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Abstract
Lyme disease is the most common vector-borne disease in the United States impacting
the Northeast and Midwest at the highest rates. Recently, it has become established in
southeastern and south-central regions of Canada. In these regions, Lyme disease is
caused by Borrelia burgdorferi, which is transmitted to humans by an infected Ixodes
scapularis tick. Understanding the parasite-host interaction is critical as the white-
footed mouse is one of the most competent reservoir for B. burgdorferi. The cycle
of infection is driven by tick larvae feeding on infected mice that molt into infected
nymphs and then transmit the disease to another susceptible host such as mice or
humans. Lyme disease in humans is generally caused by the bite of an infected nymph.
The main aim of this investigation is to study how diapause delays and demographic
and seasonal variability in tick births, deaths, and feedings impact the infection dynam-
ics of the tick-mouse cycle.Wemodel tick-mouse dynamicswith fixed diapause delays
and more realistic Erlang distributed delays through delay and ordinary differential
equations (ODEs). To account for demographic and seasonal variability, the ODEs
are generalized to a continuous-time Markov chain (CTMC). The basic reproduction
number and parameter sensitivity analysis are computed for the ODEs. The CTMC is
used to investigate the probability of Lyme disease emergence when ticks andmice are
introduced, a few ofwhich are infected. The probability of disease emergence is highly
dependent on the time and the infected species introduced. Infected mice introduced
during the summer season result in the highest probability of disease emergence.
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1 Introduction

Lyme disease (also known as Lyme borreliosis) is the most common vector-borne
disease in North America and Europe (Mead 2022). In the United States, the Centers
for Disease Control and Prevention estimated the annual number of Lyme disease
cases diagnosed and treated as 476,000 (based on 2010–2018 insurance claims data);
over 90% are not reported (Kugeler et al. 2021). The majority of cases occur in the
Northeast and Midwest regions of the United States, but Lyme disease is spreading
into neighboring states and north into Canada (Chen et al. 2015; Public Health Agency
of Canada (PHAC) 2023; Schwartz et al. 2017) Lyme disease is caused by the obligate
parasite Borrelia burgdorferi, a slow growing spirochete bacterium (LoGiudice et al.
2003; Schwartz et al. 2017; Tilly et al. 2008). In the Northeast and Midwest regions,
Lyme disease dynamics involve an interplay between the black-legged tick (Ixodes
scapularis) and thewhite-footedmouse (Peromyscus leucopus). The primary reasonB.
burgdorferi remains in these populations is that infection does not impact the fitness of
these species (Tilly et al. 2008). Ixodes scapularis nymphs are the disease vectors, with
human spillover occurring most often by an infected nymph engorging on a person
(Eisen et al. 2016; Schwartz et al. 2017; Tilly et al. 2008). In humans the infection
may present with a “bull’s-eye" rash in the early stage progressing to arthritis and
neurological issues as the body is extensively colonized (Tilly et al. 2008).

We focus on the Northeast region tick (I. scapularis) and seasonal timing associated
with its life stages. Ixodes scapularis has four life stageswith development taking place
over two years, and seasonal variation playing a major role in the level of activity at
each stage (Centers forDiseaseControl and Prevention (CDC) 2020; Eisen et al. 2016).
The tick life cycle is described in Fig. 1 (Eisen et al. 2016). In our model, spring begins
onMay 1st, and each season lasts for 90 days. The seasonal timing simplifies themodel
and coincides with the beginning of nymph tick activity in Canada, as identified by
Eisen et al. (2016) and Ogden et al. (2005). The tick life cycle begins in spring when
adult female ticks lay eggs and then die. During the summer, eggs hatch into larvae,
often feeding on P. leucopus because they are readily available on the forest floor.
If the mouse is infected with B. burgdorferi, then the engorged larva will emerge in
the autumn as an infected nymph. Through winter, nymphs enter diapause until the
beginning of the second spring. Nymphal activity peaks between May and early July,
with a broader questing range of possible hosts including both mice and humans.
If infected nymphs engorge on susceptible mice, then these mice become infected,
allowing for the persistence of Lyme disease. Another possible host of nymphs are
humans that enter or live near endemically infected forests. The highest number of
Lymedisease diagnoses in people occur during early July, twoweeks after peak activity
(nymph feeding), which provides further evidence that nymphs are the primary vector
for transmission of infection to humans (Schwartz et al. 2017). In late summer through
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Fig. 1 Two-year life cycle of I. scapularis (Eisen et al. 2016)

early fall, the nymphs molt into adults. Adult ticks are the most preferential in host
selection, often selecting largemammals such as deer (Centers for Disease Control and
Prevention (CDC) 2020; Cobbold et al. 2015). The high point for adult tick activity is
the fall. This includes questing for a blood meal, and those successfully engorged will
mate (Eisen et al. 2016). Then female ticks enter diapause over the winter and deposit
the next generation of eggs in the spring (Eisen et al. 2016).

The white-footed mouse is the primary host reservoir because it is a competent
host, unlike the deer. The white-footed mouse can be infected by a vector, maintain
the infection, and pass it on to another feeding vector (Brunner and Ostfeld 2008;
LoGiudice et al. 2003; Tilly et al. 2008). However, the deer is not a competent host
as it is unable to be infected (Pearson et al. 2023). Also, deer are primarily fed on by
adult ticks. The competency of the host P. leucopus and the vector I. scapularis drive
the spread of Lyme disease in the absence of vertical transmission of B. burgdorferi
in either the tick or the mouse (Eisen et al. 2016; Tilly et al. 2008). Therefore, our
modeling focus is on the white-footed mouse as the primary host reservoir and on
the seasonal variation in the tick cycle with three life stages, larva, nymph, and adult.
Diapause is included in the tick stages.

Many Lyme disease models have captured the tick stages and their hosts through
differential equations, difference equations, or in complex computational models, e.g.
Caraco et al. (1998), Carrera-Pineyro et al. (2020), Cobbold et al. (2015), Gaff et al.
(2020), Guo and Agusto (2022), Heffernan et al. (2014), Lou and Wu (2014), Lou
and Wu (2017), Mount et al. (1997), Ostfeld et al. (2018). Several models include the
effects of seasonality or developmental delays in tick and host dynamics as well as
multiple host species and migrating birds that carry infected ticks, e.g. Cobbold et al.
2015, Fan et al. (2015), Heffernan et al. (2005), Lou et al. (2014), Mount et al. (1997),
Ogden et al. (2007), Zhang and Wu (2019), Wang and Zhao (2017). Other models
also include the effects of co-feeding, spatial spread, and control of ticks, e.g. Caraco
et al. 2002, Fulk et al. (2022), Guo and Agusto (2022), Nah and Wu (2021), Wu and
Zhang (2020), Zhang et al. (2021), Zhang and Zhao (2013). Each of these models
provides different perspectives and new insights on ticks, hosts, and Lyme disease.
For example, a discrete-time computational model, LYMESIM, originally developed
byMount et al. (1997) and updated by Gaff et al. (2020) is based on local and regional
temperature and precipitation data and can be used as a public health tool to monitor
the effectiveness of tick control measures. Many recent modeling approaches on tick-
borne diseases that include co-feeding and developmental and behavioral delays are
summarized in the book by Wu and Zhang (2020). The delay differential equations
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(DDEs) for the Lyme disease model by Wang and Zhao (2017) motivates some of
our research, but analysis of the DDE model is not the focus of this research. Our
new modeling approach combines the tick two-year seasonal cycle with diapause
delays in a stochastic, continuous-time Markov chain (CTMC). Our primary goal is
to understand how demographic and seasonal variations affect disease emergence.

We formulate several deterministic models with increasing complexity to illustrate
important model features in the tick-mouse cycle, culminating in an ODE framework
that can be generalized to a CTMC model with demographic and environmental vari-
ability. First, we formulate a basic ODE model that illustrates the tick stages and
feeding rates. Feeding results in the required blood meal for ticks to transition to
the next stage and can also result in infection when either the ticks or the mice are
infected. Second, we include fixed delays between the tick stages which leads to a
system of DDEs. The delays in the DDEs mimic the instars experienced by ticks when
they are inactive. Next, the fixed delays in the DDE model are extended to a more
realistic Erlang-distributed delay through an ODE model with n latent stages. The n
latent-stage ODE model is generalized to a stochastic CTMC model. Seasonal time-
dependent parameters for birth and death of ticks and death in mice as well as larvae,
nymph, and adult feeding rates are assumed that align with the two-year tick life cycle.
Estimates for some of the models’ parameters are obtained from data on field stud-
ies and laboratory observations in Ontario, Canada which have been published in the
literature (Chen et al. 2015; Lindsay et al. 1995; Ogden et al. 2005; Schwartz et al.
2017).

The models are investigated analytically and numerically. We calculate and discuss
the relevance of the basic reproduction number,R0, for the ODE and DDE models in
a constant environment and numerically computeR0 for the ODEmodel in a seasonal
environment. We also determine the numerical sensitivity of R0, the prevalence of
infected nymphs and mice, and the density of infected nymphs to changes in the
model parameters. Numerical simulations are used to compare the endemic dynamics
of the DDE and ODE model and the initial behavior of the ODE and CTMC models.

As Lyme disease is spreading north to Canada and to other parts of the United
States where the disease is not endemic (Eisen et al. 2016; Public Health Agency of
Canada (PHAC) 2023;Ogden et al. 2008), it is important to investigate the potential for
invasion of Lyme disease into new areas. Tick and mouse demographics and seasonal
variability impact the probability and timing of invasion. Therefore, as the CTMC
model with integer-valued random variables accounts for small numbers of ticks or
mice, it is used to calculate the probabilities of disease extinction and consequently,
the probabilities of disease emergence. These probabilities depend on the number of
infected ticks and the season in which they are introduced.

2 Mathematical Models

First we discuss a basic ODE tick-mouse model and summarize some of the model
assumptions regarding tick feeding and transmission rates. Then we discuss a DDE
model for the modeling of time delays in the tick cycle. The DDE model incorporates
three fixed time delays for molting from larva to nymph and nymph to adult and for
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reproduction in the adult stage. The fixed delays in the DDE are generalized to an
Erlang distribution which results in an ODE model with n latent stages. As n → ∞,
the Erlang density approaches that of a fixed delay. The assumptions in the n-stage
ODE model lead to the formulation of the CTMC model.

2.1 ODE Tick-MouseModel

Let L , NS , N I , A, MS , and MI be the population densities (per km2) of tick lar-
vae, susceptible tick nymphs, infected tick nymphs, adult ticks, susceptible mice, and
infected mice, respectively. Let M = MS + MI and N = NS + N I . The list of other
variables and parameters along with their biological descriptions are summarized in
Table 1. We assume there is a maximum number of larvae, nymphs, or adult ticks can
feed on a mouse or deer. In particular, a type II functional response in tick density/host
is assumed by Cobbold et al. (2015), where the feeding rate for larvae on mice takes
the form FLML/(aL + L), where aL is the half maximum carrying capacity of larvae
per km2. In our model, we assume that the saturation of ticks on hosts is related to host
density, and we replace aL with mLM , where mL is half of the maximum number of
ticks per mouse as in Maliyoni et al. (2017). Thus, the feeding rate for larvae on mice
is

FLM
L

mLM + L
.

Similar forms are assumed for the feeding rates of nymphs on mice and adult ticks on
deer,

FNM
Ni

mNM + N
, i = S, I , FAD

A

mAD + A
,

respectively. Another assumption made by Cobbold et al. (2015) is that successful
larval feeding on an infected mouse results in transmission of the infection with prob-
ability one, i.e., βL = 1. Here, we distinguish between feeding and transmission and
for model generality, we retain the transmission probability βL separately from the
feeding rate FL .

Adult tick infection does not result in vertical transmission to the eggs. That is,
there is no transovarial transmission of B. burgdorferi in I. scapularis (Rollend et al.
2013); a larval tick is always susceptible before feeding on a mouse. If a larva feeds
on a susceptible mouse, it stays susceptible and molts into a susceptible nymph. But
if the mouse is infected, the larva becomes infected with probability βL and molts
into an infected nymph. A nymph then feeds on a mouse to become an adult. If an
infected nymph feeds on a susceptible mouse, it may transmit B. burgdorferi to the
mouse with probability βM . An adult tick has its final feeding in fall, after which it
may survive the winter and lay eggs that hatch to become larvae, completing the cycle.
The compartmental diagram and parameters of the basic ODE model are described in
Fig. 2 and Table 1, respectively.
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Fig. 2 Compartmental diagram for the basic ODE tick-mouse model, N = NS + N I and M = MS + MI

In the mouse dynamics, we apply a logistic-like form with density-dependent
deaths, often assumed in deer or mouse populations that serve as reservoir hosts for
Lyme and other diseases (Gaff and Gross 2007; Maliyoni et al. 2017; Sauvage et al.
2003; Wesley and Allen 2009). Mice become infected when infected nymphs feed on
them. The differential equations for the tick and mouse dynamics are:

Tick

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dL

dt
= bT FAD

A

mAD + A
− FLM

L

mLM + L
− μL L

dN S

dt
= FL

(
MS + (1 − βL)MI

) L

mLM + L
− FNM

NS

mNM + N
− μN N S

dN I

dt
= βL FLM I L

mLM + L
− FNM

N I

mNM + N
− μN N I

d A

dt
= FNM

N

mNM + N
− FAD

A

mAD + A
− μA A.

(1)

Mouse

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dMS

dt
= bMM − MS

(

d + dM
M

K

)

− βMFNMS N I

mNM + N

dMI

dt
= βMFNMS N I

mNM + N
− MI

(

d + dM
M

K

)

.

(2)

Next we include the diapause and reproduction delays in the tick population.
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2.2 DDE Tick Model

The DDE model generalizes the ODE model from the previous section by including
three time delays after feeding at each tick life stage, L, N , and A. The delays are
denoted as τL , τN , and τA, respectively. These delays are representative of instars
experienced by ticks when they are inactive, following a blood meal. While the tick
is at instar state, there is still the possibility of death. Thus, only a proportion of the
fed ticks survive and either molt to the next stage (larvae and nymphs) or mate and
reproduce eggs (adults) (Lindsay et al. 1995). The survival proportions of the three
stages are denoted eL , eN , and eA in the DDE model. Specifically, the probability of
survival at each stage can be calculated by integrating the differential equation that
relates to deaths dx

dt = −μx (t)x (tick life stage x = L, N , A) over the time interval
[t − τx , t]. This results in the proportion of ticks in stage x that survive:

ex ≡ ex (t − τx , t) = exp

(

−
∫ t

t−τx

μx (r)dr

)

, x = L, N , A.

For a constant death rate μx , the proportion simplifies to ex ≡ e−μx τx , x = L, N , A,
i.e,

eL = e−μLτL , eN = e−μN τN , eA = e−μAτA . (3)

Under these assumptions we obtain the following DDE tick model:

Tick

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dL

dt
= bT eA(t − τA, t)FA(t − τA)D

A(t − τA)

mAD + A(t − τA)
− FLM

L

mLM + L
− μL L

dN S

dt
= eL (t − τL , t)FL (t − τL )

[
MS(t − τL ) + (1 − βL )MI (t − τL )

] L(t − τL )

mLM(t − τL ) + L(t − τL )

− FN M
NS

mN M + N
− μN N S

dN I

dt
= eL (t − τL , t)βL FL (t − τL )MI (t − τL )

L(t − τL )

mLM(t − τL ) + L(t − τL )

− FN M
N I

mN M + N
− μN N I

d A

dt
= eN (t − τN , t)FN (t − τN )M(t − τN )

N (t − τN )

mN M(t − τN ) + N (t − τN )

− FAD
A

mAD + A
− μA A.

(4)

The parameters in the DDEmodel are the same as those in the ODEmodel (1) with
the exception of the delays and the survival times, which are described in Table 1.
All non-constant parameters and state variables are assumed to be evaluated at time t ,
unless specified otherwise, in which case they are evaluated before the instar period.
DDEmodels for Lyme disease with various types of fixed delays in the tick stages have
been studied byFan et al. (2015) andWang andZhao (2017).Ourmodel ismore closely
related to that of Wang and Zhao (2017). Their DDE model differs from our model
in the assumptions regarding the birth and transmission functions, the seasonality in
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births and biting rates, and the delays for feeding durations (Wang and Zhao 2017).
Our delays represent diapause delays with seasonal births, deaths, and feeding rates
leading to a two-year tick life cycle. We generalize the delays to Erlang distributions
that lead to an ODE system with latent stages.

2.3 ODE Tick Model with Latent Stages

The fixed delays in the DDE tick model are generalized to an Erlang distribution by
including additional stages within each life stage, larva, nymph, and adult. These addi-
tional stages are referred to as latent stages. Extending the ODE tick model to n latent
stages for each of the three delays changes the fixed delays with Dirac delta distribu-
tions to Erlang distributions withmeans τL , τN , and τA, respectively (Appendix A). As
the number n of latent stages increases, the Erlang density approaches the Dirac delta
function with impulse centered at the delay (Lloyd 2001). There are two advantages
of this extension. First, the Erlang density is more realistic than the fixed delay and
second, the model with latent stages can be easily generalized to a CTMCmodel with
discrete events.

The delays are divided into n latent stages each with average duration of τx/n or
a departure rate of n/τx , x = L, N , A. The general form of the n-stage ODE tick
model is defined by Eqs. (5)–(10). The larval delay begins after a larva successfully
feeds on a mouse and enters either stage LS

1 or L I
1, depending on whether the mouse

is infected. The larva transitions through n latent stages at rate n/τL (Eqs. (6)) until
it becomes a susceptible or infected nymph, NS or N I (Eqs. (7)). This is followed
by a second feeding on a mouse and a second delay where the susceptible or infected
nymph passes through n latent stages at rate n/τN (Eqs. (8)) until the nymph becomes
an adult (Eq. (9)). After the adult tick feeds on a deer, the female mates and goes
through diapause, represented by the n stages, at a rate n/τA (Eqs. (9)) until eggs are
laid. Female ticks die and eggs become larvae in the spring. We do not track infected
adults, as they feed primarily on large mammals such as deer. Also, adult ticks on
humans are easily detected and removed before the infection can be transmitted.

Larvae

{
dL

dt
= bT

n

τA
An − FLM

L

mLM + L
− μL L (5)

Larvae transition

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dLS
1

dt
= FL (MS + (1 − βL )MI )

L

mLM + L
− n

τL
LS
1 − μL LS

1

dL I
1

dt
= βL FLM I L

mLM + L
− n

τL
L I
1 − μL L I

1

dL j
k

dt
= n

τL
L j
k−1 − n

τL
L j
k − μL L

j
k , k = 2, . . . , n, j = S, I ,

(6)

Nymphs

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dN S

dt
= n

τL
LS
n − FN M

NS

mN M + N
− μN N S

dN I

dt
= n

τL
L I
n − FN M

N I

mN M + N
− μN N I , N = NS + N I

(7)
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Nymph Transition

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dN S
1

dt
= FN MS N S

mN M + N
− n

τN
N S
1 − μN N S

1

dN I
1

dt
= FN

N SM I + N I M

mNM + N
− n

τN
N I
1 − μN N I

1

dN j
k

dt
= n

τN
N j
k−1 − n

τN
N j
k − μN N j

k , k = 2, . . . , n, j = S, I .

(8)

Adult

{
d A

dt
= n

τN

(
NS
n + N I

n

)
− FAD

A

mAD + A
− μA A (9)

Adult Transition

⎧
⎪⎪⎨

⎪⎪⎩

d A1

dt
= FAD

A

mAD + A
− n

τA
A1 − μA A1

d Ak

dt
= n

τA
Ak−1 − n

τA
Ak − μA Ak , k = 2, . . . , n.

(10)

Themousemodel is the same as in Eq. (2); delays are not included in themousemodel.

2.4 Markov Chain Model

We now formulate a CTMC model based on the n-latent stage ODE model. In the
CTMC model, time is continuous-valued, t ∈ [0,∞), and the random variables are
discrete-valued, i.e.,

L j
k , N

j
k , Ak, M

j ∈ {0, 1, 2, . . .}, j = I , S; k = 1, . . . , n.

For simplicity, the same notation is used for the variables in the CTMC as in the
ODE model. In general, stochastic epidemic models encapsulate the randomness in
birth, death, and transmission, which is especially important when number of infected
individuals is few. The term “Markov" in “CTMC" implies that the process has the
memoryless property, meaning the future state is dictated by the present, independently
of the past. Since the fixed delay DDE model relies on the values of the population
at some past time, it cannot be directly related to the CTMC model. Therefore, the n
latent stage ODE model motivates the formulation of the CTMC model.

The CTMCmodel is defined by events that result in a change of either +1 or −1 in
a random variable and the probability associated with each event. These probabilities
are obtained from the rates in the ODE model by multiplying them by a small period
of time Δt . We apply a Monte Carlo simulation instead of calculating the interevent
time with the Gillespie algorithm (Gillespie 1977). Calculation of interevent time is
more complex in a time-nonhomogeneous process than with constant parameters, and
requires inversion of an integral equation at each change (Shakiba et al. 2021). Instead
we apply a Monte Carlo method by incrementing time by a sufficiently small positive
time step Δt , so that at most one event occurs each time step, and such that the sum
of the probabilities in Table 2 is always less than unity. An event can be visualized
as movement along an arrow between two compartments in the ODE compartmental
diagram in Fig. 3. The list of all possible events and the transitions are summarized in
Table 2. Details on specific functional forms for the parameters that include seasonal
variation are described in the next section.
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Fig. 3 Compartmental diagram of tick life cycle for the ODE model with n latent stages for each delay

3 Parameters

The effects of seasonality are included in the models through assumptions regarding
the time-dependence of some of the parameters. In particular, we assume that the
tick birth, death, and feeding rates are periodic to account for the change in tick
populations throughout the year and the seasonality present in tick activity. These
assumptions come from observations on tick behavior (Eisen et al. 2016). Estimates
for the parameter values come from the literature pertaining to tick biology and Lyme
disease ecology (Apanaskevich andOliver 2013; Chen et al. 2015; Cobbold et al. 2015;
Lindsay et al. 1995; Ogden et al. 2004, 2007; Vessey 1987). We applied trigonometric
functions for ease in making annual periodic functions and a maximum function to
ensure rates are nonnegative.When feasible, estimates fromfield datawere used for the
numerical value, but if data were unavailable, estimates from laboratory observations
were used. To ensure all units were in agreement, all units were converted to days and
to km2.

The information regarding the values of the delays τL and τN is taken from
Apanaskevich and Oliver (2013), a textbook on the biology of ticks. In our models, we
used the average length of the delays. The average length of the delays experienced at
each transitional stage is based on a laboratory experiment oriented at the development
of ticks. According to Apanaskevich and Oliver (2013), the delay for larvae is 16–27
days, and the delay for nymphs is 18–34 days. Without the inclusion of τL and τN , the
model moves ticks between populations too rapidly. The τA term is associated with
diapause (Eisen et al. 2016) and frequently observed in adults as a method for increas-
ing the survival of eggs over the coldwintermonths. The value of τA is assumed to have
an average 180 days (Apanaskevich and Oliver 2013). All death rates listed in Table 1
are from reference (Ogden et al. 2007), a mathematical modeling paper that collected
field data from Ontario, Canada. The minimum and maximum death per day observed
for each tick life stage is used as the amplitude bounds for the periodic functions. The
idea for implementing a periodic death parameter came from references (Eisen et al.
2016; Lindsay et al. 1995; Ogden et al. 2007). An increase in the mouse death rate
over the winter was observed in Ogden et al. (2007) due to limitations on the amount
of food available and the temperature. The winter increase in the death of mice was
estimated by adding 0.004 to the natural rate 0.012 per day for the 90 day period of
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winter. An estimate for the size of deer population per km2 is taken from references
on white-tailed deer (Chen et al. 2015; Hesselton and Hesselton 1982; Miller et al.
2003). In 1982, the deer density in North America was more than 3 to 4 deer per
km2 (Hesselton and Hesselton 1982), and the density has increased, especially in the
United States. However, the deer density depends on habitat quality, and since then the
densities have been regulated by harvesting management (Miller et al. 2003). The data
on deer density for a given region is determined through a mandatory survey of deer
hunters enforced by the Ontario Ministry of Natural Resources (Chen et al. 2015). It
is assumed in our models that there are ten deer per km2 because it was most often
observed density based on deer hunters’ responses (Chen et al. 2015). We choose a
relatively high density indicative of a site where ticks and mice infection persists.

Since tick activity is regulated by temperature (Eisen et al. 2016; Ogden et al. 2004),
we model the changing temperature by splitting the year into four seasons of 90 days
per season.We assume spring is the first seasonwhich begins onMay1st and represents
day 0 in the models (one year equals 360 days). Periodic parameters are defined
to mimic the seasonality of births, feedings, and deaths (Eqs. (11)–(18)). We use
trigonometric functions to generate continuous time-dependent parameters that peak in
mid season,where the corresponding activity is at its highest. Equation (11) for the birth
rate limits egg-laying by adults to the spring (Fig. 4a). This assumption is supported
by Ogden et al. (2004) as they observed in a laboratory environment that during both
hot and cold environments, females do not produce eggs or the eggs produced did
not hatch. The periodic parameter for birth rate is rewritten in terms of the constant
parameter Ab, that represents the maximum tick birth rate achieved during this 90-day
period. The Eqs. (12), (14), and (16)modulate the activity levels of each stage tomatch
their relative activity range (Fig. 1). Immature ticks of I. scapularis in the northeastern
United States display asynchronous questing with nymphs preceding larvae (Fig. 4d)
(Voordouw 2015). Adult feeding activity is limited to fall (Fig. 4c). We neglect adult
feeding activity that occurs in early spring to early summer in the Northeast (Centers
for Disease Control and Prevention (CDC) 2020; Eisen et al. 2016). However, the
time delay with mean τA = 180 days accounts for female adults An that have fed,
overwintered, laid eggs in the spring, and contributed to the uninfected larval stage
L1. Parameters Al , An , and Aa represent the peak feeding rates for larvae, nymphs,
and adults, respectively. The death parameters for the ticks (Eqs. (13), (15), and (17))
are at their peak values Al max, Anmax, and Aamax, respectively, during the winter then
decline during the spring. The death rate for larvae and nymphs increases again in the
summer to mimic the increased death experienced by arthropods (Eisen et al. 2016).
The lowest death rates are represented by Al min, Anmin, and Aamin. We assume that
the mouse density is maintained throughout the year, with only a slight increase in the
death rate over the winter byΔd.We also assume no co-feeding transmission occurs in
the models (Voordouw 2015). Co-feeding transmission occurs when an infected tick
co-feeds with a susceptible tick on the same host directly transmitting the infection.
Co-feeding at different tick stages increases transmission and has been considered in
several Lyme disease models (Nah and Wu 2021; States et al. 2017; Wu and Zhang
2020; Zhang et al. 2021).
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The periodic parameters are given by the following equations:

bT (t) = max

(

Ab(2 + √
2) sin

(
π

180
(t + 45)

)

− Ab(
√
2 + 1), 0

)

(11)

FL(t) = max

(

Al(2 + √
2) sin

(
π

180
(t − 45)

)

− Al(
√
2 + 1), 0

)

(12)

μL(t) = − Al max − Al min

2
sin

(
π

90
t

)

+ Al max + Al min

2
(13)

FN (t) = max

(

An(2 + √
2) sin

(
π

180
(t + 45)

)

− An(
√
2 + 1), 0

)

(14)

μN (t) = − Anmax − Anmin

2
sin

(
π

90
t

)

+ Anmax + Anmin

2
(15)

FA(t) = max

(

Aa(2 + √
2) sin

(
π

180
(t − 135)

)

− Aa(
√
2 + 1), 0

)

(16)

μA(t) = Aamax − Aamin

2
sin

(
π

180
(t + 135)

)

+ Aamax + Aamin

2
(17)

d(t) = dmin + max

(

Δd(2 + √
2) sin

(
π

180
(t + 135)

)

− Δd(
√
2 + 1), 0

)

.

(18)

The periodic parameters in Eqs. (11)–(18) are graphed over a period of two years in
Fig. 4with parameter values fromTable 1.Additional details on parameter calculations
can be found in Appendix B.

4 Mathematical Analysis

One of the fundamental ideas of disease transmission is the basic reproduction number.
We apply the next generationmatrix and its spectral radius from the system of differen-
tial equations (van denDriessche 2017; van denDriessche andWatmough 2002;Wang
and Zhao 2008). In the next subsections, we discuss the basic reproduction number
for the autonomous ODE and how to derive it in the case of the nonautonomous ODE.
Also, we discuss a parameter sensitivity analysis with respect to various outcome
measures.
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Fig. 4 Periodic parameters graphed over two years (Color figure online)

4.1 Basic Reproduction Number

The basic reproduction number is awell-known threshold in epidemicmodels, denoted
as R0. Biologically, this threshold is defined as the number of secondary infections
caused by one infectious individual in an entirely susceptible population (Diekmann
et al. 1990). IfR0 exceeds unity, then the number of infections will grow over time, but
if it is less than unity, the number will decline. Hence, the magnitude of R0 provides
knowledge about the growth of infectious individuals at the start of an epidemic.

For the autonomous ODE with n latent stages, the basic reproduction number,R0,
can be directly calculated via the next generation matrix approach (van den Driessche
and Watmough 2002). For the mouse model (2) and the tick model with latent stages
(5)-(10), the infected stages are L I

1, . . . , L
I
n , N

I , and MI . The infected stages N I
j ,

j = 1, . . . , n do not lead to any new infections as ticks in these stages do not feed
on the mouse and eventually either die or transition to adult stages. Linearization
of the system of infected stages about the disease-free equilibrium (DFE) results in
two matrices, F and V . Matrix F represents new infections and matrix V all other
transitions. The value ofR0 is the spectral radius of the next generationmatrix FV−1:

R0 = ρ(FV−1). (19)
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Applying the next generation matrix approach, assuming all parameters are con-
stant, the value of R0 for the autonomous ODE tick-mouse model (2), (5)–(10)
with n latent stages results in the square root of the product of three terms, R0 =√

(i)(i i)(i i i) =
√

R(n)
0 , where

R(n)
0 =

⎛

⎜
⎜
⎝

βL FL L∗

(mLM∗ + L∗)
(

d + dDM∗

K

)

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
(i)

(
rn

rn + μL

)n

︸ ︷︷ ︸
(i i)

(
βM FN M∗

FN M∗ + μN (mNM∗ + N∗)

)

︸ ︷︷ ︸
(i i i)

,

(20)

for n = 1, 2, . . . . The mouse equilibrium value is M∗ = (bM−d)K
dD

and the tick
equilibrium values L∗ and N∗ are computed from the ODE tick model (5)–(10) when
all infected states are set to zero. The parameter rn = n/τL , n = 1, 2, . . . is the rate
of transfer between the larvae latent stages, i.e., 1/rn = τL/n is the average duration
between the latent stages. For the special case of no delay, n = 0, in model (1), (2),
the value of R(0)

0 is simply the product of the two terms (i) and (i i i) in Eq. (20).

The three terms, (i), (i i), and (i i i), inR(n)
0 can be interpreted in terms of the cycle

of infection from mouse to larva, larva to nymph, and nymph to mouse, respectively.
Beginning from one infected mouse, the term (i) is the number of larval ticks that are
infected during the life of the mouse. The second term (i i) is the survival of an infected
larva to an infected nymph, and the third term (i i i) is the transmission of the infection
to a susceptible mouse during infected nymph feeding. The three terms can also be
interpreted beginning from an infected larva, (i i) → (i i i) → (i), or an infected
nymph, (i i i) → (i) → (i i). The square root comes from the next generation matrix
approach and represents the average number of secondary infections generated either
from an infected mouse, an infected larva, or an infected nymph. The next generation
matrix for the special case of n = 2 latent stages can be found in Appendix C.

For the system of DDEs (2)–(4) with constant parameters, a similar method of
linearization can be used to derive the basic reproduction number provided the DFE
is the same as in the ODE model, e.g., (Bai et al. 2019; Martcheva 2015). The value
of R0 for the DDE can be directly related to that of the ODE model with n latent
stages. In particular, as the number of latent stages n → ∞, the Erlang distribution
for the delay with n latent stages approaches that of a fixed delay with a Dirac delta
distribution centered at the fixed delay (Bai et al. 2019; Lloyd 2001). Taking the limit
as n → ∞ yields

R(n)
0 = R(0)

0

(
n/τL

n/τL + μL

)n

→ R(0)
0 e−μLτL ,

where R(0)
0 = (i)(i i i). For a constant death rate, the survival of larvae during the

delay τL equals e−μLτL which follows from Eq. (3). To compare the value of R(n)
0

from the ODE model to that of the DDE model, we define
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R(d)
0 =

⎛

⎜
⎜
⎝

βL FL L∗

(mLM∗ + L∗)
(

d + dDM∗

K

)

⎞

⎟
⎟
⎠ e−μL τL

(
βM FN M∗

FN M∗ + μN (mNM∗ + N∗)

)

.

(21)

From the next generation approach, the value ofR0 for the DDEmodel can be defined

as R0 =
√

R(d)
0 . The value of R(d)

0 is less than the value of R(n)
0 . Regardless of

whether the basic reproduction number is defined with or without the square root,
both definitions give the same value when at the threshold value of one, i.e., R(n)

0 =
1 =

√

R(n)
0 andR(d)

0 = 1 =
√

R(d)
0 (Heffernan et al. 2005; van den Driessche 2017).

For thenonautonomousODEsystemwithperiodic coefficients, similarmethods and
assumptions as in the autonomous case yieldmatrices F(t) and V (t) after linearization
about the disease-free state (DFS) (Wang and Zhao 2008). The time variable t in F(t)
and V (t) emphasizes the time-periodic coefficients:

Ẋ = (F(t) − V (t))X . (22)

The period of the parameters is one year, simplified to ω = 360 days. It is further
divided into four seasons, each of length 90 days. The spectral radius cannot be directly
calculated from matrices F(t) and V (t), as in Eq. (19). Generally, numerical methods
must be applied to compute the DFS and the basic reproduction number. We describe
the theoretical method fromWang and Zhao (2008) and our numerical implementation
of this method. Calculation of the basic reproduction number requires the fundamental
matrix solution (also called monodromy matrix) of the linear matrix system:

Ẏ = (F(t)/λ − V (t))Y , Y (0) = Id , (23)

where Id is the identity matrix and the other matrices, Y , F , and V , are square matrices
with dimensions dependent on the number of infected states. The fundamental solution,
Y (t) = Φ(t, λ), of Eq. (23) depends on λ and the period ω and, therefore, so does
the basic reproduction number. The value of λ equals the basic reproduction number
when the spectral radius of Φ(t, λ) evaluated at the period t = ω equals one. More
specifically, λ = R0 if

ρ(Φ(ω, λ)) = 1. (24)

The monodromy matrix is numerically solved by choosing a sequence of values
{λi }mi=1 and applying a bisection algorithm until the following condition is met:
|ρ(Φ(ω, λi )) − 1| < 10−6. The last value λm satisfying the inequality is used as
the numerical approximation of the basic reproduction number, λm ≈ R0. Additional
assumptions to ensure existence and uniqueness of R0 as a threshold for disease
outbreaks are discussed in Appendix C.

Surprisingly, the basic reproduction number as a threshold for the n-stage ODE
model is also a threshold for the n-stage CTMC model with constant or periodic
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coefficients (Allen and Lahodny Jr 2012; Allen and van den Driessche 2013; Bacaër
and Ait Dads 2014). The basic reproduction number for the CTMC comes from a
linear branching process approximation near the DFE or DFS (Allen and Lahodny Jr
2012; Allen and van den Driessche 2013; Bacaër and Ait Dads 2014; Nipa et al. 2021).
Therefore, if the basic reproduction number R0 < 1 and the system is near the DFE
or DFS, the ODE model predicts that the disease dies out and the CTMC predicts
that the disease dies out with probability one. However, if R0 > 1, the ODE always
predicts a disease outbreak, a rise in number of cases, but in the CTMC model this
is not the case. In the CTMC model, there is a positive probability p of no disease
outbreak and a positive probability of 1 − p of a disease outbreak. In the case of
periodic parameters, the probability p depends on the time infection is introduced and
the number of infected mice and ticks, e.g., (Bacaër and Ait Dads 2014; Nipa et al.
2021).

4.2 Parameter Sensitivity

To determine the relative importance of each parameter, we conduct a sensitivity
analysis. We discuss the method here and apply this method in Sect. 5.3 to determine
the parameters with the largest effect on R0 at the DFS and on nymph infection
prevalence (NIP), mouse infection prevalence (MIP), and density of infected nymphs
per km2 (DIN) at the endemic state of the ODE model:

NIP = N I

N I + NS
, MIP = MI

MI + MS
, DIN = N I .

As these expressions varywith time,we compute theirmaximumandminimumvalues.
In particular, we estimate what is sometimes referred to as an elasticity index of

specific quantities of interest, Q (R0, NIP, MIP, DIN), with respect to a parameter p,
as described in references (Chitnis et al. 2008; Sauvage et al. 2003; van den Driessche
2017) The elasticity index of Q with respect to parameter p is defined as

∂Q

∂ p

p

Q
.

The nonautonomous ODE has no explicit expression forR0 or infection prevalences.
These expressions are calculated numerically for a given set of parameter values.
Therefore, we follow the analysis from Sauvage et al. (2003) to approximate the
elasticity index or sensitivity of a parameter with respect to a proportional change in
the parameter p, i.e., ∂Q/∂ p ≈ ΔQ/Δp, where ΔQ = Q(p + Δp) − Q(p). For
example, if there is an increase of p by 10%,Δp = 0.1p, the elasticity index simplifies
to

∂Q

∂ p

p

Q
≈ ΔQ

Δp

p

Q
= Q(1.1p) − Q(p)

0.1Q(p)
.

In Sect. 5.3, we focus on the nonautonomous ODE model with 100 latent stages.
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5 Numerical Results for ODE and DDE

In this section, we present numerical results based on the parameter values given in
Table 1 and in Fig. 4. First, values for the basic reproduction number for the various
models are computed. Second, the solution of the ODEmodel is compared to the DDE
model. As the number of latent stages increases, there is closer agreement between the
two models. Lastly, for the nonautonomous ODE model, we compute the sensitivity
of model parameters to R0, to the maximum and minimum of NIP and DIN, and the
maximum of MIP.

5.1 R0 Calculations

For the autonomous ODE and DDE with constant coefficients, the explicit values for
the DFE and the reproduction numbers can be calculated from the parameter values
defined in Table 1 and the formulas in Sect. 4.1. In particular, for βM = 0.75 and
βL = 1, the basic reproduction numbers for the autonomous DDE and ODE models
with n = 2, 10 or 100 latent stages are in close agreement, that is,

√

R(d)
0 ≈ 4.996 ≈

√

R(n)
0 , n = 2, 10, 100.

The preceding expression for R(n)
0 from Eq. (20) does not give the correct value

for the nonautonomous ODEmodel with periodic coefficients. The basic reproduction
numbers are computed numerically using the method described in Sect. 4.1 (Wang and
Zhao 2008). Before conducting this calculationwemust ensure that seven assumptions
(A1)–(A7) are satisfied. The first five assumptions are straightforward. Assumptions
(A6) and (A7) require stability of the DFS and an assumption regarding matrix−V (t)
(Wang and Zhao 2008). These assumptions are discussed in Appendix C.

Applying the methods from Sect. 4.1 and matrix Eq. (23) for the nonautonomous
ODE model with n latent stages, the basic reproduction numbers are

√

R(2)
0 ≈ 5.056,

√

R(10)
0 = 5.201,

√

R(100)
0 = 5.213.

5.2 DDE and ODE Simulations

The DDEmodel is solved with dde23 in MATLAB and the ODEmodel is solved with
ode45 in MATLAB using parameter values defined in Table 1 and periodic functions
described in Fig. 4. The larva, nymph, and adult tick stages (L , N and A) andmice (M)
are plotted over 14years inFig. 5.Graphs of theODEforn = 2or 10 latent stages are in
AppendixD. TheODE solution approaches that of DDE as n approaches infinity. After
12 years the population densities for both theDDEand theODE (n = 100 latent stages)
models have reached an endemic periodic solution. The minimum and maximum
densities of infected nymphs (DIN) at the ODE endemic solution are approximately
2.5 and 8.4 nymphs per square meter, respectively (converted from densities per km2).
The NIP values range between 0.40 and 0.51 while the MIP values fluctuate between

123



   25 Page 22 of 38 K. Husar et al.

Fig. 5 DDE solution is compared with the ODE solution with n = 100 latent stages. Baseline parameters
are given in Table 1 and initial conditions are L(0) = 1000, N (0) = 100, A(0) = 20, M(0) = 10,
MI (0) = 2, with all other initial conditions set to zero. Plots of larvae and adults over time are the stages
L and A (Color figure online)

Fig. 6 NIP and MIP at the
endemic periodic solution of the
ODE in Fig. 5 with n = 100
latent stages

0.005 and 0.98 (Fig. 6). These values for NIP are biologically reasonable, but DIN
values are relatively high (Keesing et al. 2009; LoGiudice et al. 2003; Ogden et al.
2007). Estimates of NIP from various field studies range from 0.186 to about 0.90
(LoGiudice et al. 2003; Ogden et al. 2007). Keesing et al. (2009) give estimates of
DIN based on the number of questing nymphs and available hosts that range from
2000 to 8000 per hectare (0.2–0.8 per square meter). If our population densities are
measured in 10km2 instead of 1km2 or if the mouse carrying capacity is reduced by
a factor of 0.1 (parameter K multiplied by 0.1), then there is no change in NIP, MIP
orR0, but our DIN values decrease by a factor of 0.1 and agree with those in Keesing
et al. (2009).

The assumptions on seasonal variations and diapause delays between tick stages
in the two-year tick cycle drive the seasonal infection pattern seen in the ODE model
in Fig. 7. In the spring, infection is spread from infected nymphs to mice and in the
summer, infection is spread from infected mice to larvae (feeding activity in Fig. 4d).
Then nymph infection peaks at the end of the summer. Reasons for the high DIN
estimates from ourODEmodelmay be that themodel accounts for all infected nymphs
whichwould likely be larger than the number based on field estimates and also infected
nymphs peak in late summer in our model, after questing and feeding activity in the
spring (Fig. 7).
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Fig. 7 Dynamics of the periodic densities of infected larvae, nymphs, and mice (L I = ∑100
j=1 L

I
j , N

I , and

MI ) at the endemic ODE solution during spring, summer, fall and winter, as shown in Fig. 5. Stage L I is
the sum of all infected larval stages after feeding on mice. That is, L I

1 is the newly infected stage and stages

L I
j , j = 2, . . . , n are the latent stages until transition to nymph (Color figure online)

5.3 Parameter Sensitivity

A parameter sensitivity analysis is performed on the nonautonomous ODE model to
assess the effect of a change in parameters on the following outcome measures: R0,
NIP, MIP, and DIN. Parameter values are increased by 10% from their baseline values
in Table 1 (except βL is decreased by 10%), and the relative change in the outcomes
recorded in Fig. 8. Maximum and minimum values are recorded for NIP and DIN,
but only the maximum values for MIP as the minimum values are very close to zero.
The sensitivity of the maximum values of MIP are relatively small and not as sensitive
when compared to the other outcomes (Fig. 8). Therefore, we discuss the parameter
sensitivity with respect to the three outcome measures, R0, NIP, and DIN.

Based on the sensitivity analysis, parameters related to birth, death, feeding and
transmission have the greatest impact on the three outcome measures. Outcomes NIP
and R0 are highly sensitive to the parameter for the probability of transmission from
infected mice to larvae, βL . The outcome NIP is not as sensitive to other parameters.
However, surprisingly, an increase in nymphal death rates, Anmax and Anmin, increases
the maximum value of NIP but has the opposite effect on the minimum value of NIP.
A potential explanation for this behavior is that the nymphal death rate allows more
turnover in the population.What we observe may be explained by the bottleneck effect
(Novella et al. 1999). The infection is not detrimental to the nymph. When there is
more turnover in the population, there is a chance that the infection dies out, or that
the decrease in population causes a bottleneck and increases the infection. The basic
reproduction numberR0 is also highly sensitive to parameters for the competency of
transmission from infected nymphs to mice, βM , the maximum nymphal feeding rate,
An , and the mouse birth rate, bM . The impact of some of these parameters can be seen
in the constant parameter case in the definition ofR(n)

0 in Eq. 20. The outcomemeasure
DIN is highly sensitive to βL but not to βM and sensitive to the mouse parameters for
carrying capacity, birth and death rates, K , bM , dM , and dmin, as well as the maximum
values for larval feeding rate, Al , and maximum nymphal death rate, Anmax. The
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Fig. 8 Sensitivity analysis of maximum and minimum of NIP, maximum and minimum of DIN, and max-
imum of MIP at the endemic state and of R0 at the disease-free state for various parameter values of the
nonautonomous ODEmodel with 100 latent stages. Parameter values are increased by 10% of their baseline
values in Table 1 with the exception of βL which is decreased by 10%. Sensitivity greater than 10−3 is
shown (Color figure online)

significant role played by the mouse parameters is reasonable as nymph and larva are
dependent on the mouse for survival and for infection.

6 Numerical Results for CTMC

One of the advantages of the CTMC model is its ability to account for seasonal and
demographic variability in the real world. Harsh winters, food distribution, and death
of infected individuals before they pass on the infection can result in the infection dying
out in the tick and mouse populations. We apply the CTMC model to investigate the
effects of seasonal and demographic variability on the establishment of B. burgdorferi
infection in tick and mice populations. The basic reproduction number for the CTMC
model is the same as the ODE model when tick and mice populations are at the DFS
(Bacaër and Ait Dads 2014). When R0 > 1, in the ODE model, the system reaches
an endemic state, but in the CTMC model, there is a positive probability that the
infection will die out and not spread. We introduce a small number of ticks and mice
(not at the DFS) into a new site that has the potential to support both ticks and mice
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at an endemic state (R0 = 5.213 > 1). One or two infected mice or nymphs are also
introduced to the site. In a seasonally varying CTMC model, whether the infection
dies out depends on the time of year and the number of infected ticks and mice that are
introduced. As the tick and mice populations are not at the DFS, the two populations
are growing. The question we address is: Do these growing tick and mice populations
support populations of infected ticks and mice up to one year after introduction?

First, we illustrate the dynamics of the ODE solution and several CTMC sample
paths when ticks and mice are introduced into a site that does not contain ticks or
mice. Second, we perform numerical simulations of the CTMC model to investigate
whether B. burgdorferi infection will persist in the population for up to one year
when a few infected ticks or mice are also introduced at the same time. To investigate
seasonal effects, infected ticks and mice are introduced at the beginning of one of the
four different seasons.

6.1 ODE and CTMC Simulations

In this section we observe how low infection in the initial conditions can either result
in the infection in the CTMC model persisting or dying out, even when the ODE
model shows an infection outbreak (Fig. 9). The initial conditions for the ODE and
CTMC models are 1000 larvae, 100 nymphs, 20 adults, and 10 mice with 2 infected
mice introduced at t = 90 days (beginning of summer). The initial tick and mice
populations are sufficiently large such that the populations continue to grow in both
the ODE and CTMCmodels (although the infection may die out in the CTMCmodel).
The ODE solution converges to an annual cyclical pattern as shown in Fig. 5. The three
sample paths of the CTMC illustrate the variability inherent in the stochastic process.
A close-up view of the infected ticks and mice in the ODE and CTMC models from
Fig. 9 are shown in Fig. 10. Larvae feed on available mice and if the mice are infected,
larvae become infected (Fig. 10). The larvae that have fed molt to susceptible or
infected nymphs. Nymphs only take blood meals in spring. Thus, nymphs that survive
through winter to the beginning of spring in the next year (day 360) feed on mice
and molt to adults. The few adults at the beginning of the summer, day 90, die by the
end of the summer, day 180. Unlike ticks which reproduce in spring, mice reproduce
all year round. Therefore, in Fig. 9 (CTMC, lower right) with a small and growing
mouse population, the variability in births and deaths is more visible in the mouse
population than in the tick populations. For this particular example, the three sample
paths follow similar patterns to that of the ODE dynamics as there is a low probability
of the infection dying out in this case. When the ODE infection dynamics are close
to zero, the CTMC model may result in disease extinction. Figure 11 illustrates eight
cases of the ODE infection dynamics, when either infected nymphs or infected mice
are introduced at t0 = 0, 90, 180, 270 days (beginning of spring, summer, fall, or
winter, respectively). It can be seen that the season of introduction has an impact on
the number of infections and that it differs depending on which species carries the
infection. This will be helpful in interpreting the results on the probability of disease
extinction in the next section.
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Fig. 9 TheODE solution and three sample paths of the CTMCmodel with n = 100 latent stages are graphed
over one year, t ∈ [90, 450] days. Initial conditions at t = 90 days are L(90) = 1000, N (90) = 100,
A(90) = 20, M(90) = 10, and MI (90) = 2. All other initial conditions for the tick stages at t = 90 are
set to zero (Color figure online)

Fig. 10 Close-up view from Fig. 9 of the infected tick and mouse stages of the ODE solution and the three
sample paths of the CTMC model over the time interval [90, 450] days (Color figure online)

6.2 Probability of Extinction

A key assumption is that the environment is clear of mice and ticks. However, the
environment is capable of supporting both infected ticks and infected mice as demon-
strated in the solutions graphed in Fig. 5. The question we address is the following:
Does introduction of mice and ticks, a few of which are infected, result in persistence
of the infection into the next year? As can be seen in Fig. 11 as well as Tables 3 and
4, the timing of introduction and the species carrying the infection affect the infection
dynamics. If the infection persists through the first year, it is more likely to continue
through the following year, thus increasing the chance of becoming endemic in the
population. The probabilities of disease extinction in the Tables 3 and 4 are estimated
from running 500 sample paths of the CTMC and computing the proportion of those
paths when the infection in both ticks and mice has reached zero before the end of one
year (no infected ticks or mice remain in the populations).
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Fig. 11 ODE solutions of the infected larvae L I , nymph N I , andmiceMI with initial conditions dependent
on the season: L(t0) = 1000, N (t0) = 100, A(t0) = 20, M(t0) = 10 for t0 = 0, 90, 180, 270 and with
either two infected nymphs or two infected mice, N I (t0) = 2 or MI (t0) = 2 (L I = ∑100

j=1 L
I
j ). Vertical

scales for t0 = 90 differ (Color figure online)

Table 3 Summary of probability of disease extinction with the mean and the standard deviation (SD) of
the time until extinction (in days) when one or two infected nymphs are introduced at the start of each
season, spring (t0 = 0), summer (t0 = 90), fall (t0 = 180) and winter (t0 = 270). Initial conditions are
L(t0) = 1000, N (t0) = 100, A(t0) = 20, and M(t0) = 10 with either N I (t0) = 1 or 2

Infection Time of Season of Prob. of Mean time (SD)
introduced introduction extinction extinction until extinction

N I = 1 Spring Spring 0.776 29.15 (20.20)

Summer Fall 0.924 150.61 (106.38)

Fall Winter 0.866 136.43 (67.03)

Winter Winter 0.830 80.26 (41.90)

N I = 2 Spring Spring 0.632 29.95 (26.11)

Summer Winter 0.826 208.39 (92.65)

Fall Winter 0.798 176.51 (45.59)

Winter Spring 0.726 103.36 (33.36)

When infected nymphs are introduced at t0 = 90 the ODE solution in Fig. 11
illustrates the number of infected nymphs reach values less than one.Ahigh probability
of disease extinction can be observed in the CTMC simulations as shown in Table 3.
The probabilities of extinction, 0.9240 with one infected nymph or 0.826 with two
infected nymphs, are the highest probabilities of extinction when infected nymphs are
the mode of infection. Alternatively, when infected mice are introduced at t0 = 90
(summer), infected nymphs are produced after the infected larvae peak, as shown
in Figs. 10 or 11. Disease extinction within that first year is very low, probability
0.056 with one infected mouse or 0.004 with two infected mice. Also, notable is that
introduction of infected nymphs or infected mice at the beginning of summer, t0 = 90,
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Table 4 Summary of probability of extinction and mean time and standard deviation (in days) until extinc-
tion when one or two infected mice are introduced at the start of each season. Initial conditions are
L(t0) = 1000, N (t0) = 100, A(t0) = 20, and M(t0) = 10 with MI (t0) = 1 or 2 for t0 = 0 =
spring, 90 = summer, 180 = fall, 270 = winter

Infection Time of Season of Prob. of Mean time (SD)
introduced introduction extinction extinction until extinction

MI = 1 Spring Spring 0.690 37.39 (29.95)

Summer Fall 0.056 173.03 (159.43)

Fall Winter 0.964 72.10 (59.85)

Winter Spring 0.902 51.18 (42.39)

MI = 2 Spring Spring 0.414 52.97 (23.51)

Summer Winter 0.004 296.35 (47.17)

Fall Spring 0.964 100.84 (57.60)

Winter Winter 0.856 80.81 (45.70)

results in the longest duration of persistent infection before disease extinction (mean
time to extinction).

Biologically this result makes sense as at t0 = 90 the environment is optimal for
larvae and nymphs to survive and larvae to take blood meals. Higher tick densities
means more opportunities for infection. The infection takes off because a primary
magnifying host is present as well as multiple larvae to feed on the infected mice
that then molt into infected nymphs. The subsequent decline in the nymph population
is due to their transition to the adult stage, and then the cycle begins again. The
estimates for probability of extinction in Tables 3 and 4 are robust to an increase in the
initial conditions for susceptible number of ticks and mice. Estimates were checked
with initial conditions increased by a factor of two. The estimates are sensitive to the
season of introduction and the number of infected mice and nymphs.

The most important take-away messages from Tables 3 and 4 are that it only takes
a few infected nymphs to result in a positive probability of maintaining the infection
for at least one year and the presence of infected mice at the beginning of spring can
maintain and amplify the infection. Also, if many infected nymphs are introduced
(e.g., via migrating birds) and mice are available, the probabilities of extinction can
be much smaller than those in Table 3.

7 Discussion

The major goals of this investigation are to formulate a realistic model for the two-
year tick-mouse cycle for Lyme disease and to demonstrate the impact of seasonality
on the occurrence and prevalence patterns of Lyme disease. It has been observed
in field experiments that all aspects of tick-borne diseases are influenced by seasons
(Apanaskevich andOliver 2013; Eisen et al. 2016; Lou et al. 2014). Lyme disease poses
unique public health problems as the symptoms of Lyme disease if not caught early can
lead to chronic illness and death (Centers for Disease Control and Prevention (CDC)
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2021; Schwartz et al. 2017). In the United States, Lyme disease is the most common
vector-borne disease (Centers for Disease Control and Prevention (CDC) 2020). One
of the goals of the Centers for Disease Control and Prevention’s TickNET program is
to improve surveillance in areas with endemic Lyme disease as well as investigating
the spread of Lyme disease into land that borders endemic regions (Centers for Disease
Control and Prevention (CDC) 2021; Schwartz et al. 2017).

In ourmodels, seasonal variation is included through births, deaths, and tick feeding
as well as three diapause delays between tick stages: larva, nymph, and adult. A
DDE with fixed delays is extended to a more realistic Erlang distribution which is
incorporated in the ODE and CTMC models. These latter two models are used to
investigate the seasonal effects on the dynamics of the tick-mouse cycle (Figs. 9, 10
and 11). As the CTMC model includes both demographic and seasonal variability, it
is also used to estimate the seasonal probability that B. burgdorferi infection can be
established in the tick-mouse cycle one year after its introduction (Tables 3 and 4).
Importantly, for infected tick and mice populations to become established, a suitable
habitat must be available for the two host reservoirs, mice and deer. We assumed
this was the case where the basic reproduction number for the ODE model is greater
than 5. In this environment, our numerical results indicate that the introduction of a
few infected mice or infected ticks has the potential to result in a sustained infection.
Introduction of infected mice during summer when larvae numbers are at their peak
results in the lowest probability of disease extinction (highest probability of a sustained
infection in mice and ticks).

The chance of infection becoming endemic in an area is dependent on the season.
For example, if infected ticks are brought into a disease-free area during spring bird
migration there is a chance the infection becomes endemic in the population (Becker
andHan 2021;Heffernan et al. 2014;Ogden et al. 2008;Wu et al. 2016).Other seasonal
influences that impact Lyme disease include mast cycles that serve as important food
resources for bothmice and deer (Jones et al. 1998; Ostfeld et al. 2006, 1996).Masting
is the production of acorns over a multi-year period with the amount being produced
fluctuating each year. Fluctuations in mice populations driven by masting cycles add
another layer of seasonality to the tick-mouse cycle. This has been shown in other
zoonotic diseases where the mouse serves as a reservoir (Abramson and Kenkre 2002;
Pittman 2022; Sauvage et al. 2003). Habitat differences and the additional fluctuation
of mice and deer populations change food availability and create an environmental
pressure that impacts reproduction, death, and population densities (Allan et al. 2003).
The feeding activities of the three tick stages (Fig. 4c, d) and the delays ensure a two-
year tick life cycle in our model. However, our model restricts adult feeding activity
to the fall and does not account for adult feeding in early spring to early summer in the
Northeast (Centers for Disease Control and Prevention (CDC) 2020; Eisen et al. 2016).
Infected adults do not pass the infection to eggs. Therefore, whether this restriction
has an impact on the tick-mouse disease dynamics needs further investigation. These
seasonal environmental factors and other features unique to the spread of Lyme disease
in specific regions, such as co-feeding transmission and adult feeding activity, are
important to include in developing more realistic stochastic tick-mouse models (Eisen
et al. 2016; Wu and Zhang 2020).
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In the sphere of public health, it is important for the local health departments to be
aware of, and to share with the public, information concerning seasonal trends in Lyme
disease. Periodic parameters model seasonality of tick birth and death rates as well as
feeding rates (Fig. 4) and follow the two-year tick life cycle (Fig. 1). In areas where
there are data available on weather and tick activity the periodic parameters may be
tailored for further application in the field of epidemiology (Gaff et al. 2020). Based
on the numerical results of the ODE and CTMC models, prevention of the spread of
infected mice (or other competent reservoirs) into new regions during the summer is
an important control measure for Lyme disease.
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Appendix A: Erlang Distribution

In the DDEmodel, the three delays follow a Dirac delta distribution with means equal
to τL , τN , or τA. We approximate the fixed delay in the DDEmodel with n latent stages
in the ODE model. This results in an Erlang distribution for each delay (Lloyd 2001).
Using n latent stages instead of fixed delays allows for a more realistic description of
the transition of ticks between stages, as the number of days between stages is not the
same for all ticks.

We demonstrate for the larval delay τL that the n latent stageODEmodel results in a
delay having an Erlang distribution with mean τL and variance τ 2L/n. Let r = n/τL be
the rate of transfer between the n larval latent stages, Li , i = 1, . . . , n.Let L1(0) = L0
be the initial number of larvae in stage L1 and zero in the remaining stages. Then the
transitions are L1 → L2 → · · · → Ln → N . The differential equations for these
stages with no deaths are

dL1

dt
= −r L1

dL2

dt
= r L1 − r L2

...
dLn

dt
= r Ln−1 − r Ln
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Fig. 12 Erlang distribution for different values of n and τ (Color figure online)

dN

dt
= r Ln .

Solving the system of equations leads to Ln(t) = L0rn−1tn−1e−r t/(n−1)!. Thus, the
probability that a larva at the n stage enters the nymph stage at time t without dying
is r Ln(t)/L0, which equals

rntn−1e−r t

(n − 1)! , t > 0.

The preceding expression defines the probability density of the gamma distribution or
more specifically, since the number of latent stages is a positive integer, it is an Erlang
distribution with mean n/r = τL and variance n/r2 = τ 2L/n. Figure 12 presents an
illustration of the convergence of the Erlang distribution to the Dirac delta distribution
as n increases.

Appendix B: More on Parameters

Weassume the average number of eggs deposited is 3000 eggs per female tick (Lindsay
et al. 1995). The experiment conducted by Lindsay et al. (1995) was a combination
of field study and lab data. The average number of eggs laid per female ticks was
determined by counting the eggs after being deposited. We assume that half of the
population of adult ticks are females. Thus, we expect an average of 1500 eggs per
adult tick. Next, we calculate the value of Ab in Eq. (11) so that the average birth rate
bT during the period of 90 days in the spring equals 1500. That is,

1

90

∫ 90

0
Ab

[

(
√
2 + 2) sin

( π

180
(t + 45)

)
− (

√
2 + 1)

]

dt = 1500

Ab

∫ 90

0

[

(
√
2 + 2) sin

( π

180
(t + 45)

)
− (

√
2 + 1)

]

dt = 135, 000

Ab

(
360(1 + √

2)

π
− 90(1 + √

2)

)

= 135, 000
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Ab = 135, 000π

(360 − 90π)(1 + √
2)

Ab ≈ 2273.9035.

We assume the average feeding rate of larvae on a mouse is 27.8 larva
mouse·day as in

reference LoGiudice et al. (2003). To find the value of Al , we set the average value of
βL(t) during the summer (when it is non-zero) to the average feeding rate. Thus,

1

90

∫ 180

90
Al

[

(
√
2 + 2) sin

( π

180
(t − 45)

)
− (

√
2 + 1)

]

dt = 27.8

Al

∫ 180

90

[

(
√
2 + 2) sin

( π

180
(t − 45)

)
− (

√
2 + 1)

]

dt = 27.8 · 90

Al

(
360(1 + √

2)

π
− 90(1 + √

2)

)

= 27.8 · 90

Al = 27.8 · 90π
(360 − 90π)(1 + √

2)

Al ≈ 42.1430.

Calculation of An and Aa are similarly defined as Al , except that feeding occurs in
the spring and fall, respectively. The average feeding rate for nymph is 2.5 nymph

mouse·day as
given in reference Ogden et al. (2005) and for adults it is 239 adult

deer·day as in reference
LoGiudice et al. (2003). This results in the following formulas for An and Aa :

1

90

∫ 90

0
An

[

(
√
2 + 2) sin

( π

180
(t + 45)

)
− (

√
2 + 1)

]

dt = 2.5

An

∫ 90

0

[

(
√
2 + 2) sin

( π

180
(t + 45)

)
− (

√
2 + 1)

]

dt = 2.5 · 90

An

(
360(1 + √

2)

π
− 90(1 + √

2)

)

= 2.5 · 90

An = 2.5 · 90π
(360 − 90π)(1 + √

2)

An ≈ 3.7898

and

1

90

∫ 270

180
Aa

[

(
√
2 + 2) sin

( π

180
(t − 135)

)
− (

√
2 + 1)

]

dt = 239

Aa

∫ 270

180

[

(
√
2 + 2) sin

( π

180
(t − 135)

)
− (

√
2 + 1)

]

dt = 239 · 90

Aa

(
360(1 + √

2)

π
− 90(1 + √

2)

)

= 239 · 90
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Aa = 239 · 90π
(360 − 90π)(1 + √

2)

Aa ≈ 362.3086.

The average mouse litter size is about 4.5 mice (Centers for Disease Control and
Prevention (CDC) 2023). A female mouse has an average of 3 litters per year (Centers
for Disease Control and Prevention (CDC) 2023). Assuming that half of the mice
population is female, the birth rate for mice is bM = 4.5·3

2·360 = 0.01875 day−1, where
we divide by 360 to get a daily rather than a yearly rate. The mouse population density
varies significantly, and reaches a maximum of approximately 12,000 mice per square
kilometer (Vessey 1987). Thus, we choose K = 150, as this value results in an average
density of about 10,000 mice at the carrying capacity (Fig. 5).

Appendix C: Next GenerationMatrix

To calculate the basic reproduction number for the ODE model with n latent stages,
the next generation matrix approach (van den Driessche and Watmough 2002; Wang
and Zhao 2008) is applied. Two matrices, F and V , need to be calculated from the
system of the infected stages L I

1, . . . , L
I
n, N

I , and MI at the disease-free solution.
For the autonomous ODE, the value ofR0 is the spectral radius of the next generation
matrix FV−1,R0 = ρ(FV−1). Matrix F represents new infections and matrix V all
other transitions.

For the case n = 2, we let r2 = 2
τL

with matrices F and V defined as follows:

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0
βL FL L∗

mLM∗ + L∗
0 0 0 0
0 0 0 0

0 0
βMFNM∗

mNM∗ + N∗ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and

V =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

μL + r1 0 0 0
−r1 μL + r2 0 0

0 −r2
FNM∗

mNM∗ + N∗ + μN 0

0 0 0 d + dDM∗

K

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Applying these two matrices, the next generation matrix FV−1 for the autonomous
ODE equals
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Table 5 Autonomous ODE and DDE disease-free equilibria based on the average parameter values in
Table 1

ODE n stages L N S A M

2 1.665888479 × 107 1.279694563 × 107 1.488740226 × 106 9135.795

10 1.520073663 × 107 1.275092712 × 107 1.485237124 × 106 9135.795

100 1.482789479 × 107 1.273914913 × 107 1.484423091 × 106 9135.795

DDE 1.478528600 × 107 1.273779958 × 107 1.484332029 × 106 9135.795

⎛

⎜
⎜
⎜
⎝

0 0 0 βL FL L∗K
(mL M∗+L∗)(dDM∗+dK )

0 0 0 0
0 0 0 0

βM FN M∗r22
(μN (mN M∗+N∗)+FN M∗)(μL+r2)2

βM FN M∗r2
(μN (mN M∗+N∗)+FN M∗)(μL+r2)

βM FN M∗
μN (mN M∗+N∗)+FN M∗ 0

⎞

⎟
⎟
⎟
⎠

and R0 = ρ(FV−1) is the square root of the expression in (20) for n = 2. The case
n = 2 can be easily generalized to n larval stages by increasing the upper left 3 × 2
matrices in F and V to (n+1)×n to account for the n stages of L I

1 through L I
n . Thus,

for n latent stages, F and V will have dimension (n + 2) × (n + 2).
Only four disease-free values are required to calculate R0, (L∗, N∗, A∗, M∗) =

(L, NS, A, MS). They can be found by setting all of the infected variables in the
differential equations equal to zero. For the autonomous case, they can be calculated
using the softwareMaple. The values for the disease-free equilibria for the autonomous
ODE and DDE models are found in Table 5. The periodic disease-free solutions can
be calculated numerically using MATLAB. See the disease-free periodic solution for
the nonautonomous ODE model with n = 100 latent stages in Fig. 13.

To ensure that the next generation matrix technique for the autonomous ODE with
constant parameters can be applied, several assumptions must be verified (van den
Driessche and Watmough 2002; Wang and Zhao 2008). The five conditions (A1)–
(A5) are straightforward to verify for the autonomous ODE (e.g., (A5) is the stability
of the DFE) (van den Driessche and Watmough 2002). For the nonautonomous ODE
with periodic coefficients, there are seven conditions (A1)–(A7). The first five are
apparent (Wang and Zhao 2008). Conditions (A6) and (A7) require showing that for
the system linearized about the disease-free solution (Fig. 13, n = 100 latent stages),
dX/dt = M(t)X , X(0) = Id and dY/dt = −VY , Y (0) = Id are stable (Id is an
identity matrix). That is, the fundamental matrices, ΦM (ω) and Φ−V (ω), must satisfy
ρ(ΦM (ω)) < 1 and ρ(Φ−V (ω)) < 1 (ω = 360). The spectral radii were calculated
numerically and found to satisfy the required conditions, ρ(ΦM (ω)) < 0.39 and
ρ(Φ−V (ω)) < 0.2 for latent stages n = 2, 10 and 100.

Appendix D: Nonautonomous ODEwith n = 2 and 10 Latent Stages

Figure 14 is a graph of the ODE solutions for n = 2 and 10 latent stages. These graphs
can be compared with the ODE solution for n = 100 in Fig. 5.
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Fig. 13 Autonomous ODE disease-free periodic solution for n = 100 latent stages

Fig. 14 Nonautonomous ODE solutions with n = 2 or 10 latent stages. Baseline parameters are given in
Table 1 and initial conditions are L(0) = 1000, N (0) = 100, A(0) = 20, M(0) = 10, MI (0) = 2, with all
other initial conditions set to zero. Plots of larvae and adults over time are the stages L and A (Color figure
online)
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