8
log(1/2) ≃ 0.313

D(E(ρ)||ρ) = D(
1

4
||ρ) = 1

4
log(2/5) +

3

4
log 2 ≃ 0.291

Then we have D(ρ||E(ρ)) > D(E(ρ)||ρ), which implies that GE((I − τ2) ⊗ idM2) ≤
MLSI((I − τ2)⊗ idM2) < 1. Note that MLSI(I − τ2) = 1. We have the following corollary.

Proposition 4.21. Let Dt be the depolarizing semigroup on M2 and (I − τ2) be its gen-

erator. Then

MLSI((I − τ2)⊗ idM2) < 1 = MLSI(I − τ2)

In particular, CLSI(I − τ2) < MLSI(I − τ2).

For classical Markov semigroups, the MLSI is stable under tensorisation. The above

example shows that tensorisation of MLSI does not holds for quantum cases if we allow

non-ergodic semigroup.

4.5. Schur multipliers. Let Mm be the m×m matrix algebra and a = (aij)
m
i,j=1 ∈Mm.

The Schur multiplier of a is

Ta :Mn →Mn , Ta(xij) = (aijxij)

Consider a semigroup of Schur multiplier Tt : Mn → Mn , Tt((xij)) = (e−bijtxij). The

generator is the Schur multiplier of b = (bij),

A((xij)) = (bijxij) .

By Schoenberg’s theorem [48], Tt is a symmetric quantum Markov semigroup (unital com-

pletely positive and self-adjoint) if and only if bii = 0, bij = bji ≥ 0 and conditionally

negative definite, i.e. for any real sequence (c1, · · · , cm) with
∑m

i=1 ci = 0,

m
∑

i,j=1

cicjbij ≤ 0 .

Moreover, there exists a real Hilbert space H and a family of vector b(1), · · · , b(n) ∈ H
such that

bij =‖b(i)− b(j)‖2 .

For Tt, the fixed point subalgebra N is

N = {(xij) ∈Mn | xij = 0 for all (i, j) that bij 6= 0} ,
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where eij ∈Mm are the matrix units. It is clear that the diagonal matrices lm∞ ⊂ N . Thus

Tt are always non-ergodic. Because eij are eigenvectors of the generator A with eigenvalue

bij , the spectral gap is

σ = min{ bij | bij 6= 0 } .
The gradient form is given by

Γ(eij , elk) =
1

2
δil(bij + blk − bjk)ejk .

Here δil is the Kroenecker-delta notation. For i = l, we have

Γ(eij, eik) =
1

2
(‖b(i)− b(j)‖2 + ‖b(i)− b(k)‖2 − ‖b(j)− b(k)‖2)ejk

=
1

2
(‖b(i)− b(j)‖2 + ‖b(i)− b(k)‖2 − ‖b(j)− b(k)‖2)ejk

= 〈b(i)− b(j), b(i)− b(k)〉ejk
Recall that for a real Hilbert space H , an H-isonormal process on a standard probability

space (Ω, m) is a linear mapping W : H → L0(Ω) satisfying the following properties:

i) for any v ∈ H , the random variable W (v) is a centered real Gaussian.

ii) for any v1, v2 ∈ H , we have EΩ(W (v1)W (v2)) = 〈v1, v2〉H
iii) The linear span of the products {W (v1)W (v2) · · ·W (vn) | v1, · · · , vn ∈ H} is dense

in the real Hilbert space L2(Ω)

Here L0(Ω) denote the space of measurable functions on Ω. Now we define the derivation

δ :Mm →Mm ⊗ L2(Ω) , δ(eij) = eij ⊗
√
−1(W (b(i))−W (b(j))) .

We verify that δ is a derivation,

δ(eij)ejk + eijδ(ejk) = eik ⊗
√
−1(W (b(i))−W (b(j))) + eik ⊗

√
−1(W (b(j))−W (b(k)))

= eik ⊗
√
−1(W (b(i))−W (b(k))) = δ(eik) = δ(eijejk).

Moreover for the gradient form

E(δ(eij)
∗δ(elk)) = E

(

(

eji ⊗ (W (b(i))−W (b(j)))
)(

elk ⊗ (W (b(l))−W (b(k)))
)

)

= δilejk ⊗ E
(

(W (b(i))−W (b(j)))(W (b(i))−W (b(k)))
)

= δil〈b(i)− b(j), b(i)− b(k)〉ejk .
Then it is readily seen that

δ ◦ Tt = (Tt ⊗ idΩ) ◦ δ ,
where Tt ⊗ idΩ is the extension of Tt on Mm ⊗ L∞(Ω). By Theorem 3.25, this implies Tt
satisfies 0-GRic. Combined with CB-return time estimates in Proposition 3.10, we have
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Theorem 4.22. Let Tt : Mm → Mm, Tt((xij)) = (e−bijtxij) be a symmetric quantum

Markov semigroup of Schur multipliers. Then Tt satisfies 0-GRic and complete Fisher

monotonicity. Denote σ = min{bij | bij 6= 0} as the spectral gap of Tt. Then Tt satisfies

λ-CLSI with constant

λ =
σ

4(Dcb(Mm||N ) + log 2)

In particular, Dcb(Mm||N ) ≤ Dcb(Mm||lm∞) = logm.

4.6. Random unitary channels. A CPTP map T : Mm → Mm is called a random

unitary channel if it is a convex combination of unitary conjugations,

T (ρ) =

n
∑

j=1

pjUjρU
∗
j (pi ≥ 0,

∑

i

pi = 1) .

In this subsection, we discuss semigroups of random unitary channels arising from group

representations. Let G be a finite group. Recall that a projective unitary representation

U : G→ U(Mm) satisfies

UgUh = σ(g, h)Ugh , ∀ g, h ∈ G

where σ : G× G→ C is a group 2-cocycle with |σ(g, h)| = 1. Let Tt : Mm → Mm be the

quantum Markov semigroup given by

Tt(ρ) =
1

|G|
∑

g

kt(g)UgρU
∗
g .

where kt(g) is the weight function that satisfies kt(g) ≥ 0,
∑

g kt(g) = 1 and

kt+s(g) =
1

|G|
∑

h

kt(gh
−1)ks(h) = (kt ⋆ ks)(g) .

Thus kt forms the right invariant kernel on G. Let

St : l∞(G)→ l∞(G), St(f)(g) =
∑

h

kt(gh
−1)f(h) .

be the right invariant Markov semigroup on l∞(G). We have the transference

l∞(G,Mm)
St⊗idMm−→ l∞(G,Mm)

↑ α ↑ α
Mm

Tt−→ Mm

. (26)

where α : Mm → l∞(G,Mm), α(x)(g) = UgxU
∗
g is a trace preserving ∗-monomorphism.

Thus Tt = (St ⊗ id)|α(Mm) is a subsystem of the semigroup (St ⊗ idMm).
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Theorem 4.23. Let G be a finite group and let U : G → Mm be a projective unitary

representation. Let Tt :Mm →Mm be the a quantum Markov semigroup given by

Tt(ρ) =
1

|G|
∑

g

kt(g)UgρU
∗
g .

Suppose kt is central and Tt has spectral gap σ. Then Tt satisfies complete Fisher mono-

tonicity and λ-CLSI with constant

λ =
σ

4(log 2m2)

Proof. If kt are central, it follows from Theorem 4.6 that the classical semigroup St satisfies

complete Fisher monotonicity. which pass to Tt as a subsystem. The CLSI constant follows

from Proposition 3.10 and Dcb(Mm||N ) ≤ Dcb(Mm||C) = m2.

Example 4.24. Recall the m-dimensional generalized Pauli matrices are

X|j〉 = |j + 1〉 , Z|j〉 = e
2πij
m |j〉 .

It is clear that {XkZ l} forms a projective representation of Z2
m. Since Z

2
m is abelian, so

every function on Z2 is a central. Thus the above theorem applies to every semigroup of

random Pauli unitaries

Tt(ρ) =
1

m2

∑

j,l

kt(j, l)X
jZ lρ(XjZ l)∗ .

Appendix A.

In this appendix we provide the approximation lemmas in terms of entropy. We start

with a standard density argument.

Lemma A.1. Suppose A ⊂ M is a w∗-dense unital ∗-subalgebra A ⊂ M. Denote B as

the unit ball ofM. Then A is norm dense in L2(M) and L1(M). Moreover, the positive

part A+ (resp. A+ ∩ B) is dense in L1(M)+ (resp. L1(M)+ ∩B).

Proof. By Kaplansky density theorem (c.f. [50, Theorem 4.8]), A∩B is also strong operator

topology (SOT) dense inM∩B. Then for any ξ ∈ L2(M), we have a net (xα) ⊂ A such

that xα → ξ in SOT topology and hence norm dense in L2(M). For L1, it suffices to show

that A is L1-norm dense in L1(M)∩M. Indeed, for any positive ρ ∈ L1(M)∩B, we take

xα → ρ1/2 in SOT topology and in L2(M) ∩B. Then for any subsequence (xn) ⊂ (xα),

lim
n→∞

‖x∗nxn − ρ‖1≤ ‖x∗nxn − ρ1/2xn ‖1 + ‖ρ1/2xn − ρ‖1
≤ lim

n→∞
‖x∗n − ρ1/2 ‖2‖xn ‖2 + ‖ρ1/2 ‖2‖ρ1/2 − xn ‖2= 0

Then x∗nxn → ρ ∈ L1(M) and x∗nxn ∈ A ∩ B since A is a ∗-subalgebra.
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The next lemma shows that the relative entropy is continuous in L1-norm for bounded

invertible densities.

Lemma A.2. Let ρ ∈ SB(M) and ρn be a sequence in L1(M)+ such that ‖ρn − ρ‖1= 0.

Suppose there exist m,M > 0 such that m1 ≤ ρn ≤ M1 for any n. Then lim
n→∞

H(ρn) =

H(ρ) and lim
n→∞

D(ρn||N ) = D(ρ||N ).

Proof. We assume that m1 ≤ ρ ≤ M1. The lower semi-continuity inherited from relative

entropy,

H(ρ) = D(ρ||1) ≤ lim inf
n→∞

D(ρn||1) = lim inf
n→∞

H(ρ)

For the upper continuity, we use Klein’s inequality [54, Theorem 5.9] for h(s) = s log s

H(ρn)−H(ρ) = τ(h(ρn)− h(ρ)) ≤ τ(h′(ρn)(ρn − ρ)),

where h′(s) = 1 + log s is the derivative of h. Because m1 ≤ ρn ≤ M1, we have

‖h′(ρn)‖∞≤ max{logM,− logm}+ 1 is uniform bounded for n. Thus

lim sup
n→∞

H(ρn)−H(ρ) ≤ lim sup
n→∞

τ(h′(ρn)(ρn − ρ))

≤ lim sup
n→∞

(max{logM,− logm}+ 1) ‖ρn − ρ‖1= 0 ,

which implies lim supnH(ρn) ≤ lim supnH(ρn) = H(ρ). For D(ρ||N ) we use the decom-

position D(ρ||N ) = H(ρ) − H(E(ρ)). Note that m1 = mE(1) ≤ E(ρ) ≤ ME(1) = M1

and

lim
n
‖E(ρn)− E(ρ)‖1≤ lim

n
‖ρn − ρ‖1= 0 ,

By the same argument, we obtain H(E(ρ)) = limnH(E(ρn)).

Now we can show that λ-MLSI inequality for density in SB(A0) is equivalent to entropy

decay property for all density in S(M). Recall that SB(A0) = SB(M) ∩ A0 where A0 =
⋃

t>0 Tt(A) ⊂ dom(A). Note that by the continuity of Tt on L1 (see [13, Proposition 2.14]),

the positive part (A0)+ is norm dense in A+ hence by Lemma A.1 also dense in L1(M)+.

Moreover, since A0 is a linear subspace containing unit, SB(A0) is norm dense in S(M).

Proposition A.3. A semigroup Tt satisfies λ-MLSI if and only if

D(Tt(ρ)||N ) ≤ e−2λtD(ρ||N ) , ∀ ρ ∈ S(M).

Proof. By the heuristic discussion and the equation (11), we know that our Definition 2.3

of λ-MLSI is equivalent to

D(ρt||N ) ≤ e−2λtD(ρ||N ) , ∀ρ ∈ SB(A0) .
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To extend the exponential decay to all of S(M), it suffices to show that for any ρ ∈ S(M),

there exists a sequence of ρn ∈ SB(A0) such that

ρn → ρ in weakly L1 , lim
n→∞

D(ρn||N ) = D(ρ||N ) . (27)

This is because by the lower semicontinuity of relative entropy (c.f. [42, Corollary 5.12])

w.r.t to L1-norm,

D(Tt(ρ)||N ) ≤ lim inf
n

D(Tt(ρn)||N ) ≤ lim inf
n

e−2λtD(ρn||N ) = e−2λtD(ρ||N ) .

which implies the assertion. We verify the claim by two steps: (1) for any ρ ∈ S(M),

there exists a sequence ρn ∈ SB(M) satisfying (27); (2) for any ρ ∈ SB(M), there exists a

sequence ρn ∈ SB(A0) satisfying (27). We first proves (2). By Lemma A.1, for ρ ∈ SB(M)

with ρ ≤ M1, there exists a sequence ρn ∈ S(A) such that ρn → ρ in L1 and ρn ≤ M1.

Since Ttn(ρn)→ ρn in L1, we can assume ρn ∈ S(A0) by replacing ρn by Ttn(ρn) for some

small tn. For any 0 < ǫ < 1, we define

ρn,ǫ = (1− ǫ)ρn + ǫ1 , ρǫ = (1− ǫ)ρ+ ǫ1 .

Then for each ǫ, we have ρn,ǫ → ρǫ in L1 and by Lemma A.2, limnD(ρn,ǫ||N ) = D(ρǫ||N )

because ǫ1 ≤ ρn,ǫ ≤M1. Moreover, by convexity and lower semi-continuity

lim sup
ǫ→0

D(ρǫ||N ) ≤ lim sup
ǫ→0

(1− ǫ)D(ρ||N ) = D(ρ||N ) ≤ lim inf
ǫ→0

D(ρǫ||N ) .

Thus D(ρ||N ) = lim
ǫ→0

D(ρǫ||N ) and this proves (2). For (1), we denote en as the spectral

projection of E(ρ) for the spectrum [1/n, n] and e⊥n = 1 − en. Without losing generosity,

we assume ρ is faithful otherwise we restrict the discussion on its support. Note that

‖e⊥n ‖1= τ(e⊥n )→ 0. For each n, we define CPTP map

Pn : L1(M)→ L1(M) , Pn(x) = enxen + τ(xe⊥n )1

We have Pn(L1(N )) ⊂ L1(N ) and hence by data processing

D(Pn(ρ)||N ) ≤ D(ρ||N ) , ∀n . (28)

On the other hand, E(Pn(ρ)) = enE(ρ)en+ τ(E(ρ)e
⊥
n )1 converges to E(ρ) in L1-norm and

Pn(ρ)→ ρ in weakly. Indeed, for any y ∈M
lim
n
|τ(ρy)− τ(enρeny)| ≤ lim

n
|τ(e⊥n ρy)|+ |τ(enρe⊥n y)|

≤ lim
n
‖e⊥n ‖1‖ρ‖1‖y ‖∞ + ‖e⊥n ‖1‖ρ‖1‖y ‖∞= 0 .

Thus by the lower semicontinuity again

D(ρ||N ) = D(ρ||E(ρ)) ≤ lim inf
n

D(ρn||E(ρn)) = D(ρn||N ) .

Combined with (28), we have limnD(ρn||N ) = D(ρ||N ). That completes the proof.
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