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ABSTRACT

Motivated by non-local games and quantum coloring problems, we introduce a graph homomorphism game between quantum graphs and
classical graphs. This game is naturally cast as a “quantum-classical game,” that is, a non-local game of two players involving quantum
questions and classical answers. This game generalizes the graph homomorphism game between classical graphs. We show that winning
strategies in the various quantum models for the game is an analog of the notion of non-commutative graph homomorphisms due to Stahlke
[IEEE Trans. Inf. Theory 62(1), 554-577 (2016)]. Moreover, we present a game algebra in this context that generalizes the game algebra for
graph homomorphisms given by Helton et al. [New York J. Math. 25, 328-361 (2019)]. We also demonstrate explicit quantum colorings of all
quantum complete graphs, yielding the surprising fact that the algebra of the four coloring game for a quantum graph is always non-trivial,
extending a result of Helton et al. [New York J. Math. 25, 328-361 (2019)].

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0072288

. INTRODUCTION

In recent years, the theory of non-local games has risen to a level of great prominence in quantum information theory and related
parts of physics and mathematics. In quantum information theory, non-local games provide a convenient framework in which one can
exhibit the advantages of using quantum entanglement as a resource to accomplish certain tasks. In physics, non-local games are intimately
tied to the study of Tsirelson’s correlation sets and Bell’s work on local hidden variable models.! Within mathematics, the theory of non-
local games has led to some spectacular developments in the field of operator algebras. Most notable here is the work of Junge et al.,’
Fritz,” and Ozawa® connecting the Connes-Kirchberg conjecture to Tsirelson’s correlation sets in quantum information. Very recently,
Ji et al.” used non-local games to provide a counterexample to the Connes-Kirchberg conjecture. Another recent and quite remarkable
application of non-local games in mathematics is the work of Mantinska and Roberson® that uses a non-local game, called the graph iso-
morphism game, to provide a quantum interpretation of pairs of graphs that admit the same number of homomorphisms from planar
graphs.

The general setup of a (classical input, classical output) two player non-local game is given in terms of a tuple G = (I, O, V'), where I
and O are finite sets and V: O x O x I x I — {0, 1} is a predicate function that determines the rules of the game. The game is played by two
cooperating players, Alice and Bob, and a verifier (Referee). Each round proceeds with the verifier (randomly) selecting a pair of questions
(x,y) € I x I and sending x to Alice and y to Bob. Alice and Bob then respond with answers (a,b) € O x O. The verifier declares the round
won if V(a,b,x,y) = 1 and declares it lost if V(a, b,x, y) = 0. The term non-local refers to the fact that during each round, Alice and Bob are
spatially separated and are unable to communicate; neither Alice nor Bob knows which questions/answers the other received/returned. This
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non-locality of G makes winning each round of the game (with high probability) generally very difficult. It is in these scenarios that “quantum
strategies” (which make use of some shared entangled resource between Alice and Bob) can allow the players to drastically improve their
performance by better correlating their behaviors."” **

In this paper, we are mainly interested in a non-local game called the graph homomorphism game and certain extensions of it. The graph
homomorphism game is a well-studied example of a non-local game.” '’ This game is described by a pair of finite simple graphs G, H, with
input set I = V(G) (the vertex set of G) and output set O = V(H). The goal of Alice and Bob in this game is to convince the referee that there
exists a homomorphism G — H. In particular, the rules of the game are determined by the following two requirements:

(1) Alice and Bob’s answers must be synchronous, meaning that if they receive the same vertex x € V(G), they must return the same vertex
acV(H).
(2) 1If the referee supplies an edge (x,y) € E(G) to Alice and Bob, they must respond with an edge (a,b) € E(H).

The graph homomorphism game (in particular, the special case of the graph coloring game) has led to many developments in the oper-
ator algebraic aspects of non-local games. A particular notion of interest here is the notion of a synchronous non-local game and syn-
chronous strategies for such games.” Winning strategies for synchronous games turn out to be completely described in terms of traces
on a certain *-algebra associated with the game, bringing to bear many powerful operator algebraic techniques in the theory of non-local
games.

Within information theory (both quantum and classical) graph theory plays a central role, appearing quite naturally in the theory of
zero-error communication in the form of confusability graphs of noisy communications channels. If the channel at hand is classical, the
confusability graph is a finite simple graph on the input alphabet whose edges indicate which letters can be confused after passing through the
channel. If the channel is genuinely quantum, it was shown in Ref. 11 that the role of the confusability graph in this case must be played by
more general structure called a quantum graph. Quantum graphs are an operator space generalization of classical graphs, which have emerged
in different disguises in operator systems theory, non-commutative topology, and quantum information theory. Traditionally, a quantum
graph is viewed as an operator system that serves as a quantum generalization of the adjacency matrix. It was first introduced in Ref. 11 for
studying a zero-error channel capacity problem and arose independently in the study of quantum relations'>'” around the same time. An
alternate approach was used in Ref. 14 to define a quantum graph using a quantum adjacency matrix acting on a finite-dimensional Cx-
algebra that plays the role of functions on the vertex set. Both these perspectives are shown to be essentially equivalent (Ref. 14, Theorem 7.7)
and offer different advantages and perspectives.

In the present work, motivated by several recent works extending the notion of chromatic number from graphs to the setting of quantum
graphs,”’”"" our aim is to develop a non-local game that captures the coloring problem for quantum graphs. To this end, we study homomor-
phisms from quantum graphs to classical graphs using a non-local game with quantum inputs and classical outputs. The inputs are quantum
inputs, in the sense that the referee initializes the state space C" ® C", where Alice has access to the left copy and Bob has access to the right
copy of C". Alice and Bob are allowed to share a (an entanglement) resource space H in some prepared state y. After receiving the input ¢ on
C" ® C", they can perform measurements on the triple tensor product C" ® H ® C" and respond to the referee with classical outputs based
on their measurements.

The winning strategies for this game give rise to a notion of quantum graph homomorphism that is closely related to sev-
eral notions of quantum graph homomorphism in the literature.”'*'" We also construct a game #-algebra for this and show that
this game algebra extends the game algebra for graph homomorphisms given in Ref. 7. Furthermore, we consider the coloring game
for quantum graphs and study the associated chromatic numbers. We show interesting extensions of classical results in this frame-
work. In particular, we use unitary error basis tools to show that every quantum graph admits a finite chromatic number in the
quantum model (but not necessarily the local model), and the fact that every quantum graph is four colorable in the algebraic
model.

The organization of the paper is as follows: Sec. I develops the general theory of quantum input-classical output correlations and the
various quantum models that give rise to such correlations. Here, we also introduce and study the universal operator system Q, . associated
with such correlations and its C*-envelope. In Sec. I1], we introduce a generalization of synchronous correlations to our quantum framework.
In particular, we establish, in this section, characterizations of synchronous correlations in terms of tracial states on C*-algebras, and we
also establish an extension of the well-known equality of the quantum and quantum-spatial correlation sets for synchronous correlations,
extending a result of Ref. 18. In Sec. IV, we consider the structure of quantum approximate correlations in our context, extending the result of
Ref. 18 by identifying synchronous quantum approximate correlations with the closure of the synchronous quantum correlations. In Sec. V,
we define the homomorphism game from quantum graphs to classical graphs and study the corresponding winning strategies and game
*-algebra. Finally, in Sec. VI, we study the coloring problem for quantum graphs, demonstrating explicit colorings of all quantum graphs in
the g-model with the help of some quantum teleportation-like schemes, as well as extending classical results on algebraic colorings to this
framework.

Il. QUANTUM INPUT, CLASSICAL OUTPUT CORRELATIONS

In this section, we develop some general theory on non-local games with quantum questions and classical answers. These have already
been used in the two-output context of quantum XOR games.” "
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To motivate things, first recall that in the classical setup of n classical input, ¢ classical output two-player non-local games, the main
22

objects of study are the bipartite correlation sets C(n,¢) ¢ R" © that model the players’ behavior. Namely, any element P = (p(a, b|x, y)) 1<ap<c
1<x,y<n
e C(n, c¢) specifies the probability p(a, b|x, y) that the players Alice and Bob return answers a and b, respectively, given that they received ques-
tions x and y, respectively. The correlations (behaviors) P € C(#, ¢) that are physically relevant are the ones that can be realized by a (quantum)
strategy, that is, by Alice and Bob performing joint measurements on a quantum mechanical system prepared in some initial state. Mathemat-
ically, a quantum strategy amounts to the data of two finite-dimensional Hilbert spaces 74 and #p, and families of positive operator-valued
measure (POVMs) {P},..., P} on Ha, {Q,...,Q.} on Hp, and a state X € Ha ® Hp. From this data, one obtains a correlation P € C(#,c)

via the formula

p(a,blx,y) = (x|Pa ® Qlx)-

The subset of all correlations obtainable from quantum strategies as above is denoted by Cy(#,¢). In a similar manner, one can define
other classes of correlations (local, quantum spatial, quantum approximate, quantum commuting) that are built from of the corresponding
classes of strategies. (See, for example, Ref. 18, for a review of all of these models.)

Our goal now is to develop the analogous notion of the correlation set C(#, ¢) and its various subclasses arising from quantum strategies.
The main idea is quite simple—in order to allow for quantum questions, we replace the question set [#] x [n] with the set of quantum states
on the bipartite system C" ® C". In the following, our approach is somewhat backward, in that we first define the different strategies associated
with a two-player scenario with quantum questions (on C" ® C") and classical answers in {1,2,.. ., c}. Afterwards, we consider the associated
correlations. For our purposes, it is easiest to begin with the quantum (i.e., finite-dimensional tensor product) strategies.

A quantum strategy, or a g-strategy, is given by two finite-dimensional Hilbert spaces 74 and g, a POVM {Py,...,P.} on C" ® Ha,
aPOVM {Q,,...,Q.} on Hp ® C", and a state y € Ha ® Hp.

A quantum spatial strategy, or a gs-strategy, is given in the same way as a g-strategy, except that we no longer assume that 4 and #3
are finite-dimensional.

A quantum commuting strategy, or a qc-strategy, is given by a single Hilbert space #{, a POVM {Py,...,P;} on C" ® H, a POVM
{Q,...,Q.} on H® C", and a state y € H, with the property that (P, ® I,) (I, ® Q) = (In ® Q,)(Pa ® I,) for all a, b.

Remark 2.1. It is helpful to understand the above commutation condition in terms of block matrices. For 1< a<c, one may write
P, = (Pajj) € Mu(B(H)) with Pajj € B(H). Similarly, we may write Qp = (Qpre) € Mu(B(H)) with Qpie € B(H). With this in mind, the
above commutation relation is easily seen to be equivalent to the requirement that [Pay, Qu] = 0 € B(H) for each a,b,i,j,k, 1. (See, e.g,
Refs. 27 and 28.)

Finally, in view of the above remark, we define a local strategy, or a classical strategy, as a quantum commuting strategy with the
property that the set of operators P j and Qy , generate a commutative C*-algebra.

Suppose now that the referee initializes C" ® C" in the state ¢. For a quantum strategy, the probability that Alice outputs a and Bob
outputs b is given by

p(a,ble) = ((Pa® Q) (9 ©x), 9 @),

where by ¢ ® y we mean the (permuted) state in C" ® (4 ® Hp) ® C" rather than on C" ® C" ® (Ha ® H3g). For a quantum commuting
strategy, we simply replace "4 ® Hp with H and (P, ® Q) with (P, ® I,)(In ® Q). We note that this definition of the probability of outputs
can easily be extended to other (e.g., mixed) states in C" ® C" that may not be included in the definition of the game. This is because the
probabilities corresponding to Alice and Bob’s strategy are encoded entirely in the correlation associated with their strategy. The correlation
associated with the strategy (Pi,...,Pc, Qy,. .., Q. x) with n-dimensional quantum inputs and c classical outputs is given by the tuple

X = (X)) = (((Pai ® Quee) o x)ijice) ., € (Mo ® M),

in the case when the entanglement resource space for Alice and Bob is of the form {4 ® #p. In the case when their resource space is a single
Hilbert space H, we replace Pyj ® Qpx With Py ijQp ke
We will let Qq(n, ¢) be the set of all correlations of this form that arise from quantum strategies. In other words,

Qq(n,c) = {(((Pa,ij ® Qh,kl)X’X>)lgi,j,k,££n, c (Mo Mn)cz»

1<a,b<c

where H4 and #p are finite-dimensional Hilbert spaces; P, ;; € B(H4) are such that P, = (P,j) € M, (B(Ha)) is positive with Y¢_, P, = T;
Qpke € B(Hp) are such that Q, = (Qpie) € Mu(B(Hsp)) are positive with 37;_, Q, = I, and y € Ha ® Hp is a state.

Similarly, we will let Qu(#, c) be the set of all quantum spatial correlations (where H4 and Hp may not be finite-dimensional), and we
let Q4.(n,c) be the set of all quantum commuting correlations of the above form (where we replace the tensor product space Ha ® Hp with
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a single Hilbert space 7, and Pqj ® Qpze With PyijQy ko). Keeping the analogy with the sets C:(n,k) corresponding to classical inputs, we
will also define Q,4(,¢) as the closure of Q,(#,c) in the norm topology. Finally, we define Qy,.(, ¢) as the set of all quantum commuting
correlations where C* ({Pajj, Qure : 1 <a,b < ¢, 1 <i,j, k, £ < n}) is a commutative C*-algebra.

Since each of the correlation sets above are defined in terms of POVMs, an argument involving direct sums shows that Q;(n, ¢) is convex
for all ¢ € {loc, g, gs, qa, gc}. Moreover, Qg.(n,¢) is closed (by definition) and an application of Theorem 2.13 shows that Q. (#, c) is closed.
Similarly, Proposition 2.14 shows that Qj,.(#, ¢) is closed.

Next, we define a universal operator system that encodes the above correlation sets. For convenience, we define Py, to be the universal
unital C*-algebra generated by c sets of n” entries p o, Such that P, = (r mj) is an orthogonal projection in M, (Py,) for each 1 < a < c and
Y41 Pa = I. The operator system that we will use is the subsystem Q,, . of P, spanned by 1 and { Pailsascls<ijs< n}. Note that this
subspace is self-adjoint since each P, must be self-adjoint, forcing p:,,j = paji. Similar to the algebra P, ., we define B, as the universal unital

C*-algebra generated by n” entries u;; with the property that U = (u;) € My (Bn,) is a unitary of order c. The latter algebra is an obvious
quotient of the Brown algebra B,, which is the universal C*-algebra generated by the entries of an # x n unitary. The algebra B,, first appeared
in Ref. 29.

Our goal is to show a quantum-—classical version of the disambiguation theorems; that is, we will show that all correlations in Q;(n, c)
can be achieved using projection-valued measures (PVMs) instead of the more general notion of POVMs. First, we will show that POVMs in
our context dilate to PVMs.

Proposition 2.2. Let H be a Hilbert space, and let {Qqa };—; be a POVM in B(H). Then, there is a PVM {Pa}o_; in Mci1(B(H)) such that,
if Ey is the first diagonal matrix unit in Mcy, then (Eny ® I )Pa(Eyi ® Iy) = Qa forall1<a<c

1
Q

Proof. Wedefine V=| : | € M, (B(H)). Then, V is an isometry, so
1

Q2

U=

Vo I_VYV* € Mes1(B(H))

0

is a unitary. Define P, = U (E;® I;)U for 1<a<c-1, and define Pc = U*((Ec + Ecs1,41) ® I)U. Then, {Pa}5-; is a PVM in
M1 (B(H)). Write U = (U, )jL, where each Uy, € B(7). The (1,1) entry of P, is given by

(Pa)11 = Uj1Ua = (Qé)(Qé) = Qu,

as desired. O

As a result of Proposition 2.2, we obtain the desired dilation property for POVMs over M, (B(H)).

Proposition 2.3. Let H be a Hilbert space, and let qajj € B(H) for 1<i,j<n and 1<a<c be such that {Qa}e-, is a POVM in
Mu(B(H)), where Q, = (q,;)- Let V:H —H (1) be the isometry sending H to the first direct summand of H V. Then there are oper-
ators pajj € Mer1(B(H)) such that {Pa}ooy is a PVM in My(Mcer1(B(H))), where Pa = (p, ;) and V'p, .V =q, for all 1 <i,j<n and
I<ac<c

a,ij

Proof. We canregard {Qa};-, asa POVM in M, (B(#)). By Proposition 2.2, there isa PVM {8, }_, in Mcs1 (M, (B(H))) such that the
(1,1) entry of S, is Q,. Performing a canonical shuffle M1 (M (B(H))) ~ Mu(Mc+1(B(H))) (Ref. 30, p. 97) on each S, we obtain operators
Pajij € Mct1(B(H)) such that the (1,1)-entry of p, ;i is q, ;> and Pa = (Paii) € Mu(Mc+1(B(H))) are projections with 3>;_, P, = I, completing
the proof. O

Remark 2.4. In the case of classical inputs and outputs, one would consider n POVMs in B(H) with ¢ outputs each. It is a standard fact
that such systems of POVMs can be dilated to a system of n PVMs with c outputs on a larger Hilbert space, which remains finite-dimensional
whenever H is finite-dimensional.

Alternatively, one can consider n POVMs {Pax}4_; for 1 <x <n on H as a single POVM on C" @ H by setting Q, = Pai @+ - @ Pa.
Then, one applies Proposition 2.3 to obtain a single PVM in M, (H ® C*'); however, the projections may no longer be block-diagonal, so they
may not induce a family of n PVMs in B(H ® C°™'). In the case that n = 1, one can dilate a POVM with ¢ outputs in B(H) to a PVM with ¢
outputs in B(H ® C°), which is more optimal than Proposition 2.3. On the other hand, as soon as n > 2, the dilation of Proposition 2.3 will be
more optimal, since the general dilation of n POVMs to n PVMs requires an inductive argument.
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Next, we show that the operator system Q,, . has the following universal property with respect to entries of #n x n POVM:s with ¢ outputs:

Proposition 2.5. Let H be a Hilbert space, and suppose that y : Q. —~ B(H) is a linear map with y(1) = 1. Let q,; = y(p, ;) for all
l<a<cand1<ij<n, andlet Qu = (qa)ij-1. Then, y is completely positive if and only if Q, > 0 for alla and ¥;_, Qa = I ® In.

Proof. Suppose that y is completely positive. Since Q,,. is a subsystem of Py, the elements Py = (paj)ij-1 € Ma(Q,,) are positive and
Ya=1Pa = I, ® 1. Since y is unital and completely positive, Qu = (¥(pa,ij))ij-1 is positive in M, (B(H)) for each a, and 37 Qa = In ® [

Conversely, suppose that Q, > 0 forall 1 < a < cand that }_;_; Qs = I, ® I. By Proposition 2.3, there is an isometry V : H — H 1) and
operators 7 € Mc+1(B(H)) such that {Ra }o_; isa PVM in My, (Mcs1(B(H))), where Rg = (7aj)7j=1, and Va5V = q,,forall1 <i,j< nand
1 < a < c. It follows that there is a unital *-homomorphism 7 : Pyc — Mc+1(B(H)) satisfying 7(p,, l.].) = rqj forall a, i, j. Then, the compression

V*n(-)V is unital and completely positive on all of Py, and hence is completely positive on Q,, .. Moreover, (V*7(-)V)|q,. = ¥, completing
the proof. O

In the following, we let C;,,, (S) be the C*-envelope of an operator system, first shown to exist by Hamana.’’
Proposition 2.6. Let n,c € N.

(1) Coro(Que) is canonically »-isomorphic to the universal C* -algebra Py
(2) Thereis a *-isomorphism Py ~ By given by the map

i WP, < U,

a=1
where w is a primitive c-th root of unity.

Proof. We only prove the first claim; the second claim is analogous to the fact that C* (Z.) ~ £5, (see, for example, Refs. 2, 3, or 4). Since
Q,,c is a subsystem of P, and the elements of Q,,, generate P, as a C*-algebra, we see that P, isa C*-cover for Q,,.

Let p, ; be the canonical generators of P, and let g, ; be the canonical generators of the operator system Q,, in Conv(Que)- By the
universal property of the C*-envelope,’’ there is a unique, surjective unital *-homomorphism p : P - C,,,,(Q,.c) such that p(pw.j) =4,
forall1 <i,j<nand1 <a < c Aseach P, is a projection in Py, the matrix Qq = (qa,j) € Mn(Cppyy (Qn)) is a projection as well. We will show
that p is injective by constructing an inverse. We assume that P, is faithfully represented as a C*-algebra of operators on a Hilbert space K.
Then, the map ¢ : Q,,, — Py, above extends to a ucp map o : Cy,,,(Q,c) — B(K) by Arveson’s extension theorem.”” Welet o = V*(-) V be
a minimal Stinespring representation of g, where V : K — L is an isometry and 8 : C;,,,,(Q,) = B(L) is a unital *-homomorphism. With
respect to the decomposition £ = K@ K *, one has

*

Ba - 7 -

Pai

* *

X%

Thus, after a shuffle, one may write /3<">(Qa) =(B(q a,ij)) as

(p(")(Q,Z) * P, =

* * * *
As Q, is a projection in My (Cly (Que))s 50 is B(Q,) in M,(B(L)). But P, is a projection as well, so the off-diagonal blocks must be 0.
Therefore, reversing the shuffle yields
Pajj 0

*

B(qaij) =

Considering B(qy,iqa,j) and B(qa,jqa,;)- it follows that the multiplicative domain of o contains g, jforeachl<ij<nand1<ac<casthese

elements generate C,,,,(Q,), 0 must be a *-homomorphism. Since p and ¢ are mutual inverses on the generators, they must be mutual
inverses on the whole algebras. Hence, p is injective, so that Cj,,,, (Qpc) ~ Phc. O

Combining part (2) of Proposition 2.6 and Proposition 2.3, one can obtain a similar dilation corresponding to a block unitary of order c.
Indeed, if T = (Tjj) € M,,(B(H)) is a contraction that can be written as T = ¥;,_; w” Qq, where w is a primitive c-th root of unity and {Qa}-;
isa POVM in M,,(B(*)), then one can dilate T to a unitary U = (Uj;) € M, (Mc+1(B(#H))) of order ¢, such that the (1,1) block of each Uj; is
Tj;. It is sometimes convenient to use this form of the dilation, rather than the dilation of the POVM to a PVM.
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We now study some of the structure of P,. First, we show that P, has the lifting property. Recall that a C*-algebra A has the lifting
property if, whenever B is a C*-algebra, J is an ideal in B, and ¢ : A — B/ is a contractive completely positive map, then there exists a
contractive completely positive lift ¢ : A — B of ¢. As noted in Ref. 33, Lemma 13.1.2, when A is unital, one need only deal with the case
when B is unital and ¢, 9 are unital.

On the way to proving that P, has the lifting property, we will need the following fact. We include a proof for convenience.

Proposition 2.7. Let I8 be a unital C*-algebra, J be an ideal in B, and p, . .., p. € B/ J be projections with Yq_1pa = 15/ 7. Let q: B - J
be the canonical quotient map. Then, there are positive elements p1, . . ., pc in B such that Y.o_pa = 1g and q(pa) = pa foralll1 <a<c.

Proof. The assumption implies that there is a unital *-homomorphism 7 : £° — B/ J such that 7(e,) = p, for each a. As £;° is separable
and nuclear, the Choi-Effros lifting theorem®* gives a ucp lift ¢ : £;° — B of 7. Defining pa = ¢(es) concludes the proof. o

Theorem 2.8. P, has the lifting property.

Proof. This proof is similar in nature to results from Refs. 2 and 33. First, suppose that /5 is a unital C*-algebra, 7 is an ideal in /5 and
7+ Puc — B/ J is a *-homomorphism. Then 7" = id, ® 7 : My(Pyuc) = Ma(B)/M,(T) is a *-homomorphism. Define Q, = 7" (P,). By
Proposition 2.7, one can find a POVM 61, s Q in M,(B) that is a lift of Qy,. .., Q.. Next, we apply Proposition 2.3 and compress to the
(1,1) corner to obtain a ucp map y : P — B given by y(paj) = Quyj for all a,i,j. As y is a lift of 7 on the generators, a multiplicative domain
argument establishes that y is a lift of 7.

Now we deal with the general case. Let ¢ : Py — B/ J be a ucp map. Since P, is separable, one can restrict if necessary and assume
without loss of generality that B3 is separable. Then we apply Kasparov’s dilation theorem™ to ¢: letting XC = K(¢,) denote the compact
operators and M(.A) denote the multiplier algebra of a (separable) C*-algebra .4, there is a *-homomorphism p : Pyc > M(K®min(B/J))
satisfying p(x)11 = ¢(x) for all x € P, .. [Here, p(x)11 refers to the (1,1) entry of p(x).] If g : B — B/ J is the canonical quotient map, then
id® q: K®minB > K®min(B/ J) extends to a surjective “-homomorphism ¢ : M(K®min8) > M(K®min(B/J)) by the non-commutative
Tietze extension theorem (Ref. 36, Proposition 6.8). Therefore, we can lift the *-homomorphism p to a ucp map 7 : Ppc = M(K®min3).
Defining ¢(x) = 7(x)11, we obtain a lift of ¢. ]

Next, we establish residual finite-dimensionality of P, .. Recall that a C*—algebra A is called residually finite-dimensional (RFD) if, for
any x € A\{0}, there exists k € N and a finite-dimensional representation 7 : A — M with 7(x) # 0.

Theorem 2.9. P, is RFD.

Proof. This proof is very similar to the proofs that C*(IF;) and B, are RFD, respectively.””® As P, is separable, we may represent
it faithfully as a subalgebra of B(?), where H is separable and infinite-dimensional. Let (E,),,-; be an increasing sequence of projections

in B(H) such that rank(E,;) = m and SOT-limy—coEm = Iy. For each 1 <a < cand 1 <1i,j < n, we let p%) = EnpaijEm. Then, the matrices

P = (P(E’Z)) € M, (B(EnH)) define a POVM with ¢ outputs in B(E,,H). Applying Proposition 2.3, we obtain a unital *-homomorphism
Pm : Pne = Mc1(B(EnH)) which, after a shuffle of the form My, (M1 (B(EmH))) = Mcr1(Mn(B(EnH))), can be written as

» Upp (Eaa ® Ig, ) Ums l<a<c-1,
a > -
Um((Ecc + Ec+1,c+1) ® IEmH)Um, a=g

where

(P{"™): |
o ptmyE pmy Y )2
(pdn))% ((6”"15”"” (Pa)* (P ))a,;,:l) € Moy (Ma(B(EnH))).
0 (@ @)

The key point is that, considering pm (pa,ij) € Mcs1(B(EnH)), each block from B(E,H ) belongs to the C*-subalgebra of B(E,,H) generated
by the set {pi’:;) :1<a<c 1<i,j<n}. This set of blocks is closed under the adjoint since (EmpaiEm)” = Emp;,]Em = EmpajiEm. Since SOT-
limyn— oo Em = I, we have SOT™ -limy— 0o pg;;) = pajij. By joint continuity of multiplication in the unit ball with respect to SOT”, it follows that
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SOT*-limmHWP,Sm) = SOT™-limm— oo (P§m> )% = P, for each a. One can check that

P; L, -P,
SOT* - lim Uy, =
m— oo PC IH _ PC
0 -((Py --- P))

Applying a shuffle, we see that, for each a,i,j, SOT*-limp—cop,, (P,;) exists in Mc1(B(#)); moreover, its (1,1)-entry is exactly p, .. As
Py=( pa,zj) is a projection, another shuffle argument shows that

€ Mcy1(B(H)).

SOT” — lim pm(paij) = Pai
m—oo 0

Therefore, if W is a linear combination of finite words in the generators of Py, by considering the (1,1) entry of p, (W), it follows that SOT*-
limm— copm (W) = (v;/ 2) By passing to a subsequence if necessary, this forces limm—oo | om (W) l|ar.,, (5(E,1)) = | Wl s(x)- Hence, @y pm

Poc = BeiMer1(B(EmH)) is a *-homomorphism that is isometric on the dense *-subalgebra spanned by finite words in the generators
P,;j- 1t follows that @,,_; pm is an isometry on the whole algebra. As each E,, 7 is finite-dimensional, we conclude that P is RFD. ]

A standard fact is that minimal tensor products of RED C*-algebras remain RFD. Hence, Py.c®minPn.c is RED. We can use this fact
to relate Qzq(n,¢) to states on the minimal tensor product. First, we need the fact that quantum commuting correlations with a finite-
dimensional entanglement space must belong to Q,(,c).

Lemma 2.10. Suppose that X = (ng}ﬁ)(u)) € Qqc(n,c) can be written as X = ((PaiQurex> X))> where Po = (Payj) and Q, = (Qpxe) are

positive in Mu(B(H)), Yozi Pa = Y621Qa = In, [Pajij> Que] = 0 for all i,j,k, €, a,b and y € H is a unit vector. If M is finite-dimensional, then
X e Qy(nc).

Proof. Let Abe the C*-algebra generated by the set {Puj: 1 <a<¢,1<i,j<n}andlet Bbe the C*-algebra generated by the set {Qy 4, :
1<b<cl<kl<n}. Then Aand B are unital C*-subalgebras of B(7{), and every element of A commutes with every element of 3. By a
theorem of Tsirelson,” there are finite-dimensional Hilbert spaces H4 and #, an isometry V : H — H4 ® Hp, and unital *-homomorphisms
m: A— B(Ha)and p: B — B(Hz) such that V*(7(Paj) ® p(Qpe))V = PaijQpu for all a, b,i,j, k, £. Defining the unit vector £ = Vy € Ha
® Hsp, we see that

X gy = ((7(Pai) @ p(Qure) )& 6)

Therefore, X € Q,(n,c). m]

Now, we can prove the disambiguation theorems for Q,(n,c). We note that, by Proposition 2.3, any element of Q,(#,c) can be repre-
sented using a finite-dimensional tensor product framework 4 ® Hp and PVMs {P,},_; on H4 and {Qy}}_, on Hs, respectively. This fact
holds because, given a POVM {Q, };,_; in B(#), the dilation in Proposition 2.3 is in M1 (B(H)) ~ B(H (*D; in particular, the Hilbert
space remains finite-dimensional if 7 is finite-dimensional. Similarly, it is easy to see that all elements of Qu(#, ¢) can be represented using
PVMs.

Next, we show that every element Qqu (n,¢) can be represented by PVMs, which arise from the minimal tensor product of P.

Theorem 2.11. Let X = (X((fl‘,h

l‘])))(u)) e (M, ® Mn)cz. The following are equivalent:

(1) X belongs to Qga(n,c).
(2) Thereis a state s : Ppc®minPnc = C satisfying s(paij ® ppie) = XEZ};;)(k 0 foralll <a,b<candl<ijk¢<n.
(3) Thereisastates: Qp®minQnc — C satisfying s(qmj ® Goie) = XEZ}??(k;Z) foralll <a,b<candl<ijk¢<n.

Proof. We recall that the minimal tensor product of operator spaces (in particular, operator systems) is injective (see, for example,
Ref. 40). Since Q,,; € Pp, via the mapping Qi ™ Paps injectivity of the minimal tensor product shows that Q,,; ®min Qe S Prnec Omin P
completely order isomorphically. Using the Hahn-Banach theorem, it then follows that (2) and (3) are equivalent.
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If (1) holds, then X is in Qg(n,¢), so it is a pointwise limit of elements of Q,(,c). Since elements of Q,(#,c) can be represented by
PVMs, X is a limit of elements that correspond to finite-dimensional tensor product representations of Py,c®minPn,c, which are automatically
continuous. Hence, (1) implies (2). Finally, suppose that (2) holds. Since Py,c®minPhn, is RED, a theorem of Exel and Loring"' shows that s is
a w*-limit of states sy on Py, ®minPn, whose Gelfand-Naimark-Segal (GNS) representations are finite-dimensional. Applying Lemma 2.10,
each s, applied to the generators Paij ® Py Of Pyc®minPn,c yields an element X, of Q4(n, ¢); moreover, limy X) = X pointwise. This shows

that X € Q,(n,¢) = Qua(n, c), which shows that (2) implies (1). m]

To establish the same disambiguation theorem for gc-correlations, we will show that the commuting tensor product Q,, ®:Q,, . is com-
pletely order isomorphic to the copy of Q,, . ® Q,, . inside of Py,c®maxPn,c. We recall that, if S and T are operator systems, then an element Y
in M, (S®. T) is defined as positive in the commuting tensor product provided that Y = Y* and, whenever ¢ : S > B(H) and y : T — B(H)
are ucp maps with commuting ranges, then (¢ - y)™ (Y) is positive in M,(B(H)), where ¢ -y : S® T — B(#L) is the linear map defined

by (¢ - v)(x®y) =¢(x)y(y) forallx e Sand y € T.
The next lemma is an adaptation of Ref. 38, Proposition 4.6.

Lemma 2.12. Let S be an operator system. Then, the canonical map Q,, :® ;S = Pp,c®max S is a complete order embedding.

Proof. Since Py is a unital C*-algebra, we have P, c®:S = Pu,c®max S (Ref. 40, Theorem 6.7). The canonical map Q,,,®:S — Pyc®:S
is a tensor product of canonical inclusion maps, which are ucp. By functoriality of the commuting tensor product,”’ the inclusion 9, ®.S
— Puc®: S is ucp. Hence, it suffices to show that this map is a complete order embedding.

To this end, suppose that Y = Y™ € M, (Q,, ® S) is a positive element of My, (Pnc®.S). Let ¢ : Q, — B(H) and y : S > B(H) be
ucp maps with commuting ranges; we will show that (¢ - )™ (Y) is positive in M,,(B(?L)). For convenience, we define Q5 = (p(qa)ij)‘ By
Proposition 2.3, there is a unital *-homomorphism 7 : P — M1 (B(H)) such that the (1,1) corner of n(pa,ij) is Qu forall 1 <a<cand
1 <i,j < n. Moreover, for each x € P, each block of 7(x) in B(H) belongs to the C*-algebra generated by the set {Qu,ij :1<a<el<i
j<n}. We extend ¢ to a ucp map on Py, by defining ¢(-) = (7(-))11. Define ¥ : S &> M1 (B(H)) by ¥(s) = L+1 ® y(s). Since y(s) com-
mutes with the range of ¢, y(s) must commute with the C*-algebra generated by the range of ¢. Hence, y(s) commutes with every block of
n(p,, ij), forall a, i,j. By the multiplicativity of 77, y(s) commutes with the range of 7. By definition of the commuting tensor product, this means
that 77+ Y : Pp,c®cS = M1 (B(H)) is ucp; moreover, the (1,1) block of 77+ ¥ is ¢ - y. This means that ¢ - y is ucp on P, ®.S. Restricting to
the copy of the algebraic tensor product 9, ® S, it follows that (¢ - )™ (Y) is positive, making the canonical map Q,, . ®.S - Pp.®:Sa
complete order embedding. O

Theorem 2.13. Let X = (X((Z]’.l)’)(k Z)) e (M, ® Mn)cz. The following are equivalent.

(1) X belongs to Qgc(n,c).

(2) Thereis astate s : Ppc®maxPnc — C satisfying s(paij ® ppe) = XEZJ’.;)(,{)Z) foralll<a,b<candl<ijk{<n.

(3) Thereisastates: Qu®:Qnc — C satisfying s(qaij ® qore) = X((iaj’,l;)(k 0 foralll<a,b<candl<ijk{¢<n.

Proof. Since Qg (#, c) is defined in terms of POVMs where Alice’s entries commute with Bob’s, we see that (1) is equivalent to (3). Based
on two applications of Lemma 2.12, we see that Q,, . ®. Q,, is completely order isomorphic to the image of Q,, . ® Q. in Py c®maxPn,c. Hence,
(2) and (3) are equivalent. m]

When considering the quantum-to-classical graph homomorphism game, the local model will be of interest because of its link to the
usual notion of a (classical) homomorphism from a quantum graph to a classical graph. It is helpful to note that all strategies in Qy,.(n,c) can
be obtained using PVMs instead of just POVMs. We use a bit of a different direction for proving this fact. First, we show the following simple
fact:

Proposition 2.14. Qjoc(n,c) is a closed set.

_ (y(ab)
Proof. Let Xy = (Xm’(l.,j))(u))

there is a unital commutative C*—algebra A, POVMs me), . ,Pc(m) and QY"), e Qc(m) in M, (A), and a state s, on A, such that

€ Qpc(n,c) be a sequence of correlations such that lim X,, = X pointwise in (M, ® M,,)Cz. For each m,
m—oo
(ab) _ (m) ~(m) »)
Kooty = Sm(Pa Quie) Y by ook, £

Define A = @ -1 Am> Pajij = EB;’::lP(m), and Qupe = @fn":lQ}()zz. Then, P, = (Pajj) and Qp = (Qpe) define two POVMs in M,(.A) with ¢

a,ij

656761 Y20z Ateniged zg

outputs. Using the canonical compression from A onto A, we can extend s, to a state’s,, on A. As the state space of A is w”-compact, we
choose a w”-limit point s of the sequence (5 ) - Then, X = (XE?J’.I;)(H)) = (5(Pa,ijQpxe) ), which shows that X € Q,.(n,¢c). ]
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We note that the above proof works just as well for projection-valued measures. A standard argument shows that limits of convex
combinations of elements of Qy,.(#, ¢) represented by PVMs from Abelian algebras can still be represented by PVMs from Abelian algebras.
With this fact in hand, we can prove the disambiguation theorem for Qy,.(n, ¢).

Theorem 2.15. Let X = (X((Z}})),)(k,e)) e (M, ® M,,)Cz. The following are equivalent:

(1) X belongs to Qj,c(n,¢).
(2) There is a commutative C* -algebra A, a state s on A and POVMs {Py,...,Pc}, {Q1,...,Qc} € My(A) such that

a,b
X (e = S(PagQuue).
(3) There is a commutative C* -algebra A, a state s on A, and PVYMs {P1,...,P.},{Q1,...,Qc} € M,(A) such that
a,b
Xk = 5(PasQuue).

Proof. Clearly (1) and (2) are equivalent by the definition of Qy,.(n,¢). Since every PVM is a POVM, (3) implies (2). Hence, we need
only show that (2) implies (3). Suppose that

b
XéZj),)(k,Z) = 5(Pa,ijQpie)

for a state s on a commutative C*-algebra Aanda POVMs Py, ..., Pcand Qy, . .., Q. in M, (A). Then A ~ C(Y) for a compact Hausdorff space
Y. The extreme points of the state space of Y are simply evaluation functionals 8, for y € Y, which are multiplicative. Hence, (Sy(") (Qa) € Mu(C)

defines a POVM with ¢ outputs in M, (C), where 85") = idy ® ). Recall that the extreme points of the set of positive contractions in a von
Neumann algebra are precisely the projections in the von Neumann algebra. An easy application of this argument shows that the extreme

points of the set of POVMs with c outputs in a von Neumann algebra are precisely the PVMs with ¢ outputs. Hence, {8}(,") (Q),..-, 6;") (Q)}

lies in the closed convex hull of the set of PVMs in M, (C) with ¢ outputs. Applying a similar argument to {8}5”) (P1),..-, 6}5") (P.)}, it follows
that the correlation [y (Pa,;jQp k¢ )] is a convex combination of elements of Qy,. (1, ¢) obtained by tensoring projections from M,(C). Taking
the closed convex hull, we obtain the original correlation X. In this way, we can write X using projection-valued measures, which shows that
(2) implies (3). ]

For t € {loc, q, gs, qa, qc}, we let Ci(n,c) denote the set of correlations with classical inputs and classical outputs in the t-model, where
Alice and Bob now possess n PVMs (equivalently, POVMs) with ¢ outputs each. These sets embed into Q,(#, ¢) in a natural way.

Proposition 2.16. Let t € {loc, q, gs, qa,qc}. Then, C;(n, c) is affinely isomorphic to

{X € Qi(n,c) :XEZ]’.?’)(,(’Z) =0 ifizjork+{}cQin,c).

Moreover, the compression map

a,b
X = (80X ) Q€)= Ci(mc)

is a continuous affine map.

Proof. All of the claims follow from the following observations: if {E,x} is a collection of positive operators such that {E,x}5_; is a
POVM in B(#) for each 1 < x < n, then the operators P, := @%_, Eax define a POVM in M, (B(#)). Similarly, if {Qa};-; is a POVM in
M, (B(H)), then setting Fsx = Quxx € B(H), we see that {F,x};_; is a POVM in B(H) for each 1 < x < n. We leave the verification of the
claims above to the reader. O

Using what we have established so far, we see that the sets Q,(#, c) satisfy

Qioc(n,¢) € Qq(n,c) € Qgs(n,c) € Qua(n,c) € Qye(n,c).

The sets Qjoc(n1,¢), Qga(n,c), and Qyc(n,c) are all closed, and Qgu(n,c) = Que(n,¢) = Q(n,¢). Using the previous proposition, all of the
containments above are strict in general. Indeed, Qjoc(2,2) # Q,4(2,2) by the CHSH game (Ref. 42, Chap. 3). By a theorem of Coladangelo
and Stark,” Q4(5,3) # Qg(5,3). A theorem of Dykema, Paulsen, and Prakash** shows Qg(5,2) # Qga(5,2). In fact, using the T» quantum
XOR game and a result of Cleve, Liu, and Paulsen,”” one can show that Qu(3,2) # Q4.(3,2). [The analogous problem for C;(3,2), perhaps
surprisingly, is still open, although it has been shown that the synchronous versions are equal; in fact, C;(?», 2) = C;C(S, 2).*°] Finally, due to
the negative resolution to Connes’s embedding problem,” it follows that Qg (1, ¢) # Qgc(n, c) for some (likely very large) values of 7 and c.
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We close this section with the following isomorphism between P, and its opposite algebra. This isomorphism will be used in our
discussion of synchronous correlations in the next few sections. Recall that, if A is a C*-algebra, then A is the C*-algebra with the same
norm structure as A, but with multiplication given by a®? b = (ba)*.

Lemma 2.17. The map pajj = po; extends to a unital *-isomorphism 1 : Puc — Pl

Proof. In Pffc, one has
N oo op N
0] 0, 0
Zpa,kjpa,ik = Z (pu,ikpa,kj) ?
k=1 k=1

n op
= (Zpa,ikpu,kj)
k=1

— %P

- P a,ij’
where we have used the fact that P, = (p, ;) is a projection in P,.. Evidently, (pfij)* = (pay)” = pZi, so the above calculations show that
PP .= (pzf}i),ffj=1 is a projection in M, (P}%.). Moreover, Y5, P = I.. By the universal property of Py, there is a unital *-homomorphism
7 Puc = Pk such that 7(paj) = pF

aji*

One can show that P}Y, is the universal C*-algebra generated by entries pgﬁj with the property that P = (PZ{;;')ZFI is a projection in
M, (PL) with ¥5_, P)F = I,.. By a similar argument to the above, the map pZZi +> Pa,ij extends to a *~-homomorphism p : P}%, — Py.. Since 7

and p are mutual inverses on the generators of the respective algebras, they both extend to isomorphisms, yielding the desired result. ]

I1I. SYNCHRONOUS QUANTUM INPUT-CLASSICAL OUTPUT CORRELATIONS

We now generalize the notion of synchronous correlations. Recall that a correlation P = (p(a, blx,y)) € C(n, k) is called synchronous if
p(a,blx,x) = 0 whenevera + b.”
In the following considerations, we fix once and for all an orthonormal basis {e;, ..., e, } for C".

Definition 3.1. Let S C [n]. We define the maximally entangled Bell state corresponding to S as the vector
1
S= 7281' ® e;.
|S| jes

Definition 3.2. Let X € Q,(n, c) be a correlation in n-dimensional quantum inputs and c classical outputs, where t € {loc, q,qs, qa, qc}. We
say that X is synchronous provided that there is a partition S$;U - - - US of [n] with the property that, if a # b, then

p(a,blgs,) =0 forall1<r<d.

We define the subset
Qi(n,c) = {X € Qi(n,c) : X issynchronous}.

The following proposition gives a very useful description of synchronicity in terms of the entries of the matrices involved in the
correlation.

Proposition 3.3. Let X = (ng}})),)(k,e)) € Qi(n,c) for t € {loc, q,qs, qa, qc}. The following are equivalent:
(1) X is synchronous.
(2) X satisfies the equation

15,2 (aa)
— X0 =1 3.1
”;i; (i), (i) (3.1)
(3) Ifa#b,then
Lok
2 X =° (32)

Proof. Suppose that X can be represented using the PVMs {P,};_; in B(C" ® ) and {Qy }},_, in B(H ® C") and the state y € H. We
observe that, if S ¢ [n], then
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Z((Pa ®Li)(In® Q) (e ® Y ®e),ei ® Y ®ei)
ijeS

p(a’b‘(PS) |S|

|S| Z Pul]Qqu; )

i,jeS
Ly
=7l %X(i,n,(i,j)'

Suppose that X is synchronous, and let Si,...,S; be a partition of [n] for which p(a, blgs,) =0 whenever a # b and 1 < r < £. Then the

(a.b)

above calculation shows that }; S, X(( =0 for all ». Summing over all 7, it follows that szle(i,j) Gi) = 0 whenever a # b. Hence, (1)

b)
i), (i)
implies (3).

Next, we show that (3) implies (2). Notice that, for any X € Qqc(n, c),

b
Z Z X(za]))(kz) =

a,b=11ij= a,

M-
M:

(Pu l]Qb 1])(: )

S
I
—_

ij=1

() (Bl

(xx)=mn

<
I

M:

i

g
]

Mx

1

where we have used the fact that .¢_; Po = Y.j_, Qp = I, implies that 3.5, Pajj = >5_; Qp,ij is I when i = j and 0 otherwise. Therefore,

1 Z x(@b)
n; (i), (i)
which shows that (2) holds.
Finally, if (2) holds, then (1) immediately follows using the single-set partition S = [n]. ]

Remark 3.4. In the case of a correlation p(a, blx,y) € C/(n,c) with n classical inputs and c classical outputs, using the [n] = {1} U {2}
U---U {n}, we see that any synchronous correlation in C¢(n, c) is a synchronous correlation in the sense of the definition above. In this way, we

see that Cj(n,¢) € Qi(n,c).

We wish to show the analog of Ref. 9, Theorem 5.5; that is, synchronous correlations with n-dimensional inputs and ¢ outputs arise
from tracial states on the algebra generated by Alice’s operators (respectively, Bob’s operators). We will also see that, in any realization of
a synchronous correlation, Bob’s operators can be described naturally in terms of Alice’s operators. By a realization of X € Qu.(n,c), we
simply mean a 4-tuple ({Pa}q—1, {Qp}y_1> M, ¥), where {P,};_; isa PVM on C" ® H, {Q,};_, isa PVM on H ® C", y is a state in 7, and
[Pa®I4,1,®Q,] =0foralla,b.

Theorem 3.5. Let X = (XEZ;’ o)) € Que(n,c). Let ({Pa}aer> {Qv} 1> Hs ¥) be a realization of X. Then:

(1) Qujjy =Poyw forall 1 <a<cand1<i, j<n.
(2)  The state p = ((-)y,v) is a tracial state on the C*-algebra A generated by {Pa;j:1<a<c1<i,j<n}, and on the C*-algebra B
generated by {Qprp: 1< b <, 1<kl <n}.

Conversely, if Paj are operators in a tracial C*-algebra A with a trace T, such that the operators Py = (Pajj) € My(A) form a PVM with ¢
outputs, then [1(Pa,iPy,,)] defines an element of Q y.(n,c).

Proof. Suppose X € Qc(n,c), with realization ({Pa}q_1, {Qp}}-,» H> ¥). By Proposition 3.3, we have

1 C n (a,a)
222 22 X (33)
a=1ij=1

1 C n

== > {PaiiQuii¥ ¥)
na1ij=1
1 C n

<=2 2 HPaiQaiiys ) (3.4)
na1ij=1
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1 c n
= ;Z Z |(Qa1}1//> uu‘/’)'
a=1ij=1
1 c n "
<=2 2 IQuyl IPasyl (3.5)
a=1ij=1
< > Qa,ijllfllz) (Z > P;,UWHZ) (3.6)
a=1i,j=1 a=1i,j=1
1 c n % c n %
:; ZZ(Qat]Qazﬂ//; ) (ZZ Pasz,“]l[/, )
a=1ij=1 a=1ij=1
1 c n % c n %
=1 2 20 Qi w)) (Z > (PasiPasits ¥ ) :
a=lij=1 a=lij=1

Since P, and Q, are projections, the last line is equal to
1 1 1
2

(ZZ Qa,fjw,w))z(ii Paiiyy y );— (i(lwt//,w))( (Iww))E

a=1j=1 a=1i=1 j=1 i

|
L=

NN

= X

Therefore, all of these inequalities are equalities. Then, (3.4) implies that

(a.a) ..
X 20 foralll1<a<c 1<ij<n

The equality case of (3.5) shows that

Quij¥ = aaiPy;y  forsome agyi € T. (3.7)

Then, Eq. (3.7) yields

* * 2
Ef];)(,]) “u,ij<Pa,ijPa,ii1//> W) = Qajij Hpa,ijvln .
Since XE ';)( j 2 0and IP;;w]? > 0, we either have P; ;i = 0 or aaj = 1. In either case, we obtain

Quij¥ = Poyv,

as desired.
To prove (2), it suffices to show that it holds for A = C* ({Pa,jj }4,;); a similar argument works for 8 = C*({Qb e toke) Letp: A — Cbe
the state given by p(X) = (Xy, y). Let W = P;"‘,m R ij De aword in { Py, P P} ;i}a,ij» where we denote by p;! ioj the operator P}, ; ;. and let

myg € {~1,1}. We will first show that Wy = Q"% e Qal,ﬁﬁ v, where Qaz,im = Qy,1,j, Using the fact that P,;; and Q;,-commute for each
a,b,i,j, k, £, we obtain

1y Mk
Wy = Pﬂl inji Pﬂk>ikjkw
—_ pMm . Mi—1 —Mg
P“l injr Pﬂk-l-ik-ljk-l Q“k>ikjk v

— my 1y N » L3S
- Q%ik]'k Pal>i1jl P“k—bik—ljk—l)l//)

and the desired equality easily follows by induction on k. For1 <a<cand1<i,j<n,
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p(PaiiW) = (P Wy, )

= “’J(Qul i ak;k]k) v, )
= ((Qutiy, - Qi) Paii o ¥)
= (Paiy, Qalijy Qi V)
= (Paiiys (Porii - Parii) W)
= (Pasiy, W'y)
= (WPajy, ) = p(WPay).

In the same way, p(Pa,iPyxe W) = p(WPaiPy e ). It follows by induction, linearity and continuity that p is tracial on A, as desired.
For the converse direction, we recall the standard fact that, if A is a unital C*-algebra and 7 is a trace on A, then there is a state
5: A®max A% — C satistying s(x ® ) = 7(xy) forall x,y € A. Thus, if Py,. .., P. € M,(A) is a projection-valued measure,

s(Paij ® P

ko) = T(PaiiPppe) V1< a,b<c 1<ijkl<n.

Applying the universal property of Py, we obtain a state y : Pp.c ®max Pt — C satisfying
y(pa,ij ®PZ{;I<€) = T(Pa,ijph,kl)-

By Lemma 2.17, the map pgij ® ppie — T(Pa,ijph,gk) = T(Pa,ijPZ,k[) defines a state on Ppc ®max Pn,c. Then, Theorem 2.13 shows that

X := 7(PaiiPhie)

defines an element of Qu.(n,¢). Ifa # b,

(ab)
ZX(qu)(u) ZT(P“'JPZ’U)

= TI' ® T(Pupb) =0,

since P,P, = 0. By Proposition 3.3, X = (X(l“]};)(ke)) € Quc(n,c). ]
In light of Theorem 3.5, we may refer to a synchronous t-strategy ({P, };_,, x) when referring to a ¢-strategy ({Pa}q—1, { Qs } ;1> x) Where
the associated correlation is synchronous.

(a,b)
(i), (k0)
(1) XE:‘I;)’)O]) >0foralll<a,b<cand1<i,j<n.

(ab) (ab)
@) Xeijwey = XGinen”
(3) Foranyl<a#b<candl<i,j<n, wehave

Corollary 3.6. Let (X ) € Qi(n,c) where t € {loc,q,qs,qa,qc}. Then

(ab) N y(ab)
ZX(:k) () ZX(k,o,(k,j) =0
(4) Foranyl<i,j<n, wehave

c n
(a.a)
Z ZX(i,k),(j,k) Z ZX(kr) (ki) =

a=1k=1

Proof. By Theorem 3.5, we may choose projections Py, . .., Pc € M,(A), for a unital C*-algebra A, along with a tracial state 7 on A such
that

,b * ..
XEZj),)(k,ﬁ) = 17(PaiiPyre) forall 1<a,b<c, 1<ijkl<n

Since P, is a projection, it defines a positive element of M, (.A). Compressing to any diagonal block preserves positivity, which implies that
P, € A" for any i. Since 7 is a trace, it follows that T(Paj,'Pb,jj) > 0 for any i,j,a, b. Hence, (1) follows.
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We note that (2) follows easily from the fact that 7 is a trace and that, since 7 is a state, one has 7(Y*) = 7(Y) forall Y € A.
To show (3), we observe that

< (a,b) *
I;X(’k) (k) Z T(Pu,ikph,jk)

= Z T(PaikPpii)

k=1

n
=T (Z Pa,ika,kj)

k=1
=7((PaPy)ij) = 0,

since PPy, = 0. Similarly, Zk 1X(<Z lb))(k y = =0whena#b.

A similar argument establishes (4). Indeed, we have

ICHINEDILCREIE pr)|

a=1

and this latter sum is 8y, since Y;_; P4 = I. The other equation in (4) follows similarly. |

Remark 3.7. It makes sense (and we will have occasion) to discuss synchronicity of a strategy with respect to a different orthonormal basis
v={vy,.. .,1),,} of C". In this case, a qc-strategy ({Pa}o 1,{Qb}b 1»X) is said to be synchronous with respect to {vy,...,v,} if there is a
partition S; U - - - U S of [n] such that for each r and ¢s, v = \/72163 vj ® vj, we have

p(a,bles,v) =0 if a+b.

One can then write down an analog of Theorem 3.5 in this context. Alternatively, one can simply let B, = U*P,U and Q, = U*Q,U, where U
is the unitary satisfying Ue; = vi for all i. Then, applying Theorem 3.5 relates the entries of Qu to the entries s of Py, while showing that the state
{()x>x) is a trace on the algebra generated by the entries of the operators Qa (respectively, P,). Since Py = UP,U* and Q, = UQ, U™, the entries
of P, (respectively, Q) are linear combinations of the entries of P (respectively, Qb) so it follows that the algebra generated by the entries of the
operators P, (respectively, Q) is the same as the algebra generated by the entries of P, (respectively, Qp).

It is helpful to describe the simplest ways to realize synchronous correlations. To that end, we spend the rest of this section describing
the simplest realizations for t € {loc, g, gs}. We start with the case of Qj,.(n,¢).

Corollary 3.8. Let X € (M, ® M,,)CZ. Then X belongs to Q7 (n,¢) if and only if there is a unital, commutative C*-algebra A, a projection-
valued measure {Pa}o_, € Mu(A) for 1 < a < ¢, and a faithful state y € S(A) such that, forall1 < a,b<cand1<i,jk{<n,

a,b *
X((,]))(k 0~ ‘//(Pa,ijpb,kz)

Moreover, if X is an extreme point in Q3,.(n,c), we may take A = C.

Proof. 1If X € Qj,.(n,c), by definition of loc correlations, X can be written using projection-valued measures {P,};_, and {Q;};_,; in

M, (B(#)), along with a state y € H, such that X! G, ))( ko) = = (PajQukey> x) and the C*-algebra A generated by the set of all entries Pgj and Q,,,

is a commutative C*-algebra. Applying Theorem 3.5, we can write XE ))(k 0= W(PaiPy i )> where y(-) = ((-)x, x). As this state is tracial, by
replacing A with its quotient by the kernel of the GNS representation of y if necessary, we may assume without loss of generality that y is
faithful, which establishes the forward direction. The converse follows by the converse of Theorem 3.5 and the definition of Qj,.(#, ).

To establish the claim about extreme points, we note that the Proof of Proposition 2.14 shows that every element of Q. (n,¢) is a
limit of convex combinations of correlations arising from PVMs in M, (C). Evidently the set of elements of Q,.(#,¢) that have realizations
using PVMs in M, (C) is a closed set. As Qj,.(#,¢) is compact and convex, the converse of the Krein-Milman theorem shows that extreme
points in Qj,(#,¢) must have a realization using PVMs in M,(C). Now, the proof of the forward direction of Theorem 3.5 shows that

izz:lzzj IY((:‘];’ )(11) <1 for any Y € Qg (n,c). Moreover, this inequality is an equality if and only if Y is synchronous, by Proposition 3.3.

656761 Y20z Ateniged zg

Hence, Q3,.(n,c) is a face in Qy,c(n, ¢), so extreme points in Q;,.(#, ¢) are also extreme points in Qj, (1, ¢). This shows that X has a realization
using the algebra A = C. ]
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Corollary 3.9. Let X € (M, ® Mn)cz. Then X belongs to Qy(n,c) if and only if there is a finite-dimensional C*-algebra A, a projection-
valued measure {Pa}q_, € My(A) for 1 < a < ¢, and a faithful tracial state y € S(A) such that, forall 1 <a,b< cand1<i,j,k,{ <n,

(ab) _ p*

X(i,j))(k,g) - W(Pu,ljph,kz)-
Moreover, if X is an extreme point in Q3(n,c), then we may take A= My for some d, and hence y = trg, where try is the normalized
trace on M.

Proof. If X belongs to Q;(#n,c), one can write X = ({(Paij ® Quie)x> X)) for projection-valued measures {Py}q_; € Mn(B(Ha)) and
{Qu}po1 € Mu(B(H3p)) on finite-dimensional Hilbert spaces #4 and H3p, along with a unit vector y € Ha ® Hp. By Theorem 3.5, we may
write X = y(PyiP; ;) where  is the (necessarily faithful) tracial state on the finite-dimensional C*-algebra A generated by the set {P,; : 1
<a<gl<ij<ny.

Conversely, if X can be written as X = (y/(Pa,jP;,)) for a projection-valued measure { P, };-, € M,(A), where A is a finite-dimensional
C*-algebra with a faithful trace ¥ on A, then the Proof of Theorem 3.5 yields a finite-dimensional realization of X as an element of Q z.(, c).
By Lemma 2.10, we must have X € Q;(n, c).

Now, assume that X is extreme in Q3 (#n,c). Since A is finite-dimensional, it is *-isomorphic to @;; My, for some r and numbers
ki,...,kr € N.Since y is a trace on A, there must be ¢1,. .., t, > O such that ;2 ¢, = Land y(-) = X) #, try, (), where try is the normalized

trace on My . Writing Py ;; = 69:”=1P£:.]). foreach 1 <a<cand1 <i,j<n, where P ¢ My, we have

a,ij

(a.b) (r) (r)
X(l]) (ko) — Zt’trk (Pa1] bkl) )

Since P{" = (P(r)) € M, (M, ) must define an orthogonal projection and Z; PO -Le I, it follows that x@h) = try, (P(r) (Plsrk)e)*)

a,ij 7, (i), (k£) aij
€ Qy(n,c), and Z,zlt,Xf'zlbj) ko) = EZI)’)(M) Therefore, X ( ]) ke) = (11) (k 0 for each r. This shows that we may take A to be a matrix
algebra, completing the proof. O

We will end this section by showing that Q¢.(n,c) = Q5 (n,¢). To prove this fact, we use a similar approach to Ref. 18. In fact, by an
application of Proposition 2.16, the following theorem is a direct generalization of the analogous result in Ref. 18.

Theorem 3.10. For each n,c € N, we have Q;S(n, c) = Q;(n,c).

ab .
Proof. LetX = (Xfi’j)’)(k’e)) € Q4s(n, c), and write

ab
XEZ]))(k 0~ ((Pu,ij ® Qb,k@)v/’ W)’

where P, = (Payj) is a projection in C" ® H, for each 1 < a < ¢, Q, = (Qp;) is a projection in Hp ® C" for each 1 < b < ¢, Yo Pa = Icvgw,»
Yp=1Qp = Iyecr, and y € Ha ® Hp is a state. We can arrange to have dim(#.4) = dim(#3). For example, if dim(#H4) < dim(#3), then we
choose a Hilbert space 7 ¢ with dim(Ha @ Hc) = dim(#3g), and extend P, by defining Py j = Pa,ij @ 8jjly.. Then,

((Pa © Quee) ¥ ¥) = ((Pag ® Qu) ¥ ¥) = X(5 -

In this way, we may assume without loss of generality that dim(#4) = dim(#3).
We write down a Schmidt decomposition

oo
Y= %e ® fr
p=1

where {ep};ZI C Ha and {ﬁ,};il € Hp are orthonormal, and a; > a; > - -- > 0 are such that Z;erx; = 1. If one extends these orthonormal
sets to orthonormal bases for H4 and Hp respectively, and defines additional &,’s to be 0, then after direct summing a Hilbert space on one
side if necessary, we may assume that dim(?) = dim(#3) and that {e }es is an orthonormal basis for 4, and {f; }ser is an orthonormal
basis for Hp.

We rewrite the (at most) countable set {a,:ay # 0} = {B, :v eV}, where V ={1,2,...} and B, > ,,, for all ve V. We define
Ky ={eg:ag=p,} and Ly, = {f; : ay = B, }, and define subspaces I, = span(Ky) and £, = span(L, ) of H4 and 7, respectively. Since
Yo |org|* = 1, it follows that each K, and L,, must be finite, so that K, and £, are finite-dimensional. We will show that each Ky, is invariant
for the operators {P,;: 1 <a<¢1<1i,j<n}, and that each £, is invariant for the operators {Qy, : 1 < b <¢, 1<k, € < n}. To this end, let
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 be a primitive ¢-th root of unity, and define order ¢ unitaries U = ¥%_, 0P, € B(C" ® Ha) and V = $i_ 0 ' Q, € B(Ha ® C"). Since X is
synchronous, by Theorem 3.5, we know that

(B, ® Qaip)¥ = (Payj ® Ly, )y and (I, ® QuijQpi) ¥ = (PyiPiyj ® Iy ) Y.
Since U;Uj = Y[ o @ “p, iPp; and Vi Vij = Z;bﬂwh_”Qa,ianﬁ, it follows that

(IHA ® Vl; )V/ = (Uﬁ ® IHB)‘// and (IHA ® V’]Vlj)‘// = (UUU; ® IHB)‘//'
Using this fact and the decomposition of y,

aq(Uiiegs €p) = ((Uyj ® Ly )y, €p ® fy) = (I, ® Vi) W65 ® fy) = ap(Vii foo fo)-
Since U and V are unitary, it follows that, for all p,

n

n
2
Z | U,] epH z (U;U; ep,ep) =n and Z [Uiiep|” = Z (U; Uiiep, €) = n.
ij=1 ij=1 ij=1 ij=1

Similarly, 327, |V fal? = Yii=1l Vifa |* = n. Suppose that q is such that e, € K1. Then, using the fact that a = a; and that &, < a; for all p
yields

11|061|2 = Z |0‘1| ” Vt]f;i”

g
—_

oo [(Vi fp fa)

=0
M3

<
I
—_
=3
I
—_

g | (Ui )

M:
M3

1

a~3
Il
—_

ij

=l Y 3 [(Useq o)

ij=1p=1

= o Z > l{u Fepeq)l

ij=1p=1

n
lon[* Y U5 eq®

ij=1

8

2
nlaa|".

Therefore, we must have equality at all lines. If p is such that e, ¢ K, then since ap < a1, we must have 0= Y7, |¢xp|2|(V,-}° Forfa)
= ij=1|aq|2|(Uijeq,ep)|2. Therefore, (Uijeq, €p) = 0 for each such p, which shows that Ujje; L e, for all p with e, ¢ K. Since this happens
whenever a, = a1, the subspace must be invariant for every Uj;. By the same argument as above with the quantity Y7, |aa|*| Vify ||, it
follows that K; is invariant for every U, ,J Therefore, K is reducing for the operators Uy, for all 1 < i,j < n. A similar argument proves that £,
is reducing for the operators Vi, forall 1 < k, ¢ < n.

Now, choose g such that e, € Ky and f; € L. If a > oy, then & = a1, so that e, € K; and f, € K;. The above shows that (Ujjeq, e,) = 0 and
(U,; eg ep) = 0, so that Ujje; L KC1 and U; eq L K. Similarly, Vi, f; L £1 and V,:'l fa L £1. Then using a similar string of inequalities as before, one
obtains Ujie; L e, whenever p is such that e, ¢ K, and g is such that e; € K,. Therefore, one finds that /C; is invariant for each Uj;. A similar
argument shows that /C; is invariant for Uy, so that /C; is reducing for {Uj; : 1 <i,j < n}. The same argument shows that { Vi, : 1 <k, £ < n}
reduces /C;.

It follows by induction that /C,, is reducing for {Uj; : 1 <i,j < n} for all v and that L, is reducing for {Vy, : 1 < k,£ < n} for all v. By
construction of the unitaries U and V, we know that

Zw “? and Q, = Zwde

Cd_

Therefore, Ky, is reducing for each Pg 5, and £, is reducing for each Q ;,, as desired.
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a,b)
42 i,j),(k,2)4 2
as elements of C" © , or as elements of R*(" ), Then by a countably infinite version of Carathéodory’s theorem, this will show that X belongs
to Q7 (n, ¢), which will complete the proof. [As mentioned in Ref. 18, this result from Ref. 46 holds even with non-closed convex sets, of which
Q4 (n,c) is an example.]
Foreach v € V, weletd, = dim(K,) = dim(Ly) = |[Ky| = |Lv|, which is finite. Define the state

Finally, we will exhibit X = (X(( ) as a countable convex combination of elements of Q (#, ¢). One can regard elements of Q ;(n,c¢)

1
v = —— e ®
1% rdWZ » ®fp

e, €K,y

and define

Puaij = Pajilc, and Qupxe = Qpelz, -

Since KC, is reducing for P, and since P, is a projection, the operator Pya = (Pu,aj)ij-1 is a projection on C" ® Ky. Similarly,
Qup = (Qupke)io—y is a projection on £, ® C". Moreover, Y. Pu,a = Ic» ® I, and Y5, Qyp = Iz, ® Ics. Therefore, the correlation

a,b
Xo = (X0 ) = ({(Poa ® Quuke)¥os y0))

belongs to Q,(n, c) for each v. Set £, = fydv. Thent, > 0and ¥ 5ty = Z;Zl\apf = 1. Finally, foreach 1 < a,b < cand 1 < i,j < n, we compute

X0y = (Pai @ Quee) v )
=2 % Bul(Pai ® Que) (e ® o) g @)

v piqiep,eq€Ky

= Zﬁf)d'u<(Pv,a,ij ® Qv,b,kl)v/v’ Wv)
_ (ab)
= 200X, ey

It follows that X = 3", t,X,. Since each X, € Q,(n,¢), it follows that X € Q,(n,c). Since X is also synchronous, we obtain X € Q;(n,c),
completing the proof. O

IV. APPROXIMATELY FINITE-DIMENSIONAL CORRELATIONS

In this section, we will show that elements of Q3,(n,c¢) arise from amenable traces. Equivalently, elements of Q3,(n,¢) can be repre-
sented using the trace on R and projection-valued measures with c outputs in M,,(R* ), where R“ denotes an ultrapower of the hyperfinite
II,-factor R by a free ultrafilter / on N. The proof is similar to Ref. 18, Sec. 3, and the main result is a generalization of Ref. 18, Theorem 3.6.
Relevant details on RY can be found in Ref. 33.

For amenable traces, we will use the following result of Kirchberg,"” Proposition 3.2, which can also be found in Ref. 33, Theorem 6.2.7.

Theorem 4.1. Let A be a separable C*-algebra and let T be a tracial state on A. The following statements are equivalent:

(1) The trace 7 is amenable; i.e., whenever A ¢ B(H) is a faithful representation, then there is a state p on B(H) such that p, = T and

p(u*Tu) = p(T) forall T € B(H) and unitaries u € A.
(2) Thereisa *-homomorphism m: A - R" along with a completely positive contractive lift ¢ : A — £%°(R) such that try om=1.
(3)  There is a sequence of natural numbers N(k) and completely positive contractive maps ¢y : A — My satisfying

Jlim [[px(ab) ~ pi(a)pr(b)|2 = 0and lim [try() (¢x(a)) ~ 7(a)| = 0

foralla,be A
(4)  The linear functional y: A® A% — C given by y(a ® b*) = t(ab) extends to a continuous linear map on A®minA .

As pointed out in Ref. 18, as soon as y is continuous on A®min.A % in condition (4) above, it is automatically a state on the minimal
tensor product.
In what follows, we will let || - |, denote the 2-norm with respect to the trace. For the convenience of the reader, we recall the following

perturbation result.

Lemma 4.2 (Kim, Paulsen, and Schafhauser'®). Let € >0 and c € N. Then, there exists a § >0 such that, if n,NeN and Py,...,
P. € M,(My) are positive contractions with |PaPy||l2 < 8 for all a+ b and |P2 - P,|2 < & for all a, then there exist orthogonal projections
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Qy,...,Q. e My(My) with Q,Q, =0 for a+ b and |P,— Q|2 <& Moreover, if | Yo Pa—I,®IN|, <8, then we may arrange for the
projections Qy, ..., Q. to satisfy Yo_1Qa = I ® In.

Note that this lemma is stated slightly differently than in Ref. 18; however, it is easy to see that their result is equivalent to the above result.
Notice that, in the above lemma, if we write P = (Payj) € Mu(My) and Q, = (Q, ;) € Mn(Mn), then one has [Q,; — Pajil2 < |Q, — Pal2 <&
where the first 2-norm is in My and the second 2-norm is in M, (My).

Theorem 4.3. Let X = (XO ) (H)) be an element of (M, ® M,l) The following statements are equivalent:

(1) X belongs to Q ga(n,¢).

(2) X belongs to Q5 (n,c).
(3) There is a separable unital C* -algebra A, a PVM {P, ..., P} in M, (A), and an amenable trace T on A such that, forall 1 <i,j,k, <n
and1<a,b<g,
ab *
ngn)(m = 7(PaiiPpir)-
(4)  There are elements q,;; in RY such that q, = (4,,) are projections in My (RY) with Y5_,qa = I, and

ab *
Xéz;))(kl) trpu (Gaii9oke)-
Proof. First, we show that (1) implies (3). Since Qgq(n,c) is the closure of Qu(n,c), this means that there are correlations

X, = (Xr(‘zlhj)) * Z)) € Qq(n,c) with limX, = X pointwise. We may choose natural numbers N(r) and M(r) along with projection-valued mea-

sures {Pf'), .. ,Pc(r)} c M, (MN(,)) and {QY), e Qﬁ')} c M, (MM(,)) and unit vectors ; € CNM o €M) guch that, for all 7 € N and for all
1<a,b<cand1<ijkl<n,

(a.b) (r)
Xr(z;) (k) — ((Paz] ®Qb )Xth>

Then for each r, by Theorem 2.11 and Theorem 3.5, there is a state ¢, on Py, ®minP s satisfying

r(paii ® ) = (P ® QU0 ) o)-

As the state space of any unital C -algebra is w*-compact, we may take a w”-limit point ¢ of the sequence (¢:);2,. By construction,

we note that ¢(pa,j ®pb Pe) = X forall 1<a,b<cand 1<i,j,k ¢ <n We write ¢ = (n()y, x) in its GNS representation, where

(11) (k £)
7 Prc®minP e — B(H) is a unital *-homomorphism and y € # is a unit vector. Applying Theorem 3.5 and restricting to Py, we see
that 7(y) := (m(y ® 1)y, x) defines a trace on P,. To establish (3), we need to show that 7(x ® y*) = 7(xy) for all x,y € Py,. Notice that for
each a and i, j, by Theorem 3.5 we have

T[(x®pu1])X T[(x®1ap)(n(l®pu1]))x ﬂ(xp’“] 10P)X'
Then for each b, k, £, we have

n(x ® o )X = n(x @ plm(1®@ ph,)x
=(x® p)m(poke ® 1)x
= n(xpure ® Porp)X
= 11(XppkePaij ® 1)X-

Since pYfpr, = (PhkePaii)” and the elements P, generate Py, one can see that m(x ® y¥)x = m(xy ® 1)y. Therefore, ¢(x ® y) = 7(xy) for
allx,y € Pn, showing that 7 is an amenable trace. Setting Py j = 71(p, ; ® 1), we obtaina PVM {Py,. .., Pc} in M, (A), where A = 7(Pnc ® 1)

and P, = (Pa,j). Moreover, é”))(u) T(Pa,ijPZ,ke)) so (1) implies (3).

Next, we show that (3) implies (2). Let {Pi,...,P.} be a PVM in M,(.A) for a separable unital C*-algebra, and let 7 be an amenable

(ab)
trace on A such that X(i’j), (k0)

maps ¢r: A= My(y) with lim ¢ (xy) = ¢,(x)¢, ()2 = 0 and lim [trye) (,(x)) — 7(x)| = 0 for all x,y € A. Define pa ;i = ¢r(Pasj) and set

= 7(PyjPy ) for all a, b, i, j, k, £. By Theorem 4.1, we may choose a sequence of completely positive contractive

= (pm ) € Myy(Myyy). Using the 2-norm on M, (M) and the fact that P% = P, implies pa,ij = Y197 (PaikPajj), one sees that
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1) = {2 =

—

() (1)
Z uzkpak] pat])

k=1

S (9 (Pas) o (P ~ gor(Pu,,-kPa,kj)))

k=

hjlly

i,

—

—_

2

H(P’(Pa,ik)(Pr(Pa,kj) - (PV(Pa,ikPa,kj) ”2 30
1

IN
M=

Similarly, one can show that lim,_, || par) (r) |2 = 0 whenever a # b and ” > pa 1y > 0. Applying Lemma 4.2 and dropping to a sub-

) H r— o0

sequence if necessary, we obtain a sequence of PVMs {g; o ,q(r)} € My(My(yy) with ¢ outputs with Hpgl qm ——0 forall a,i,j.

There is a unital *-homomorphism ¥; : Puc = My(yy with vy (paji) = q,, 1) As Py, is generated by {pa,j}aij> a standard argument shows
that lim ||(p (x) = ,(x)|2 = 0 for every x € Py.. This implies that |trN(r)(<pr(x)) — trngy (v, (x))| = 0, so that lim|trN y(v,(x)) —1(x)| =

Hence, hm trN(,)(qa (qh )*) = 7(PaiiPpy,) for all a, b,i,j, k, £. As each correlation Xr((u)) (k0)

= trN(,)(qa (qb )*) defines an element of
Q q(n, c), we see that X = (T(Pa,,ij,ke)) belongs to Q q(n, ¢). Hence, (3) implies (2).
Since Qgq(n,c¢) is the closure of Q,(n,¢), it is easy to see that (2) implies (1).
To show that (3) implies (4), we use Theorem 4.1. If {Py,...,P.} is a PVM in M,(.A) and 7 is an amenable trace on A satisfying
(a.b)
X (ko)
9o = (qajj) € My(RY) summing to the identity and satisfying

= 7(P4,iP} ), then there is a unital *-homomorphism p: A4 - R" that preserves 7. Setting g aij = P(Pajj), we obtain projections

a,b
XE:]))(M) tr v (qaidoke)>

which establishes (4).
Finally, we prove that (4) implies (3). Given the elements g, ;; in (4), there is a unital *_homomorphism o : Py, — RY satisfying o(p azj)
=q,;- By Theorem 2.8, Py, has the lifting property, so there is a ucp map {:Pue = €7 (R) that is a lift of 0. Then Theorem 4.1 shows that

. . * * b
T:= trpy o0 isanamenable trace on P. Since T(paiipyre) = trpu (qaiiyre) = XE:j),)(k,Z)’ we see that (3) holds. ]

V. THE GAME FOR QUANTUM-TO-CLASSICAL GRAPH HOMOMORPHISMS

In this section, we define the quantum-to-classical game for quantum-classical graph homomorphisms. Throughout our discussion, we
use the bimodule perspective of quantum graphs considered by Weaver'”'” (which is a direct generalization of the non-commutative graphs
considered by Duan, Severini, and Winter in Ref. 11, and Stahlke in Ref. 17). In addition, we will see later how our framework also relates
nicely to other perspectives as well (e.g., the quantum adjacency matrix formalism of quantum graphs introduced by Musto, Reuter, and
Verdon in Ref. 14).

For our purposes, we refer to a quantum graph as a triple (S, M, M, ), where

e M isa (non-degenerate) von Neumann algebra and M < My;
e S M, isan operator system; and
e Sisan M ’-M'-bimodule with respect to matrix multiplication.

In our discussion below, one can just as well use the “traceless” version of quantum graphs along the lines of Stahlke;'” i.e., one replaces
the second condition with the condition that S is a self-adjoint subspace of M, with Tr(X) = 0 for every X € S. This condition, combined
with the bimodule property, would force S ¢ (M ')*. Our use of the operator system approach is generally cosmetic: one can easily adapt the
quantum-classical game to traceless self-adjoint operator spaces that are M '-M '-bimodules with respect to matrix multiplication.

Before we begin, we recall that the space M,, of n x n matrices is naturally equipped with the structure of a Hilbert space, using the inner
product (X, Y) = Tr(Y*X) for all X, Y € M,,, where Tr is the unnormalized trace on M,. We will exhibit a certain orthonormal basis for the
operator system S with respect to this Hilbert space structure on M,,. It is from this (preferred) basis for S that we will extract our input states
for the homomorphism game.

Proposition 5.1. Let Ki,...,Km be non-zero subspaces of C" with I @--- @ Ky = C", such that M acts irreducibly on each K. Let
E, be the orthogonal projection of C" onto K;, for each 1 < r < m. Then, there exists an orthonormal basis F of S € M, with respect to the
unnormalized trace, such that

\/CWK)E € Fforeachl<r<m;

o F contains an orthonormal basis for M ‘s and
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o foreachY € F, there are unique r,s with E,YE; = Y.

Proof. Since M acts irreducibly on K, it follows that E, € M ’.Let X be an element of S. As S is an M '-M ’-bimodule, it follows that
E,XE, € S for all 1 <r,s < m. Moreover, since 3,2 E, = 1, we have X = Y7 _ | E.XE;. Given X, Y € S, we have (E,XE;, E,YE;) = 0 whenever
r # pors # g, where (-,-) is the inner product with respect to the unnormalized trace on M,. We choose an orthonormal basis F for E,SE;
with respect to this inner product as follows. We start with an orthonormal basis for E,M 'Eg; if r = s, then we arrange for this orthonormal
basis to contain \/ﬁ&. Then we extend the orthonormal basis for E, M 'E; to an orthonormal basis for E,SE;. We may do this since, if

XeSn (M) and Y e M, then
(E,XE,,Y) = Tr(Y*EXE) = Tr(XEY*E,) = (X, E, YE) = 0,
which shows that E,(Sn (M ')")Es L M. Then, F = U, Fr; is an orthonormal basis for S, which evidently satisfies all three properties. O

Definition 5.2. We call a basis for S satisfying Proposition 5.1 as a quantum edge basis for (S, M, M,).

Alternatively, one could arrange for a quantum edge basis for S to also contain a normalized system of matrix units for M ’, since a
quantum edge basis must already contain the normalized diagonal matrix units. We will see in Theorem 5.7 that the game is independent of
the quantum edge basis chosen.

Once an orthonormal basis for C" has been fixed, one can define the inputs for the game using the following well-known correspondence
between vectors in C" ® C" and matrices in M,. With respect to a basis {v1, ..., v}, this correspondence is given by the assignment v; ® vj

+ ;v where viv]" is the rank-one operator in M, such that viv;" (x) = (x,vj)v; for all x € C".

Proposition 5.3. Let (S, M, M) be a quantum graph with quantum edge basis F. Let {v1,...,v,} be an orthonormal basis for C" that
can be partitioned into bases for the subspaces K1, . .., K. For each Yo € F, write Yo = 3, 4 YapqUpVq fOr Yapg € C. Then, the set

{Z}/rx,pqvp ® ’Uq} C Cn (%9 (Cn

pq
is orthonormal.

Proof. This result immediately follows from the fact that the correspondence v; ® vj vivf preserves inner products, when using the
canonical inner product on C” ® C" and the (unnormalized) Hilbert-Schmidt inner product on M,,. m|

With the notion of quantum edge bases in hand, we now define the homomorphism game for the quantum graph (S, M, M,,) and the
classical graph G.

Definition 5.4. Let (S, M, M,) be a quantum graph, and let {vi,...,v,} be a basis for C" that can be partitioned into bases for the
subspaces K1, . .., Kr. Let G be a classical (undirected) graph on c vertices, with no multiple edges and no loops. The quantum-to-classical graph
homomorphism game for [ (S, M, M), G], with respect to the basis {v1, . ..,v,} and the quantum edge basis F, is defined as follows:

o The inputs are of the form Zp)qya,pqvp ® vg, where Yy := Zp)qya,‘pqvpv; is an element of F. The outputs are vertices a,b € {1,...,c}
= V(G). There are two rules to the game:

o (Adjacency rule) If Yo L M, then Alice and Bob must respond with an edge in G; i.e., a ~ b.

o (Same “vertex” rule) If Y, € M, then Alice and Bob must respond with the same vertex; i.e., a = b.

Notice that the second rule will include a synchronicity condition: the inputs corresponding to E, will arise in the second rule.

1
Vdim(k, )
We will see that the rule applied to these inputs will force Bob’s projections to arise from Alice’s projections; the rule applied to the other basis
elements of M " will be what forces the projections to live in M ® B(#), rather than M, ® B(H).

While the above definition of the game seems heavily basis-dependent, we will see that the existence of winning strategies in the various
models is independent of the basis {v1,. .., v}, and independent of the quantum edge basis F chosen for (S, M, M,). This will be a direct
consequence of Theorem 5.7.

We would also like to relate winning strategies for the homomorphism game to the non-commutative graph homomorphisms in the
sense of Stahlke.!” For this, we first review Kraus operators in the infinite-dimensional case. Recall that a von Neumann algebra A is finite
if every isometry in N is a unitary; i.e., v*v = 1 implies vv* = 1 in A In this case, it is well-known that N is equipped with a normal tracial
state. We will be dealing with the case when M is a finite von Neumann algebra equipped with a faithful normal trace 7. One may always
choose a faithful normal representation N ¢ 3(#) such that 7(-) = ((-)x, x) for some unit vector y € H.

Suppose that £ ¢ B(K) is another von Neumann algebra with faithful normal trace p. For our purposes, a normal ucp map @ : £ - N
can be thought of as a quantum channel. If £ = B(K) and N = B(#) and both of K and H are finite-dimensional, then @, : N'x > L, is
a Completely Positive and Trace Preserving (CPTP) map with respect to the canonical traces on B(K) and B(#), respectively-this is the
usual notion of quantum channels in finite dimensions. In our context, £ will be a finite-dimensional von Neumann algebra, so a ucp map
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®: L — N is automatically normal. One may choose K to be finite-dimensional and extend @ to a ucp map from B(K) to B(H), which is
still (automatically) normal. Then, one may choose Kraus operators F; such that ®(-) = .12, F{' (-) F;, where m is either finite or countably
infinite. In the latter case, the sum converges in the SOT*-topology. The interested reader can consult*® (and the references therein) for more
information on these topics.

Now, we address some of the basis dependence of the game before the main theorem. The next lemma shows that, up to a unitary
conjugation, the basis for C" in Definition 5.4 does not matter.

Lemma 5.5. Let (S, M, M,) be a quantum graph, and write C" = K, @ - - - @ Kn, where M acts irreducibly on each K,. let G be a classical
graph on c vertices, and let {v1,...,v,} be an orthonormal basis for C" that can be partitioned into bases for the subspaces K1, . . ., K. Define
U € My, to be the unitary such that Ue; = v; for all i, where {ey, ..., ey} is another orthonormal basis for C". Suppose that X € Quc(n, c), and let
{Ya}« be a quantum edge basis for (S, M, My). Then, X is a winning strategy for the homomorphism game for [ (S, M, M), G] with respect to
{Ya}aifand onlyif Z:= (U ® U)*X(U ® U) is a winning strategy for the homomorphism game for [(U*SU, U* MU, M,,), G] with respect to
the quantum edge basis {U" Yo U } 4.

Proof. Suppose that we can write X = (((Pa ® I ) (I ® Q;) (6j ® x ® er), € ® ¥ ® e;)), where ({Pa}o-1, {Qs}p_1» ) is @ gc-strategy on a
Hilbert space H. Then,

(Pa®L)(Ii® Q) (vj @ x ®vp),vi® x ® ) = (U'PURL) I ® U'QU) (e ® x ®er),ei ® y ® e).

In other words, the element Z = (Z*?) := (U ® U)*X“" (U ® U)) is a gc-correlation with respect to the basis {v1, . ..,v,}. It is not hard
to see that, if F is a quantum edge basis for (S, .M, M), then U* FU is a quantum edge basis for (U*SU, U* MU, M), since U* MU
= (U*MU)’ and the Hilbert-Schmidt inner product is invariant under unitary conjugation. Therefore, if Y = Y pqYapaUpy belongs to F,
then its associated input vector is Y, ¥, ,,vp ® vq. Then U"YoU = ¥, 1YapgU" vpvg U has associated input vector 3, .y, ..U vp ® U*vg
= LpgVaps® ® o

Therefore, the probability of Alice and Bob outputting (a, b) given the input vector 3, , ¥ wpqUp ® Vg» With respect to the correlation X,
is the same as the probability of outputting (a,b) given the input vector 3, , Yapq€p ® €q> With respect to the correlation Z. As this equality
occurs for any element of the quantum edge basis F, the desired result follows. O

Remark 5.6. The previous remark, along with the adjacency rule, forces any winning strategy to be synchronous with respect to the basis
{v1,...,un}. Thus, in our main theorem, we may assume that we are dealing with a synchronous t-strategy ({Pa}q-1,x), where {Ps}q_, is a
PVM and y is a faithful normal tracial state on the von Neumann algebra generated by the entries of {Pa}q-,. Note that conjugating {P,}_; by
a unitary in M, does not change the von Neumann algebra generated by the entries of the operators P,.

Theorem 5.7. Let (S, M, M,) be a quantum graph, and let G be a classical graph on c vertices. Let N' < B(H) be a (non-degenerate)
finite von Neumann algebra, and y € H be a unit vector such that v = ((-)x, x) is a faithful (normal) trace on N. The following are equivalent:

(1) There is a winning strategy ({Pa}i_1,x) from N for the homomorphism game for [(S, M, M,), G] with respect to any quantum edge
basis.

(2)  There is a winning strategy ({Pa}o-1,x) from N for the homomorphism game for [(S, M, M), G| with respect to some quantum edge
basis.

(3) Thereisa PVM {P,},_, in M ® N satisfying the following: if 1 < a,b < canda + bin G, then

Pa((Sn (M) *)®1)P, = 0.
(4) Thereisa UCP map ® : D. > M ® N of the form ®(-) = ¥ | F (-)F; such that
F((Sn(M")*)®1x)F c8Scn (D.)*" foralli,j
and

FE(M'® IN)F]-* cD. foralli,j.

Proof. Clearly (1) implies (2). We will show that (2) = (3) = (4) == (1). Let {v1, ..., v, } be an orthonormal basis for C". Let U be
the unitary such that Ue; = v; for all i. Suppose that we can establish (3) for the PVM {(U ® 1 )*Pa(U ® 1) }5; and the quantum graph
(U*SU, U* MU, My). Using the fact that (U* MU)' = U* M U, the condition in (3) can be written as

(U®1y) PAUR L) ((U'SU) N (UM U @13) (U 1y ) P (U®1y)=0 ifarb
It is not hard to see that (UM 'U)* = U*(M ') U, so that the above reduces to
(U 1x) Pa((SN(M)*)@1x)P(U 1x) = 0.
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Since U is a unitary, we obtain the desired condition for {P,};_; with respect to the quantum graph (S, M, M, ). Hence, we may assume
without loss of generality that v; = e; for all i.
Then, given a matrix Y = ¥, ,ypqpvy with associated unit vector y = 3., . YpqUp ® g, the probability of Alice and Bob outputting a and

b, respectively, given y and using the synchronous strategy ({Pa}5-1,¥), is
p(a,bly) = ((Pa,fjpzf,ke)(i,j),(k,e) (Zypqvp ®x® Uq)’ D Vrvr ® X ® Us>
Pa =

= ( Y. Ui ® PaiyjePreX ® Vg ) yrstr ® X ® v5>
i,j,k, 0 s

= > (PaiiyiePpkeyik)o X)
ik,

> 1(PaiyjePoeryic)
ikt

Trer (ZPa,ij)’jZPb,Zk) (Y* ® 1/\’)
it ik
Tr® 1(Po(Y ® 14)Pp(Y* @ 1))
=Trot(Pa(Y® Ly)P (Y ® 14)P,), (5.1)

where we have used the fact that P, is an orthogonal projection. Now, suppose that F = {Y, } is a quantum edge basis for (S, M, M), and
suppose that ({Pa}5-;, ) is a winning strategy with respect to this quantum edge basis. If Y, € M, then Eq. (5.1) and faithfulness of the trace
gives Py (Ya ® 1) P, = 0 whenever a # b. Then,

c c
Pa(Ya®1x)Pa=) Pa(Ya® 1y)Py = Pa(Ya ® 1N)(Zpb) =Py(Ya® 1y).
b=1 b=1

Similarly, Ps(Ya ® 15)Pa = (Yo ® 1) Ps. Hence, P, commutes with Y, ® 1, whenever Y, € M ’. This shows that P, € (M@ 1) n (M, ®
N)Y=M@BH)n(M,® N)=Me N.

Similarly, if Yo L M ' then the rules of the game and the faithfulness of the trace force P;(Yy ® 1,)P;, = 0 whenever a + b, which shows
that (3) holds.

Now we show that (3) implies (4). If (3) holds, then there is a projection-valued measure {P, };_; in M ® N such that P,(Y ® 1 5)P, =0
forall Y e Sn(M’)* and a + b. Then, the map ¥ : D, > M ® N given by W(Ey) = Py is a unital *-homomorphism. Since D is finite-
dimensional, ¥ is normal. Hence, we may find Kraus operators Fy, Fs, . .. in B(C" ® H,C°) such that

¥() = 2 F OF:

where m is either finite or ®o. In the infinite case, these sums converge in the SOT* -topology. Given Y € S, we set Zu,b,i,j =Eu.Fi(Y® IN)FJ-* Epp.
Notice that

Za,bj,jZ:,b,i,j = EuFi(Y ® 1N)Fj*Ebij(Yyr ® 1 x)F; Eaas
so summing over j (for fixed i, this sum will converge in the SOT”* -topology) and using the fact that Z,TZIF]-*E;,;,FJ- =V¥(Eyw) = Py,
m
> ZapiiZapij = EaaFi(Y ® 15)Pp(Y" ® 1) F; Ega.
=1

Now set W, ; = EaaF,‘(Y ® IN)Pb. Then Z;lea)b)i’jz

* —
abij =

Wi W,y since Py is a projection. On the other hand,

WipiWapi = Po(Y" ® 1) E EaaFi(Y ® 1) Py,

SO summing over i gives

m
> WapiWapi = Po(Y @ 15)Pa(Y ® 1y)Py = (Pa(Y ® 1 )Py) " (Pa(Y ® 1) Py).
i=1
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It follows that, if the latter quantity is zero, then Z,,;; = 0 for all i,j. By condition (3),if a+ bin Gand Y e Sn (M ')*, then P(Y ® 1)
Pj, = 0. This immediately implies that EsFi(Y ® 1) Fj’r Ey, = 0. Then,

F(Y®1x)F = EaaFi(Y ® 15)F Epp = Y EaaFi(Y ® 1 )F Epyy € S N D¢
a,b a~b

Since each P, belongs to M ® N, P, commutes with M’ ® 1 y-. Therefore, P, (Y®1y)P,=0foralla+band Y e M ’. A consideration of
the above equations, yields EsoFi(Y ® 1) F; Ey;, = 0 whenever Y € M " and a # b. In that case, we have

Fi(Y ® 1x)F = Y EaaFi(Y ® 1x)F; Epyy = > EaaFi(Y ® 1x)F} Egq € D,
a,b a

which yields the second part of condition (4). Hence, (3) implies (4).

Finally, suppose that (4) holds; we will obtain a winning strategy for the game. Suppose that ® : D, - M ® N is a UCP map of the form
®(-) = XL R{ (-)Ri, such that Ri(Y ® 1 y)R € Sen D¢ forall 1 <ijj<mandY e Sn(M')*,and Ri(Y ® 1y)R € D, forall Y e M. Let
Py = ®(Ez) = X2 R; EaaR; for each 1 < a < ¢. Since @ is UCP, {P, };-, isa POVM in M ® N By considering the unitary U sending e; to v;
for each i, along with the POVM {U*P,U };_,, the quantum graph (U*SU, U* MU, M,,) and the operators R;U if necessary, we may assume
without loss of generality that v; = ¢; for all i. We will show that ({Pa}-1,x) defines a winning strategy from N for the quantum graph
homomorphism game for [(S, M, M,),G].

Forl<a,b<c1<ij<mandY €S wedefine V,p;; = EaaRi(Y ® 1x)R; Eyp. Then,

m m
> VabijVabij = 2 EaaRi(Y ® 1y )R EyRi(Y" ® 1x)R{ Esa = EaaRi(Y ® 13)Py(Y" ® 13)R; Eaa,
=1 j=1

1
since P}, = ®* (Ey; ). Therefore, 3377 Vi i Vo, =T wbiTabi where Top; = P2 (Y* ® 15 )R} Ega. Next, we examine the sum

m L 1 1 1
D TabiTapi= 2. PE(Y @ 1y)R EaaRi(Y ® 13)P; =P} (Y ® 1y)Pa(Y ® 1)P}.
i=1 i=1

1 1 1
In the case when Y € M, we have V,;;; = 0 whenever a # b, which implies that P} (Y* ® 15 )Pa(Y ® 1)P} = 0. It follows that P (Y

1 1 1

® 1y)P; = 0. Multiplying on the left by P; and on the right by P}, we obtain P,(Y ® 1,)P, = 0 whenever Y € M’ and a # b. The case when
Y = 1 shows that P,P, = 0 for a # b. Combining this orthogonality with the fact that {P,};_, is a POVM, we conclude that {P,};_, is a
PVM. Similarly, if Y € Sn (M ") *, then by condition (4), V,,; = 0 whenever a + b in G. The same calculation shows that P, (Y ® 1,5)P = 0
in this case as well.

Therefore, using Eq. (5.1), if { Y4}« is a quantum edge basis for (S, M, M, ), Y, has associated unit vector y, and Y, L M !, then by
Eq. (5.1),

P(a,blya) = (Pa(Ya ® 15 )Py, Yo) =0. ifa+b.

If Y belongs to M with associated unit vector y,, then p(a, blys) = (Pa(Y ® 1x)P;, Y ® 1) = 0 as well. This shows that ({P,}5-, ) defines
a winning strategy from A for the homomorphism game for (S, M, M,) and G with respect to any quantum edge basis, completing the
proof. O

The next theorem will show that, in the loc model, condition (4) of Theorem 5.7 is an analog of Stahlke’s notion of graph homomorphism
from a non-commutative graph (i.e., a quantum graph with M = M,,) into a classical graph,'” with an added assumption on the commutant
of M. A similar analog holds in the g-model, with natural generalizations to the ga and gc models.

We observe that, if we start with a projection-valued measure {P, },_; whose block entries are in a tracial von Neumann algebra (N, 7),
where 7 is faithful and normal, then either all four conditions of Theorem 5.7 are satisfied by the PVM, or none of the four conditions are
satisfied. Notice that we needed to start with a PVM and a faithful trace for this to happen.

In the following discussion, we write (S, M, M,) £5G to mean that there is a winning ¢-strategy for the graph homomorphism game

for [(S, M, M,), G].We will also write (S, M, M,) — G if (§, M, M,) L, G. Our choice of notation is since, from a loc-homomorphism,
one can always obtain a graph homomorphism.
Using Theorem 5.7 and the characterizations of synchronous correlations, we obtain the following theorem:

Theorem 5.8. Let (S, M, M,) be a quantum graph and let G be a classical graph on c vertices.
1) (M, M) e if and only if there is a UCP map @ : D. -~ M of the form ®(-) = Y1 | F; (+)F; such that
F(Sn(M")")E cSon(De)*  forall ij
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and
FM 'F]-* €D, foralli,j.

2) (SM,M,) SN if and only if there is d € N and a UCP map ® : D. > M ® M of the form ®(-) = Y1 F{ (+)F; such that
F((Sn(M")*)®I)F cSen(D:)*  forall ij

and
Fi(M'®I;)F <D forall i,j.

3) (M, M) .6 if and only if there is a UCP map ® : D, - M ® RY of the form ®(-) = X1, F; (-)F; such that
F((Sn(M")*)®14u)F €Son(D)*  forall iyj

and
Fi(M'® 1,u )F €D, forall i,j.

4) (SM,M,) 6 if and only if there is a von Neumann algebra N, a faithful normal trace T on N, and a UCP map ® : D. > M ® N’
of the form ®(-) = ¥ F{ (-)F; such that

F((Sn(M")*)®1x)F cSen(D.)*  forall iyj

and
F(M'®1x)F <D forall i,j.

I
Proof. We consider the case t = loc first. If (S, M, M,) —— G, then there is a winning loc-strategy for the homomorphism game from

(S, M, M,) into G. Since Qj,.(n,c) is convex and non-empty, one may obtain an extreme point in Q;,.(#,¢) that wins the game with
probability 1. Applying Corollary 3.8, there is a realization of this correlation using a PVM {P,};_, in M = M ® C. Then the result follows
by condition (4) of Theorem 5.7 with A = C. The converse of (1) holds by condition (3) of Theorem 5.7.

The argument is similar for ¢ = g. Indeed, if there is a winning strategy for the homomorphism game in the g-model, then an application
of Corollary 3.9 shows that there is a winning g-strategy using an extreme point in Q ;(n, c), which can be realized using projections whose
entries are in M, for some d. Then condition (4) of Theorem 5.7 with A/ = M, yields the desired UCP map. The converse, as before, holds by
condition (3) of Theorem 5.7.

We note that (3) holds because of Theorem 4.3. Condition (4) is achieved using the following well-known trick: if A is a unital, separable
C*-algebra with tracial state 7, and if 7; : A — B(#.) is the GNS representation of T with cyclic vector &, then 7: (A )" is a finite von Neumann
algebra and ((+)¢, €) is a faithful normal trace on 71; (A )"'. We leave the details to the reader. ]

For synchronous games with classical inputs and classical outputs, Helton et al. constructed a universal *-algebra for the game, generated
by self-adjoint idempotents whose products were 0 when the related pair of outputs was not allowed.” One can define a game *-algebra in our
context as follows:

Definition 5.9. Let (S, M, M,) be a quantum graph and let G be a classical graph on c vertices. The game *-algebra for the homomor-
phism game for [ (S, M, M,), G, denoted A(Hom((S, M, My),G)), is the universal * -algebra generated by entries {pj:l1<a<cl<ij<ng}
subject to the relations

® Da = (pajij)ij satisfies p = pa = py and X._, pa = I, where I, is the n x n identity matrix;

e p((SN(M")*)®1)p, =0 foreach a + b; and

e pa(M'®1)p, =0 foreacha#b.

We say that the algebra exists if 1 0 in the algebra.

As one might expect, we obtain the following characterizations of the various flavors of winning strategies for the homomorphism game
in terms of *-homomorphisms of the game algebra.

Theorem 5.10. Let (S, M, M,) be a quantum graph and let G be a classical graph.

loc

(1) (SM,M,) —G <= thereis a unital *~-homomorphism A(Hom((S, M,M,),G)) — C.
2 (M, M) SN if and only if there is a unital »-homomorphism A(Hom((S, M, M,),G)) — M, for some d € N.
3) (SM,M,) .6 if and only if there is a unital -homomorphism A(Hom((S, M, M,),G)) - RY.
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4 (SM,M,,) RN if and only if there is a unital x-homomorphism A(Hom((S, M, M,),G)) — C, where C is a tracial C*-algebra.
6) (SM,M,) ®.G if and only if A(Hom((S, M,M,),G)) # 0.

One can also define C*-homomorphisms and hereditary homomorphisms of quantum graphs into classical graphs. We write

(S M, M,) L G provided that there is a unital *-homomorphism
7 AHom((S, M, M,),G)) = B(H)

for some Hilbert space H. (Equivalently, by the Gelfand-Naimark theorem, one may simply require that the game algebra has a representation
into some unital C*-algebra.)

For hereditary homomorphisms, we recall the concept of a hereditary (unital) *-algebra. Recall that a unital *-algebra A is said to be
hereditary if, whenever xi, . . ., x, € A are such that x{x; + - - - + x;,x, = 0, thenx; = x, = - - - = x, = 0. If one defines A, as the cone generated
by all elements of the form x*x for x € A, then A being hereditary is equivalent to having A, n (-A+) = {0}. Every unital C*-algebra is

hereditary as a unital *-algebra.

With this background in hand, we will write (S, M,M,) Leed, G provided that there is a unital *-homomorphism from

AHom((S, M, M,),G)) into a (non-zero) hereditary unital *-algebra. One has the following sequence of implications for these types of
homomorphism:

(SMM,) > G = (SMM,) 56 = (S M,M,) 255G = (S, M,M,) -G
— (SMM,) S5 = (SMM,) 2246 — (SMM,) 26 (5.2)

Our notions of homomorphisms reduce to the analogous types of homomorphisms for classical graphs in the case when (S, M, M,,) is
a classical graph. Recall” that, for a classical graph G on n vertices, the graph operator system Sg (or classical quantum graph) is defined as

Sg=span ({Ei:1<i<n}u{Ej:i~j in G}).

Note that Sg is naturally a quantum graph in the previous sense if we regard it as a bimodule over the diagonal algebra D, = D, € M,. In
Ref. 12, it is shown that quantum graphs of the form (S, Dy, M,) are in one-to-one correspondence with classical graphs on n vertices.

Corollary 5.11. Let G and H be classical graphs on n and c vertices, respectively. Suppose that t € {loc, q,qa,qc,C*, hered, alg}. Then,
G LH if and only if (Sg, Dy, My) LH

Proof. We will show that the algebra A(Hom(G, H)) from Ref. 7 is isomorphic to A(Hom((Sg, Dn, M), H)). The former algebra is the
universal unital *-algebra generated by self-adjoint idempotents ey, such that 3°7_ exa = 1, exeeyp = 0if a # b, and exqe,p, =0if x~yin G
but a + b in H. Since D, = D), the latter algebra is the universal unital *-algebra generated by elements P, such that p, = (Paij) € Mu(A) is
a self-adjoint idempotent with 35_; pa = I, pa((Sg N (Dy)* ) ® 1)p;, = 0 whenever a + b in H, and p,(D, ® 1)p, = 0 whenever a # b. Since
Eij € Dy, using the fact that p_ (D, ® 1)p, = 0 for a # b, we obtain

pa(Eii ® )pa = ) pa(Ei ® 1)py = pa(Eii ® 1).
b=1

Similarly, p,(Ei ® 1)p, = (Ei ® 1)p,, so that E; ® 1 commutes with p_. It follows that P, = 0 whenever i # j. Since P2 = pa = pi, we see that
Paii = Paji = paii- For 1 <a<cand 1 < x < n, we define Qi = Doy Then, g, is a self-adjoint idempotent and 3;_gxa = 1 forall 1 <x < n.
Note that, if x ~ y in Gbut a » b in H, then

qx.aqy,b = PaxxPbyy = Pa (EX}’ ® 1)pb =0,

since Exy € SN (Dy)* and a + b in H. Similarly, if a # b, then g, ,q,, = p,(Exx ® 1)p, = 0 since Ex € D,. By the universal property of
A(Hom(G, H)), there is a unital *-homomorphism 7 : A(Hom (G, H)) - A(Hom((Sg, Dn, M), H)) such that 7(exa) = q,, for all x, a.
Conversely, in A(Hom(G,H)), one can construct the n x n matrices f, = (fa;;) with fz;; =0 for i # j and fui = es;. Then, evidently
f2=fi=fF and X5 fa = L. Since exae, = 0 for a # b, we see that fu(Exx ® 1)f, = 0if a # b. Since D, = span{Ex : 1 < x < n}, it follows that
fa(Dn ® 1)f;, = 0 for a # b. Similarly, it is not hard to see that f,(Ex, ® 1)f;, = 0 whenever x ~ y in Gbut a + b in H. By the universal property,
there is a unital *-homomorphism p : A(Hom((S¢, Dn, My),H)) - A(Hom(G, H)) such that P(P,;) = faij. Evidently p and 7 are mutual
inverses on the generators, so we conclude that the algebras are *-isomorphic. The result follows. ]

It is known that some of the implications in (5.2) cannot be reversed. While there are many examples of classical graphs G and H with
G LHbutG» H, Theorem 6.11 will show that (M,, M, M,,) LKdim(M) but (M, M, M,) + Kgim(my whenever M is non-abelian. Here,
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Kaim(r) denotes the (classical) complete graph on dim (M) vertices. Using the work of Kim, Paulsen, and Schafhauser on synchronous binary

constraint (syncBCS) games, there is a graph G and a number m such that K, 22, Gholds, but K,, G does not hold, where G denotes the
al, ere al,

graph complement of G (Ref. 18, Corollary 5.5). The other known separation is that %, does not imply Jered, For example, Ks LN

holds, but Ks Jered, K4 does not hold.” This result will be generalized to quantum graphs.

VI. COLORING QUANTUM GRAPHS
A special case of the homomorphism game is when the target graph is the classical complete graph K. on ¢ vertices. In this case, the

resulting game is a generalization of the coloring game for classical graphs.

Definition 6.1. Let t € {loc,q, gs,qa,qc, C*, hered, alg}. Let (S, M, M,,) be a quantum graph. We define
1((SM,M,)) =min{ceN: (S,M,M,) SK.},

and we define x;((S, M, M) ) = oo if (S,M,M,,)—/ichor allce N.

Due the inclusions of the models, we always have

Xioc (8 M, Mn)) 2 g (8 M, Mn)) 2 xga ((S, M, M) 2 xge((S, M, M)
2 xer ((8 M, Mn)) 2 Yiered (S, M, M) 2 yaig (S, M, My)).

As a consequence of Corollary 5.11, whenever G is a classical graph, we have y:(G) = x:((Sg, Dn, My)). This result is well known
(see, e.g., Ref. 16). As x; .(G) is the (classical) chromatic number of a classical graph G, we sometimes use the notation x((S, M, M,))
for yioc ((S, M, My)).

Example 6.2. Let
S=span{l, Ejj:i#j} C My,

which is a quantum graph on M,,. It is known'® that y((S, Ms, M,)) = n. Here, we will show that y,c((S, My,)) = n as well, which shows that
x((S,My)) = nforany t € {loc,q,qa,qc}.

Evidently the basis F = {I, Ej; : i # j} is a quantum edge basis for (S, My, M, ). Now, suppose that P1, . . ., P; are projections in M, (B(#))
with P,(Ex, ® [)P, =0 forall 1 <a<cand1 <k # £ < n. A winning strategy in the gc-model for coloring (S, M, ) with ¢ colors would mean
that there is a trace 7 on the algebra generated by the P, ;’s and that

pla,alei®e) =0 if i #j.

This implies that
T(PaiPyj) = 0 forall i +j.

By taking a quotient by the kernel of the GNS representation of the trace, we may assume that 7 is faithful. Then by faithfulness of 7 and
positivity of Pyjj, we have P, ;iPyji = 0 for all i # j. Now, choose i # j. Notice that, for each i, the set { P, } is a POVM on H. Moreover, for any
abe{l,...,c},

p(a, b|€i ® ej) = T(Pa,iiplj,jj) = T(Pa,iipb,]j)-

Thus, the only information relevant to Alice and Bob winning the game is the correlation (7(Pa,iiPp,jj))ap,ij € Cae(#, ). By faithfulness, this
forces each P, i to be a projection. By the synchronous condition, the previous equation and faithfulness of the trace, we obtain

PgiiPajj = 0 = Py iiPy ;i

whenever a # band i # j. Therefore, (7(Pa,iiPpj))ap,ij € CSZ(n, ¢); that is, the correlation is bisynchronous in the sense of Ref. 50 By Ref. 50, we

must have ¢ > n. Therefore, y4c(S, My, M) > n. It follows that y: (S, My, My,) = n for every t € {loc,q,qa, gc}.

A. Quantum complete graphs and algebraic colorings

In this section, we consider quantum complete graphs; that is, graphs of the form (M, M, M,,), where M c M, is a non-degenerate von
Neumann algebra. We show that y: ((M,, M, M,)) = dim(M) for all t € {g, qa, gc, C*, hered}. In contrast, we will see that yj,. (M4, M, M,,))
is finite if and only if M is Abelian; in the case when M is Abelian, we recover known results on colorings for the (classical) complete graph

656761 Y20z Ateniged zg

J. Math. Phys. 63, 112204 (2022); doi: 10.1063/5.0072288 63, 112204-26
Published under an exclusive license by AIP Publishing


https://scitation.org/journal/jmp

Journal of

Mathematical Physics ARTICLE scitation.org/journal/jmp

on dim (M) vertices. The algebraic model for colorings is known to be very wild. At the end of this section, we will extend a surprising result
of Ref. 7: in the algebraic model, any quantum graph can be four colored.
We start with a simple proposition on unitary equivalence that we will use throughout this section.

Proposition 6.3. Let M € M, be a non-degenerate von Neumann algebra. Then, there is a unitary U € M, such that U* MU = @}L,CI,,
® My, . Moreover, for any t € {loc, q, qa, gs, qc, C*, hered, alg }, we have

Xi((MnerMn)) = Xt(M”’®CI”r ® Mk“Mn).

r=1

Proof. The existence of the unitary U is a consequence of the theory of finite-dimensional C*-algebras. It is not hard to see that
(U*MU)" = U*M'U. Now, an element X € M, belongs to M " if and only if Tr(XY) = 0 for all Y € M. This statement is equivalent
to having Tr((U*XU)(U*YU)) =0 forall Y € M, since U is unitary. It follows that U* (M ")* U = (U*M'U)*.

Now, suppose that {P,}5_; € M, ® A s a collection of self-adjoint idempotents summing to I, ® 14, where A is a unital *-algebra. Then,
it is evident that Po((M’)* ® 14)P. = 0 if and only if P,((U* M 'U)* ® 1,4)P, = 0, where P, = (U* ® 14)Pa(U ® 1,). Similarly, if a # b,
then Ps(M’ ® 1,4)P, = 0 if and only if P,((U* M 'U) ® 14)P,, = 0. Thus, there is a bijective correspondence between algebraic c-colorings
of (My, M, M,) and algebraic c-colorings of (M, @®;~,CI,, ® My, M,). This yields the equality of chromatic numbers for ¢ = alg; the other
cases are similar. ]

The different chromatic numbers satisfy a certain monotonicity as well.

Proposition 6.4. If (S, M, M,) and (T, M, M,) are quantum graphs with S € T, then

X (&M, M) < x: (T, M, Mn)).

Proof. We deal with the t = alg case; all the other cases are similar. If ( 7, M, M,,) has no algebraic coloring, then Xalg(( T, M,M,)) = oo,
so the desired result holds. Otherwise, let A be a (non-zero) unital * -algebra. Suppose that { P, }{_, are self-adjoint idempotents in M, (.A) such
that 35 pa = In, Pa((T N (M) ) ® 14)Ps = 0 for all a, and P,(M ' ® 1,4)P;, = 0 forall a # b. Then evidently Po((Sn (M) ") ® 14)P,s =
0 as well, so the self-adjoint idempotents form an algebraic c-coloring of (S, M, M,). This shows that xu, ((S, M, M) < xag((T, M, My)).
The proof for the other models is the same. O

By Proposition 6.4, to establish that every quantum graph has a finite quantum coloring, it suffices to consider quantum complete graphs.
First, we look at (M, M, M,), the quantum complete graph. While we will have an alternative quantum coloring of this quantum graph from
Theorem 6.6, the protocol given in Theorem 6.5 is minimal for (M,, M, M,,) in terms of the dimension of the ancillary algebra. Moreover, it
gives a foretaste of the protocol that we use for the quantum complete graph (M,, M, M, ) when M is not isomorphic to a matrix algebra.

Theorem 6.5. Let d,k € N, and let n = dk. Let M = Cl; ® My. Then yg((Mu, M, My)) < K.

Proof. We construct our projections from the canonical orthonormal basis for C* ® C* that consists of maximally entangled vectors;
that is, the basis of the form

1 2mia(p + b)
Pap = WPZ:(:) exp(T)ebﬂ, ® e,

where addition in the indices of the vectors is done modulo k. (See Ref. 51, for example.) We define projections in M ® M, forall1 < a,b < n,
by

1kt 2mia(p —
Pan) = > exp(%)ld ® Epiphrg ® La ® Epg.
P4=0

Since the set {¢(qp) }5p-; is orthonormal, it is not hard to see that {Ps4)}; - is a family of mutually orthogonal projections. Moreover,

Snb=1Peap) =10 ® I ® I; ® Ir. With respect to M, (M’)* is spanned by elements of the form Ey, ® Evy and Exy ® (Evy — Eww) for
1<x,y<dand1<wv,w <kwithv # w. For Y = Exy ® Eyyy ® (I4 ® It), one computes P(a.p) YP(, 1) and obtains

€X]

1 2nia(p+p —q-4q
P Z p( (P I;c 1-49 ) Exy ® Eb+p,b+qvaEh+p’,b+q’ ®L;® quEp’q’-
pap'-q'=0

For a term in the above sum to be non-zero, one requires that b+ g = v, w = b + p’, and q = p’. Equivalently, a term in the sum is non-zero
only when g = p" and b + g = v = w. Hence, if v # w, then the above sum is 0. In the case when v = w, one obtains
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— > exp
k2 pa’'=0

L (2ﬂia(p -q)
k

)Exy ® Eb+p,b+q’ ®L;® qul.

The above expression does not depend on v, so we conclude that, forall 1 < v, w <k,
P(a,h) (Exy ®Epw®1;® Ik)P(a,h) = P(a,b) (Exy ®Eww®;® Ik)P(a,b)-

This shows that P, ;) (X ® I; ® I;)P,p) = 0 whenever X = Exy ® Eyy 0or X = Exy ® (Evo — Eww) for v # w. As such elements span (M) *,
we see that

P(u,b) (X ® Id ® Ik)P(a,b) =0VXe (M ’) L.

Finally, we show that P,y (M’ ® I; ® It)P(sr ) = 0 whenever (a,b) # (a’,b"). If Y € M, then Y ® (I; ® I;) commutes with each P, ),
since P(,p) € M ® (I ® My). Therefore, if (a,b) # (a',b"), we have

P(u,b) (Y ® (Id ® Ik))P(a’,b’) = P(u,b)P(a’,b’) (Y ® (Id ® Ik)) =0.

Putting all of these equations together, we see that there is a representation of the game algebra 7 : A(Hom((Mu, M, M,),K;2)) - Cl,
® My ® M. Therefore, yq((My, M, M,)) < k?, which yields the claimed result. ]

For a general complete quantum graph (M, M, M, ), we require a slightly different approach. The protocol in the previous proof is used
in the context of quantum teleportation, and essentially arises from the use of a “shift and multiply” unitary error basis for M,,.”"”” To give a
dim(M)-coloring for (M,,, M, M,) in the g-model, we will use what we refer to as a “global shift and local multiply” framework.

Theorem 6.6. Let M be a non-degenerate von Neumann algebra in My. For the quantum complete graph (M, M, My), we have
xa((My, M, My)) < dim(M).

Proof. Up to unitary equivalence in M,,, we may write M = @, (CI,, ® My, ), where n = ./ n,k,. We will exhibita PVM in M ® My,
with d =lem(ki, . . ., km), satisfying the properties of a quantum coloring for (M,, M, M,,). For notational convenience, we index our set of

dim(M) colors by the triples (s,a,b), where 1 <s<mand0<a,b<ks—1.For1<r<mand1<i<k,wedefine P, = @111, ® pr)

(ab)’
7,8 7,8 k,— . .
where Pga’b)) = (Pga’b)),(i’j) i,j=01 € M, (M,) is given by

(rs) O (i-j)a
Plnin = &, @ 4 ® Brebjet

where wy, is a primitive k,-th root of unity and d, = ki. (Note that indices are computed modulo k..) By our choice of the operators PE;’Z)) , we
see that each P, ) belongs to M ® M.
First, we show that }.\”; Z’;j;:lop(s,a,h) =1, ®I; Foreachl <r<mand0<ij<k -1,

S 1S (e
Z P(a)h)’(i)j) = Z wp 7 la, ® Ejypjip-
a,b=0 T a,b=0

If i # j, then the above sum over a is 0, for each value of b. If i = j, then the above sum simply becomes

n,—1

Z Iy, ® Eiypivp = Ly, ® In, = I
b=0

Thus, ZZ;:IOPEZ,;)) =1I;, ® ;. Since PE;;)) =0ifs # r, it follows that Y17 | ZZfl;:loPE:;)) =I, ®Ijforeach1 <7< m. As P, qpy = @rtqly, ® PE;';))’
we must have Y17, Zzsz;lop(s,a,b) =I,®I,.
Next, we check that each Py, is an orthogonal projection. By definition, it is easy to see that P(, ,;,) = P(sap) for all s,a,b. To compute

Piw’b), we note that

2 _ i (rs) \2
P(s,a,b) = glﬂr ® (P(g)b)) >

so it suffices to show that each PE;’Z)) is an idempotent in My, ® M. If r # s, then this is immediate. In the other case, we have
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(rr) (r,r) _ 1 (v-w)a
P(a,b),(v,j) (a,b),(jow) = Ewkr Id, ® Ev+b,j+bEj+h,w+b

1 _
= ﬁwiv w)ufd, ® Eytbw+b
r

_ 10

ko e, ()

(rr) = gkl P("r) P<"r) . Therefore, P(”) is idempotent in My, ® My,

Since this happens for all 0 < v,w < k, — 1, it follows that P(a,h))(v)w) 20 Plany oy Plab). o) (ab)

0 P 45 is an orthogonal projection.

Now, we show that P, ) ((M")* ® I;)P(s4p) = 0 for all a. We note that M’ = @), My, ® CI . Hence, (M) * is spanned by the
canonical matrix units that do not reside in M ’, and elements from each M, ® M, of the form Ej ® Eyy and Ej; ® (Evw — Eww ), where
1<4,j<n,0<v,w<k —1,and v # w. By a consideration of blocks, if a matrix unit Ex, does not belong to @;2; M,,, ® M, thenin M, ® M,
the element P, ) (Exy ® 1) P54 is @ product of two entries from P, 1), at least one of which will be 0.

Next, we suppose that 0 < v,w <k, — 1 with v # w and 1 <i,j < n,, and consider the matrix unit Ej ® Eyw € My, ® My, DL My,

® Mj,. Since P(p) = @11, ® P

(ab)’
S0 )
P(oap) (Eij ® Evew ® Iq)P(oap) = Ej ® P(;,Sb),(k,v)P(Z,sb),(wl) =0,
k.£=0
since PEZ,Sb)),(k,’U)PE;’,SB)),(M,Z) =0 for all v# w in {0,...,n;—1}. For the last case, we look at the element Ejj ® (Eyvy — Eww) in My, ® My,

c (M')*, where v # w. Multiplying on the left and right by P ;) yields

k-1
) _ . (s) (s) (s) (s) _
P(s41) (Eij ® (Evo = Eww) ® 10)P(sap) = Ej ® k;{) (Plsap) (k) Plsab)(w:0) ~ Plsaby k) Plsab)(wne)) = 0

since Pg))ﬂ’h))(k)v)Pg’)a)h),(v‘ 0= kl, PEE,)u,b),(k,Z) for any 1 <s<m and 0<k,v,{ <k, — 1. Putting all of these facts together, we conclude that
{P(sapy 1 1$s<m,0<a,b<ns— 1} ¢ M ® M, is aquantum dim (M )-coloring of (M, M, My,), as desired. ]

Remark 6.7. We suspect that the ancillary algebra in the previous proof is the minimal choice, but are unable to prove this. In the case when
M = M,, this is immediate, since having a PVM with n* outputs in M, ® M 7, and with each projection non-zero, requires f > n.

Next, we will show that ypereq((Mn, M, M,)) > dim(M), which will show that, for every fe {q,qa,qc,C*, hered}, we have
x (M, M, M,)) = dim(M). Moreover, we will show that dim(M )-colorings of (M,, M, M,) in the hereditary model must arise from

trace-preserving *-homomorphisms ¥ : Dgim(r) — M ® A. More precisely, we equip Dgim () With its canonical uniform trace yp,,, ,,, sat-

isfying ¥y, v (€a) = m for all 1 <a < dim(M). We also equip the von Neumann algebra M =~ @1, CI,, ® M;, with its canonical

“Plancherel” trace given by
m

kr
Ym = @ m Trn,k,(')'

r=1

Then, we will show that the *-homomorphism V¥ satisfies the following trace covariance condition:

(ya ® id)¥(x) = YDy (X) 14 (X € Daim(ar))-

We thus establish that the hereditary coloring number for any complete quantum graph (M,, M, M,) is dim(M ), and moreover, the above
trace-preserving condition shows that any minimal hereditary coloring induces a quantum version of isomorphism between (M, M, M,)
and the complete graph Kgim (1) on dim(M) vertices. Here, the notion of a “quantum isomorphism” means a quantum isomorphism between
quantum graphs in the sense of Ref. 53, when using an ancillary hereditary unital *-algebra .A. This result can be interpreted as a quantum
analog of the (classically obvious) fact that any minimal coloring of a complete graph K. is automatically a graph isomorphism K. - K.

We consider the case when M ~ CI; ® M first.

Lemma 6.8. Let d,k € N and let n = dk. Consider the quantum graph (M, M, M,) with M = CI; ® M. Let A be a unital y’-algebm, and
let {Py,...,P.} € M ® A be a family of mutually orthogonal projections such that ¥o_, pa = Ly ® 14 and

Po(X®14)P.=0 forall Xe (M')*.
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Then for each a, the element R, = m( Tra ® id4)(Pa) is a self-adjoint idempotent in A, and Y°_Rq = kK*1.4.

Proof. Since M =1; ® My, we have M "=M;®I and n=dk. Now, let 1 <v,w<k with x #y, and let 1<i,j<d. Then, Ej
® (Eyw — Eww ) belongs to (M), so we must have

Py(Eij ® (Evw — Eww) ®14)P,=0V1<a<ec

Similarly, Ejj ® Eyw is in (M ') L so
Py(Ej® Evywy ® 14)Ps=0V1<a<ec

Note that P, e M A=1; @ M ® A, so P, = ZI;,q=1 ZizlExx ® Epg ® Paxpg, with the property that Py xpq = Paypg for any 1 < x,y < d. For
simplicity, we set Pypq = Paxpq for any 1 < x < d. The quantity on the left of the above is exactly

k
> Eij ® Epg ® PapuPaug
pg=1

50 this says that Py, Pauwq = 0 and PapyPavg = PapwPawq. Now, since P, is a projection, we have Papg = Y _ PapyPavg = kPapy Pavg for all
p»q. In particular, Py oy = kPﬁ,m,. By scaling, we see that kPg, . is a self-adjoint idempotent. Similarly, since Py pyPaswqg = 0if v # w, we see that
PavvPaww = 0. Therefore, {kPau 14—, is a collection of mutually orthogonal projections in A.

Next, we set Ry = ¥¥_kPa 0 for each 1 < a < c. Then, R, is a self-adjoint idempotent. We see that

c k k
ZRa = Z kaa,vv = ZklA :k21A>

a=1 a=1v=1 v=1
which completes the proof. O

Now, we deal with the case of a general quantum complete graph.

Theorem 6.9. Let (M, M, M,) be a quantum complete graph. Let A be a hereditary *-algebra, and let {Pa};-, € M ® A be a hereditary
c-coloring of (Mu, M, My). Then ¢ > dim(M). Moreover, if ¢ = dim(M), then for each 1 < a < dim(M) we have
1

(l[/M ® ldA)(Pu) = MIA.

Proof. Up to unitary equivalence, we may write M = @;2,CI,, ® My, . Then,

m
M’ =P M, ®CI.

r=1

Define & =0@--- @I, ® I, 0D --@®0, which belongs to M’ n M. Then, defining P, = (& ® 14)Pa(& ® 14) € (EME,) ® A, we
obtain a family of mutually orthogonal projections whose sum is &,. Since &, is central in M, we see that (£,M & ,)' =& M'E,, while
E-MuEr = My, . It is evident that X € B(E,C") n (E,M'E)* if and only if X = £XE, and X L M in M,. Therefore, for X € B(E,C")
N(E,M'E)* and 1< a<c, onehas

Po(X®14)Pa = (& ® 1) Pa(EXE ® 1) Po(E,®14) =0
using the fact that £XE, =X and X belongs to M. Therefore, {P,}5_; is a hereditary coloring of the quantum complete graph
(M, EEME My i,).
Since & ME; = CI,, ® My, by Lemma 6.8, we see that R = %( Tr,, ® id4)(Pa) is a self-adjoint idempotent in A for each 1 <a < ¢
and 1 < r < m. Moreover, Y°_,R\"” = k21
Next, we claim that R[(,r)Rt(ls) =0 if r # 5. To show this orthogonality relation, it suffices to show that PsxPsyy = 0 whenever Py is a

block from (£, ME;) ® A and P,y is a block from (E£MEs) ® A. If x and y are chosen in this way, then the matrix unit Ex, in M, satis-
fies £ (Exy)&s = Exy and EpExy&, = 0 for all other pairs (p,q). It is not hard to see that Ey, belongs to (M ')*, so that Pa(Exy ® 14)Pa = 0.

Considering the (x, y)-block of this equation gives PasxxPayy = 0.1t follows that Rg’)Rc(f) =0forr #s.

Since {R,Sr) }2, is a collection of mutually orthogonal projections in A, the element R, := 271:1Rc(4,) is a self-adjoint idempotent in A for

each a. Considering blocks, it is not hard to see that

zC:Ru - Z f:Rg’) = f:kfu = dim(M) 1.
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Since R, is a self-adjoint idempotent, so is 14 — R,. Their sum is given by
C C
> (1a=Ry) =cla— Y Ry =(c—dim(M))la
a=1 a=1

It follows that ¢ > dim(,M), since the sum above is a sum of positives and A is hereditary.
Now, if ¢ = dim(,M), then the above sum of positives in A is 0, which forces 14 — R; = 0 for all a. Hence, R, = 14. Since R, = Zf’leér)
and R" = ’;7( Tryk, ® ida)(Pa), we see that

m

k; )
Z ;(Trn’k' (%9 ldA)(Pa) =14

r=1 Mr

Therefore,
kr 1

(yu ® ida)(Py) = i M(Trmkr ® ida)(Pa) = WIA.

r=1

]

Remark 6.10. In essence, Theorem 6.9 proves that any g-coloring of (M, M, M,) with dim(M) colors induces a quantum isomor-
phism between the quantum graph (M, M, M,) and the classical graph Kgim(uy. This isomorphism occurs because any such coloring with
ancillary algebra A yields a (necessarily injective) unital *-isomorphism 7 : Dgim(uy = M ® A satisfying the properties of a quantum graph
homomorphism, with the additional property that (Y ® ida) o m =m0 Yp,, -

In contrast to the case of g-colorings, the existence of a loc-coloring for a complete quantum graph is equivalent to the von Neumann
algebra being Abelian.

Theorem 6.11. Let M S M, be a non-degenerate von Neumann algebra. Then x.((Mn, M, My,)) is finite if and only if M is Abelian.
In particular, if M is non-abelian, then y((My, M, My)) # xq((Mn, M, My)).

Proof. Suppose that there is a c-coloring of (M, M, M,) in the loc-model. Up to unitary equivalence, we write M = @;L,CI, & M; .
We may choose projections P, € M such that 3>5_; pa = I, and Pa((M )" )P, = 0 for all a. Let R, = Z:":li% Try,k, (Pa) as in the proof of the
last theorem. Each R, is an idempotent in C; hence, either R, = 0 or R, = 1. We know that 3°¢_, R, = dim(M), so exactly dim(M) of the R,’s
are non-zero. Since R, is given by a trace on M that is faithful, having R, = 0 implies that P, = 0. Hence, by discarding any projections P, for
which R, = 0, we may assume without loss of generality that R, = 1 for all 4, and that ¢ = dim(M).

Let & be the orthogonal projection onto the copy of CI, ® My, inside of M = @2 CI, ® My . Then, as before, the PVM

{EPE r}dim(M) yields a classical dim(M)-coloring for (M, s ,CL, ® My , M, ). We will show that k. = 1. By the same argument as

a=1
above, by discarding values of a for which % Ttk (§-P2&;) = 0, we may assume that there are exactly k; non-zero projections & Po&, that

yield a kf—classical coloring for (ank',CI,,, ® My, M, ). Set P, = EPLE,. By Theorem 6.9, for each a, we have I:T:Trn,k, (ﬁa) = 1. Notice
that k, P, = I, ® kyQ, for some projection k,Q, € My . Hence, Trky(k,Qa) =1. Let Ay, ..., A be the eigenvalues of k,Q, in My, . Since each
Ai€{0,1} and Zf;l/\i = Trky(k,Qa) = 1, there is exactly one A; that is non-zero. Hence, Q, is rank one. The sum over all non-zero Q, gives
Iy, and each Q, is rank one. Hence, the number of a for which Q, is non-zero must be k;. Since we assumed that this number is k%, we must
have k, = k2. Since k, > 0, we have k, = 1. Since r was arbitrary, we see that M = @;L,CI, ® My, = ®;L,CI,, is Abelian.

Conversely, suppose that M is Abelian. Then, the Proof of Theorem 6.9 yields projections P, € M ® M, where d = dim(M), such that
Y pa=I ® I;and Ps(X ® I;)P, = 0 whenever X € (M ). Moreover, the projections obtained in this case satisfy PuiiPye = PpjePa,ij for
all1 <a,b<dand 1 <i,jk ¢ < n. Thus, the entries of the projections P, must *-commute with each other, so the C*-algebra they generate is
Abelian. Since there is a d-coloring for (M,, M, M,) with an Abelian ancilla, this implies that y;,. ((M,, M, M,)) < d. m]

Using the monotonicity of colorings and the results above on quantum complete graphs, we see that every quantum graph has a finite
quantum coloring. As a result, we obtain the following generalization of a theorem from Ref. 7.

Theorem 6.12. Let (S, M, M,) be any quantum graph. Then ya, ((S, M, My)) < 4.

Proof. Suppose that y., (S, M, M,) < ¢ for some ¢ < co. Then A(Hom((S, M, M,),K.)) exists. We will let p,,...,p_be the canonical
self-adjoint idempotents in the matrix algebra M, (A(Hom((S, M, M,),K.)) . By Ref. 7, there is an algebraic homomorphism K. - Kj. Thus,
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there are self-adjoint idempotents f,,,, in A(Hom(K.,K;)) for1 <a<cand1<v < 4suchthat 3! _, for = 1forallaand fo, fy., = 0 whenever
a + b. Define

Guii = 2, Paij ® fan € AHom((S, M, M,),K.)) ® A(Hom(Kc,Ky)).

a=1

Then

M:

(ipa,ik ® fa ) (;Pb,kj ® fow )

a=1
c

n
Z qv,ikQU,kj =
k=1

o~
Il

I
M:

> PaikPuii ® faufow

a,b=1
n

=~
Il
—

Z Pa,ikpa,kj ®f;,v

1

M-

2
I
—
o~

M-

Paij ® faw = qui-

Il
—

a

Therefore, g, = (qv’ij) is an idempotent for each v. Similarly, one can see that g = g, (that is, q;,; = gv,i) and Y 1 Guiis 0if i #jand 1 if
i=j. LetX = (x;) € M. Letting 1 ® 1 denote the unit in the tensor product of the game algebras,

bj

Go(X®1®1)quw = ( > qv,ikxkzqw,ej) = ( D> PaikXkePosj ®fa,vfb,w) . (6.1)
i

k=1 k,£=1a,b=1

If X € (M”)* and a = b, then the above sum becomes

QU(X® 1® I)Qv = ( Z Zpu,ikxklpa,Ej ®fa,v) = Z Pa(X® l)pa ®fu,v =0,
a=1

k£=1a=1

by definition of A[Hom((S, M, M,),K.)).If X e M and a # b, then Y} ,_ pa ikXkePu.e; is the (i,j) entry of p, (X ® 1)p, = 0. Thus, if v # w,
then Eq. (6.1) reduces to

Go(X®101)quw = ( > > PaikXkePats ®fa,vfu,w) =0,

k=1a=1

5]

since faufaw =0 for v #w. Therefore, letting r,;; be the canonical generators of A(Hom((S, M,M,),Ks)), we obtain a unital
*-homomorphism

7 : AHom((S, M, M,),K4)) - AHom((S, M, M,),K.)) ® AHom(K,,K;)),
Tv,ij 7> qu,ij-

The latter algebra is non-zero, so A(Hom((S, M, M,),Ky)) # {0}. Thus, xa, ((S, M, M,)) < 4. ]
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