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1. Introduction

Graph coloring has been well-studied in mathematics since the eighteenth century and 
has widespread applications in day-to-day life, including scheduling problems, register 
allocation, radio frequency assignments and sudoku solutions [25]. Traditionally, the 
coloring of a graph refers to an assignment of labels (called colors) to the vertices of a 
graph such that no two adjacent vertices share the same color. The chromatic number 
of a graph is defined to be the minimum number of colors for which such an assignment 
is possible.

More recently, a quantum generalization of the chromatic number was introduced 
within the framework of non-local games in quantum information theory [6]. The quan-
tum chromatic number of a graph is defined as the minimal number of colors necessary in 
a quantum protocol in which two separated players, who cannot communicate with each 
other but share an entangled quantum state, try to convince an interrogator with cer-
tainty that they have a coloring for the given graph. There are known examples of graphs 
whose quantum chromatic number is strictly smaller than its classical chromatic number 
[22,6], thus exhibiting the power of quantum entanglement. Quantum chromatic num-
ber of classical graphs have close connections to Tsirelson’s conjecture and the Connes 
embedding problem and have been extensively studied in the past decade [28,22,27,26]. 
In general, computing the chromatic number of a graph is an NP-hard problem. How-
ever, several lower bounds on the (quantum) chromatic number have been shown using 
spectral graph theory [14]. In this paper, we are interested in generalizing these spectral 
bounds to the setting of quantum graphs and estimating the quantum chromatic number 
of a quantum graph.

Quantum graphs are a non-commutative generalization of classical graphs that have 
attracted significant attention in recent years due to their intriguing connections with sev-
eral areas of mathematics, physics and computer science. They first appeared in [11], and 
have independently emerged in other disguises thereafter. In information theory, quan-
tum graphs were introduced as a quantum analogue of the confusability graph of classical 
channels [10]. Another definition was proposed in the context of quantum relations [33], 
which describes a quantum graph as a reflexive and symmetric quantum relation on 
a finite dimensional von-Neumann algebra. In [23], an equivalent perspective on quan-
tum graphs was developed in a categorical framework for quantum functions, using a 
quantum adjacency matrix, and was further generalized in [3]. In recent years, research 
in quantum graph theory has undergone vast developments and quantum graphs have 
been explored in the context of zero-error quantum information theory, quantum error 
correction, operator algebras, non-local games, quantum symmetries, non-commutative 
topology and other fields [4,7,32,17,21,15,8]. In particular, there have been multiple stud-
ies on the coloring of quantum graphs [24,18,29,5,30] leading to different variants of the 
chromatic number of a quantum graph, in both the classical and quantum sense.

One recent approach developed in [5] defines the coloring of a quantum graph using 
a two-player non-local game involving quantum inputs and classical outputs. This game 
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generalizes the coloring game for classical graphs [6] and introduces chromatic numbers 
of a quantum graph in different mathematical models: loc, q, qa, qc, C∗, hered, alg. It was 
shown that the chromatic numbers defined in this framework agree nicely with other 
versions in the literature [22,29,18], and also lead to a four-coloring theorem for quantum 
graphs in the algebraic model. We adopt this formalism of quantum graph coloring in 
the present paper.

The goal of this paper is to obtain bounds for the quantum chromatic number of 
quantum graphs. Chromatic numbers of quantum graphs are closely related to the zero-
error capacity of quantum channels [10]. Hence, estimating these numbers is useful for 
the development of zero-error quantum communication. In [14], the authors proved many 
lower bounds on the quantum chromatic number of classical graphs using an algebraic 
characterization of graph coloring. We extend their results to the setting of quantum 
graphs using a combinatorial definition of quantum graph coloring developed in [5]. Our 
approach uses the quantum adjacency matrix, defined in [23,3], to associate a spectrum 
with the given quantum graph. We use this spectrum and techniques adapted from [14]
to achieve spectral estimates for the quantum chromatic number of quantum graphs. 
Our methods can also be readily adapted to the infinite dimensional setting, and yield 
lower bounds for the chromatic number in the quantum commuting model. Along the 
process, we naturally get lower bounds for the classical chromatic numbers of quantum 
graphs since the classical chromatic number is greater than or equal to the quantum 
chromatic number

Our main result can be summarized as follows:

Theorem 1.1. Let G = (M, ψ, A, S) be an irreflexive quantum graph, and let χq(G) denote 
the quantum chromatic number of G. Then,

1 + max
{

λmax

|λmin| ,
dim(S)

dim(S) − dim(M)γmin
,

s±

s∓ ,
n±

n∓ ,
λmax

λmax − γmax + θmax

}
≤ χq(G).

Specifically, we prove that Hoffman’s bound [16] holds in the case of quantum graphs. 
We also introduce quantum analogues for the edge number, inertia, Laplacian and sign-
less Laplacian of a quantum graph along the way. Further, we demonstrate the tightness 
of all the bounds in the case of irreflexive complete quantum graphs.
Our paper is organized as follows: Section §2 provides the necessary background on 
quantum graphs and the connections between different perspectives. We also review the 
notion of quantum graph coloring and chromatic numbers in this section. Section §3
introduces the spectrum of a quantum graph and develops algebraic results connecting 
the quantum adjacency operator to quantum graph coloring. In section §4, we prove 
the spectral lower bounds listed in Theorem 1.1 for the quantum chromatic numbers of 
quantum graphs. We conclude with an illustration of the bounds in the case of complete 
quantum graphs in section §5. The appendix §A presents a table translating the different 
definitions of quantum graphs.
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2. Preliminaries

In this section, we review some definitions and results on quantum graphs and quan-
tum coloring which will be required for our discussion. We begin by listing some notations 
used in the paper.

2.1. Notations

• [n] denotes the discrete set {1, 2, . . . , n}.
• |·〉 denotes a column vector, while 〈·| denotes its conjugate transpose.
• Mn denotes the set of all n × n complex matrices.
• eij denotes the matrix whose ith row - jth column has entry 1 and all other entries 

are 0.
• Tr denotes the natural trace, given by summing all diagonal terms of a matrix.
• B(H) denotes the algebra of bounded linear operators on a Hilbert space H.
• If T is a subset of an algebra A, then the commutant of T is denoted by T ′ = {a ∈

A : at = ta, ∀ t ∈ T }.
• The spectrum of an operator A is denoted by σ(A).
• G denotes a classical graph, χ(G) denotes the classical chromatic number of G and 

χq(G) denotes the quantum chromatic number of G.

2.2. Quantum graphs as operator spaces

Quantum graphs can be defined in different ways, as mentioned in the introduction. 
One way to describe them is as operator spaces satisfying a certain bimodule property 
[33]. This approach is commonly used for studying quantum coloring problems. We 
discuss this formalism here:

Definition 2.1. Let M be a finite dimensional (non-degenerate) von Neumann algebra, 
represented on a finite dimensional Hilbert space H. A quantum graph on M ⊆ B(H)
is an operator space S ⊆ B(H) that is closed under adjoint and is a bimodule over the 
commutant of M, that is M′SM′ ⊆ S. We denote this quantum graph by the tuple 
G = (S, M, B(H)).

Motivated by confusability graphs in information theory, quantum graphs are gener-
ally assumed to be reflexive (I ∈ S) and hence, S is an operator system in B(H). But for 
the purposes of graph coloring, we will only consider irreflexive quantum graphs, that is 
quantum analogues of graphs without loops. Before we begin, recall that

Definition 2.2. A quantum graph (S, M, B(H)) is said to be irreflexive if S ⊆ (M′)⊥. 
Here ⊥ denotes the orthogonal complement with respect to the (unnormalized) trace 
inner product 〈x, y〉 = Tr(y∗x) on B(H).
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In particular, an irreflexive quantum graph on Mn (with the standard representation 
Mn = B(Cn)) is simply a self-adjoint traceless operator subspace in Mn. This is some-
times used as the definition of non-commutative graphs in the literature [29].
It can be shown that the operator space S associated to a quantum graph (S, M, B(H))
is essentially independent of the representation of M [31]. The intuition is that S contains 
operators that represent edges in the graph, as illustrated by the following example.

Example 2.3. Let G be a classical graph on n vertices. One can identify the vertex set 
of G with the algebra of diagonal matrices Dn ⊆ Mn, by identifying each vertex i with 
the diagonal matrix eii ∈ Dn. Then, SG = span{eij : (i, j) is an edge in G} ⊆ Mn is a 
quantum graph over Dn.

Remark 2.4. Any quantum graph over Dn is necessarily of the form SG for some classical 
graph G [33]. Also, two reflexive classical graphs G1, G2 are isomorphic if and only if 
their corresponding operator systems SG1 , SG2 are unitally completely order isomorphic 
[24].

A “purely quantum” example is the following one:

Example 2.5. Let M = M2 and S =
{[

a b
c a

]
: a, b, c ∈ C

}
. Then (S, M2, B(C2)) is a 

quantum graph on M2 that doesn’t arise from any classical graph.

2.3. Quantum graphs with a quantum adjacency matrix

In this paper, we take advantage of an alternate (but equivalent) definition of a quan-
tum graph, which involves quantizing the vertex set and the adjacency matrix. This 
formalism was first introduced in [23] using the language of special symmetric dagger 
Frobenius algebras, and was later generalized to the non-tracial case in [3,21]. In this 
perspective, the non-commutative analogue of a vertex set is played by a C*-algebra, 
which also carries the structure of a Hilbert space. It is defined as follows:

Definition 2.6 (Quantum set). A quantum set is a pair (M, ψ), where M is a finite 
dimensional C*-algebra and ψ : M → C is a faithful state.

Using ψ, one can view M as a Hilbert space L2(M) = L2(M, ψ) obtained from the 
GNS representation of M with respect to ψ. That is, L2(M) is the vector space M
equipped with the inner product 〈x, y〉 = ψ(y∗x).

Let m : M ⊗M → M denote the multiplication map and m∗ denote the adjoint of m
when viewed as a linear operator from L2(M) ⊗ L2(M) → L2(M). Further, we denote 
the unit of M by 1 and let η : C → M be the unit map λ �→ λ1. The adjoint of η (as an 
operator on Hilbert spaces) is denoted by η∗ and is equal to ψ. While there are many 
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choices for a faithful state ψ on M, we will restrict our attention to δ-forms, as done in 
[3].

Definition 2.7. For δ > 0, a state ψ : M → C is called a δ-form if mm∗ = δ2I.

Example 2.8. Let X be a finite set and M = C(X) be the algebra of complex valued 
functions on X. Then the uniform measure ψ(f) = 1

|X|
∑

x∈X f(x) is a δ-form on C(X)
with δ2 = |X|. In this case, m∗ is given by ei �→ |X|(ei ⊗ei), where ei is the characteristic 
function on the set {i} ⊆ X.

Example 2.9. Let M be Mn equipped with the canonical normalized trace ψ = 1
n Tr. 

Then m∗(eij) = n 
∑n

k=1 eik ⊗ ekj , and ψ is an n-form on Mn.

The δ-forms in the above examples are tracial, that is ψ(xy) = ψ(yx) for all x, y ∈ M. 
A tracial δ-form on a finite dimensional C*-algebra is unique and has a nice form, which 
will be used in later sections. We recall this now:

Proposition 2.10 ([2]). Let M be a finite dimensional C*-algebra, decomposed as M ∼=⊕N
i=1 Mni

, where N, n1, n2, . . . , nN are some positive integers. Then, there exists a 
unique tracial δ-form on M given by

ψ = 1
dim(M)

N⊕
i=1

ni Tr(·) (2.3.1)

In this case, δ2 = dim(M) and the state ψ is called the Plancheral trace. Moreover, 
ψ = 1

dim(M) Tr |M, where Tr : B(L2(M)) → C is the canonical trace.

A quantum set endowed with an additional structure of a quantum adjacency matrix 
yields a quantum graph.

Definition 2.11 ([3]). Let M be a finite dimensional C*-algebra equipped with a δ-form 
ψ. A self-adjoint linear map A : L2(M) → L2(M) is called a quantum adjacency matrix
if it satisfies the following conditions:

1. m(A ⊗ A)m∗ = δ2A,
2. (I ⊗ η∗m)(I ⊗ A ⊗ I)(m∗η ⊗ I) = A.

The tuple G = (M, ψ, A) is called an (undirected) quantum graph.
The quantum graph (M, ψ, A) is said to be reflexive if it further satisfies the condition 

m(A ⊗I)m∗ = δ2I or is said to be irreflexive if it satisfies the condition m(A ⊗I)m∗ = 0.

The motivation for the above definition comes from the commutative setting where 
M = C(X) and ψ is the uniform measure on X. In this case, the quantum adjacency 
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matrix A : L2(M) → L2(M) can be identified with a matrix in M|X|(C), and the 
operation δ−2m(P ⊗ Q)m∗ is simply the schur product of the matrices P and Q, given 
by entrywise multiplication. So, the first condition in Definition 2.11 says that A must 
be an idempotent with respect to Schur multiplication, which is equivalent to saying 
that A has entries in {0, 1}. The second condition says A = AT . If we drop the second 
condition in Definition 2.11, it is called a directed quantum graph [4].

Remark 2.12. The self-adjointness of A along with condition (2) in Definition 2.11 implies 
that A is also *-preserving [21], that is Ax∗ = (Ax)∗ for all x ∈ M.

Every quantum set can be easily equipped with an adjacency operator to obtain a 
quantum graph. An example is the complete quantum graph.

Definition 2.13. Let (M, ψ) be a quantum set. A reflexive complete quantum graph on 
M is defined by A = δ2ψ(·)1. In the classical case, this gives the all 1s matrix and 
corresponds to the reflexive complete graph on dim(M) vertices.

An irreflexive complete quantum graph on (M, ψ) is defined by A = δ2ψ(·)1 − I.

There are several non-trivial examples of quantum graphs. In particular, [21] gives a 
concrete classification of all undirected reflexive quantum graphs on M2, and [15] gives 
an example of a quantum graph, which is not quantum isomorphic to any classical graph.

2.4. Translation between different perspectives of quantum graphs

The two definitions of quantum graphs given in 2.1 and 2.11 can be shown to be 
equivalent [23], using a bijective correspondence between linear operators on L2(M)
and elements in M ⊗ Mop. A detailed proof for the correspondence between different 
definitions of quantum graphs may be found in [23,20,8]. We summarize this connection 
below:

1. Given a quantum graph (M, ψ, A), define a linear operator P on B(L2(M)) as

P (X) = δ−2m(A ⊗ X)m∗. (2.4.1)

Then, S:= range(P ) is a self-adjoint operator subspace in B(L2(M)) that is a bi-
module over M′.

2. Given a quantum graph (S, (M, ψ), B(L2(M)) ), let P : B(L2(M)) → B(L2(M))
denote a self-adjoint M′−M′ bimodule projection on B(L2(M)) with range(P ) = S.
That is, P (axb) = aP (x)b, for all x ∈ B(L2(M)), a, b ∈ M′ and P 2 = P = P ∗, 
where the adjoint is taken with respect to the trace inner product on B(L2(M)). 
(Such a P always exists and is unique for the given S [31].)
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Then, A : L2(M) → L2(M) defined by

A(x) = δ2(ψ ⊗ I)P (x ⊗ 1) (2.4.2)

is a quantum adjacency matrix on (M, ψ).

Remark 2.14. In (2.4.2) P is interpreted as an element of M ⊗ Mop using the following 
well-known *-isomorphism in finite dimensions [12]:

M ⊗ Mop ∼= M′CBM′(B(L2(M))), given by

x ⊗ yop ←→ x(·)y.

Here, Mop denotes the opposite algebra of M and M′CBM′(B(L2(M))) denotes the set 
of completely bounded maps P on B(L2(M)) with the property P (axb) = aP (x)b, for 
all x ∈ B(L2(M)), a, b ∈ M′. An infinite dimensional version of this result can be found 
in [12].

The expressions (2.4.1) and (2.4.2) are inverses of each other, which will be discussed 
in more detail in Proposition 3.1.

In general, the correspondence between the self-adjoint operator space S and linear op-
erators A is not one-one since there are several different M′ −M′ bimodule idempotents 
P with the same range S. However, there is a unique self-adjoint quantum adjacency 
matrix A for a given S, which corresponds to the unique orthogonal bimodule projec-
tion onto S. In this case, A is also completely positive, which was used as an alternate 
definition of quantum adjacency matrix in [7].

2.5. Chromatic number of quantum graphs

In this section, we review a notion of quantum graph coloring that was developed in [5]
using a two-player quantum-to-classical nonlocal game, generalizing the coloring game 
for classical graphs [6]. The inputs for the quantum graph coloring game are elements 
from a suitably chosen basis for the graph operator space (known as quantum edge 
basis) and the outputs are classical color assignments. The inputs are quantum in the 
sense that they are tensor product states, where one player receives the left leg of the 
tensor and the other player receives the right leg. The players win the game if their 
responses jointly satisfy a synchronicity condition and respect the adjacency structure 
of the quantum graph. We refer the reader to [5] for more details on the game, and for 
the results presented in this section.

Using the winning strategies for the quantum graph coloring game, the chro-
matic number of a quantum graph can be defined in different mathematical models: 
loc, q, qa, qc, C∗, hered, alg. In this paper, we will restrict our discussion to the classical 
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(loc), quantum (q) and quantum commuting (qc) chromatic numbers. We begin with re-
calling an algebraic definition of quantum graph coloring that arises from the non-local 
game in [5].

Definition 2.15 ( [5]). Let G = (S, M, B(H)) be an irreflexive quantum graph. We say 
that there is a c-coloring of G if there exists a finite von-Neumann algebra N with a 
faithful normal trace and projections {Pa}c

a=1 ⊆ M ⊗ N such that

1. P 2
a = Pa = P ∗

a , for 1 ≤ a ≤ c,
2.

∑c
i=1 Pa = IM⊗N ,

satisfying the following condition:

Pa(X ⊗ IN )Pa = 0, ∀X ∈ S and 1 ≤ a ≤ c. (2.5.1)

If dim(N ) = 1, we call it a classical (loc) coloring of G and if dim(N ) < ∞, we call it 
a quantum (q) coloring of G. More generally, when N is a finite von-Neumann algebra 
(possibly infinite dimensional), it is called a quantum commuting (qc) coloring of G.

The projections {Pa}c
a=1 are obtained from the winning strategies of the non-local 

quantum graph coloring game. In particular, when M = Dn, we recover the usual 
classical and quantum coloring of classical graphs on n vertices.

Definition 2.16 ( [5]). Let G = (S, M, B(H)) be an irreflexive quantum graph. The 
quantum chromatic number of G is defined to be the least c such that there exists a c-
coloring of G in the sense of Definition 2.15, with dim(N ) < ∞. We denote this quantum 
chromatic number by χq(G). Moreover, when dim(N ) = 1, it is called the classical
chromatic number χ(G) = χloc(G) and when dim(N ) = ∞, it is called the quantum 
commuting chromatic number χqc(G).

It was shown in [5] that every quantum graph G = (S, M, Mn) has a finite quantum 
coloring and χq(G) ≤ dim(M). Further, for all quantum graphs G, we have

χqc(G) ≤ χq(G) ≤ χ(G). (2.5.2)

Also, if (S, M, Mn) and (T, M, Mn) are two quantum graphs such that S ⊆ T , then 
χt(S, M, Mn) ≤ χt(T, M, Mn), where t ∈ {loc, q, qc}.

Example 2.17. Let G be a classical graph on n vertices and G = (SG, Dn, Mn) be the 
quantum graph associated with G, as in Example 2.3. Then,

χ(G) = χ(G) and χq(G) = χq(G). (2.5.3)
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Example 2.18. For complete quantum graphs, the quantum chromatic number is the full 
dimension of the quantum vertex set. That is, χq(Mn, M, Mn) = dim(M).

Remark 2.19. Indeed, χ(Mn, M, Mn) < ∞ if and only if M is abelian. In particular, if 
M is non-abelian, then χ(Mn, M, Mn) �= χq(Mn, M, Mn).

It is also useful to note that Definition 2.16 is a special case of Stahlke’s entanglement-
assisted chromatic number [29]. Also, when N = C, it is equivalent to Kim & Mehta’s 
strong chromatic numbers of non-commutative graphs [18].

3. Use of quantum adjacency matrix in coloring

While Definition 2.1 was used in [5] for developing the chromatic number of quantum 
graphs, Definition 2.11 offers the advantage of associating a spectrum to the quantum 
graph, which is useful for estimating these chromatic numbers. We begin with the fol-
lowing result, which will be used to obtain a quantum adjacency operator for defining 
the spectrum.

Proposition 3.1. Let M be a finite dimensional C*-algebra equipped with its tracial δ-
form ψ. There is a bijective correspondence between linear operators A on L2(M) and 
M′ − M′ bimodule linear operators P on B(L2(M)), given as follows:

A : L2(M) → L2(M) ←→ P : B(L2(M)) → B(L2(M))

A(·) = δ2(ψ ⊗ I)P ((·) ⊗ 1) ←→ P (·) = 1
δ2 m(A ⊗ (·))m∗. (3.0.1)

This correspondence has the following property:

1
δ2 m(A ⊗ A)m∗ = A ⇐⇒ P 2 = P.

Proof. Let Mop denote the opposite algebra of M. It was shown in [23] that there is a 
bijective correspondence between linear operators A : L2(M) → L2(M) and elements 
p =

∑t
i=1 xi ⊗ yi ∈ M ⊗ Mop, given by

A(·) = δ2(ψ ⊗ I)p((·) ⊗ 1) = δ2
t∑

i=1
ψ(xi (·))yi, and p = 1

δ2 (A ⊗ I)m∗(1), (3.0.2)

with the property that 1
δ2 m(A ⊗ A)m∗ = A ⇐⇒ p2 = p.

Since M is finite dimensional, elements p =
∑t

i=1 xi ⊗yi ∈ M ⊗Mop are *-isomorphic 
to M′ − M′ bimodule maps Pp on B(L2(M)), given by Pp(·) =

∑t
i=1 xi(·)yi discussed 

in Remark 2.14.
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So, the bijective correspondence between A and p in (3.0.2) may be rewritten as a 
bijective correspondence between A and Pp as follows:

A(·) = δ2(ψ ⊗ I)Pp((·) ⊗ 1), and Pp(·) = 1
δ2

N∑
i=1

(Aui)(·)(u∗
i ), (3.0.3)

where {u1, u2, . . . uN } is a basis for L2(M) such that m∗(1) =
∑N

i=1 ui ⊗ u∗
i .

The expression for Pp in (3.0.3) can be reformulated as P (·) = 1
δ2 m(A ⊗ (·))m∗. To 

see this, take any X ∈ B(L2(M)) and ξ ∈ L2(M). Then,

Pp(X)ξ = 1
δ2

N∑
i=1

(Aui)X(u∗
i )ξ = 1

δ2

N∑
i=1

(Aui)X(u∗
i ξ)

= 1
δ2

N∑
i=1

m(Aui ⊗ X(u∗
i ξ))

= 1
δ2

N∑
i=1

m(A ⊗ X)(ui ⊗ (u∗
i ξ))

= 1
δ2 m(A ⊗ X)(

N∑
i=1

ui ⊗ (u∗
i ξ))

= 1
δ2 m(A ⊗ X)(m∗ξ)

= 1
δ2 m(A ⊗ X)m∗(ξ)

= P (X)(ξ)

Thus, we get the desired bijective correspondence between linear operators A : L2(M) →
L2(M), elements p ∈ M ⊗ Mop and M′ − M′ bimodule linear maps P : B(L2(M)) →
B(L2(M)), with the property that

1
δ2 m(A ⊗ A)m∗ = A ⇐⇒ p2 = p ⇐⇒ P 2 = P. �

We now introduce the spectrum of a quantum graph as follows:

Definition 3.2. Let M be a finite dimensional C*-algebra equipped with its tracial δ-
form ψ, and let G = (S, M, B(L2(M, ψ))) be an undirected1 quantum graph on (M, ψ). 
The spectrum of G is defined to be the spectrum of the quantum adjacency operator A, 
defined by

1 Here, undirected simply means S is closed under adjoint. Alternately, PS is *-preserving.
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A = δ2(ψ ⊗ I)PS(I ⊗ 1), (3.0.4)

where PS is the orthogonal M′ − M′ bimodule projection onto S.

Note that A is self-adjoint and so, the spectrum of an undirected quantum graph is 
real.

Convention 1. For the remainder of this paper, M denotes a finite dimensional C*-
algebra equipped with its tracial δ-form ψ, as given in 2.10. We assume that our quantum 
graph (S, M, B(L2(M, ψ))) is irreflexive. Further, A always refers to the unique self-
adjoint quantum adjacency matrix associated with S. We denote this quantum graph by 
G = (M, ψ, A, S).

We now show the connection between quantum adjacency matrix and quantum graph 
coloring by generalizing some algebraic results in [14] to the quantum graph setting. The 
following lemma proves that “pinching” operation annihilates the quantum adjacency 
matrix and leaves the commutant of the quantum vertex set invariant.

Lemma 3.3. Let G = (M, ψ, A, S) be an irreflexive quantum graph. If {Pk}c
k=1 ⊆ M ⊗N

is an arbitrary c-coloring of G in the sense of Definition 2.15, then

c∑
k=1

Pk(A ⊗ IN )Pk = 0, (3.0.5)

c∑
k=1

Pk(E ⊗ IN )Pk = E ⊗ IN , ∀E ∈ M′. (3.0.6)

Proof. We first show that A ∈ S. Recall that A is given by (3.0.4), using the orthogonal 
M′ −M′ bimodule projection PS onto S. By Proposition 3.1, PS(·) = δ−2m(A ⊗ (·))m∗. 
Since P 2

S = PS , in particular PS(A) = δ−2m(A ⊗ A)m∗ = A by Proposition 3.1. So, 
A ∈ range(PS) = S. Now, by (2.5.1), we get that 

∑c
k=1 Pk(A ⊗ IN )Pk = 0.

Equation (3.0.6) follows from the fact that the projections Pk ∈ M ⊗ N commute with 
E ⊗ IN ∈ M′ ⊗ N ′, and 

∑c
k=1 Pk = IM⊗N . �

The next lemma is a corresponding result for the “twirling” operation.

Lemma 3.4. Suppose G = (M, ψ, A, S) is an irreflexive quantum graph and {Pk}c
k=1 ⊆

M ⊗ N is a c-coloring of G in the sense of Definition 2.15. Define U :=
∑c

l=1 ωlPl, 
where ω = e2πi/c is a cth root of unity. Then,

c∑
k=1

Pk(X ⊗ IN )Pk = 1
c

c∑
k=1

Uk(X ⊗ IN )(U∗)k, ∀ X ∈ B(L2(M)). (3.0.7)

In particular,
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c∑
k=1

Uk(A ⊗ IN )(U∗)k = 0, (3.0.8)

c∑
k=1

Uk(E ⊗ IN )(U∗)k = c (E ⊗ IN ), ∀E ∈ M′. (3.0.9)

Proof. Note that U∗ =
∑c

l=1 ω−lPl since {Pl}c
l=1 are self-adjoint. Also, the kth power of 

U is given by

Uk =
c∑

l=1

ωlkPl

as the projections {Pl}c
l=1 are mutually orthogonal, that is PiPj = 0 if i �= j. Now, for 

X ∈ B(L2(M)), we obtain:

c∑
k=1

Uk(X ⊗ IN )(U∗)k =
c∑

k=1

c∑
l,l′=1

ω(l−l′)kPl(X ⊗ IN )Pl′

=
c∑

l,l′=1

(
c∑

k=1

ω(l−l′)k)Pl(X ⊗ IN )Pl′

=
c∑

l,l′=1

(c δl,l′)Pl(X ⊗ IN )Pl′ ,

where δl,l′ denotes the Krönecker delta

= c
c∑

l=1

Pl(X ⊗ IN )Pl

Hence, we get the result. The rest follows from Lemma 3.3. �
Next, we note some obvious properties of A ⊗ IN for future reference.

Proposition 3.5. Suppose G = (M, ψ, A, S) is an irreflexive quantum graph and 
{Pk}c

k=1 ⊆ M ⊗N is an arbitrary c-quantum coloring of G. Assume that 2 ≤ dim(M) <
∞ and N ⊆ B(H) for some Hilbert space H, with dim(H) = d.

Define Ã = A ⊗ IN . Then

1. Ã is self-adjoint and has real eigenvalues.
2. The spectrum of Ã has the same elements as the spectrum of A, but each with a 

multiplicity of d. In particular, the largest and smallest eigenvalue of Ã coincide 
with the largest and smallest eigenvalue of A, respectively.

3. Ã =
∑c

a,b=1 PaÃPb.
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4. Ã can be expressed as a block partitioned matrix 

⎡⎢⎢⎢⎣
Â11 Â12 . . . Â1c

Â21 Â22 . . . Â2c

...
...

...
...

Âc1 Âc2 . . . Âcc

⎤⎥⎥⎥⎦, such that 

Âii = 0 for all i ∈ [c]. In particular, Tr(A) = 1
d

Tr(Ã) = 0.

Proof. The first two statements are evident since A is self-adjoint and tensoring with 
identity only produces more copies of the same eigenvalues. The third statement follows 
from the fact that 

∑c
k=1 Pk = IM⊗N .

To see the last statement, note that Ã can be interpreted as a giant matrix over 
complex numbers as M and N are finite dimensional. Choose an orthonormal basis for 
L2(M) ⊗H such that all the projections Pk are represented as diagonal matrices. Identify 
Âab with the matrix PaÃPb. Then, we get the desired block partition. From (3.0.5), it 
follows that Âii = 0 for 1 ≤ i ≤ c. �
4. Spectral lower bounds for χq(G) and χ(G)

In this section, we obtain spectral lower bounds for the quantum chromatic number 
of quantum graphs, generalizing results from [14]. Since χqc(G) ≤ χq(G) ≤ χ(G) [5], our 
estimates are also lower bounds for the classical chromatic number of quantum graphs.
Our spectral bounds for an undirected quantum graph G = (M, ψ, A, S) can be summa-
rized as follows:

1 + max
{

λmax

|λmin| ,
dim(S)

dim(S) − dim(M)γmin
,

s±

s∓ ,
n±

n∓ ,
λmax

λmax − γmax + θmax

}
≤ χqc(G) ≤ χq(G) ≤ χ(G). (4.0.1)

Here, λmax, λmin denote the maximum and minimum eigenvalues of A; s+, s− denote 
the sum of the squares of the positive and negative eigenvalues of A respectively; 
n+, n− are the number of positive and negative eigenvalues of A including multiplici-
ties; γmax, γmin denote the maximum and minimum eigenvalues of the signless Laplacian 
operator (Definition 4.6); and θmax denotes the maximum eigenvalue of the Laplacian 
operator (Definition 4.6).

The key ingredient in proving these bounds is Lemma 3.3 and 3.4, which holds true 
across the classical (loc), quantum (q) and quantum-commuting (qc) coloring models. 
With these, the proof of the corresponding bounds for classical graphs can essentially be 
adapted to our setting. For the sake of concreteness, we prove our results in the quantum 
coloring framework (dim(N ) < ∞). However, by using an infinite dimensional version 
of Proposition 3.5 (dim(N ) = ∞), all the bounds can be directly transferred to the 
quantum commuting chromatic numbers as well.
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Throughout our discussion, we follow convention 1. So, A always refers to the unique 
self-adjoint quantum adjacency matrix associated with (S, M, B(L2(M, ψ))), as in 
(3.0.4).

4.1. Hoffman’s bound

One of the well-known spectral bounds in graph theory is the Hoffman’s bound [16]. 
This is a lower bound on the chromatic number of a graph using the largest and smallest 
eigenvalues of the adjacency matrix. The classical bound is as follows: If G is an irreflexive 
classical graph whose adjacency matrix A has eigenvalues λmax = λ1 ≥ λ2 ≥ . . . ≥ λn =
λmin, then

1 + λmax

|λmin| ≤ χ(G). (4.1.1)

We can prove a quantum version of this bound using the following result from linear 
algebra.

Lemma 4.1. Let A be a self-adjoint matrix, block partitioned as 

⎡⎢⎢⎣
A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

...
...

An1 An2 . . . Ann

⎤⎥⎥⎦. 

Then,

(n − 1)λmin(A) + λmax(A) ≤
n∑

i=1
λmax(Aii),

where λmax(·) and λmin(·) represent the maximum and minimum eigenvalues of that 
matrix.

Proof. We start with the case n = 2.
Let x =

[
x1
x2

]
be a normalized eigenvector (‖x1‖2+‖x2‖2 = 1) corresponding to λmax(A). 

Define y =
[ ‖x2‖

‖x1‖ x1

−‖x1‖
‖x2‖ x2

]
. Then, we have

λmax(A) + λmin(A) ≤ 〈x| A |x〉 + 〈y| A |y〉 = 〈x1| A11 |x1〉
‖x1‖2 + 〈x2| A22 |x2〉

‖x2‖2

≤λmax(A11) + λmax(A22).

The general case follows by induction on n. �
The generalization of Hoffman’s bound to quantum graphs is as follows:



366 P. Ganesan / Linear Algebra and its Applications 674 (2023) 351–376
Theorem 4.2. Let G = (M, ψ, A, S) be an irreflexive quantum graph and λmax = λ1 ≥
λ2 ≥ . . . ≥ λdim(M) = λmin be all the eigenvalues of A. Then

1 + λmax

|λmin| ≤ χq(G). (4.1.2)

Proof. Let {Pk}c
k=1 ⊆ M ⊗ N be a c-quantum coloring of G and Ã = A ⊗ IN . Partition 

Ã as [Âab]ca,b=1, as in Proposition 3.5. Applying Lemma 4.1, we get

(c − 1)λmin(Ã) + λmax(Ã) ≤
c∑

i=1
λmax(Âii). (4.1.3)

But Âii = 0 for all 1 ≤ i ≤ c. Hence equation (4.1.3) reduces to

(c − 1)λmin(Ã) + λmax(Ã) ≤ 0.

By Proposition 3.5, we have λmin(Ã) = λmin(A) and λmax(Ã) = λmax(A). So, we get 
(c − 1)λmin(A) + λmax(A) ≤ 0. On rearranging and taking minimum over all c, we get

1 + λmax(A)
|λmin(A)| ≤ χq(G). �

4.2. Lower bound using edge number

In this section, we prove a spectral lower bound on the quantum chromatic number 
using a quantum analogue for the number of edges in the graph.

For a classical graph G with n vertices and m edges, it was shown [9] that

1 + 2m

2m − nγmin
≤ χ(G), (4.2.1)

where γmin is the minimum eigenvalue of the signless Laplacian of G. To prove a gener-
alization of this bound to arbitrary quantum graphs (M, ψ, A, S), we first introduce a 
quantum analogue for m, n and γmin.

Recall that the degree matrix for classical graphs is a diagonal matrix obtained from 
the action of the adjacency matrix on the all 1s vector. This can be extended to quantum 
graphs as follows:

Definition 4.3. Let G = (M, ψ, A, S) be a quantum graph and 1 denote the unit in M. 
Then the quantum degree matrix of G is a linear operator D ∈ B(L2(M)) given by

D : M −→ M as x �→ x(A1), ∀x ∈ M.

In other words, D can be interpreted as A1 ∈ M viewed as an element of B(L2(M))
under the right regular representation.
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Remark 4.4. The definition D = A1 was also used in [7] and [21]. The only difference in 
our case is that we view D under the right regular representation, instead of the usual 
left regular representation of M. The advantage of using right regular representation is 
that D then belongs to M′.

Our next goal is to define a quantum analogue for the “number of edges” in the graph. 
To do that, we need the following result:

Proposition 4.5. Let M be a finite dimensional C*-algebra, equipped with its tracial δ-
form ψ. If (M, ψ, A, S) is a quantum graph with degree matrix D, then,

Tr(D) = δ2ψ(A1) = dim(S). (4.2.2)

Proof. Let PS : B(L2(M)) → B(L2(M)) denote the orthogonal bimodule projection 
onto S. We can express PS as an element 

∑t
i=1 xi⊗yop

i ∈ M ⊗Mop, such that PS(a ⊗b) =∑t
i=1 xia ⊗ byi, for all a, b ∈ M using the correspondence mentioned in Remark 2.14. 

Now, A = δ2(ψ ⊗ I)PS(I ⊗ η) implies

A(1) = δ2(ψ ⊗ I)PS(1 ⊗ 1) = δ2(ψ ⊗ I)(
t∑

i=1
xi ⊗ yi) = δ2

t∑
i=1

ψ(xi)yi. (4.2.3)

Thus,

ψ(A1) = ψ(δ2
t∑

i=1
ψ(xi)yi) = δ2

t∑
i=1

ψ(xi)ψ(yi)

= δ2
t∑

i=1
〈xi, 1〉 〈yi, 1〉

= δ2
t∑

i=1
〈xi ⊗ yi, 1 ⊗ 1〉 = δ2

〈
t∑

i=1
xi ⊗ yi, 1 ⊗ 1

〉
= δ2 〈PS , I〉 , when viewed as operators on B(L2(M))

= δ2 Tr(PS)
dim(B(L2(M)))

= dim(M) dim(S)
dim(M)2 = dim(S)

dim(M)

where we have used the fact that ψ is a tracial state and δ2 = dim(M). Also, the trace 
on B(L2(M)) restricted to M (or M′ by symmetry) is just dim(M)ψ. So,

Tr(D) = dim(M) ψ(A1).

Hence, Tr(D) = dim(S). �
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We now define quantum analogues of some classical quantities:

Definition 4.6. Let G = (M, ψ, A, S) be an irreflexive quantum graph with degree matrix 
D.

1. The quantum vertex number for G is defined to be dim(M).

2. The quantum edge number for G is defined to be 
Tr(D)

2 = dim(S)
2 .

3. The Laplacian of G is the linear operator L = D − A ∈ B(L2(M)).
4. The signless Laplacian of G is the linear operator Q = D + A ∈ B(L2(M)).

For a classical irreflexive graph G = (V, E), these definitions clearly coincide with the 
usual values. In particular, if G = (SG, D|V |, M|V |), then the quantum vertex number is 
|V | and the quantum edge number is |E| since 2|E| =

∑
v∈V deg(v) = Tr(D).

Remark 4.7. The quantum edge number need not be an integer in general. But for most 
purposes, we will only need 2m = Tr(D) = dim(S).

We are now ready to prove a quantum version of the spectral bound in (4.2.1).

Theorem 4.8. Let G = (M, ψ, A, S) be an irreflexive quantum graph. Then

1 + 2m

2m − nγmin
≤ χq(G), (4.2.4)

where m is the quantum edge number, n is the quantum vertex number and γmin is the 
minimum eigenvalue of the signless Laplacian of G, in the sense of Definition 4.6. More 
precisely,

1 + dim(S)
dim(S) − dim(M)γmin

≤ χq(G). (4.2.5)

Proof. Let {Pk}c
k=1 ⊆ M ⊗ N be a c-quantum coloring of G and let U be defined as 

in Lemma 3.4. Then, (3.0.8) can be rearranged as U c(A ⊗ IN )(U∗)c = − 
∑c−1

k=1 Uk(A ⊗
IN )(U∗)k. Using D − Q = −A and U c = IM⊗N , we get

A ⊗ IN =
c−1∑
k=1

Uk((D − Q) ⊗ IN )(U∗)k

=
c−1∑
k=1

Uk(D ⊗ IN )(U∗)k −
c−1∑
k=1

Uk(Q ⊗ IN )(U∗)k

= (D ⊗ IN )
c−1∑

Uk(U∗)k −
c−1∑

Uk(Q ⊗ IN )(U∗)k
k=1 k=1
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= (c − 1)(D ⊗ IN ) −
c−1∑
k=1

Uk(Q ⊗ IN )(U∗)k

where we have used the fact that D ∈ M′ and hence D⊗IN commutes with U ∈ M ⊗N . 
Let N be represented in some B(H) and let u denote a unit vector in H such that 
〈u, u〉 = 1. Further, let |ξ〉 = 1 ⊗ u denote a column vector in L2(M) ⊗ H and 〈ξ| denote 
its corresponding conjugate row vector. Multiplying the left and right most sides of the 
above equation by 〈ξ| from the left and by |ξ〉 from the right, we obtain

〈ξ| A ⊗ IN |ξ〉 = (c − 1) 〈ξ| D ⊗ IN |ξ〉 −
c−1∑
k=1

〈ξ| Uk(Q ⊗ IN )(U∗)k |ξ〉 . (4.2.6)

Now, 〈ξ| A ⊗ IN |ξ〉 = 〈1, A1〉 〈u, u〉 = ψ((A1)∗) = ψ(A1) = dim(S)
dim(M) , where we use the 

*-preserving property of A (Remark 2.12) and Proposition 4.5. Similarly, 〈ξ|D ⊗IN |ξ〉 =
dim(S)
dim(M) . To estimate the last term, recall that eigenvalues are invariant under unitary 

conjugation and tensoring with identity only changes their multiplicity. So,

γmin = min
{

〈w| Q |w〉 : w ∈ L2(M), 〈w, w〉 = 1
}

= min
{

〈v|Q ⊗ IN |v〉 : v ∈ L2(M) ⊗ H, 〈v, v〉 = 1
}

= min
{

〈v|Uk(Q ⊗ IN )(U∗)k|v〉 : v ∈ L2(M) ⊗ H, 〈v, v〉 = 1
}

≤ 〈ξ|Uk(Q ⊗ IN )(U∗)k|ξ〉, ∀k ∈ [c].

Hence, (4.2.6) leads to

dim(S)
dim(M) ≤ (c − 1) dim(S)

dim(M) − (c − 1)γmin, (4.2.7)

which upon rearranging yields 1 + dim(S)
dim(S) − dim(M)γmin

≤ c. Taking minimum over all 

c, we get the desired bound. �
4.3. Bound using the sum of square of eigenvalues

In [1], it was proved that for a classical graph G,

1 + max
{

s+

s− ,
s−

s+

}
≤ χ(G), (4.3.1)

where s+ is the sum of the squares of the positive eigenvalues of the adjacency matrix 
and s− is the sum of the squares of its negative eigenvalues. In this section, we show 
that the above bound also works in the setting of quantum graphs. We first recall the 
following result from linear algebra, whose proof can be found in [1].
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Lemma 4.9. Let X = [Xij ]ri,j and Y = [Yij ]ri,j be two positive semidefinite matrices 
conformally partitioned. If Xii = Yii for 1 ≤ i ≤ r and XY = 0, then Tr(X∗X) ≤
(r − 1) Tr(Y ∗Y ).

We now adapt the proof of the classical bound in [1] to the quantum case.

Theorem 4.10. Let G = (M, ψ, A, S) be an irreflexive quantum graph and λ1 ≥ λ2 ≥
. . . ≥ λdim(M) be all the eigenvalues of A. Let s+ =

∑
λi>0(λi)2 and s− =

∑
λi<0(λi)2. 

Then,

1 + max
{

s+

s− ,
s−

s+

}
≤ χq(G). (4.3.2)

Proof. Let {Pk}c
k=1 ⊆ M ⊗ N be a c-quantum coloring of G. Further, let Ã = A ⊗ IN

and let μ1 ≥ μ2 ≥ . . . ≥ μt be all the eigenvalues of Ã. Consider a spectral decomposition 
of Ã,

Ã =
t∑

i=1
μi(viv

∗
i ), where vi ∈ L2(M) ⊗ H, (4.3.3)

and write Ã = B̃ − C̃, where

B̃ =
∑
μi>0

μi(viv
∗
i ) C̃ =

∑
μi<0

−μi(viv
∗
i ). (4.3.4)

Suppose N ⊆ B(H) for some Hilbert space H. Then,

Tr(B̃∗B̃) =
∑
μi>0

μ2
i = dim(H) s+ and Tr(C̃∗C̃) =

∑
μi<0

μ2
i = dim(H) s−. (4.3.5)

Partition Ã as [Âab]ca,b=1 as in Proposition 3.5. Similarly, let

B̃ = [B̂ab]ca,b=1 =
c∑

a,b=1

PaB̃Pb and C̃ = [Ĉab]ca,b=1 =
c∑

a,b=1

PaC̃Pb.

Now, B and C are positive semidefinite matrices that are conformally partitioned. Fur-
ther, B̂ii = Ĉii since 0 = PiÃPi = PiB̃Pi − PiC̃Pi for all 1 ≤ i ≤ c. Also B̃C̃ = C̃B̃ = 0. 

So, by Lemma 4.9 and (4.3.5), it follows that s+

s− ≤ c − 1 and 
s−

s+ ≤ c − 1. Taking 

minimum over all c, we get 1 + max
{

s+

− ,
s−

+

}
≤ χq(G). �
s s
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4.4. Inertial lower bound

In this section, our goal is to generalize the following inertial bound [13] to quantum 
graphs:

1 + max
{

n+

n− ,
n−

n+

}
≤ χ(G), (4.4.1)

where (n+, n0, n−) is the inertia of G. We begin with defining the inertia of a quantum 
graph:

Definition 4.11. Let G = (M, ψ, A, S) be a quantum graph and λ1 ≥ λ2 ≥ . . . ≥ λdim(M)
denote the eigenvalues of A. The inertia of G is the ordered triple (n+, n0, n−), where 
n+, n0 and n− are the numbers of positive, zero and negative eigenvalues of A including 
multiplicities.

Theorem 4.12. Let G = (M, ψ, A, S) be an irreflexive quantum graph with inertia 
(n+, n0, n−). Then,

1 + max
{

n+

n− ,
n−

n+

}
≤ χq(G). (4.4.2)

Proof. Let {Pk}c
k=1 ⊆ M ⊗ N be a c-quantum coloring of G. Let U be defined as in 

Lemma 3.4 and Ã, B̃ and C̃ be defined as in the proof of Theorem 4.10. Then, we have

c−1∑
k=1

UkB̃(U∗)k −
c−1∑
k=1

UkC̃(U∗)k =
c−1∑
k=1

UkÃ(U∗)k = −Ã = C̃ − B̃. (4.4.3)

Note that B̃ and C̃ are positive definite operators with rank(B̃) = n+ and rank(C̃) =
n−. Further let

P + =
∑
μi>0

viv
∗
i and P − =

∑
μi<0

viv
∗
i

denote the orthogonal projectors onto the subspaces spanned by the eigenvectors cor-
responding to the positive and negative eigenvalues of Ã respectively. Observe that 
B̃ = P +ÃP + and C̃ = −P −ÃP −. Multiplying (4.4.3) by P − on both sides, we ob-
tain:

P −
c−1∑
k=1

UkB̃(U∗)kP − − P −
c−1∑
k=1

UkC̃(U∗)kP − = C (4.4.4)

Now we use the fact that if X, Y are two positive definite matrices such that X − Y

is positive definite, then rank(X) ≥ rank(Y ). By applying this to (4.4.4), we get
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rank(P −
c−1∑
k=1

UkB̃(U∗)kP −) ≥ rank(C).

Recall that the rank of a sum is less than or equal to the sum of the ranks of the 
summands, and that the rank of a product is less than or equal to the minimum of 
the ranks of the factors. So, we get (c − 1)n+ ≥ n−. Similarly, it can be shown that 

(c − 1)n− ≥ n+. Hence, max
{

n+

n− ,
n−

n+

}
≤ c − 1. Taking minimum over all c, we get the 

desired bound. �
4.5. Bound using maximum eigenvalue of the Laplacian and signless Laplacian

Let L and Q denote the Laplacian and signless Laplacian of G = (M, ψ, A, S) in the 
sense of Definition 4.6. Further, let λmax, θmax and γmax denote the largest eigenvalue of 
A, L and Q respectively. Then

1 + λmax

λmax − γmax + θmax
≤ χq(G). (4.5.1)

Like the previous cases, this bound can also be shown by adapting the classical proof 
[19] and applying Lemma 3.4.

5. Illustration

In this section, we illustrate the tightness of these bounds in the case of complete 
quantum graphs. Let KM denote the irreflexive complete quantum graph on (M, ψ). 
The quantum adjacency matrix in this case is given by A = δ2ψ(·)1 − I. For x ∈ M, we 
have

A(x) = δ2ψ(x)1 − I

= (dim M) 〈x, 1〉 1 − I

= (dim M)P1(x) − I,

where P1 : M → M denotes the orthogonal projection onto 1, given by x �→ 〈x, 1〉 1. 
Since P1 is a rank-1 projection, its spectrum is precisely {0, 1}, where 0 has a multiplicity 
of dim(M) − 1. Using functional calculus, we get

σ(A) = {dim(M) − 1, −1}, (5.0.1)

where −1 has a multiplicity of dim(M) − 1. Similarly, we get

σ(Q) = {2 dim(M) − 2, dim(M) − 2}, (5.0.2)
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where dim(M) − 2 has a multiplicity of dim(M) − 1, and

σ(L) = {dim(M), 0}, (5.0.3)

where dim(M) has a multiplicity of dim(M) − 1.
Thus, for an irreflexive complete quantum graph, we have:

• λmax = dim M − 1, λmin = −1
• γmax = 2 dim(M) − 2, γmin = dim M − 2
• θmax = dim M
• s+ = (dim(M) − 1)2, s− = dim(M) − 1
• n+ = 1, n− = dim(M) − 1
• 2m = dim(M)2 − dim(M)

On applying these to Theorem 1.1, we see that all the five spectral bounds give the same 
result, namely:

dim(M) ≤ χq(KM). (5.0.4)

The reverse inequality χq(KM) ≤ dim(M) was proved in [5], and χq(KM) = dim(M). 
So, we conclude that all the bounds in Theorem 1.1 are tight in the case of complete 
quantum graphs.

6. Conclusion and future directions

In this work, we have shown that several spectral lower bounds for the chromatic 
number of classical graphs are also lower bounds for the classical, quantum and quantum-
commuting chromatic numbers of quantum graphs. We believe that quantum graph 
spectral theory is a promising field of study. As a next step, it would be interesting 
to find bounds that exhibit a separation between the different variants of chromatic 
numbers of quantum graphs. Alternatively, investigating examples of quantum graphs 
that show a separation between these spectral bounds would also be helpful. We hope 
to explore these in a future work.
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Appendix A

Let M be a finite dimensional C*-algebra, equipped with its tracial δ-form ψ. The 
properties of a quantum graph on M ⊆ B(L2(M, ψ)) in the different perspectives is 
summarized in the following table.

Here, p =
∑t

i=1 ai ⊗ bi ∈ M ⊗Mop and m, σ denote the multiplication map and swap 
map on M ⊗ Mop respectively. Further, H = L2(M, ψ), T ∈ B(L2(M)), ξ ∈ L2(M)
and x, y ∈ M′.

property classical 
graph

S ⊆
B(H)

p ∈ M ⊗ Mop A : M → M P : B(H) → B(H)

Bimodule 
structure

Relations
on a set

M′SM′ ⊆
S

∑
i ai(xT y)bi =

x(
∑

i aiT bi)y
m(A ⊗ xT y)m∗ =
x(m(A ⊗ T )m∗)y

P (xT y) = xP (T )y

Schur
idempotent

A ∈
Mn({0, 1})

A ∈ S p2 = p m(A ⊗ A)m∗ = δ2A P 2 = P

Reflexive I ∈ SG M′ ⊆ S m(p) = 1 m(A ⊗ I)m∗ = δ2I P (I) = I

Irreflex-
ive

I /∈ SG M′ ⊥ S m(p) = 0 m(A ⊗ I)m∗ = 0 P (I) = 0

Undi-
rected

A = AT S = S∗ σ(p) = p (I ⊗η∗m)(I ⊗A ⊗I)
(m∗η ⊗ I) = A
Alternatively, 
A(ξ∗) = [A∗(ξ)]∗

P ∗(T ) = P (T ∗)∗,
(* denotes adjoint as an 
operator on Hilbert 
spaces)

Self 
adjoint

A = A∗ σ(p) = p∗ A(ξ) = A∗(ξ) P (T ∗) = P (T )∗

Real A = A p∗ = p A(ξ∗) = (A(ξ))∗ P ∗(T ) = P (T )
Positivity A is C.P p is positive 

(i.e. p = g∗g)
A is completely
positive (C.P)

P is positive
(i.e. P = G∗G)

In particular, for undirected quantum graphs:

P 2 = P = P ∗ ⇐⇒ p2 = p = p∗

⇐⇒ A is Schur-idempotent and real

⇐⇒ A is Schur-idempotent and self-adjoint.
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