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1. Introduction

Graph coloring has been well-studied in mathematics since the eighteenth century and
has widespread applications in day-to-day life, including scheduling problems, register
allocation, radio frequency assignments and sudoku solutions [25]. Traditionally, the
coloring of a graph refers to an assignment of labels (called colors) to the vertices of a
graph such that no two adjacent vertices share the same color. The chromatic number
of a graph is defined to be the minimum number of colors for which such an assignment
is possible.

More recently, a quantum generalization of the chromatic number was introduced
within the framework of non-local games in quantum information theory [6]. The quan-
tum chromatic number of a graph is defined as the minimal number of colors necessary in
a quantum protocol in which two separated players, who cannot communicate with each
other but share an entangled quantum state, try to convince an interrogator with cer-
tainty that they have a coloring for the given graph. There are known examples of graphs
whose quantum chromatic number is strictly smaller than its classical chromatic number
[22,6], thus exhibiting the power of quantum entanglement. Quantum chromatic num-
ber of classical graphs have close connections to Tsirelson’s conjecture and the Connes
embedding problem and have been extensively studied in the past decade [28,22,27,26].
In general, computing the chromatic number of a graph is an NP-hard problem. How-
ever, several lower bounds on the (quantum) chromatic number have been shown using
spectral graph theory [14]. In this paper, we are interested in generalizing these spectral
bounds to the setting of quantum graphs and estimating the quantum chromatic number
of a quantum graph.

Quantum graphs are a non-commutative generalization of classical graphs that have
attracted significant attention in recent years due to their intriguing connections with sev-
eral areas of mathematics, physics and computer science. They first appeared in [11], and
have independently emerged in other disguises thereafter. In information theory, quan-
tum graphs were introduced as a quantum analogue of the confusability graph of classical
channels [10]. Another definition was proposed in the context of quantum relations [33],
which describes a quantum graph as a reflexive and symmetric quantum relation on
a finite dimensional von-Neumann algebra. In [23], an equivalent perspective on quan-
tum graphs was developed in a categorical framework for quantum functions, using a
quantum adjacency matrix, and was further generalized in [3]. In recent years, research
in quantum graph theory has undergone vast developments and quantum graphs have
been explored in the context of zero-error quantum information theory, quantum error
correction, operator algebras, non-local games, quantum symmetries, non-commutative
topology and other fields [4,7,32,17,21,15,8]. In particular, there have been multiple stud-
ies on the coloring of quantum graphs [24,18,29,5,30] leading to different variants of the
chromatic number of a quantum graph, in both the classical and quantum sense.

One recent approach developed in [5] defines the coloring of a quantum graph using
a two-player non-local game involving quantum inputs and classical outputs. This game
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generalizes the coloring game for classical graphs [6] and introduces chromatic numbers
of a quantum graph in different mathematical models: loc, q, qa, gc, C*, hered, alg. It was
shown that the chromatic numbers defined in this framework agree nicely with other
versions in the literature [22,29,18], and also lead to a four-coloring theorem for quantum
graphs in the algebraic model. We adopt this formalism of quantum graph coloring in
the present paper.

The goal of this paper is to obtain bounds for the quantum chromatic number of
quantum graphs. Chromatic numbers of quantum graphs are closely related to the zero-
error capacity of quantum channels [10]. Hence, estimating these numbers is useful for
the development of zero-error quantum communication. In [14], the authors proved many
lower bounds on the quantum chromatic number of classical graphs using an algebraic
characterization of graph coloring. We extend their results to the setting of quantum
graphs using a combinatorial definition of quantum graph coloring developed in [5]. Our
approach uses the quantum adjacency matrix, defined in [23,3], to associate a spectrum
with the given quantum graph. We use this spectrum and techniques adapted from [14]
to achieve spectral estimates for the quantum chromatic number of quantum graphs.
Our methods can also be readily adapted to the infinite dimensional setting, and yield
lower bounds for the chromatic number in the quantum commuting model. Along the
process, we naturally get lower bounds for the classical chromatic numbers of quantum
graphs since the classical chromatic number is greater than or equal to the quantum
chromatic number

Our main result can be summarized as follows:

Theorem 1.1. Let G = (M, 1), A, S) be an irreflexive quantum graph, and let x4(G) denote
the quantum chromatic number of G. Then,

1 + max { Amax ) = dim.(S) , i, ﬁ, Amzx } < Xq(9).
[Amin|  dim(S) — dim(M)ymin~ sT 2F " Anax — Ymax + Omaz

Specifically, we prove that Hoffman’s bound [16] holds in the case of quantum graphs.
We also introduce quantum analogues for the edge number, inertia, Laplacian and sign-
less Laplacian of a quantum graph along the way. Further, we demonstrate the tightness
of all the bounds in the case of irreflexive complete quantum graphs.
Our paper is organized as follows: Section §2 provides the necessary background on
quantum graphs and the connections between different perspectives. We also review the
notion of quantum graph coloring and chromatic numbers in this section. Section §3
introduces the spectrum of a quantum graph and develops algebraic results connecting
the quantum adjacency operator to quantum graph coloring. In section §4, we prove
the spectral lower bounds listed in Theorem 1.1 for the quantum chromatic numbers of
quantum graphs. We conclude with an illustration of the bounds in the case of complete
quantum graphs in section §5. The appendix §A presents a table translating the different
definitions of quantum graphs.
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2. Preliminaries

In this section, we review some definitions and results on quantum graphs and quan-
tum coloring which will be required for our discussion. We begin by listing some notations
used in the paper.

2.1. Notations

e [n] denotes the discrete set {1,2,...,n}.

¢ |-) denotes a column vector, while (-| denotes its conjugate transpose.

e M, denotes the set of all n x n complex matrices.

e ¢;; denotes the matrix whose it" row - j*" column has entry 1 and all other entries
are 0.

o Tr denotes the natural trace, given by summing all diagonal terms of a matrix.

o B(H) denotes the algebra of bounded linear operators on a Hilbert space H.

o If T is a subset of an algebra A, then the commutant of T is denoted by T" = {a €
A:at=ta, VYt €T}

e The spectrum of an operator A is denoted by o(A).

e G denotes a classical graph, x(G) denotes the classical chromatic number of G and
Xq(G) denotes the quantum chromatic number of G.

2.2. Quantum graphs as operator spaces

Quantum graphs can be defined in different ways, as mentioned in the introduction.
One way to describe them is as operator spaces satisfying a certain bimodule property
[33]. This approach is commonly used for studying quantum coloring problems. We
discuss this formalism here:

Definition 2.1. Let M be a finite dimensional (non-degenerate) von Neumann algebra,
represented on a finite dimensional Hilbert space H. A quantum graph on M C B(H)
is an operator space S C B(#) that is closed under adjoint and is a bimodule over the
commutant of M, that is M’SM’ C S. We denote this quantum graph by the tuple
G = (S,M,B(H)).

Motivated by confusability graphs in information theory, quantum graphs are gener-
ally assumed to be reflexive (I € S) and hence, S is an operator system in B(H). But for
the purposes of graph coloring, we will only consider irreflexive quantum graphs, that is
quantum analogues of graphs without loops. Before we begin, recall that

Definition 2.2. A quantum graph (S, M, B(H)) is said to be irreflezive if S C (M')*.
Here L denotes the orthogonal complement with respect to the (unnormalized) trace
inner product (x,y) = Tr(y*z) on B(H).
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In particular, an irreflexive quantum graph on M,, (with the standard representation
M,, = B(C")) is simply a self-adjoint traceless operator subspace in M,,. This is some-
times used as the definition of non-commutative graphs in the literature [29].

It can be shown that the operator space S associated to a quantum graph (S, M, B(H))
is essentially independent of the representation of M [31]. The intuition is that S contains
operators that represent edges in the graph, as illustrated by the following example.

Example 2.3. Let G be a classical graph on n vertices. One can identify the vertex set
of G with the algebra of diagonal matrices D,, C M, by identifying each vertex i with
the diagonal matrix e; € D,,. Then, Sg = spcm{eij : (4,7) is an edge in G} C M,, is a
quantum graph over D,,.

Remark 2.4. Any quantum graph over D, is necessarily of the form Sg for some classical
graph G [33]. Also, two reflexive classical graphs G1,G2 are isomorphic if and only if
their corresponding operator systems Sg,, Sg, are unitally completely order isomorphic
[24).

A “purely quantum” example is the following one:

Example 2.5. Let M = M, and S = ¢ 2 ta,b,c € C}. Then (S, My, B(C?)) is a

quantum graph on Ms that doesn’t arise from any classical graph.
2.8. Quantum graphs with a quantum adjacency matriz

In this paper, we take advantage of an alternate (but equivalent) definition of a quan-
tum graph, which involves quantizing the vertex set and the adjacency matrix. This
formalism was first introduced in [23] using the language of special symmetric dagger
Frobenius algebras, and was later generalized to the non-tracial case in [3,21]. In this
perspective, the non-commutative analogue of a vertex set is played by a C*-algebra,
which also carries the structure of a Hilbert space. It is defined as follows:

Definition 2.6 (Quantum set). A quantum set is a pair (M, ), where M is a finite
dimensional C*-algebra and ¢ : M — C is a faithful state.

Using 1, one can view M as a Hilbert space L?(M) = L?(M, 1)) obtained from the
GNS representation of M with respect to v. That is, L?(M) is the vector space M
equipped with the inner product (x,y) = ¥ (y*z).

Let m : M ® M — M denote the multiplication map and m* denote the adjoint of m
when viewed as a linear operator from L?*(M) ® L*(M) — L?(M). Further, we denote
the unit of M by 1 and let  : C — M be the unit map A — AL. The adjoint of 1 (as an
operator on Hilbert spaces) is denoted by n* and is equal to ¥. While there are many
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choices for a faithful state ¢ on M, we will restrict our attention to é-forms, as done in

[3].
Definition 2.7. For § > 0, a state 1) : M — C is called a §-form if mm* = 6%1.

Example 2.8. Let X be a finite set and M = C(X) be the algebra of complex valued
functions on X. Then the uniform measure ¢(f) = |)1(\ > zex f(x) is a 0-form on C'(X)
with 62 = | X|. In this case, m* is given by e; — | X|(e; ®e;), where e; is the characteristic
function on the set {i} C X.

Example 2.9. Let M be M, equipped with the canonical normalized trace ¢ = %Tr.
Then m*(e;;) = ”ZZ:1 eik @ exj, and ¢ is an n-form on M,,.

The §-forms in the above examples are tracial, that is ¥ (xy) = ¥ (yx) for all z,y € M.
A tracial 6-form on a finite dimensional C*-algebra is unique and has a nice form, which
will be used in later sections. We recall this now:

Proposition 2.10 (/2]). Let M be a finite dimensional C*-algebra, decomposed as M =
@f\il M,,, where N,ni,ns,...,nn are some positive integers. Then, there exists a
unique tracial 0-form on M given by

EBm Ti(- (2.3.1)

dzm

In this case, 62 = dim(M) and the state 1) is called the Plancheral trace. Moreover,
Y= m Tr | o, where Tr : B(L?(M)) — C is the canonical trace.

A quantum set endowed with an additional structure of a quantum adjacency matrix
yields a quantum graph.

Definition 2.11 (/3/). Let M be a finite dimensional C*-algebra equipped with a J-form
. A self-adjoint linear map A : L2(M) — L?(M) is called a quantum adjacency matriz
if it satisfies the following conditions:

1. m(A® A)ym* = §%A4,
2. IenmIoAx)(mneI)=A.

The tuple G = (M, 1), A) is called an (undirected) quantum graph.
The quantum graph (M, v, A) is said to be reflezive if it further satisfies the condition
m(A®I)m* = §%I or is said to be irreflexive if it satisfies the condition m(A® I)m* = 0.

The motivation for the above definition comes from the commutative setting where
M = C(X) and 9 is the uniform measure on X. In this case, the quantum adjacency
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matrix A : L*(M) — L?*(M) can be identified with a matrix in Mx|(C), and the
operation 6 ~2m (P ® Q)m* is simply the schur product of the matrices P and Q, given
by entrywise multiplication. So, the first condition in Definition 2.11 says that A must
be an idempotent with respect to Schur multiplication, which is equivalent to saying
that A has entries in {0,1}. The second condition says A = AT, If we drop the second
condition in Definition 2.11, it is called a directed quantum graph [4].

Remark 2.12. The self-adjointness of A along with condition (2) in Definition 2.11 implies
that A is also *-preserving [21], that is Az* = (Ax)* for all z € M.

Every quantum set can be easily equipped with an adjacency operator to obtain a
quantum graph. An example is the complete quantum graph.

Definition 2.13. Let (M, 1)) be a quantum set. A reflexive complete quantum graph on
M is defined by A = §%(-)1. In the classical case, this gives the all 1s matrix and
corresponds to the reflexive complete graph on dim(M) vertices.

An irreflerive complete quantum graph on (M, 1)) is defined by A = §2¢(-)1 — I.

There are several non-trivial examples of quantum graphs. In particular, [21] gives a
concrete classification of all undirected reflexive quantum graphs on My, and [15] gives
an example of a quantum graph, which is not quantum isomorphic to any classical graph.

2.4. Translation between different perspectives of quantum graphs

The two definitions of quantum graphs given in 2.1 and 2.11 can be shown to be
equivalent [23], using a bijective correspondence between linear operators on L2(M)
and elements in M ® M°P. A detailed proof for the correspondence between different
definitions of quantum graphs may be found in [23,20,8]. We summarize this connection
below:

1. Given a quantum graph (M, 1), A), define a linear operator P on B(L?*(M)) as
P(X)=6"*m(A® X)m*. (2.4.1)

Then, S:= range(P) is a self-adjoint operator subspace in B(L?(M)) that is a bi-
module over M.

2. Given a quantum graph (S, (M,), B(L*(M)) ), let P : B(L*(M)) — B(L*(M))
denote a self-adjoint M’ — M’ bimodule projection on B(L?(M)) with range(P) = S.
That is, P(azb) = aP(z)b, for all z € B(L*(M)), a,b € M’ and P?> = P = P*,
where the adjoint is taken with respect to the trace inner product on B(L?(M)).
(Such a P always exists and is unique for the given S [31].)
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Then, A : L>(M) — L*(M) defined by
Alz) =*(p @ I)P(zr®1) (2.4.2)
is a quantum adjacency matrix on (M, ).

Remark 2.14. In (2.4.2) P is interpreted as an element of M ® M°P using the following
well-known *-isomorphism in finite dimensions [12]:

M@ M?P = \,CBuyy (B(L*(M))), given by

x Q@ yP +— z()y.

Here, M°P denotes the opposite algebra of M and ryC' B (B(L?(M))) denotes the set
of completely bounded maps P on B(L?*(M)) with the property P(azb) = aP(x)b, for
all z € B(L?*(M)), a,b € M’. An infinite dimensional version of this result can be found
in [12].

The expressions (2.4.1) and (2.4.2) are inverses of each other, which will be discussed
in more detail in Proposition 3.1.

In general, the correspondence between the self-adjoint operator space S and linear op-
erators A is not one-one since there are several different M’ — M’ bimodule idempotents
P with the same range S. However, there is a unique self-adjoint quantum adjacency
matrix A for a given .S, which corresponds to the unique orthogonal bimodule projec-
tion onto S. In this case, A is also completely positive, which was used as an alternate
definition of quantum adjacency matrix in [7].

2.5. Chromatic number of quantum graphs

In this section, we review a notion of quantum graph coloring that was developed in [5]
using a two-player quantum-to-classical nonlocal game, generalizing the coloring game
for classical graphs [6]. The inputs for the quantum graph coloring game are elements
from a suitably chosen basis for the graph operator space (known as quantum edge
basis) and the outputs are classical color assignments. The inputs are quantum in the
sense that they are tensor product states, where one player receives the left leg of the
tensor and the other player receives the right leg. The players win the game if their
responses jointly satisfy a synchronicity condition and respect the adjacency structure
of the quantum graph. We refer the reader to [5] for more details on the game, and for
the results presented in this section.

Using the winning strategies for the quantum graph coloring game, the chro-
matic number of a quantum graph can be defined in different mathematical models:
loc, q,qa,qc, C*, hered, alg. In this paper, we will restrict our discussion to the classical
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(loc), quantum (¢) and quantum commuting (gc) chromatic numbers. We begin with re-
calling an algebraic definition of quantum graph coloring that arises from the non-local
game in [5].

Definition 2.15 ( [5]). Let G = (S, M, B(H)) be an irreflexive quantum graph. We say
that there is a c-coloring of G if there exists a finite von-Neumann algebra A with a
faithful normal trace and projections {P,}¢_; € M ® N such that

1. P2=P, =P forl1<a<cg,
2. 2521 P, :IM®N7

satisfying the following condition:
P (X®@IN)P,=0,¥VX €Sand1<a<ec (2.5.1)

If dim(N) = 1, we call it a classical (loc) coloring of G and if dim(N') < oo, we call it
a quantum (q) coloring of G. More generally, when N is a finite von-Neumann algebra
(possibly infinite dimensional), it is called a quantum commuting (gc) coloring of G.

The projections {P,}¢_; are obtained from the winning strategies of the non-local
quantum graph coloring game. In particular, when M = D,,, we recover the usual
classical and quantum coloring of classical graphs on n vertices.

Definition 2.16 ( [5]). Let G = (S, M, B(#H)) be an irreflexive quantum graph. The
quantum chromatic number of G is defined to be the least ¢ such that there exists a c-
coloring of G in the sense of Definition 2.15, with dim(N) < oo. We denote this quantum
chromatic number by x,(G). Moreover, when dim(N) = 1, it is called the classical
chromatic number x(G) = Xi0e(G) and when dim(N) = oo, it is called the quantum
commuting chromatic number x4.(G).

It was shown in [5] that every quantum graph G = (S, M, M,,) has a finite quantum
coloring and x4(G) < dim(M). Further, for all quantum graphs G, we have

Xge(9) < xq(9) < x(9). (2.5.2)

Also, if (S, M, M,,) and (T, M, M,,) are two quantum graphs such that S C T, then
Xt(SvMa MTL) < Xt(TvMa Mn)7 where t € {ZOC, q, qC}

Example 2.17. Let G be a classical graph on n vertices and G = (Sg, D,,, M,,) be the
quantum graph associated with G, as in Example 2.3. Then,

X(9) = x(G) and x4(G) = x4(G)- (2.5.3)
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Example 2.18. For complete quantum graphs, the quantum chromatic number is the full
dimension of the quantum vertex set. That is, xq(M,, M, M,) = dim(M).

Remark 2.19. Indeed, x(M,, M, M,) < oo if and only if M is abelian. In particular, if
M is non-abelian, then x(M,, M, M,) # xq(My, M, M,).

It is also useful to note that Definition 2.16 is a special case of Stahlke’s entanglement-
assisted chromatic number [29]. Also, when N/ = C, it is equivalent to Kim & Mehta’s
strong chromatic numbers of non-commutative graphs [18].

3. Use of quantum adjacency matrix in coloring

While Definition 2.1 was used in [5] for developing the chromatic number of quantum
graphs, Definition 2.11 offers the advantage of associating a spectrum to the quantum
graph, which is useful for estimating these chromatic numbers. We begin with the fol-
lowing result, which will be used to obtain a quantum adjacency operator for defining
the spectrum.

Proposition 3.1. Let M be a finite dimensional C*-algebra equipped with its tracial -
form 1. There is a bijective correspondence between linear operators A on L*(M) and
M’ — M’ bimodule linear operators P on B(L*(M)), given as follows:

A:L*(M) = L*(M) <— P : B(L*(M)) — B(L*(M))

A() = 82( @ DP((-) @ 1) +— P(-) = %m(A ® ())m". (3.0.1)

This correspondence has the following property:

1

6—2m(A®A)m* =A< P’=P

Proof. Let M°P denote the opposite algebra of M. It was shown in [23] that there is a
bijective correspondence between linear operators A : L*(M) — L*(M) and elements
p= Zle T @Y; € M® MP°P given by

AC) =8 e Dp(() ®1) =6 Z (@i (+))yi, and p = %(A ® m*(1),  (3.0.2)

1
with the property that ﬁm(A R A)m* = A < p? =p.
Since M is finite dimensional, elements p = Z§=1 2, Qy; € MQMPOP are *-isomorphic
to M’ — M’ bimodule maps P, on B(L?(M)), given by P,(:) = 22:1 2;(+)y; discussed
in Remark 2.14.
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So, the bijective correspondence between A and p in (3.0.2) may be rewritten as a
bijective correspondence between A and P, as follows:

L
A() =@ DP(() @1), and Py() = o D (Aug) () (), (3.0.3)
i=1
where {u1,us,...uy} is a basis for L2(M) such that m*(1) = Zf;l U @ uy.
The expression for P, in (3.0.3) can be reformulated as P(-) = 6—2m(A ® (+))m*. To
see this, take any X € B(L?(M)) and ¢ € L?*(M). Then,
1 & 1
Pp(X)E = 55 > (Au) X(u))€ = =5 > _(Aui) X (u7€)
i=1 i=1
R
= 52 mAu @ X (16)
i=1
LN
== > m(A® X)(u; ® (uff))
i=1
1 N
=5 mAe® X)(Q - uwi ® (ufg))
i=1
1
= & m(A® X)(m’E)
1
= & m(A® X)m*(©)
= P(X)(¢)

Thus, we get the desired bijective correspondence between linear operators A : L2(M) —
L?(M), elements p € M @ M° and M’ — M’ bimodule linear maps P : B(L*(M)) —
B(L?(M)), with the property that

1

5—2m(A®A)m*:A — p’=p < P’=P. O

We now introduce the spectrum of a quantum graph as follows:

Definition 3.2. Let M be a finite dimensional C*-algebra equipped with its tracial 6-
form v, and let G = (S, M, B(L*(M,))) be an undirected' quantum graph on (M, ).
The spectrum of G is defined to be the spectrum of the quantum adjacency operator A,
defined by

1 Here, undirected simply means S is closed under adjoint. Alternately, Pg is *-preserving.
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A=8@wWeI)Ps(I®1), (3.0.4)
where Pg is the orthogonal M’ — M’ bimodule projection onto S.

Note that A is self-adjoint and so, the spectrum of an undirected quantum graph is
real.

Convention 1. For the remainder of this paper, M denotes a finite dimensional C*-
algebra equipped with its tracial §-form 1), as given in 2.10. We assume that our quantum
graph (S, M, B(L?(M,1))) is irreflexive. Further, A always refers to the unique self-
adjoint quantum adjacency matrix associated with S. We denote this quantum graph by

G = (M, AS).

We now show the connection between quantum adjacency matrix and quantum graph
coloring by generalizing some algebraic results in [14] to the quantum graph setting. The
following lemma proves that “pinching” operation annihilates the quantum adjacency
matrix and leaves the commutant of the quantum vertex set invariant.

Lemma 3.3. Let G = (M, 4, A, S) be an irreflexive quantum graph. If {Py}_; C M QN
is an arbitrary c-coloring of G in the sense of Definition 2.15, then

> PA®IN)P: =0, (3.0.5)
k=1
Y PE®Iy)Pi=E@Iy, VEe M. (3.0.6)

k=1

Proof. We first show that A € S. Recall that A is given by (3.0.4), using the orthogonal
M’ — M’ bimodule projection Pg onto S. By Proposition 3.1, Ps(-) = 6 ?m(A® (-))m*.
Since P2 = Pg, in particular Ps(A4) = § ?m(A ® A)m* = A by Proposition 3.1. So,
A € range(Ps) = S. Now, by (2.5.1), we get that >;_, Pu(A® In) P = 0.

Equation (3.0.6) follows from the fact that the projections P, € M ® N commute with
E®IN€M’®N’,andzzzlPk:IM@,N. O

The next lemma is a corresponding result for the “twirling” operation.

Lemma 3.4. Suppose G = (M, 9, A, S) is an irreflexive quantum graph and {Py}5_; C
M@ N is a c-coloring of G in the sense of Definition 2.15. Define U = >,_, WP,

where w = €2™/¢ 4s a ¢t root of unity. Then,
C 1 c
Y PuX®Iy)P: = E Y UMX @ Iv)(U*)F, VX € B(L*(M)). (3.0.7)
k=1 k=1

In particular,
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XC:U’“(AQ@IN)(U*)’“ =0, (3.0.8)
k=1
zC:Uk(E@@IN)(U*)k =c(E®Iy), VEc M. (3.0.9)
k=1

Proof. Note that U* = >°;_, w™'P, since {P,}¢_, are self-adjoint. Also, the k' power of
U is given by

Uk _ Z wlkrpl
=1

as the projections {P;}{_, are mutually orthogonal, that is P;P; = 0 if ¢ # j. Now, for
X € B(L*(M)), we obtain:

YN UMX @ LU =" W R(X @ Iv) Py
k=1 k=1101'=1
C C
= > O Ww"IMPX @ Iv) Py
LI'=1 k=1

c

= Z (C 6l,l’)-Pl(X®IN)Pl’;
Ll'=1

where §;; denotes the Kronecker delta

= CZPz(X ® In)P,
=1

Hence, we get the result. The rest follows from Lemma 3.3. O
Next, we note some obvious properties of A ® I for future reference.

Proposition 3.5. Suppose G = (M,¢,A,S) is an irreflexive quantum graph and
{Pi};_; S M®QN is an arbitrary c-quantum coloring of G. Assume that 2 < dim(M) <
oo and N'C B(H) for some Hilbert space H, with dim(H) = d.

Define A= A® In. Then

1. A is self-adjoint and has real eigenvalues.

2. The spectrum of A has the same elements as the spectrum of A, but each with a
multiplicity of d. In particular, the largest and smallest eigenvalue of A coincide
with the largest and smallest eigenvalue of A, respectively.

3. A= ZZ,b:1 P,AP,.
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411 412 e A:lc
~ o . A21 A22 ... Agc
4. A can be expressed as a block partitioned matriz ) ) . .|, such that
A\cl A\CQ AR A\cc
—~ 1 ~
A;; =0 for all i € [c]. In particular, Tr(A) = p Tr(A) = 0.

Proof. The first two statements are evident since A is self-adjoint and tensoring with
identity only produces more copies of the same eigenvalues. The third statement follows
from the fact that 7, Pr = Iman- i

To see the last statement, note that A can be interpreted as a giant matrix over
complex numbers as M and A are finite dimensional. Choose an orthonormal basis for
L?(M)®H such that all the projections Py are represented as diagonal matrices. Identify
Ay, with the matrix P, AP, Then, we get the desired block partition. From (3.0.5), it
follows that A}i =0forl1<i<e O

4. Spectral lower bounds for x4(G) and x(G)

In this section, we obtain spectral lower bounds for the quantum chromatic number
of quantum graphs, generalizing results from [14]. Since x4.(G) < x4(9) < x(G) [5], our
estimates are also lower bounds for the classical chromatic number of quantum graphs.
Our spectral bounds for an undirected quantum graph G = (M, 1, A, S) can be summa-
rized as follows:

Amax dlm(S) Si ni Amax
1 + max y - Yy T
|>\min| dlm(S) - dlm(M)’ymin st ' nT )\max — Ymax + emam

< ¥0el0) < Xa(9) < X(9). (4.0.1)

Here, Amax, Amin denote the maximum and minimum eigenvalues of A; s, s~ denote
the sum of the squares of the positive and negative eigenvalues of A respectively;
nt,n~ are the number of positive and negative eigenvalues of A including multiplici-
t1€S; Ymax, Ymin denote the maximum and minimum eigenvalues of the signless Laplacian
operator (Definition 4.6); and 6,.x denotes the maximum eigenvalue of the Laplacian
operator (Definition 4.6).

The key ingredient in proving these bounds is Lemma 3.3 and 3.4, which holds true
across the classical (loc), quantum (¢) and quantum-commuting (gc) coloring models.
With these, the proof of the corresponding bounds for classical graphs can essentially be
adapted to our setting. For the sake of concreteness, we prove our results in the quantum
coloring framework (dim(N) < oo). However, by using an infinite dimensional version
of Proposition 3.5 (dim(N) = o), all the bounds can be directly transferred to the
quantum commuting chromatic numbers as well.
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Throughout our discussion, we follow convention 1. So, A always refers to the unique
self-adjoint quantum adjacency matrix associated with (S, M, B(L?(M,%))), as in
(3.0.4).

4.1. Hoffman’s bound

One of the well-known spectral bounds in graph theory is the Hoffman’s bound [16].
This is a lower bound on the chromatic number of a graph using the largest and smallest
eigenvalues of the adjacency matrix. The classical bound is as follows: If G is an irreflexive
classical graph whose adjacency matrix A has eigenvalues Ajax = A1 > A2 > ... > A\, =
Amin, then

)\max
We can prove a quantum version of this bound using the following result from linear
algebra.
Ay A .o Ay,
o ) o A1 Asa ... Agy
Lemma 4.1. Let A be a self-adjoint matriz, block partitioned as . . )
Anl An2 .o Ann

Then,
(7 = DAmin(A4) + Amax(4) <Y Anax(Aii),

where Amax(-) and Amin(+) represent the mazimum and minimum eigenvalues of that
matriz.

Proof. We start with the case n = 2.
Let z = B;] be a normalized eigenvector (||z1]|?+||z2||? = 1) corresponding t0 Apax(A).

l[z2]]

_ | T=l®
Define y |

o1l . Then, we have

[N

A (A) + Amin(4) < (2] A]2) + (y] AJy) =2 Az (o] Ao o)

S)\max(All) + )\max(AQZ)'
The general case follows by induction on n. 0O

The generalization of Hoffman’s bound to quantum graphs is as follows:
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Theorem 4.2. Let G = (M, 1), A, S) be an irreflexive quantum graph and Apmax = A1 >
A2 2 ... 2 Aim(M) = Amin be all the eigenvalues of A. Then

Al’na.)(
1+ Do < xq(9). (4.1.2)
Proof. Let {P;}{_, C M &N be a c-quantum coloring of G and A = A ® . Partition
A as [Aab]§ p—1, as in Proposition 3.5. Applying Lemma 4.1, we get

(C - 1))‘min(A) + Amax(A> < ZC: )\max(A\ii)- (413)

But A;; = 0 for all 1 < i < c. Hence equation (4.1.3) reduces to

(¢ = 1)Amin(A) + Aax(4) < 0.
By Proposition 3.5, we have )\min(/i) = Amin(A4) and )\max(fl) = Amax(4). So, we get
(¢ — D)Amin(A) + Amax(A) < 0. On rearranging and taking minimum over all ¢, we get

maxA
1 4 mex( >|sXq<g>. .

|>‘min(A)

4.2. Lower bound using edge number

In this section, we prove a spectral lower bound on the quantum chromatic number
using a quantum analogue for the number of edges in the graph.

For a classical graph G with n vertices and m edges, it was shown [9] that

2" ), (4.2.1)
2m — nYmin

where i, is the minimum eigenvalue of the signless Laplacian of G. To prove a gener-
alization of this bound to arbitrary quantum graphs (M,, A, S), we first introduce a
quantum analogue for m,n and Ymin-

Recall that the degree matrix for classical graphs is a diagonal matrix obtained from
the action of the adjacency matrix on the all 1s vector. This can be extended to quantum
graphs as follows:

Definition 4.3. Let G = (M, 4, A, S) be a quantum graph and 1 denote the unit in M.
Then the quantum degree matriz of G is a linear operator D € B(L?*(M)) given by

D: M — Mas x> z(A1),Vz € M.

In other words, D can be interpreted as Al € M viewed as an element of B(L?(M))
under the right regular representation.
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Remark 4.4. The definition D = A1 was also used in [7] and [21]. The only difference in
our case is that we view D under the right regular representation, instead of the usual
left regular representation of M. The advantage of using right regular representation is
that D then belongs to M’.

Our next goal is to define a quantum analogue for the “number of edges” in the graph.
To do that, we need the following result:

Proposition 4.5. Let M be a finite dimensional C*-algebra, equipped with its tracial 0-
form . If (M 4, A, S) is a quantum graph with degree matriz D, then,

Tr(D) = 6%¢(A1) = dim(S). (4.2.2)

Proof. Let Ps : B(L?(M)) — B(L?(M)) denote the orthogonal bimodule projection
onto S. We can express Pg as an element 22:1 z; @y’ € M®MP°P, such that Ps(a®b) =
Zle x;a @ by;, for all a,b € M using the correspondence mentioned in Remark 2.14.
Now, A = §2(¢) ® I)Ps(I ®n) implies

A1) =0*(p @ )Ps(1®1) =Y ® I)(Z T ®y;) = 67 Z () Yi- (4.2.3)

i=1 i=1

Thus,

P(AL) = 1)(5 Z V(z)y;) = 6° Z V(i) (yi)

=523 (@i, 1) (g3 1)

i=1

t t
:522%‘@%»1@@=52<foi®y¢,ﬂ®1>

i=1 i=1
= 6% (Pg,I), when viewed as operators on B(L?(M))
_ 52 Tr(Ps)
dim(B(L%(M)))
dim(S) dim(S)

= dim(M)dim(M)2 - dim (M)

where we have used the fact that 1 is a tracial state and 62 = dim(M). Also, the trace
on B(L*(M)) restricted to M (or M’ by symmetry) is just dim(M). So,

Tr(D) = dim(M) ¥(AL).

Hence, Tr(D) = dim(S). O
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We now define quantum analogues of some classical quantities:

Definition 4.6. Let G = (M, ¢, A, S) be an irreflexive quantum graph with degree matrix
D.

The quantum vertex number for G is defined to be dim(M).

Tr(D dim(S
The quantum edge number for G is defined to be r(2 ) = im(S)

5
The Laplacian of G is the linear operator L = D — A € B(L*(M)).
The signless Laplacian of G is the linear operator Q = D + A € B(L*(M)).

> W =

For a classical irreflexive graph G = (V| E), these definitions clearly coincide with the
usual values. In particular, if G = (Sg, D|v|, M|y|), then the quantum vertex number is
|V| and the quantum edge number is |E| since 2|E| = )\ deg(v) = Tr(D).

Remark 4.7. The quantum edge number need not be an integer in general. But for most
purposes, we will only need 2m = Tr(D) = dim(S5).

We are now ready to prove a quantum version of the spectral bound in (4.2.1).

Theorem 4.8. Let G = (M, ¢, A, S) be an irreflexive quantum graph. Then

1+ —2" < .(0), (4.2.4)

2m — NYmin
where m is the quantum edge number, n is the quantum vertex number and Ymin s the
minimum eigenvalue of the signless Laplacian of G, in the sense of Definition 4.6. More
precisely,

dim(S)

U Gm(S) = dim(M 7o

< Xq(9)- (4.2.5)

Proof. Let {P;}{_; € M ® N be a c-quantum coloring of G and let U be defined as
in Lemma 3.4. Then, (3.0.8) can be rearranged as U°(A ® In)(U*)¢ = — Zz;ll Uk(A®
In)(U*)*. Using D — Q = —A and U° = Iygn, we get

c—1
A® Iy = 3 UH(D - Q)@ (U™

7ZU’“ D ® Iy)(U*)* ZUk Q ® Iy)(U*)*

k=1

=(D®ly) ZUk (U)* ZUk Q® In)(U*)*

k=1
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c—1

=(c—1)DeIy) - Y UNQe Iy)(U")
k=1

where we have used the fact that D € M’ and hence D® Iy commutes with U € MQN.
Let N be represented in some B(H) and let u denote a unit vector in H such that
(u,u) = 1. Further, let |¢) = 1 ® u denote a column vector in L?(M)® H and (£| denote
its corresponding conjugate row vector. Multiplying the left and right most sides of the
above equation by (£| from the left and by |£) from the right, we obtain

€A Ivie) = (- D) DeIvie) - S (EUHQe U ).  (42.6)
k=1

Now, (€] A® Iy [€) = (1, AL) (u, u) = ((AL)*) = (AL) = ﬁ;ﬂi((/\i))’

*_preserving property of A (Remark 2.12) and Proposition 4.5. Similarly, ({|D ® Ix|€) =
dim(S)
dim(M)’

conjugation and tensoring with identity only changes their multiplicity. So,

where we use the

To estimate the last term, recall that eigenvalues are invariant under unitary

Ymin = min {(w| Q [w) : w € L*(M), (w,w) = 1}
=min {(v|Q ® Ix|v) : v € L*(M) @ H, (v,v) = 1}
= min{( |Uk(Q®IN)(U*)k|v> TV E LQ(M) QH, (v,v) = 1}
< (EUHQ & In)(U)*e), Wk € [d]

Hence, (4.2.6) leads to

dim(S) <

dmv) = 7 Daimprg ~ (€7 Dmine (4.2.7)

which upon rearranging yields 1+ < ¢. Taking minimum over all

dim(S) — dim(M)~min
¢, we get the desired bound. O

4.3. Bound using the sum of square of eigenvalues

In [1], it was proved that for a classical graph G,

+ g

1+max{z—_,s—+} <x(G), (4.3.1)

where sT is the sum of the squares of the positive eigenvalues of the adjacency matrix
and s~ is the sum of the squares of its negative eigenvalues. In this section, we show
that the above bound also works in the setting of quantum graphs. We first recall the
following result from linear algebra, whose proof can be found in [1].
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Lemma 4.9. Let X = [Xy]i; and Y = [Yj;]7; be two positive semidefinite matrices

conformally partitioned. If X;; = Yy for 1 < i < r and XY = 0, then Tr(X*X) <
(r—1)Tr(Y*Y).

We now adapt the proof of the classical bound in [1] to the quantum case.

Theorem 4.10. Let G = (M, ¢, A, S) be an irreflexzive quantum graph and Ay > Ao >
- > Mim(m) be all the eigenvalues of A. Let sT =37, _((Xi)? and s= =3, _o(Xi)>.
Then,

st s~

1 + max { — = } < xq(G). (4.3.2)

Proof. Let {Py}{_, € M ®N be a c-quantum coloring of G. Further, let A = A ® Iy
and let gy > po > ... > uy be all the eigenvalues of A. Consider a spectral decomposition
of A,

. t

A= Zui(viv;‘), where v; € L*(M) @ H, (4.3.3)

i=1

and write A = B — C, where
B= Z i (v;07) C= Z —pi(vivl). (4.3.4)
Suppose N C B(H) for some Hilbert space H. Then,

Tr(B*B) = Z p? = dim(H) s* and Tr(C*C Z p? = dim(H) s~. (4.3.5)
p1i>0 i <0

Partition A as [gab]z,bzl as in Proposition 3.5. Similarly, let

B = [Eab]z,bzl = Z PaBPb and é = [éab];b:l = Z PaC’Pb.
a,b=1 a,b=1

Now, B and C' are positive semidefinite matrices that are conformally partitioned. Fur-
ther, Bm = C’m since 0 = P,AP, = P,BP; — PCP for alll <i<e. Also BC =CB=0.

So, by Lemma 4.9 and (4.3.5), it follows that = < c—1and > < c— 1. Taking
s~

st
. st s~
minimum over all ¢, we get 1 +max { —, — » < xq(9). O
s7 s
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4.4. Inertial lower bound

In this section, our goal is to generalize the following inertial bound [13] to quantum
graphs:

1+max{;l—,n—;} < (@), (4.4.1)

where (nt,n% n7) is the inertia of G. We begin with defining the inertia of a quantum

graph:

Definition 4.11. Let G = (M, ¢, A, S) be a quantum graph and A; > A2 > ... > Agim(m)

denote the eigenvalues of A. The inertia of G is the ordered triple (n*,n°

+

,n" ), where
nt, n® and n~ are the numbers of positive, zero and negative eigenvalues of A including

multiplicities.

Theorem 4.12. Let G = (M,4, A, S) be an irreflexive quantum graph with inertia
(nT,n% n7). Then,
nt n
1 erax{n_ n+} < xq(G). (4.4.2)

Proof. Let {P;}{_; € M ®N be a c-quantum coloring of G. Let U be defined as in
Lemma 3.4 and A, B and C be defined as in the proof of Theorem 4.10. Then, we have

Z UkB(U*)* Z UkC(u*k Z Uk A( =—-A=C-B. (4.4.3)

Note that B and C' are positive definite operators with rank(B) = n* and rank(C) =
n~ . Further let

t = g v;v] and P~ = g VU]

wi>0 ni<0

denote the orthogonal projectors onto the subspaces spanned by the eigenvectors cor-
responding to the positive and negative eigenvalues of A respectively. Observe that
B = PTAPt and C = —P~ AP~. Multiplying (4.4.3) by P~ on both sides, we ob-
tain:

c—1 c—1
P~y U*BW*FPT - P~ Y UFCWUTPT =C (4.4.4)
k=1 k=1

Now we use the fact that if X,Y are two positive definite matrices such that X —Y
is positive definite, then rank(X) > rank(Y"). By applying this to (4.4.4), we get
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c—1
rank(P~ Z U*B(U*)*P~) > rank(C).
k=1

Recall that the rank of a sum is less than or equal to the sum of the ranks of the
summands, and that the rank of a product is less than or equal to the minimum of

the ranks of the factors. So, we get (¢ — 1)n*t > n~. Similarly, it can be shown that
+ —
(c—1)n~ > n™". Hence, max { n—, n_+} < ¢— 1. Taking minimum over all ¢, we get the
n

desired bound. O
4.5. Bound using mazimum eigenvalue of the Laplacian and signless Laplacian
Let L and @ denote the Laplacian and signless Laplacian of G = (M, %, A, S) in the

sense of Definition 4.6. Further, let Apax, Omax and ymax denote the largest eigenvalue of
A, L and @ respectively. Then

/\mmx
1 - < . 4.5.1
+ )\max - ’Ymax + emaz - Xq (g) ( )

Like the previous cases, this bound can also be shown by adapting the classical proof
[19] and applying Lemma 3.4.

5. Illustration

In this section, we illustrate the tightness of these bounds in the case of complete
quantum graphs. Let K denote the irreflexive complete quantum graph on (M, ).
The quantum adjacency matrix in this case is given by A = §%¢(:)1 — I. For z € M, we
have

A(z) = 6*p(z)1 — I
= (dim M) (z, 1)1 - I
= (dim M) Py (z) — I,
where Py : M — M denotes the orthogonal projection onto 1, given by x +— (z,1) 1.
Since Pj is a rank-1 projection, its spectrum is precisely {0, 1}, where 0 has a multiplicity
of dim(M) — 1. Using functional calculus, we get
o(A) = {dim(M) — 1, —1}, (5.0.1)

where —1 has a multiplicity of dim(M) — 1. Similarly, we get

o(Q) = {2dim(M) — 2, dim(M) — 2}, (5.0.2)
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where dim(M) — 2 has a multiplicity of dim(M) — 1, and
o(L) = {dim(M), 0}, (5.0.3)

where dim(M) has a multiplicity of dim(M) — 1.
Thus, for an irreflexive complete quantum graph, we have:

¢ Aoy = dim M — 1, A = —1

* Ymax = 2dim(M) — 2, ypin = dim M — 2
e Onax = dim M

o 5T = (dim(M) —1)?, s~ = dim(M) — 1
e nt=1,n" =dim(M) -1

o 2m = dim(M)? — dim(M)

On applying these to Theorem 1.1, we see that all the five spectral bounds give the same
result, namely:

dim(M) < xq(K ). (5.0.4)

The reverse inequality xq(Kaq) < dim(M) was proved in [5], and x4(K ) = dim(M).
So, we conclude that all the bounds in Theorem 1.1 are tight in the case of complete
quantum graphs.

6. Conclusion and future directions

In this work, we have shown that several spectral lower bounds for the chromatic
number of classical graphs are also lower bounds for the classical, quantum and quantum-
commuting chromatic numbers of quantum graphs. We believe that quantum graph
spectral theory is a promising field of study. As a next step, it would be interesting
to find bounds that exhibit a separation between the different variants of chromatic
numbers of quantum graphs. Alternatively, investigating examples of quantum graphs
that show a separation between these spectral bounds would also be helpful. We hope
to explore these in a future work.
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Appendix A

Let M be a finite dimensional C*-algebra, equipped with its tracial d-form ). The
properties of a quantum graph on M C B(L?(M,)) in the different perspectives is
summarized in the following table.

Here, p = Z§=1 a; ®b; € M® MO and m, o denote the multiplication map and swap
map on M ® MPP respectively. Further, H = L2(M, ), T € B(L*(M)), £ € L*(M)
and x,y € M’.

PROPERTY CLASSICAL S C pPEMROIM?P A M- M P:B(H) = B(H)
GRAPH B(H)
Bimodule  Relations M'SM' C 3.ai(zTy)b; = m(AQaTy)m* = P(zTy) = xzP(T)y
structure on a set S z(3, aiThy)y z(m(AQT)m™)y
Schur Ae AeS p>=p m(A® Aym* =3§%A P2 =P
idempotent M, ({0,1})
Reflexive I € Sg M CS m(p) =1 m(A® m* = 621 P(I)=1
Irreflex- I¢Sa M LS m(p) =0 m(AQ I)m™ =0 P(I)=0
ive
Undi- A=AT 5 =5" o(p)=p (I®n*m)I®A®I)  P*(T) = P(T*)*,
rected (m"meI)=A (* denotes adjoint as an
Alternatively, operator on Hilbert
A€) = [A(O]°  spaces)
Self A=A" o(p) =p” A(§) = A7(8) P(T") = P(T)"
adjoint
Real A=A P =p A€ = (A©)" P*(T) = P(T)
Positivity Ais C.P p is positive A is completely P is positive
(i.e. p=g~9) positive (C.P) (i.e. P =G"G)

In particular, for undirected quantum graphs:

P?=P=P" «— p’=p=p"
<= A is Schur-idempotent and real

<= A is Schur-idempotent and self-adjoint.
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