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ABSTRACT
Motivated by non-local games and quantum coloring problems, we introduce a graph homomorphism game between quantum graphs and
classical graphs. This game is naturally cast as a “quantum–classical game,” that is, a non-local game of two players involving quantum
questions and classical answers. This game generalizes the graph homomorphism game between classical graphs. We show that winning
strategies in the various quantum models for the game is an analog of the notion of non-commutative graph homomorphisms due to Stahlke
[IEEE Trans. Inf. Theory 62(1), 554–577 (2016)]. Moreover, we present a game algebra in this context that generalizes the game algebra for
graph homomorphisms given by Helton et al. [New York J. Math. 25, 328–361 (2019)]. We also demonstrate explicit quantum colorings of all
quantum complete graphs, yielding the surprising fact that the algebra of the four coloring game for a quantum graph is always non-trivial,
extending a result of Helton et al. [New York J. Math. 25, 328–361 (2019)].

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0072288

I. INTRODUCTION
In recent years, the theory of non-local games has risen to a level of great prominence in quantum information theory and related

parts of physics and mathematics. In quantum information theory, non-local games provide a convenient framework in which one can
exhibit the advantages of using quantum entanglement as a resource to accomplish certain tasks. In physics, non-local games are intimately
tied to the study of Tsirelson’s correlation sets and Bell’s work on local hidden variable models.1 Within mathematics, the theory of non-
local games has led to some spectacular developments in the field of operator algebras. Most notable here is the work of Junge et al.,2
Fritz,3 and Ozawa4 connecting the Connes-Kirchberg conjecture to Tsirelson’s correlation sets in quantum information. Very recently,
Ji et al.5 used non-local games to provide a counterexample to the Connes–Kirchberg conjecture. Another recent and quite remarkable
application of non-local games in mathematics is the work of Mančinska and Roberson6 that uses a non-local game, called the graph iso-
morphism game, to provide a quantum interpretation of pairs of graphs that admit the same number of homomorphisms from planar
graphs.

The general setup of a (classical input, classical output) two player non-local game is given in terms of a tuple G = (I,O,V), where I
and O are finite sets and V : O ×O × I × I → {0, 1} is a predicate function that determines the rules of the game. The game is played by two
cooperating players, Alice and Bob, and a verifier (Referee). Each round proceeds with the verifier (randomly) selecting a pair of questions
(x, y) ∈ I × I and sending x to Alice and y to Bob. Alice and Bob then respond with answers (a, b) ∈ O ×O. The verifier declares the round
won if V(a, b, x, y) = 1 and declares it lost if V(a, b, x, y) = 0. The term non-local refers to the fact that during each round, Alice and Bob are
spatially separated and are unable to communicate; neither Alice nor Bob knows which questions/answers the other received/returned. This
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non-locality of Gmakes winning each round of the game (with high probability) generally very difficult. It is in these scenarios that “quantum
strategies” (which make use of some shared entangled resource between Alice and Bob) can allow the players to drastically improve their
performance by better correlating their behaviors.19–24

In this paper, we are mainly interested in a non-local game called the graph homomorphism game and certain extensions of it. The graph
homomorphism game is a well-studied example of a non-local game.7–10 This game is described by a pair of finite simple graphs G,H, with
input set I = V(G) (the vertex set of G) and output set O = V(H). The goal of Alice and Bob in this game is to convince the referee that there
exists a homomorphism G→ H. In particular, the rules of the game are determined by the following two requirements:

(1) Alice and Bob’s answers must be synchronous, meaning that if they receive the same vertex x ∈ V(G), they must return the same vertex
a ∈ V(H).

(2) If the referee supplies an edge (x, y) ∈ E(G) to Alice and Bob, they must respond with an edge (a, b) ∈ E(H).

The graph homomorphism game (in particular, the special case of the graph coloring game) has led to many developments in the oper-
ator algebraic aspects of non-local games. A particular notion of interest here is the notion of a synchronous non-local game and syn-
chronous strategies for such games.7 Winning strategies for synchronous games turn out to be completely described in terms of traces
on a certain ∗-algebra associated with the game, bringing to bear many powerful operator algebraic techniques in the theory of non-local
games.

Within information theory (both quantum and classical) graph theory plays a central role, appearing quite naturally in the theory of
zero-error communication in the form of confusability graphs of noisy communications channels. If the channel at hand is classical, the
confusability graph is a finite simple graph on the input alphabet whose edges indicate which letters can be confused after passing through the
channel. If the channel is genuinely quantum, it was shown in Ref. 11 that the role of the confusability graph in this case must be played by
more general structure called a quantum graph. Quantum graphs are an operator space generalization of classical graphs, which have emerged
in different disguises in operator systems theory, non-commutative topology, and quantum information theory. Traditionally, a quantum
graph is viewed as an operator system that serves as a quantum generalization of the adjacency matrix. It was first introduced in Ref. 11 for
studying a zero-error channel capacity problem and arose independently in the study of quantum relations12,13 around the same time. An
alternate approach was used in Ref. 14 to define a quantum graph using a quantum adjacency matrix acting on a finite-dimensional C∗-
algebra that plays the role of functions on the vertex set. Both these perspectives are shown to be essentially equivalent (Ref. 14, Theorem 7.7)
and offer different advantages and perspectives.

In the present work, motivated by several recent works extending the notion of chromatic number from graphs to the setting of quantum
graphs,9,15–17 our aim is to develop a non-local game that captures the coloring problem for quantum graphs. To this end, we study homomor-
phisms from quantum graphs to classical graphs using a non-local game with quantum inputs and classical outputs. The inputs are quantum
inputs, in the sense that the referee initializes the state space Cn ⊗Cn, where Alice has access to the left copy and Bob has access to the right
copy of Cn. Alice and Bob are allowed to share a (an entanglement) resource spaceH in some prepared state ψ. After receiving the input φ on
Cn ⊗Cn, they can perform measurements on the triple tensor product Cn ⊗H⊗Cn and respond to the referee with classical outputs based
on their measurements.

The winning strategies for this game give rise to a notion of quantum graph homomorphism that is closely related to sev-
eral notions of quantum graph homomorphism in the literature.13,14,17 We also construct a game ∗-algebra for this and show that
this game algebra extends the game algebra for graph homomorphisms given in Ref. 7. Furthermore, we consider the coloring game
for quantum graphs and study the associated chromatic numbers. We show interesting extensions of classical results in this frame-
work. In particular, we use unitary error basis tools to show that every quantum graph admits a finite chromatic number in the
quantum model (but not necessarily the local model), and the fact that every quantum graph is four colorable in the algebraic
model.

The organization of the paper is as follows: Sec. II develops the general theory of quantum input–classical output correlations and the
various quantum models that give rise to such correlations. Here, we also introduce and study the universal operator system Qn,c associated
with such correlations and its C∗-envelope. In Sec. III, we introduce a generalization of synchronous correlations to our quantum framework.
In particular, we establish, in this section, characterizations of synchronous correlations in terms of tracial states on C∗-algebras, and we
also establish an extension of the well-known equality of the quantum and quantum–spatial correlation sets for synchronous correlations,
extending a result of Ref. 18. In Sec. IV, we consider the structure of quantum approximate correlations in our context, extending the result of
Ref. 18 by identifying synchronous quantum approximate correlations with the closure of the synchronous quantum correlations. In Sec. V,
we define the homomorphism game from quantum graphs to classical graphs and study the corresponding winning strategies and game
∗-algebra. Finally, in Sec. VI, we study the coloring problem for quantum graphs, demonstrating explicit colorings of all quantum graphs in
the q-model with the help of some quantum teleportation-like schemes, as well as extending classical results on algebraic colorings to this
framework.

II. QUANTUM INPUT, CLASSICAL OUTPUT CORRELATIONS
In this section, we develop some general theory on non-local games with quantum questions and classical answers. These have already

been used in the two-output context of quantum XOR games.25,26
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To motivate things, first recall that in the classical setup of n classical input, c classical output two-player non-local games, the main
objects of study are the bipartite correlation sets C(n, c) ⊂ Rn2c2 that model the players’ behavior. Namely, any element P = (p(a, b∣x, y))1≤a,b≤c

1≤x,y≤n
∈ C(n, c) specifies the probability p(a, b∣x, y) that the players Alice and Bob return answers a and b, respectively, given that they received ques-
tions x and y, respectively. The correlations (behaviors) P ∈ C(n, c) that are physically relevant are the ones that can be realized by a (quantum)
strategy, that is, by Alice and Bob performing joint measurements on a quantummechanical system prepared in some initial state. Mathemat-
ically, a quantum strategy amounts to the data of two finite-dimensional Hilbert spacesHA andHB, and families of positive operator-valued
measure (POVMs) {Px

1 , . . . ,P
x
c} on HA, {Qy

1, . . . ,Q
y
c} on HB, and a state χ ∈HA ⊗HB. From this data, one obtains a correlation P ∈ C(n, c)

via the formula
p(a, b∣x, y) = ⟨χ∣P x

a ⊗Q y
b ∣χ⟩.

The subset of all correlations obtainable from quantum strategies as above is denoted by Cq(n, c). In a similar manner, one can define
other classes of correlations (local, quantum spatial, quantum approximate, quantum commuting) that are built from of the corresponding
classes of strategies. (See, for example, Ref. 18, for a review of all of these models.)

Our goal now is to develop the analogous notion of the correlation set C(n, c) and its various subclasses arising from quantum strategies.
The main idea is quite simple—in order to allow for quantum questions, we replace the question set [n] × [n] with the set of quantum states
on the bipartite systemCn ⊗Cn. In the following, our approach is somewhat backward, in that we first define the different strategies associated
with a two-player scenario with quantum questions (onCn ⊗Cn) and classical answers in {1, 2, . . . , c}. Afterwards, we consider the associated
correlations. For our purposes, it is easiest to begin with the quantum (i.e., finite-dimensional tensor product) strategies.

A quantum strategy, or a q-strategy, is given by two finite-dimensional Hilbert spacesHA andHB, a POVM {P1, . . . ,Pc} on Cn ⊗HA,
a POVM {Q1, . . . ,Qc} onHB ⊗Cn, and a state χ ∈HA ⊗HB.

A quantum spatial strategy, or a qs-strategy, is given in the same way as a q-strategy, except that we no longer assume thatHA andHB
are finite-dimensional.

A quantum commuting strategy, or a qc-strategy, is given by a single Hilbert space H, a POVM {P1, . . . ,Pc} on Cn ⊗H, a POVM
{Q1, . . . ,Qc} onH⊗Cn, and a state χ ∈H, with the property that (Pa ⊗ In)(In ⊗Qb) = (In ⊗Qb)(Pa ⊗ In) for all a, b.

Remark 2.1. It is helpful to understand the above commutation condition in terms of block matrices. For 1 ≤ a ≤ c, one may write
Pa = (Pa,ij) ∈Mn(B(H)) with Pa,ij ∈ B(H). Similarly, we may write Qb = (Qb,kℓ) ∈Mn(B(H)) with Qb,kℓ ∈ B(H). With this in mind, the
above commutation relation is easily seen to be equivalent to the requirement that [Pa,ij,Qb,kl] = 0 ∈ B(H) for each a, b, i, j, k, l. (See, e.g.,
Refs. 27 and 28.)

Finally, in view of the above remark, we define a local strategy, or a classical strategy, as a quantum commuting strategy with the
property that the set of operators Pa,ij and Qb,kℓ generate a commutative C∗-algebra.

Suppose now that the referee initializes Cn ⊗Cn in the state φ. For a quantum strategy, the probability that Alice outputs a and Bob
outputs b is given by

p(a, b∣φ) = ⟨(Pa ⊗Qb)(φ⊙ χ),φ⊙ χ⟩,

where by φ⊙ χ we mean the (permuted) state in Cn ⊗ (HA ⊗HB)⊗Cn rather than on Cn ⊗Cn ⊗ (HA ⊗HB). For a quantum commuting
strategy, we simply replaceHA ⊗HB withH and (Pa ⊗Qb)with (Pa ⊗ In)(In ⊗Qb). We note that this definition of the probability of outputs
can easily be extended to other (e.g., mixed) states in Cn ⊗Cn that may not be included in the definition of the game. This is because the
probabilities corresponding to Alice and Bob’s strategy are encoded entirely in the correlation associated with their strategy. The correlation
associated with the strategy (P1, . . . ,Pc,Q1, . . . ,Qc, χ) with n-dimensional quantum inputs and c classical outputs is given by the tuple

X ∶= (X(a,b)
(i,j),(k,ℓ)) = ((⟨(Pa,ij ⊗Qb,kℓ)χ, χ⟩)i,j,k,ℓ)a,b ∈ (Mn ⊗Mn)

c2 ,

in the case when the entanglement resource space for Alice and Bob is of the formHA ⊗HB. In the case when their resource space is a single
Hilbert spaceH, we replace Pa,ij ⊗Qb,kℓ with Pa,ijQb,kℓ.

We will letQq(n, c) be the set of all correlations of this form that arise from quantum strategies. In other words,

Qq(n, c) = {(⟨(Pa,ij ⊗Qb,kℓ)χ, χ⟩)1≤i,j,k,ℓ≤n,
1≤a,b≤c

⊆ (Mn ⊗Mn)
c2 ,

where HA and HB are finite-dimensional Hilbert spaces; Pa,ij ∈ B(HA) are such that Pa = (Pa,ij) ∈Mn(B(HA)) is positive with ∑c
a=1 Pa = I;

Qb,kℓ ∈ B(HB) are such that Qb = (Qb,kℓ) ∈Mn(B(HB)) are positive with∑c
b=1Qb = I, and χ ∈HA ⊗HB is a state.

Similarly, we will let Qqs(n, c) be the set of all quantum spatial correlations (where HA and HB may not be finite-dimensional), and we
let Qqc(n, c) be the set of all quantum commuting correlations of the above form (where we replace the tensor product space HA ⊗HB with
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a single Hilbert space H, and Pa,ij ⊗Qb,kℓ with Pa,ijQb,kℓ). Keeping the analogy with the sets Ct(n, k) corresponding to classical inputs, we
will also define Qqa(n, c) as the closure of Qq(n, c) in the norm topology. Finally, we define Qloc(n, c) as the set of all quantum commuting
correlations where C∗({Pa,ij,Qb,kℓ : 1 ≤ a, b ≤ c, 1 ≤ i, j, k, ℓ ≤ n}) is a commutative C∗-algebra.

Since each of the correlation sets above are defined in terms of POVMs, an argument involving direct sums shows thatQt(n, c) is convex
for all t ∈ {loc, q, qs, qa, qc}. Moreover, Qqa(n, c) is closed (by definition) and an application of Theorem 2.13 shows that Qqc(n, c) is closed.
Similarly, Proposition 2.14 shows thatQloc(n, c) is closed.

Next, we define a universal operator system that encodes the above correlation sets. For convenience, we define Pn,c to be the universal
unital C∗-algebra generated by c sets of n2 entries pa,ij such that Pa = (pa,ij) is an orthogonal projection in Mn(Pn,c) for each 1 ≤ a ≤ c and
∑

c
a=1 Pa = In. The operator system that we will use is the subsystemQn,c of Pn,c spanned by 1 and {pa,ij : 1 ≤ a ≤ c, 1 ≤ i, j ≤ n}. Note that this

subspace is self-adjoint since each Pa must be self-adjoint, forcing p∗a,ij = pa,ji. Similar to the algebra Pn,c, we define Bn,c as the universal unital
C∗-algebra generated by n2 entries uij with the property that U = (uij) ∈Mn(Bn,c) is a unitary of order c. The latter algebra is an obvious
quotient of the Brown algebra Bn, which is the universal C∗-algebra generated by the entries of an n × n unitary. The algebra Bn first appeared
in Ref. 29.

Our goal is to show a quantum–classical version of the disambiguation theorems; that is, we will show that all correlations in Qt(n, c)
can be achieved using projection-valued measures (PVMs) instead of the more general notion of POVMs. First, we will show that POVMs in
our context dilate to PVMs.

Proposition 2.2. LetH be a Hilbert space, and let {Qa}
c
a=1 be a POVM in B(H). Then, there is a PVM {Pa}ca=1 in Mc+1(B(H)) such that,

if E11 is the first diagonal matrix unit in Mc+1, then (E11 ⊗ IH)Pa(E11 ⊗ IH) = Qa for all 1 ≤ a ≤ c.

Proof. We define V =
⎛
⎜
⎜
⎝

Q
1
2
1
⋮

Q
1
2
c

⎞
⎟
⎟
⎠

∈Mc,1(B(H)). Then, V is an isometry, so

U =
⎛
⎜
⎝

V
√
I −VV∗

0 −V∗
⎞
⎟
⎠
∈Mc+1(B(H))

is a unitary. Define Pa = U∗(Eaa ⊗ IH)U for 1 ≤ a ≤ c − 1, and define Pc = U∗((Ecc + Ec+1,c+1)⊗ IH)U. Then, {Pa}ca=1 is a PVM in
Mc+1(B(H)). Write U = (Ukℓ)

c+1
k,ℓ=1 where each Ukℓ ∈ B(H). The (1,1) entry of Pa is given by

(Pa)11 = U∗a1Ua1 = (Q
1
2
a )(Q

1
2
a ) = Qa,

as desired. ◻

As a result of Proposition 2.2, we obtain the desired dilation property for POVMs overMn(B(H)).

Proposition 2.3. Let H be a Hilbert space, and let qa,ij ∈ B(H) for 1 ≤ i, j ≤ n and 1 ≤ a ≤ c be such that {Qa}
c
a=1 is a POVM in

Mn(B(H)), where Qa = (qa,ij). Let V : H→H (c+1) be the isometry sending H to the first direct summand of H (c+1). Then there are oper-
ators pa,ij ∈Mc+1(B(H)) such that {Pa}ca=1 is a PVM in Mn(Mc+1(B(H))), where Pa = (pa,ij) and V∗pa,ijV = qa,ij for all 1 ≤ i, j ≤ n and
1 ≤ a ≤ c.

Proof. We can regard {Qa}
c
a=1 as a POVM inMn(B(H)). By Proposition 2.2, there is a PVM {Sa}ca=1 inMc+1(Mn(B(H))) such that the

(1,1) entry of Sa isQa. Performing a canonical shuffleMc+1(Mn(B(H))) ≃Mn(Mc+1(B(H))) (Ref. 30, p. 97) on each Sa, we obtain operators
pa,ij ∈Mc+1(B(H)) such that the (1,1)-entry of pa,ij is qa,ij, and Pa = (pa,ij) ∈Mn(Mc+1(B(H))) are projections with ∑c

a=1 Pa = I, completing
the proof. ◻

Remark 2.4. In the case of classical inputs and outputs, one would consider n POVMs in B(H) with c outputs each. It is a standard fact
that such systems of POVMs can be dilated to a system of n PVMs with c outputs on a larger Hilbert space, which remains finite-dimensional
whenever H is finite-dimensional.

Alternatively, one can consider n POVMs {Pa,x}ca=1 for 1 ≤ x ≤ n on H as a single POVM on Cn ⊗H by setting Qa = Pa,1⊕ ⋅ ⋅ ⋅⊕Pa,n.
Then, one applies Proposition 2.3 to obtain a single PVM in Mn(H⊗Cc+1); however, the projections may no longer be block-diagonal, so they
may not induce a family of n PVMs in B(H⊗Cc+1). In the case that n = 1, one can dilate a POVM with c outputs in B(H) to a PVM with c
outputs in B(H⊗Cc), which is more optimal than Proposition 2.3. On the other hand, as soon as n ≥ 2, the dilation of Proposition 2.3 will be
more optimal, since the general dilation of n POVMs to n PVMs requires an inductive argument.
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Next, we show that the operator systemQn,c has the following universal property with respect to entries of n × n POVMs with c outputs:

Proposition 2.5. Let H be a Hilbert space, and suppose that ψ : Qn,c → B(H) is a linear map with ψ(1) = 1. Let qa,ij = ψ(pa,ij) for all
1 ≤ a ≤ c and 1 ≤ i, j ≤ n, and let Qa = (qa,ij)ni,j=1. Then, ψ is completely positive if and only if Qa ≥ 0 for all a and∑

c
a=1Qa = In ⊗ IH.

Proof. Suppose that ψ is completely positive. Since Qn,c is a subsystem of Pn,c, the elements Pa = (pa,ij)ni,j=1 ∈Mn(Qn,c) are positive and
∑

c
a=1Pa = In ⊗ 1. Since ψ is unital and completely positive, Qa = (ψ(pa,ij))ni,j=1 is positive inMn(B(H)) for each a, and∑c

a=1Qa = In ⊗ IH.
Conversely, suppose thatQa ≥ 0 for all 1 ≤ a ≤ c and that∑

c
a=1Qa = In ⊗ IH. By Proposition 2.3, there is an isometry V : H→H (c+1) and

operators ra,ij ∈Mc+1(B(H)) such that {Ra}
c
a=1 is a PVM inMn(Mc+1(B(H))), where Ra = (ra,ij)ni,j=1, andV

∗ra,ijV = qa,ij for all 1 ≤ i, j ≤ n and
1 ≤ a ≤ c. It follows that there is a unital ∗-homomorphism π : Pn,c →Mc+1(B(H)) satisfying π(pa,ij) = ra,ij for all a, i, j. Then, the compression
V∗π(⋅)V is unital and completely positive on all of Pn,c and hence is completely positive onQn,c. Moreover, (V∗π(⋅)V)∣Qn,c = ψ, completing
the proof. ◻

In the following, we let C∗env(S) be the C∗-envelope of an operator system, first shown to exist by Hamana.31

Proposition 2.6. Let n, c ∈ N.

(1) C∗env(Qn,c) is canonically ∗-isomorphic to the universal C∗-algebra Pn,c.
(2) There is a ∗-isomorphism Pn,c ≃ Bn,c given by the map

c

∑
a=1

ωaPa ← U,

where ω is a primitive c-th root of unity.

Proof. We only prove the first claim; the second claim is analogous to the fact that C∗(Zc) ≃ ℓ
c
∞ (see, for example, Refs. 2, 3, or 4). Since

Qn,c is a subsystem of Pn,c and the elements ofQn,c generate Pn,c as a C∗-algebra, we see that Pn,c is a C∗-cover forQn,c.
Let pa,ij be the canonical generators of Pn,c, and let qa,ij be the canonical generators of the operator system Qn,c in C∗env(Qn,c). By the

universal property of the C∗-envelope,31 there is a unique, surjective unital ∗-homomorphism ρ : Pn,c → C∗env(Qn,c) such that ρ(pa,ij) = qa,ij
for all 1 ≤ i, j ≤ n and 1 ≤ a ≤ c. As each Pa is a projection inPn,c, the matrixQa = (qa,ij) ∈Mn(C∗env(Qn,c)) is a projection as well. We will show
that ρ is injective by constructing an inverse. We assume that Pn,c is faithfully represented as a C∗-algebra of operators on a Hilbert space K.
Then, the map φ : Qn,c → Pn,c above extends to a ucp map σ : C∗env(Qn,c)→ B(K) by Arveson’s extension theorem.32 We let σ = V∗β(⋅)V be
a minimal Stinespring representation of σ, where V : K→ L is an isometry and β : C∗env(Qn,c)→ B(L) is a unital ∗-homomorphism. With
respect to the decomposition L = K⊕K � , one has

β(qa,ij) =
⎛
⎜
⎝

φ(qa,ij) ∗

∗ ∗

⎞
⎟
⎠
=
⎛
⎜
⎝

pa,ij ∗

∗ ∗

⎞
⎟
⎠
.

Thus, after a shuffle, one may write β(n)(Qa) = (β(qa,ij)) as

⎛
⎜
⎝

φ(n)(Qa) ∗

∗ ∗

⎞
⎟
⎠
=
⎛
⎜
⎝

Pa ∗

∗ ∗

⎞
⎟
⎠
.

As Qa is a projection in Mn(C∗env(Qn,c)), so is β(n)(Qa) in Mn(B(L)). But Pa is a projection as well, so the off-diagonal blocks must be 0.
Therefore, reversing the shuffle yields

β(qa,ij) =
⎛
⎜
⎝

pa,ij 0

0 ∗

⎞
⎟
⎠
.

Considering β(q∗a,ijqa,ij) and β(qa,ijq∗a,ij), it follows that the multiplicative domain of σ contains qa,ij for each 1 ≤ i, j ≤ n and 1 ≤ a ≤ c; as these
elements generate C∗env(Qn,c), σ must be a ∗-homomorphism. Since ρ and σ are mutual inverses on the generators, they must be mutual
inverses on the whole algebras. Hence, ρ is injective, so that C∗env(Qn,c) ≃ Pn,c. ◻

Combining part (2) of Proposition 2.6 and Proposition 2.3, one can obtain a similar dilation corresponding to a block unitary of order c.
Indeed, if T = (Tij) ∈Mn(B(H)) is a contraction that can be written as T = ∑c

a=1ω
aQa, where ω is a primitive c-th root of unity and {Qa}

c
a=1

is a POVM inMn(B(H)), then one can dilate T to a unitary U = (Uij) ∈Mn(Mc+1(B(H))) of order c, such that the (1,1) block of each U ij is
Tij. It is sometimes convenient to use this form of the dilation, rather than the dilation of the POVM to a PVM.
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We now study some of the structure of Pn,c. First, we show that Pn,c has the lifting property. Recall that a C∗-algebra A has the lifting
property if, whenever B is a C∗-algebra, J is an ideal in B, and φ : A→ B/J is a contractive completely positive map, then there exists a
contractive completely positive lift φ̃ : A→ B of φ. As noted in Ref. 33, Lemma 13.1.2, when A is unital, one need only deal with the case
when B is unital and φ, φ̃ are unital.

On the way to proving that Pn,c has the lifting property, we will need the following fact. We include a proof for convenience.

Proposition 2.7. Let B be a unital C∗-algebra, J be an ideal in B, and p1, . . . , pc ∈ B/J be projections with∑c
a=1pa = 1B/J . Let q : B→ J

be the canonical quotient map. Then, there are positive elements p̃1, . . . , p̃c in B such that ∑c
a=1p̃a = 1B and q(̃pa) = pa for all 1 ≤ a ≤ c.

Proof. The assumption implies that there is a unital ∗-homomorphism π : ℓ∞c → B/J such that π(ea) = pa for each a. As ℓ
∞
c is separable

and nuclear, the Choi-Effros lifting theorem34 gives a ucp lift φ : ℓ∞c → B of π. Defining p̃a = φ(ea) concludes the proof. ◻

Theorem 2.8. Pn,c has the lifting property.

Proof. This proof is similar in nature to results from Refs. 2 and 33. First, suppose that B is a unital C∗-algebra, J is an ideal in B and
π : Pn,c → B/J is a ∗-homomorphism. Then π(n) = idn ⊗ π : Mn(Pn,c)→Mn(B)/Mn(J ) is a ∗-homomorphism. Define Qa = π

(n)(Pa). By
Proposition 2.7, one can find a POVM Q̃1, . . . , Q̃c in Mn(B) that is a lift of Q1, . . . ,Qc. Next, we apply Proposition 2.3 and compress to the
(1,1) corner to obtain a ucp map γ : Pn,c → B given by γ(pa,ij) = Q̃a,ij for all a, i, j. As γ is a lift of π on the generators, a multiplicative domain
argument establishes that γ is a lift of π.

Now we deal with the general case. Let φ : Pn,c → B/J be a ucp map. Since Pn,c is separable, one can restrict if necessary and assume
without loss of generality that B is separable. Then we apply Kasparov’s dilation theorem35 to φ: letting K = K(ℓ2) denote the compact
operators and M(A) denote the multiplier algebra of a (separable) C∗-algebra A, there is a ∗-homomorphism ρ : Pn,c →M(K⊗min(B/J ))
satisfying ρ(x)11 = φ(x) for all x ∈ Pn,c. [Here, ρ(x)11 refers to the (1,1) entry of ρ(x).] If q : B→ B/J is the canonical quotient map, then
id⊗ q : K⊗minB→ K⊗min(B/J ) extends to a surjective ∗-homomorphism σ : M(K⊗minB)→M(K⊗min(B/J )) by the non-commutative
Tietze extension theorem (Ref. 36, Proposition 6.8). Therefore, we can lift the ∗-homomorphism ρ to a ucp map η : Pn,c →M(K⊗minB).
Defining φ̃(x) = η(x)11, we obtain a lift of φ. ◻

Next, we establish residual finite-dimensionality of Pn,c. Recall that a C∗-algebraA is called residually finite-dimensional (RFD) if, for
any x ∈ A/{0}, there exists k ∈ N and a finite-dimensional representation π : A→Mk with π(x) ≠ 0.

Theorem 2.9. Pn,c is RFD.

Proof. This proof is very similar to the proofs that C∗(F2) and Bn are RFD, respectively.37,38 As Pn,c is separable, we may represent
it faithfully as a subalgebra of B(H), where H is separable and infinite-dimensional. Let (Em)∞m=1 be an increasing sequence of projections
in B(H) such that rank(Em) = m and SOT-limm→∞Em = IH. For each 1 ≤ a ≤ c and 1 ≤ i, j ≤ n, we let p(m)a,ij = Empa,ijEm. Then, the matrices

P(m)a = (p(m)a,ij ) ∈Mn(B(EmH)) define a POVM with c outputs in B(EmH). Applying Proposition 2.3, we obtain a unital ∗-homomorphism
ρm : Pn,c →Mc+1(B(EmH)) which, after a shuffle of the formMn(Mc+1(B(EmH)))→Mc+1(Mn(B(EmH))), can be written as

Pa ↦
⎧⎪⎪
⎨
⎪⎪⎩

U∗m(Eaa ⊗ IEmH)Um, 1 ≤ a ≤ c − 1,
U∗m((Ecc + Ec+1,c+1)⊗ IEmH)Um, a = c,

where

Um =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎜
⎝

(P(m)1 )
1
2

⋮

(P(m)c )
1
2

⎞
⎟
⎟
⎟
⎟
⎠

((δabIEmH − (P(m)a )
1
2 (P(m)b )

1
2 )

c

a,b=1
)

1
2

0 −((P(m)1 )
1
2 ⋅ ⋅ ⋅ (P(m)c )

1
2 )

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈Mc+1(Mn(B(EmH))).

The key point is that, considering ρm(pa,ij) ∈Mc+1(B(EmH)), each block from B(EmH) belongs to the C∗-subalgebra of B(EmH) generated
by the set {p(m)a,ij : 1 ≤ a ≤ c, 1 ≤ i, j ≤ n}. This set of blocks is closed under the adjoint since (Empa,ijEm)∗ = Emp∗a,ijEm = Empa,jiEm. Since SOT-

limm→∞Em = IH, we have SOT∗-limm→∞p(m)a,ij = pa,ij. By joint continuity of multiplication in the unit ball with respect to SOT∗, it follows that
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SOT∗-limm→∞P(m)a = SOT∗-limm→∞(P(m)a )
1
2 = Pa for each a. One can check that

SOT∗ − lim
m→∞

Um =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎜
⎝

P1

⋮

Pc

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

IH − P1
. . .

IH − Pc

⎞
⎟
⎟
⎟
⎟
⎟
⎠

0 −((P1 ⋅ ⋅ ⋅ Pc))

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Applying a shuffle, we see that, for each a, i, j, SOT∗-limm→∞ρm(pa,ij) exists in Mc+1(B(H)); moreover, its (1,1)-entry is exactly pa,ij. As
Pa = (pa,ij) is a projection, another shuffle argument shows that

SOT∗ − lim
m→∞

ρm(pa,ij) =
⎛
⎜
⎝

pa,ij 0

0 ∗

⎞
⎟
⎠
∈Mc+1(B(H)).

Therefore, ifW is a linear combination of finite words in the generators ofPn,c, by considering the (1,1) entry of ρm(W), it follows that SOT
∗-

limm→∞ρm(W) = (
W 0

0 ∗
). By passing to a subsequence if necessary, this forces limm→∞∥ρm(W)∥Mc+1(B(EmH)) = ∥W∥B(H). Hence,⊕∞m=1 ρm :

Pn,c →⊕
∞
m=1Mc+1(B(EmH)) is a ∗-homomorphism that is isometric on the dense ∗-subalgebra spanned by finite words in the generators

pa,ij. It follows that⊕
∞
m=1 ρm is an isometry on the whole algebra. As each EmH is finite-dimensional, we conclude that Pn,c is RFD. ◻

A standard fact is that minimal tensor products of RFD C∗-algebras remain RFD. Hence, Pn,c⊗minPn,c is RFD. We can use this fact
to relate Qqa(n, c) to states on the minimal tensor product. First, we need the fact that quantum commuting correlations with a finite-
dimensional entanglement space must belong toQq(n, c).

Lemma 2.10. Suppose that X = (X(a,b)
(i,j),(k,ℓ)) ∈ Qqc(n, c) can be written as X = (⟨Pa,ijQb,kℓχ, χ⟩), where Pa = (Pa,ij) and Qb = (Qb,kℓ) are

positive in Mn(B(H)), ∑c
a=1 Pa = ∑

c
a=1Qa = In, [Pa,ij,Qb,kℓ] = 0 for all i, j, k, ℓ, a, b and χ ∈H is a unit vector. If H is finite-dimensional, then

X ∈ Qq(n, c).

Proof. LetA be the C∗-algebra generated by the set {Pa,ij : 1 ≤ a ≤ c, 1 ≤ i, j ≤ n} and let B be the C∗-algebra generated by the set {Qb,kℓ :
1 ≤ b ≤ c, 1 ≤ k, ℓ ≤ n}. Then A and B are unital C∗-subalgebras of B(H), and every element of A commutes with every element of B. By a
theorem of Tsirelson,39 there are finite-dimensional Hilbert spacesHA andHB, an isometryV : H→HA ⊗HB, and unital ∗-homomorphisms
π : A→ B(HA) and ρ : B→ B(HB) such that V∗(π(Pa,ij)⊗ ρ(Qb,kℓ))V = Pa,ijQb,kℓ for all a, b, i, j, k, ℓ. Defining the unit vector ξ = Vχ ∈HA
⊗HB, we see that

X(a,b)
(i,j),(k,ℓ) = ⟨(π(Pa,ij)⊗ ρ(Qb,kℓ))ξ, ξ⟩.

Therefore, X ∈ Qq(n, c). ◻

Now, we can prove the disambiguation theorems for Qt(n, c). We note that, by Proposition 2.3, any element of Qq(n, c) can be repre-
sented using a finite-dimensional tensor product frameworkHA ⊗HB and PVMs {Pa}ca=1 onHA and {Qb}

c
b=1 onHB, respectively. This fact

holds because, given a POVM {Qb}
c
b=1 in B(H), the dilation in Proposition 2.3 is in Mc+1(B(H)) ≃ B(H (c+1)); in particular, the Hilbert

space remains finite-dimensional if H is finite-dimensional. Similarly, it is easy to see that all elements of Qqs(n, c) can be represented using
PVMs.

Next, we show that every elementQqa(n, c) can be represented by PVMs, which arise from the minimal tensor product of Pn,c.

Theorem 2.11. Let X = (X(a,b)
(i,j),(k,ℓ)) ∈ (Mn ⊗Mn)

c2 . The following are equivalent:

(1) X belongs toQqa(n, c).
(2) There is a state s : Pn,c⊗minPn,c → C satisfying s(pa,ij ⊗ pb,kℓ) = X

(a,b)
(i,j),(k,ℓ) for all 1 ≤ a, b ≤ c and 1 ≤ i, j, k, ℓ ≤ n.

(3) There is a state s : Qn,c⊗minQn,c → C satisfying s(qa,ij ⊗ qb,kℓ) = X
(a,b)
(i,j),(k,ℓ) for all 1 ≤ a, b ≤ c and 1 ≤ i, j, k, ℓ ≤ n.

Proof. We recall that the minimal tensor product of operator spaces (in particular, operator systems) is injective (see, for example,
Ref. 40). Since Qn,c ⊆ Pn,c via the mapping qa,ij ↦ pa,ij, injectivity of the minimal tensor product shows that Qn,c ⊗min Qn,c ⊆ Pn,c ⊗min Pn,c

completely order isomorphically. Using the Hahn–Banach theorem, it then follows that (2) and (3) are equivalent.
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If (1) holds, then X is in Qqa(n, c), so it is a pointwise limit of elements of Qq(n, c). Since elements of Qq(n, c) can be represented by
PVMs, X is a limit of elements that correspond to finite-dimensional tensor product representations of Pn,c⊗minPn,c, which are automatically
continuous. Hence, (1) implies (2). Finally, suppose that (2) holds. Since Pn,c⊗minPn,c is RFD, a theorem of Exel and Loring41 shows that s is
a w∗-limit of states sλ on Pn,c⊗minPn,c whose Gelfand–Naimark–Segal (GNS) representations are finite-dimensional. Applying Lemma 2.10,
each sλ applied to the generators pa,ij ⊗ pb,kℓ of Pn,c⊗minPn,c yields an element Xλ of Qq(n, c); moreover, limλ Xλ = X pointwise. This shows

that X ∈ Qq(n, c) = Qqa(n, c), which shows that (2) implies (1). ◻

To establish the same disambiguation theorem for qc-correlations, we will show that the commuting tensor product Qn,c⊗cQn,c is com-
pletely order isomorphic to the copy ofQn,c ⊗Qn,c inside of Pn,c⊗maxPn,c. We recall that, if S and T are operator systems, then an element Y
inMn(S⊗c T ) is defined as positive in the commuting tensor product provided that Y = Y∗ and, whenever φ : S→ B(H) and ψ : T → B(H)
are ucp maps with commuting ranges, then (φ ⋅ ψ)(n)(Y) is positive in Mn(B(H)), where φ ⋅ ψ : S⊗ T → B(H) is the linear map defined
by (φ ⋅ ψ)(x⊗ y) = φ(x)ψ(y) for all x ∈ S and y ∈ T .

The next lemma is an adaptation of Ref. 38, Proposition 4.6.

Lemma 2.12. Let S be an operator system. Then, the canonical mapQn,c⊗ cS→ Pn,c⊗maxS is a complete order embedding.

Proof. Since Pn,c is a unital C∗-algebra, we have Pn,c⊗cS = Pn,c⊗maxS (Ref. 40, Theorem 6.7). The canonical map Qn,c⊗cS→ Pn,c⊗cS
is a tensor product of canonical inclusion maps, which are ucp. By functoriality of the commuting tensor product,40 the inclusion Qn,c⊗cS
→ Pn,c⊗cS is ucp. Hence, it suffices to show that this map is a complete order embedding.

To this end, suppose that Y = Y∗ ∈Mm(Qn,c ⊗ S) is a positive element of Mm(Pn,c⊗cS). Let φ : Qn,c → B(H) and ψ : S→ B(H) be
ucp maps with commuting ranges; we will show that (φ ⋅ ψ)(m)(Y) is positive inMm(B(H)). For convenience, we define Qa,ij = φ(qa,ij). By
Proposition 2.3, there is a unital ∗-homomorphism π : Pn,c →Mc+1(B(H)) such that the (1,1) corner of π(pa,ij) is Qa,ij for all 1 ≤ a ≤ c and
1 ≤ i, j ≤ n. Moreover, for each x ∈ Pn,c, each block of π(x) in B(H) belongs to the C∗-algebra generated by the set {Qa,ij : 1 ≤ a ≤ c, 1 ≤ i,
j ≤ n}. We extend φ to a ucp map on Pn,c by defining φ(⋅) = (π(⋅))11. Define ψ̃ : S→Mc+1(B(H)) by ψ̃(s) = Ic+1 ⊗ ψ(s). Since ψ(s) com-
mutes with the range of φ, ψ(s) must commute with the C∗-algebra generated by the range of φ. Hence, ψ(s) commutes with every block of
π(pa,ij), for all a, i, j. By themultiplicativity of π,ψ(s) commutes with the range of π. By definition of the commuting tensor product, this means
that π ⋅ ψ̃ : Pn,c⊗cS→Mc+1(B(H)) is ucp; moreover, the (1,1) block of π ⋅ ψ̃ is φ ⋅ ψ. This means that φ ⋅ ψ is ucp on Pn,c⊗cS. Restricting to
the copy of the algebraic tensor product Qn,c ⊗ S, it follows that (φ ⋅ ψ)(m)(Y) is positive, making the canonical map Qn,c⊗cS→ Pn,c⊗c S a
complete order embedding. ◻

Theorem 2.13. Let X = (X(a,b)
(i,j),(k,ℓ)) ∈ (Mn ⊗Mn)

c2 . The following are equivalent.

(1) X belongs toQqc(n, c).
(2) There is a state s : Pn,c⊗maxPn,c → C satisfying s(pa,ij ⊗ pb,kℓ) = X

(a,b)
(i,j),(k,ℓ) for all 1 ≤ a, b ≤ c and 1 ≤ i, j, k, ℓ ≤ n.

(3) There is a state s : Qn,c⊗cQn,c → C satisfying s(qa,ij ⊗ qb,kℓ) = X
(a,b)
(i,j),(k,ℓ) for all 1 ≤ a, b ≤ c and 1 ≤ i, j, k, ℓ ≤ n.

Proof. SinceQqc(n, c) is defined in terms of POVMs where Alice’s entries commute with Bob’s, we see that (1) is equivalent to (3). Based
on two applications of Lemma 2.12, we see thatQn,c⊗cQn,c is completely order isomorphic to the image ofQn,c ⊗Qn,c inPn,c⊗maxPn,c. Hence,
(2) and (3) are equivalent. ◻

When considering the quantum-to-classical graph homomorphism game, the local model will be of interest because of its link to the
usual notion of a (classical) homomorphism from a quantum graph to a classical graph. It is helpful to note that all strategies inQloc(n, c) can
be obtained using PVMs instead of just POVMs. We use a bit of a different direction for proving this fact. First, we show the following simple
fact:

Proposition 2.14. Qloc(n, c) is a closed set.

Proof. Let Xm = (X(a,b)m,(i,j),(k,ℓ)) ∈ Qloc(n, c) be a sequence of correlations such that lim
m→∞

Xm = X pointwise in (Mn ⊗Mn)
c2 . For each m,

there is a unital commutative C∗-algebraAm, POVMs P(m)1 , . . . ,P(m)c and Q(m)1 , . . . ,Q(m)c inMn(Am), and a state sm onAm such that

X(a,b)m,(i,j),(k,ℓ) = sm(P
(m)
a,ij Q

(m)
b,kℓ )∀a, b, i, j, k, ℓ.

Define A =⊕∞m=1Am, Pa,ij =⊕∞m=1P
(m)
a,ij , and Qb,kℓ =⊕

∞
m=1Q

(m)
b,kℓ . Then, Pa = (Pa,ij) and Qb = (Qb,kℓ) define two POVMs in Mn(A) with c

outputs. Using the canonical compression from A onto Am, we can extend sm to a state s̃m on A. As the state space of A is w∗-compact, we
choose a w∗-limit point s of the sequence ( s̃m)∞m=1. Then, X = (X

(a,b)
(i,j),(k,ℓ)) = (s(Pa,ijQb,kℓ)), which shows that X ∈ Qloc(n, c). ◻
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We note that the above proof works just as well for projection-valued measures. A standard argument shows that limits of convex
combinations of elements ofQloc(n, c) represented by PVMs from Abelian algebras can still be represented by PVMs from Abelian algebras.
With this fact in hand, we can prove the disambiguation theorem forQloc(n, c).

Theorem 2.15. Let X = (X(a,b)
(i,j),(k,ℓ)) ∈ (Mn ⊗Mn)

c2 . The following are equivalent:

(1) X belongs toQloc(n, c).
(2) There is a commutative C∗-algebraA, a state s onA and POVMs {P1, . . . ,Pc}, {Q1, . . . ,Qc} ⊆Mn(A) such that

X(a,b)
(i,j),(k,ℓ) = s(Pa,ijQb,kℓ).

(3) There is a commutative C∗-algebraA, a state s onA, and PVMs {P1, . . . ,Pc},{Q1, . . . ,Qc} ⊆Mn(A) such that

X(a,b)
(i,j),(k,ℓ) = s(Pa,ijQb,kℓ).

Proof. Clearly (1) and (2) are equivalent by the definition of Qloc(n, c). Since every PVM is a POVM, (3) implies (2). Hence, we need
only show that (2) implies (3). Suppose that

X(a,b)
(i,j),(k,ℓ) = s(Pa,ijQb,kℓ)

for a state s on a commutativeC∗-algebraA and a POVMs P1, . . . ,Pc andQ1, . . . ,Qc inMn(A). ThenA ≃ C(Y) for a compact Hausdorff space
Y . The extreme points of the state space ofY are simply evaluation functionals δy for y ∈ Y , which aremultiplicative. Hence, δ(n)y (Qa) ∈Mn(C)
defines a POVM with c outputs in Mn(C), where δ(n)y = idn ⊗ δy. Recall that the extreme points of the set of positive contractions in a von
Neumann algebra are precisely the projections in the von Neumann algebra. An easy application of this argument shows that the extreme
points of the set of POVMs with c outputs in a von Neumann algebra are precisely the PVMs with c outputs. Hence, {δ(n)y (Q1), . . . , δ(n)y (Qc)}

lies in the closed convex hull of the set of PVMs inMn(C) with c outputs. Applying a similar argument to {δ(n)y (P1), . . . , δ
(n)
y (Pc)}, it follows

that the correlation [δy(Pa,ijQb,kℓ)] is a convex combination of elements ofQloc(n, c) obtained by tensoring projections fromMn(C). Taking
the closed convex hull, we obtain the original correlation X. In this way, we can write X using projection-valued measures, which shows that
(2) implies (3). ◻

For t ∈ {loc, q, qs, qa, qc}, we let Ct(n, c) denote the set of correlations with classical inputs and classical outputs in the t-model, where
Alice and Bob now possess n PVMs (equivalently, POVMs) with c outputs each. These sets embed intoQt(n, c) in a natural way.

Proposition 2.16. Let t ∈ {loc, q, qs, qa, qc}. Then, Ct(n, c) is affinely isomorphic to

{X ∈ Qt(n, c) : X
(a,b)
(i,j),(k,ℓ) = 0 if i ≠ j or k ≠ ℓ} ⊆ Qt(n, c).

Moreover, the compression map

X ↦ (δijδkℓX
(a,b)
(i,j),(k,ℓ)) : Qt(n, c)→ Ct(n, c)

is a continuous affine map.

Proof. All of the claims follow from the following observations: if {Ea,x} is a collection of positive operators such that {Ea,x}ca=1 is a
POVM in B(H) for each 1 ≤ x ≤ n, then the operators Pa ∶=⊕n

x=1Ea,x define a POVM in Mn(B(H)). Similarly, if {Qa}
c
a=1 is a POVM in

Mn(B(H)), then setting Fa,x = Qa,xx ∈ B(H), we see that {Fa,x}ca=1 is a POVM in B(H) for each 1 ≤ x ≤ n. We leave the verification of the
claims above to the reader. ◻

Using what we have established so far, we see that the setsQt(n, c) satisfy

Qloc(n, c) ⊆ Qq(n, c) ⊆ Qqs(n, c) ⊆ Qqa(n, c) ⊆ Qqc(n, c).

The sets Qloc(n, c), Qqa(n, c), and Qqc(n, c) are all closed, and Qqa(n, c) = Qqs(n, c) = Qq(n, c). Using the previous proposition, all of the
containments above are strict in general. Indeed, Qloc(2, 2) ≠ Qq(2, 2) by the CHSH game (Ref. 42, Chap. 3). By a theorem of Coladangelo
and Stark,43 Qq(5, 3) ≠ Qqs(5, 3). A theorem of Dykema, Paulsen, and Prakash44 showsQqs(5, 2) ≠ Qqa(5, 2). In fact, using the T2 quantum
XOR game and a result of Cleve, Liu, and Paulsen,27 one can show that Qqs(3, 2) ≠ Qqa(3, 2). [The analogous problem for Ct(3, 2), perhaps
surprisingly, is still open, although it has been shown that the synchronous versions are equal; in fact, Cs

q(3, 2) = Cs
qc(3, 2).45] Finally, due to

the negative resolution to Connes’s embedding problem,5 it follows thatQqa(n, c) ≠ Qqc(n, c) for some (likely very large) values of n and c.
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We close this section with the following isomorphism between Pn,c and its opposite algebra. This isomorphism will be used in our
discussion of synchronous correlations in the next few sections. Recall that, if A is a C∗-algebra, then A op is the C∗-algebra with the same
norm structure asA, but with multiplication given by aopbop = (ba)op.

Lemma 2.17. The map pa,ij ↦ popa,ji extends to a unital
∗-isomorphism π : Pn,c → P op

n,c.

Proof. In P op
n,c, one has

n

∑
k=1

popa,kjp
op
a,ik =

n

∑
k=1
(pa,ikpa,kj)

op

= (
n

∑
k=1

pa,ikpa,kj)
op

= popa,ij,

where we have used the fact that Pa = (pa,ij) is a projection in Pn,c. Evidently, (popa,ij)
∗ = (p∗a,ij)

op = popa,ji, so the above calculations show that
Pop
a ∶= (p

op
a,ji)

n
i,j=1 is a projection in Mn(P op

n,c). Moreover, ∑c
a=1P

op
a = In. By the universal property of Pn,c, there is a unital ∗-homomorphism

π : Pn,c → P op
n,c such that π(pa,ij) = popa,ji.

One can show that P op
n,c is the universal C∗-algebra generated by entries popa,ij with the property that Pop

a = (p
op
a,ji)

n
i,j=1 is a projection in

Mn(P op
n,c) with∑c

a=1P
op
a = In. By a similar argument to the above, the map popa,ji ↦ pa,ij extends to a ∗-homomorphism ρ : P op

n,c → Pn,c. Since π
and ρ are mutual inverses on the generators of the respective algebras, they both extend to isomorphisms, yielding the desired result. ◻

III. SYNCHRONOUS QUANTUM INPUT–CLASSICAL OUTPUT CORRELATIONS
We now generalize the notion of synchronous correlations. Recall that a correlation P = (p(a, b∣x, y)) ∈ C(n, k) is called synchronous if

p(a, b∣x, x) = 0 whenever a ≠ b.7
In the following considerations, we fix once and for all an orthonormal basis {e1, . . . , en} for Cn.

Definition 3.1. Let S ⊆ [n]. We define themaximally entangled Bell state corresponding to S as the vector

S =
1
√
∣S∣
∑
j∈S
ej ⊗ ej.

Definition 3.2. Let X ∈ Qt(n, c) be a correlation in n-dimensional quantum inputs and c classical outputs, where t ∈ {loc, q, qs, qa, qc}. We
say that X is synchronous provided that there is a partition S1∪̇ ⋅ ⋅ ⋅ ∪̇Sℓ of [n] with the property that, if a ≠ b, then

p(a, b∣φSr) = 0 for all 1 ≤ r ≤ ℓ.

We define the subset
Q s

t(n, c) = {X ∈ Qt(n, c) : X is synchronous}.

The following proposition gives a very useful description of synchronicity in terms of the entries of the matrices involved in the
correlation.

Proposition 3.3. Let X = (X(a,b)
(i,j),(k,ℓ)) ∈ Qt(n, c) for t ∈ {loc, q, qs, qa, qc}. The following are equivalent:

(1) X is synchronous.
(2) X satisfies the equation

1
n

c

∑
a=1

n

∑
i,j=1

X(a,a)
(i,j),(i,j) = 1. (3.1)

(3) If a ≠ b, then
n

∑
i,j=1

X(a,b)
(i,j),(i,j) = 0. (3.2)

Proof. Suppose that X can be represented using the PVMs {Pa}ca=1 in B(Cn ⊗H) and {Qb}
c
b=1 in B(H⊗Cn) and the state χ ∈H. We

observe that, if S ⊆ [n], then
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p(a, b∣φS) =
1
∣S∣∑i,j∈S

⟨(Pa ⊗ In)(In ⊗Qb)(ej ⊗ χ ⊗ ej), ei ⊗ χ ⊗ ei⟩

=
1
∣S∣∑i,j∈S

⟨Pa,ijQb,ijχ, χ⟩

=
1
∣S∣∑i,j∈S

X(a,b)
(i,j),(i,j).

Suppose that X is synchronous, and let S1, . . . , Sℓ be a partition of [n] for which p(a, b∣φSr) = 0 whenever a ≠ b and 1 ≤ r ≤ ℓ. Then the
above calculation shows that ∑i,j∈SrX

(a,b)
(i,j),(i,j) = 0 for all r. Summing over all r, it follows that ∑n

i,j=1X
(a,b)
(i,j),(i,j) = 0 whenever a ≠ b. Hence, (1)

implies (3).
Next, we show that (3) implies (2). Notice that, for any X ∈ Qqc(n, c),

c

∑
a,b=1

n

∑
i,j=1

X(a,b)
(i,j),(k,ℓ) =

c

∑
a,b=1

n

∑
i,j=1
⟨Pa,ijQb,ijχ, χ⟩

=
n

∑
i,j=1
⟨(

c

∑
a=1

Pa,ij)(
c

∑
b=1

Qb,ij)χ, χ⟩

=
n

∑
i=1
⟨χ, χ⟩ = n,

where we have used the fact that∑c
a=1 Pa = ∑

c
b=1Qb = In implies that∑c

a=1Pa,ij = ∑
c
b=1Qb,ij is I when i = j and 0 otherwise. Therefore,

1
n

n

∑
i,j=1

X(a,b)
(i,j),(i,j) = 1,

which shows that (2) holds.
Finally, if (2) holds, then (1) immediately follows using the single-set partition S = [n]. ◻

Remark 3.4. In the case of a correlation p(a, b∣x, y) ∈ Ct(n, c) with n classical inputs and c classical outputs, using the [n] = {1} ∪ {2}
∪ ⋅ ⋅ ⋅ ∪ {n}, we see that any synchronous correlation in Ct(n, c) is a synchronous correlation in the sense of the definition above. In this way, we
see that Cs

t(n, c) ⊆ Q s
t(n, c).

We wish to show the analog of Ref. 9, Theorem 5.5; that is, synchronous correlations with n-dimensional inputs and c outputs arise
from tracial states on the algebra generated by Alice’s operators (respectively, Bob’s operators). We will also see that, in any realization of
a synchronous correlation, Bob’s operators can be described naturally in terms of Alice’s operators. By a realization of X ∈ Qqc(n, c), we
simply mean a 4-tuple ({Pa}ca=1,{Qb}

c
b=1,H,ψ), where {Pa}ca=1 is a PVM on Cn ⊗H, {Qb}

c
b=1 is a PVM on H⊗Cn, ψ is a state in H, and

[Pa ⊗ In, In ⊗Qb] = 0 for all a, b.

Theorem 3.5. Let X = (X(a,b)
(i,j),(k,ℓ)) ∈ Q

s
qc(n, c). Let ({Pa}ca=1,{Qb}

c
b=1,H,ψ) be a realization of X. Then:

(1) Qa,ijψ = P∗a,ijψ for all 1 ≤ a ≤ c and 1 ≤ i, j ≤ n.
(2) The state ρ = ⟨(⋅)ψ,ψ⟩ is a tracial state on the C∗-algebra A generated by {Pa,ij : 1 ≤ a ≤ c, 1 ≤ i, j ≤ n}, and on the C∗-algebra B

generated by {Qb,kℓ : 1 ≤ b ≤ c, 1 ≤ k, ℓ ≤ n}.

Conversely, if Pa,ij are operators in a tracial C∗-algebra A with a trace τ, such that the operators Pa = (Pa,ij) ∈Mn(A) form a PVM with c
outputs, then [τ(Pa,ijP∗b,kℓ)] defines an element of Q s

qc(n, c).

Proof. Suppose X ∈ Q s
qc(n, c), with realization ({Pa}ca=1,{Qb}

c
b=1,H,ψ). By Proposition 3.3, we have

1 =
1
n

c

∑
a=1

n

∑
i,j=1

X(a,a)
(i,j),(i,j) (3.3)

=
1
n

c

∑
a=1

n

∑
i,j=1
⟨Pa,ijQa,ijψ,ψ⟩

≤
1
n

c

∑
a=1

n

∑
i,j=1
∣⟨Pa,ijQa,ijψ,ψ⟩∣ (3.4)
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=
1
n

c

∑
a=1

n

∑
i,j=1
∣⟨Qa,ijψ,P∗a,ijψ⟩∣

≤
1
n

c

∑
a=1

n

∑
i,j=1
∥Qa,ijψ∥∥P∗a,ijψ∥ (3.5)

≤
1
n
⎛

⎝

c

∑
a=1

n

∑
i,j=1
∥Qa,ijψ∥2

⎞

⎠

1
2 ⎛

⎝

c

∑
a=1

n

∑
i,j=1
∥P∗a,ijψ∥

2⎞

⎠

1
2

(3.6)

=
1
n
⎛

⎝

c

∑
a=1

n

∑
i,j=1
⟨Q∗a,ijQa,ijψ,ψ⟩

⎞

⎠

1
2 ⎛

⎝

c

∑
a=1

n

∑
i,j=1
⟨Pa,ijP∗a,ijψ,ψ⟩

⎞

⎠

1
2

=
1
n
⎛

⎝

c

∑
a=1

n

∑
i,j=1
⟨Qa,jiQa,ijψ,ψ⟩

⎞

⎠

1
2 ⎛

⎝

c

∑
a=1

n

∑
i,j=1
⟨Pa,ijPa,jiψ,ψ⟩

⎞

⎠

1
2

.

Since Pa and Qa are projections, the last line is equal to

1
n
⎛

⎝

c

∑
a=1

n

∑
j=1
⟨Qa,jjψ,ψ⟩

⎞

⎠

1
2

(
c

∑
a=1

n

∑
i=1
⟨Pa,iiψ,ψ⟩)

1
2

=
1
n
⎛

⎝

n

∑
j=1
⟨IH ψ,ψ⟩

⎞

⎠

1
2

(
n

∑
i=1
⟨IH ψ,ψ⟩)

1
2

=
1
n
⋅
√
n ⋅
√
n

= 1.

Therefore, all of these inequalities are equalities. Then, (3.4) implies that

X(a,a)
(i,j),(i,j) ≥ 0 for all 1 ≤ a ≤ c, 1 ≤ i, j ≤ n.

The equality case of (3.5) shows that

Qa,ijψ = αa,ijP∗a,ijψ for some αa,ij ∈ T. (3.7)

Then, Eq. (3.7) yields

X(a,a)
(i,j),(i,j) = αa,ij⟨Pa,ijP

∗
a,ijψ,ψ⟩ = αa,ij∥P

∗
a,ijψ∥

2.

Since X(a,a)
(i,j),(i,j) ≥ 0 and ∥P

∗
a,ijψ∥2 ≥ 0, we either have P∗a,ijψ = 0 or αa,ij = 1. In either case, we obtain

Qa,ijψ = P∗a,ijψ,

as desired.
To prove (2), it suffices to show that it holds forA = C∗({Pa,ij}a,i,j); a similar argument works for B = C∗({Qb,kℓ}b,k,ℓ). Let ρ : A→ C be

the state given by ρ(X) = ⟨Xψ,ψ⟩. LetW = Pm1
a1 ,i1j1 ⋅ ⋅ ⋅P

mk
ak ,ikjk be a word in {Pa,ij,P

∗
a,ij}a,i,j, where we denote by P

−1
aℓ ,iℓjℓ the operator P

∗
aℓ ,iℓjℓ and let

mℓ ∈ {−1, 1}. We will first show that Wψ = Q−mk
ak ,ikjk ⋅ ⋅ ⋅Q

−m1
a1 ,i1j1ψ, where Q

−1
aℓ ,iℓjℓ ∶= Q

∗
aℓ ,iℓjℓ . Using the fact that Pa,ij and Q∗b,kℓ-commute for each

a, b, i, j, k, ℓ, we obtain

Wψ = Pm1
a1 ,i1j1 ⋅ ⋅ ⋅P

mk
ak ,ikjkψ

= Pm1
a1 ,i1j1 ⋅ ⋅ ⋅P

mk−1
ak−1 ,ik−1jk−1Q

−mk
ak ,ikjkψ

= Q−mk
ak ,ikjk(P

m1
a1 ,i1j1 ⋅ ⋅ ⋅P

mk−1
ak−1 ,ik−1jk−1)ψ,

and the desired equality easily follows by induction on k. For 1 ≤ a ≤ c and 1 ≤ i, j ≤ n,
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ρ(Pa,ijW) = ⟨Pa,ijWψ,ψ⟩

= ⟨Pa,ij(Qm1
a1 ,i1j1 ⋅ ⋅ ⋅Q

mk
ak ,ikjk)

∗ψ,ψ⟩

= ⟨(Qm1
a1 ,i1j1 ⋅ ⋅ ⋅Q

mk
ak ,ikjk)

∗Pa,ijψ,ψ⟩

= ⟨Pa,ijψ,Qm1
a1 ,i1j1 ⋅ ⋅ ⋅Q

mk
ak ,ikjkψ⟩

= ⟨Pa,ijψ, (Pm1
a1 ,i1j1 ⋅ ⋅ ⋅P

mk
ak ,ikjk)

∗ψ⟩

= ⟨Pa,ijψ,W∗ψ⟩
= ⟨WPa,ijψ,ψ⟩ = ρ(WPa,ij).

In the same way, ρ(Pa,ijPb,kℓW) = ρ(WPa,ijPb,kℓ). It follows by induction, linearity and continuity that ρ is tracial onA, as desired.
For the converse direction, we recall the standard fact that, if A is a unital C∗-algebra and τ is a trace on A, then there is a state

s : A⊗maxA op → C satisfying s(x⊗ yop) = τ(xy) for all x, y ∈ A. Thus, if P1, . . . ,Pc ∈Mn(A) is a projection-valued measure,

s(Pa,ij ⊗ Pop
b,kℓ) = τ(Pa,ijPb,kℓ)∀1 ≤ a, b ≤ c, 1 ≤ i, j, k, ℓ ≤ n.

Applying the universal property of Pn,c, we obtain a state γ : Pn,c⊗maxP op
n,c → C satisfying

γ(pa,ij ⊗ popb,kℓ) = τ(Pa,ijPb,kℓ).

By Lemma 2.17, the map pa,ij ⊗ pb,kℓ ↦ τ(Pa,ijPb,ℓk) = τ(Pa,ijP∗b,kℓ) defines a state on Pn,c⊗maxPn,c. Then, Theorem 2.13 shows that

X ∶= τ(Pa,ijP∗b,kℓ)

defines an element ofQqc(n, c). If a ≠ b,

n

∑
i,j=1

X(a,b)
(i,j),(i,j) =

n

∑
i,j=1

τ(Pa,ijP∗b,ij)

= Tr⊗ τ(PaPb) = 0,

since PaPb = 0. By Proposition 3.3, X = (X(a,b)
(i,j),(k,ℓ)) ∈ Q

s
qc(n, c). ◻

In light of Theorem 3.5, wemay refer to a synchronous t-strategy ({Pa}ca=1, χ)when referring to a t-strategy ({Pa}
c
a=1,{Qb}

c
b=1, χ)where

the associated correlation is synchronous.

Corollary 3.6. Let (X(a,b)
(i,j),(k,ℓ)) ∈ Q

s
t(n, c) where t ∈ {loc, q, qs, qa, qc}. Then

(1) X(a,b)
(i,i),(j,j) ≥ 0 for all 1 ≤ a, b ≤ c and 1 ≤ i, j ≤ n.

(2) X(a,b)
(i,j),(k,ℓ) = X

(a,b)
(j,i),(ℓ,k).

(3) For any 1 ≤ a ≠ b ≤ c and 1 ≤ i, j ≤ n, we have
n

∑
k=1

X(a,b)
(i,k),( j,k) =

n

∑
k=1

X(a,b)
(k,i),(k,j) = 0.

(4) For any 1 ≤ i, j ≤ n, we have
c

∑
a=1

n

∑
k=1

X(a,a)
(i,k),(j,k) =

c

∑
a=1

n

∑
k=1

X(a,a)
(k,i),(k,j) = δij.

Proof. By Theorem 3.5, we may choose projections P1, . . . ,Pc ∈Mn(A), for a unital C∗-algebraA, along with a tracial state τ onA such
that

X(a,b)
(i,j),(k,ℓ) = τ(Pa,ijP

∗
b,kℓ) for all 1 ≤ a, b ≤ c, 1 ≤ i, j, k, ℓ ≤ n.

Since Pa is a projection, it defines a positive element of Mn(A). Compressing to any diagonal block preserves positivity, which implies that
Pa,ii ∈ A + for any i. Since τ is a trace, it follows that τ(Pa,iiPb,jj) ≥ 0 for any i, j, a, b. Hence, (1) follows.
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We note that (2) follows easily from the fact that τ is a trace and that, since τ is a state, one has τ(Y∗) = τ(Y) for all Y ∈ A.
To show (3), we observe that

n

∑
k=1

X(a,b)
(i,k),(j,k) =

n

∑
k=1

τ(Pa,ikP
∗
b,jk)

=
n

∑
k=1

τ(Pa,ikPb,kj)

= τ(
n

∑
k=1

Pa,ikPb,kj)

= τ((PaPb)ij) = 0,

since PaPb = 0. Similarly,∑n
k=1X

(a,b)
(k,i),(k,j) = 0 when a ≠ b.

A similar argument establishes (4). Indeed, we have

c

∑
a=1

n

∑
k=1

X(a,a)
(i,k),(j,k) =

c

∑
a=1

n

∑
k=1

τ(Pa,ikPa,kj) = τ(
c

∑
a=1

Pa,ij),

and this latter sum is δij, since∑c
a=1 Pa = I. The other equation in (4) follows similarly. ◻

Remark 3.7. It makes sense (and we will have occasion) to discuss synchronicity of a strategy with respect to a different orthonormal basis
v = {v1, . . . , vn} of Cn. In this case, a qc-strategy ({Pa}ca=1,{Qb}

c
b=1, χ) is said to be synchronous with respect to {v1, . . . , vn} if there is a

partition S1 ∪ ⋅ ⋅ ⋅ ∪ Ss of [n] such that for each r and φSr ,v ∶= 1√
∣Sr ∣
∑j∈Srvj ⊗ vj, we have

p(a, b∣φSr ,v) = 0 if a ≠ b.

One can then write down an analog of Theorem 3.5 in this context. Alternatively, one can simply let P̃a = U∗PaU and Q̃b = U∗QbU, where U
is the unitary satisfying Uei = vi for all i. Then, applying Theorem 3.5 relates the entries of Q̃a to the entries of P̃a, while showing that the state
⟨(⋅)χ, χ⟩ is a trace on the algebra generated by the entries of the operators Q̃a (respectively, P̃a). Since Pa = UP̃aU∗ and Qb = UQ̃bU∗, the entries
of Pa (respectively, Qb) are linear combinations of the entries of P̃a (respectively, Q̃b), so it follows that the algebra generated by the entries of the
operators Pa (respectively, Qb) is the same as the algebra generated by the entries of P̃a (respectively, Q̃b).

It is helpful to describe the simplest ways to realize synchronous correlations. To that end, we spend the rest of this section describing
the simplest realizations for t ∈ {loc, q, qs}. We start with the case ofQ s

loc(n, c).

Corollary 3.8. Let X ∈ (Mn ⊗Mn)
c2 . Then X belongs toQ s

loc(n, c) if and only if there is a unital, commutative C∗-algebraA, a projection-
valued measure {Pa}ca=1 ⊆Mn(A) for 1 ≤ a ≤ c, and a faithful state ψ ∈ S(A) such that, for all 1 ≤ a, b ≤ c and 1 ≤ i, j, k, ℓ ≤ n,

X(a,b)
(i,j),(k,ℓ) = ψ(Pa,ijP

∗
b,kℓ).

Moreover, if X is an extreme point inQ s
loc(n, c), we may takeA = C.

Proof. If X ∈ Q s
loc(n, c), by definition of loc-correlations, X can be written using projection-valued measures {Pa}ca=1 and {Qb}

c
b=1 in

Mn(B(H)), along with a state χ ∈H, such that X(a,b)
(i,j),(k,ℓ) = ⟨Pa,ijQb,kℓχ, χ⟩ and the C∗-algebraA generated by the set of all entries Pa,ij andQb,ℓ

is a commutative C∗-algebra. Applying Theorem 3.5, we can write X(a,b)
(i,j),(k,ℓ) = ψ(Pa,ijP

∗
b,kℓ), where ψ(⋅) = ⟨(⋅)χ, χ⟩. As this state is tracial, by

replacing A with its quotient by the kernel of the GNS representation of ψ if necessary, we may assume without loss of generality that ψ is
faithful, which establishes the forward direction. The converse follows by the converse of Theorem 3.5 and the definition ofQloc(n, c).

To establish the claim about extreme points, we note that the Proof of Proposition 2.14 shows that every element of Qloc(n, c) is a
limit of convex combinations of correlations arising from PVMs in Mn(C). Evidently the set of elements of Qloc(n, c) that have realizations
using PVMs in Mn(C) is a closed set. As Qloc(n, c) is compact and convex, the converse of the Krein-Milman theorem shows that extreme
points in Qloc(n, c) must have a realization using PVMs in Mn(C). Now, the proof of the forward direction of Theorem 3.5 shows that
1
n∑

c
a=1∑

n
i,j=1Y

(a,b)
(i,j),(i,j) ≤ 1 for any Y ∈ Qqc(n, c). Moreover, this inequality is an equality if and only if Y is synchronous, by Proposition 3.3.

Hence,Q s
loc(n, c) is a face inQloc(n, c), so extreme points inQ s

loc(n, c) are also extreme points inQloc(n, c). This shows thatX has a realization
using the algebraA = C. ◻
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Corollary 3.9. Let X ∈ (Mn ⊗Mn)
c2 . Then X belongs to Q s

q(n, c) if and only if there is a finite-dimensional C∗-algebra A, a projection-
valued measure {Pa}ca=1 ⊆Mn(A) for 1 ≤ a ≤ c, and a faithful tracial state ψ ∈ S(A) such that, for all 1 ≤ a, b ≤ c and 1 ≤ i, j, k, ℓ ≤ n,

X(a,b)
(i,j),(k,ℓ) = ψ(Pa,ijP

∗
b,kℓ).

Moreover, if X is an extreme point in Q s
q(n, c), then we may take A =Md for some d, and hence ψ = trd, where trd is the normalized

trace on Md.

Proof. If X belongs to Q s
q(n, c), one can write X = (⟨(Pa,ij ⊗Qb,kℓ)χ, χ⟩) for projection-valued measures {Pa}ca=1 ⊆Mn(B(HA)) and

{Qb}
c
b=1 ⊆Mn(B(HB)) on finite-dimensional Hilbert spaces HA and HB, along with a unit vector χ ∈HA ⊗HB. By Theorem 3.5, we may

write X = ψ(Pa,ijP∗b,kℓ) where ψ is the (necessarily faithful) tracial state on the finite-dimensional C∗-algebra A generated by the set {Pa,ij : 1
≤ a ≤ c, 1 ≤ i, j ≤ n}.

Conversely, if X can be written as X = (ψ(Pa,ijP∗b,kℓ)) for a projection-valued measure {Pa}ca=1 ⊆Mn(A), whereA is a finite-dimensional
C∗-algebra with a faithful trace ψ onA, then the Proof of Theorem 3.5 yields a finite-dimensional realization of X as an element ofQ s

qc(n, c).
By Lemma 2.10, we must have X ∈ Q s

q(n, c).
Now, assume that X is extreme in Q s

q(n, c). Since A is finite-dimensional, it is ∗-isomorphic to ⊕m
r=1Mkr for some r and numbers

k1, . . . , kr ∈ N. Since ψ is a trace onA, there must be t1, . . . , tm ≥ 0 such that∑m
r=1tr = 1 and ψ(⋅) = ∑

m
r=1tr trkr(⋅), where trkr is the normalized

trace onMkr . Writing Pa,ij =⊕m
r=1P

(r)
a,ij for each 1 ≤ a ≤ c and 1 ≤ i, j ≤ n, where P(r)a,ij ∈Mkr , we have

X(a,b)
(i,j),(k,ℓ) =

m

∑
r=1

tr trkr(P
(r)
a,ij (P

(r)
b,kℓ)

∗
).

Since P(r)a = (P
(r)
a,ij ) ∈Mn(Mkr) must define an orthogonal projection and ∑c

a=1P
(r)
a = In ⊗ Ikr , it follows that X

(a,b)
r,(i,j),(k,ℓ) = trkr(P

(r)
a,ij (P

(r)
b,kℓ)

∗)

∈ Q s
q(n, c), and ∑m

r=1trX
(a,b)
r,(i,j),(k,ℓ) = X

(a,b)
(i,j),(k,ℓ). Therefore, X

(a,b)
r,(i,j),(k,ℓ) = X

(a,b)
(i,j),(k,ℓ) for each r. This shows that we may take A to be a matrix

algebra, completing the proof. ◻

We will end this section by showing that Q s
qs(n, c) = Q s

q(n, c). To prove this fact, we use a similar approach to Ref. 18. In fact, by an
application of Proposition 2.16, the following theorem is a direct generalization of the analogous result in Ref. 18.

Theorem 3.10. For each n, c ∈ N, we haveQ s
qs(n, c) = Q s

q(n, c).

Proof. Let X = (X(a,b)
(i,j),(k,ℓ)) ∈ Q

s
qs(n, c), and write

X(a,b)
(i,j),(k,ℓ) = ⟨(Pa,ij ⊗Qb,kℓ)ψ,ψ⟩,

where Pa = (Pa,ij) is a projection in Cn ⊗HA for each 1 ≤ a ≤ c, Qb = (Qb,ij) is a projection in HB ⊗Cn for each 1 ≤ b ≤ c, ∑c
a=1 Pa = ICn⊗HA ,

∑
c
b=1Qb = IHB⊗Cn , and ψ ∈HA ⊗HB is a state. We can arrange to have dim(HA) = dim(HB). For example, if dim(HA) < dim(HB), then we

choose a Hilbert spaceHC with dim(HA⊕HC) = dim(HB), and extend Pa by defining P̃a,ij = Pa,ij⊕ δijIHC . Then,

⟨( P̃a,ij ⊗Qb,kℓ)ψ,ψ⟩ = ⟨(Pa,ij ⊗Qb,kℓ)ψ,ψ⟩ = X
(a,b)
(i,j),(k,ℓ).

In this way, we may assume without loss of generality that dim(HA) = dim(HB).
We write down a Schmidt decomposition

ψ =
∞

∑
p=1

αpep ⊗ fp,

where {ep}∞p=1 ⊆HA and { fp}∞p=1 ⊆HB are orthonormal, and α1 ≥ α2 ≥ ⋅ ⋅ ⋅ ≥ 0 are such that ∑∞p=1α
2
p = 1. If one extends these orthonormal

sets to orthonormal bases for HA and HB respectively, and defines additional αp’s to be 0, then after direct summing a Hilbert space on one
side if necessary, we may assume that dim(HA) = dim(HB) and that {er}r∈I is an orthonormal basis for HA, and {fs}s∈I is an orthonormal
basis forHB.

We rewrite the (at most) countable set {αq : αq ≠ 0} = {βv : v ∈ V}, where V = {1, 2, . . .} and βv > βv+1 for all v ∈ V . We define
Kv = {eq : αq = βv} and Lv = { fq : αq = βv}, and define subspaces Kv = span(Kv) and Lv = span(Lv) of HA and HB, respectively. Since
∑
∞
q=1∣αq∣

2 = 1, it follows that each Kv and Lv must be finite, so thatKv and Lv are finite-dimensional. We will show that eachKv is invariant
for the operators {Pa,ij : 1 ≤ a ≤ c, 1 ≤ i, j ≤ n}, and that each Lv is invariant for the operators {Qb,kℓ : 1 ≤ b ≤ c, 1 ≤ k, ℓ ≤ n}. To this end, let
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ω be a primitive c-th root of unity, and define order c unitaries U = ∑c
a=1ω

aPa ∈ B(Cn ⊗HA) and V = ∑c
b=1ω

−bQb ∈ B(HA ⊗Cn). Since X is
synchronous, by Theorem 3.5, we know that

(IHA ⊗Q∗a,ij)ψ = (Pa,ij ⊗ IHB)ψ and (IHA ⊗Qa,ijQ∗b,ij)ψ = (Pb,ijP
∗
a,ij ⊗ IHB)ψ.

Since UijU∗ij = ∑
c
a,b=1ω

a−bPa,ijP∗b,ij and VijV∗ij = ∑
c
a,b=1ω

b−aQa,ijQ∗b,ij, it follows that

(IHA ⊗V∗ij )ψ = (Uij ⊗ IHB)ψ and (IHA ⊗VijV∗ij )ψ = (UijU∗ij ⊗ IHB)ψ.

Using this fact and the decomposition of ψ,

αq⟨Uijeq, ep⟩ = ⟨(Uij ⊗ IHB)ψ, ep ⊗ fq⟩ = ⟨(IHA ⊗V∗ij )ψ, ep ⊗ fq⟩ = αp⟨V∗ij fp, fq⟩.

Since U and V are unitary, it follows that, for all p,

n

∑
i,j=1
∥U∗ij ep∥

2
=

n

∑
i,j=1
⟨UijU∗ij ep, ep⟩ = n and

n

∑
i,j=1
∥Uijep∥2 =

n

∑
i,j=1
⟨U∗ijUijep, ep⟩ = n.

Similarly, ∑n
i,j=1∥V

∗
ij fq∥

2 = ∑
n
i,j=1∥Vijfq∥2 = n. Suppose that q is such that eq ∈ K1. Then, using the fact that αq = α1 and that αp ≤ α1 for all p

yields

n∣α1∣2 =
n

∑
i,j=1
∣α1∣2∥V∗ij fq∥

2

≥
n

∑
i,j=1

∞

∑
p=1
∣αp∣2∣⟨V∗ij fp, fq⟩∣

2

=
n

∑
i,j=1

∞

∑
p=1
∣αq∣2∣⟨Uijeq, ep⟩∣2

= ∣α1∣2
n

∑
i,j=1

∞

∑
p=1
∣⟨Uijeq, ep⟩∣2

= ∣α1∣2
n

∑
i,j=1

∞

∑
p=1
∣⟨U∗ij ep, eq⟩∣

2

= ∣α1∣2
n

∑
i,j=1
∥U∗ij eq∥

2

= n∣α1∣2.

Therefore, we must have equality at all lines. If p is such that ep ∉ K1, then since αp < α1, we must have 0 = ∑n
i,j=1∣αp∣

2∣⟨V∗ij fp, fq⟩∣
2

= ∑
n
i,j=1∣αq∣

2∣⟨Uijeq, ep⟩∣2. Therefore, ⟨U ijeq, ep⟩ = 0 for each such p, which shows that U ijeq � ep for all p with ep ∉ K1. Since this happens
whenever αq = α1, the subspace K1 must be invariant for every U ij. By the same argument as above with the quantity ∑n

i=1∣α1∣
2∥Vijfq∥2, it

follows thatK1 is invariant for every U∗ij . Therefore,K1 is reducing for the operators U ij, for all 1 ≤ i, j ≤ n. A similar argument proves that L1
is reducing for the operators Vkℓ, for all 1 ≤ k, ℓ ≤ n.

Now, choose q such that eq ∈ K2 and fq ∈ L2. If αp > αq, then αp = α1, so that ep ∈ K1 and fp ∈ K1. The above shows that ⟨U ijeq, ep⟩ = 0 and
⟨U∗ij eq, ep⟩ = 0, so that Uijeq �K1 and U∗ij eq �K2. Similarly, Vkℓfq �L1 and V∗kℓ fq �L1. Then using a similar string of inequalities as before, one
obtains U ijeq � ep whenever p is such that ep ∉ K2 and q is such that eq ∈ K2. Therefore, one finds that K2 is invariant for each U ij. A similar
argument shows that K2 is invariant for U∗ij , so that K2 is reducing for {U ij : 1 ≤ i, j ≤ n}. The same argument shows that {Vkℓ : 1 ≤ k, ℓ ≤ n}
reducesK2.

It follows by induction that Kv is reducing for {U ij : 1 ≤ i, j ≤ n} for all v and that Lv is reducing for {Vkℓ : 1 ≤ k, ℓ ≤ n} for all v. By
construction of the unitaries U and V , we know that

Pa =
1
c

c

∑
d=1

ω−adUd andQb =
1
c

c

∑
d=1

ωbdVd.

Therefore,Kv is reducing for each Pa,ij, and Lv is reducing for each Qb,kℓ, as desired.
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Finally, we will exhibit X = (X(a,b)
(i,j),(k,ℓ)) as a countable convex combination of elements ofQ s

q(n, c). One can regard elements ofQ s
q(n, c)

as elements ofCn4c2 , or as elements ofR2(n4c2). Then by a countably infinite version of Carathéodory’s theorem,46 this will show that X belongs
toQ s

q(n, c), which will complete the proof. [As mentioned in Ref. 18, this result from Ref. 46 holds even with non-closed convex sets, of which
Q s

q(n, c) is an example.]
For each v ∈ V , we let dv = dim(Kv) = dim(Lv) = ∣Kv ∣ = ∣Lv ∣, which is finite. Define the state

ψv =
1
√
dv
∑

p:ep∈Kv

ep ⊗ fp

and define
Pv,a,ij = Pa,ij∣Kv and Qv,b,kℓ = Qb,kℓ∣Lv .

Since Kv is reducing for Pa,ij, and since Pa is a projection, the operator Pv,a = (Pv,a,ij)ni,j=1 is a projection on Cn ⊗Kv . Similarly,
Qv,b = (Qv,b,kℓ)

n
k,ℓ=1 is a projection on Lv ⊗Cn. Moreover,∑c

a=1Pv,a = ICn ⊗ IKv and∑c
b=1Qv,b = ILv ⊗ ICn . Therefore, the correlation

Xv = (X(a,b)v,(i,j),(k,ℓ)) = (⟨(Pv,a,ij ⊗Qv,b,kℓ)ψv ,ψv⟩)

belongs toQq(n, c) for each v. Set tv = β2vdv . Then tv ≥ 0 and∑v≥1tv = ∑
∞
p=1∣αp∣

2 = 1. Finally, for each 1 ≤ a, b ≤ c and 1 ≤ i, j ≤ n, we compute

X(a,b)
(i,j),(k,ℓ) = ⟨(Pa,ij ⊗Qb,kℓ)ψ,ψ⟩

=∑
v

∑
p,q:ep ,eq∈Kv

β2v⟨(Pa,ij ⊗Qb,kℓ)(ep ⊗ fp), eq ⊗ fq⟩

=∑
v

β2vdv⟨(Pv,a,ij ⊗Qv,b,kℓ)ψv ,ψv⟩

=∑
v

tvX(a,b)v,(i,j),(k,ℓ).

It follows that X = ∑v tvXv . Since each Xv ∈ Qq(n, c), it follows that X ∈ Qq(n, c). Since X is also synchronous, we obtain X ∈ Q s
q(n, c),

completing the proof. ◻

IV. APPROXIMATELY FINITE-DIMENSIONAL CORRELATIONS
In this section, we will show that elements of Q s

qa(n, c) arise from amenable traces. Equivalently, elements of Q s
qa(n, c) can be repre-

sented using the trace onR U and projection-valuedmeasures with c outputs inMn(R U ), whereR U denotes an ultrapower of the hyperfinite
II1-factorR by a free ultrafilter U on N. The proof is similar to Ref. 18, Sec. 3, and the main result is a generalization of Ref. 18, Theorem 3.6.
Relevant details onR U can be found in Ref. 33.

For amenable traces, we will use the following result of Kirchberg,47 Proposition 3.2, which can also be found in Ref. 33, Theorem 6.2.7.

Theorem 4.1. Let A be a separable C∗-algebra and let τ be a tracial state onA. The following statements are equivalent:

(1) The trace τ is amenable; i.e., whenever A ⊆ B(H) is a faithful representation, then there is a state ρ on B(H) such that ρ∣A = τ and
ρ(u∗Tu) = ρ(T) for all T ∈ B(H) and unitaries u ∈ A.

(2) There is a ∗-homomorphism π : A→R U along with a completely positive contractive lift φ : A→ ℓ∞(R) such that trR U ○ π = τ.
(3) There is a sequence of natural numbers N(k) and completely positive contractive maps φk : A→MN(k) satisfying

lim
k→∞
∥φk(ab) − φk(a)φk(b)∥2 = 0 and lim

k→∞
∣trN(k)(φk(a)) − τ(a)∣ = 0

for all a, b ∈ A.
(4) The linear functional γ : A⊗A op → C given by γ(a⊗ bop) = τ(ab) extends to a continuous linear map onA⊗minA op.

As pointed out in Ref. 18, as soon as γ is continuous on A⊗minA op in condition (4) above, it is automatically a state on the minimal
tensor product.

In what follows, we will let ∥ ⋅ ∥2 denote the 2-norm with respect to the trace. For the convenience of the reader, we recall the following
perturbation result.

Lemma 4.2 (Kim, Paulsen, and Schafhauser18). Let ε > 0 and c ∈ N. Then, there exists a δ > 0 such that, if n,N ∈ N and P1, . . . ,
Pc ∈Mn(MN) are positive contractions with ∥PaPb∥2 < δ for all a ≠ b and ∥P2

a − Pa∥2 < δ for all a, then there exist orthogonal projections
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Q1, . . . ,Qc ∈Mn(MN) with QaQb = 0 for a ≠ b and ∥Pa −Qa∥2 < ε. Moreover, if ∥∑c
a=1 Pa − In ⊗ IN∥2 < δ, then we may arrange for the

projections Q1, . . . ,Qc to satisfy∑
c
a=1Qa = In ⊗ IN .

Note that this lemma is stated slightly differently than in Ref. 18; however, it is easy to see that their result is equivalent to the above result.
Notice that, in the above lemma, if we write Pa = (Pa,ij) ∈Mn(MN) andQa = (Qa,ij) ∈Mn(MN), then one has ∥Qa,ij − Pa,ij∥2 ≤ ∥Qa − Pa∥2 < ε,
where the first 2-norm is inMN and the second 2-norm is inMn(MN).

Theorem 4.3. Let X = (X(a,b)
(i,j),(k,ℓ)) be an element of (Mn ⊗Mn)

c2 . The following statements are equivalent:

(1) X belongs toQ s
qa(n, c).

(2) X belongs toQ s
q(n, c).

(3) There is a separable unital C∗-algebraA, a PVM {P1, . . . ,Pc} in Mn(A), and an amenable trace τ onA such that, for all 1 ≤ i, j, k, ℓ ≤ n
and 1 ≤ a, b ≤ c,

X(a,b)
(i,j),(k,ℓ) = τ(Pa,ijP

∗
b,kℓ).

(4) There are elements qa,ij inR U such that qa = (qa,ij) are projections in Mn(R U ) with∑c
a=1qa = In and

X(a,b)
(i,j),(k,ℓ) = trR U (qa,ijq∗b,kℓ).

Proof. First, we show that (1) implies (3). Since Qqa(n, c) is the closure of Qq(n, c), this means that there are correlations
Xr = (X(a,b)r,(i,j),(k,ℓ)) ∈ Qq(n, c) with lim

r→∞
Xr = X pointwise. We may choose natural numbersN(r) andM(r) along with projection-valued mea-

sures {P(r)1 , . . . ,P(r)c } ⊆Mn(MN(r)) and {Q
(r)
1 , . . . ,Q(r)c } ⊆Mn(MM(r)) and unit vectors χr ∈ CN(r) ⊗CM(r) such that, for all r ∈ N and for all

1 ≤ a, b ≤ c and 1 ≤ i, j, k, ℓ ≤ n,

X(a,b)r,(i,j),(k,ℓ) = ⟨(P
(r)
a,ij ⊗Q(r)b,kℓ)χr , χr⟩.

Then for each r, by Theorem 2.11 and Theorem 3.5, there is a state φr on Pn,c⊗minP op
n,c satisfying

r(pa,ij ⊗ popb,kℓ) = ⟨(P
(r)
a,ij ⊗Q(r)b,kℓ)χr , χr⟩.

As the state space of any unital C∗-algebra is w∗-compact, we may take a w∗-limit point φ of the sequence (φr)∞r=1. By construction,
we note that φ(pa,ij ⊗ popb,kℓ) = X

(a,b)
(i,j),(k,ℓ) for all 1 ≤ a, b ≤ c and 1 ≤ i, j, k, ℓ ≤ n. We write φ = ⟨π(⋅)χ, χ⟩ in its GNS representation, where

π : Pn,c⊗minP op
n,c → B(H) is a unital ∗-homomorphism and χ ∈H is a unit vector. Applying Theorem 3.5 and restricting to Pn,c, we see

that τ(y) ∶= ⟨π(y⊗ 1)χ, χ⟩ defines a trace on Pn,c. To establish (3), we need to show that τ(x⊗ yop) = τ(xy) for all x, y ∈ Pn,c. Notice that for
each a and i, j, by Theorem 3.5 we have

π(x⊗ popa,ij)χ = π(x⊗ 1op)(π(1⊗ popa,ij))χ = π(xpa,ij ⊗ 1op)χ.

Then for each b, k, ℓ, we have

π(x⊗ popa,ijp
op
b,kℓ)χ = π(x⊗ popa,ij)π(1⊗ popb,kℓ)χ

= π(x⊗ popa,ij)π(pb,kℓ ⊗ 1)χ

= π(xpb,kℓ ⊗ popa,ij)χ

= π(xpb,kℓpa,ij ⊗ 1)χ.

Since popa,ijp
op
b,kℓ = (pb,kℓpa,ij)

op and the elements pa,ij generatePn,c, one can see that π(x⊗ yop)χ = π(xy⊗ 1)χ. Therefore, φ(x⊗ yop) = τ(xy) for
all x, y ∈ Pn,c, showing that τ is an amenable trace. Setting Pa,ij = π(pa,ij ⊗ 1), we obtain a PVM {P1, . . . ,Pc} inMn(A), whereA = π(Pn,c ⊗ 1)

and Pa = (Pa,ij). Moreover, X(a,b)
(i,j),(k,ℓ) = τ(Pa,ijP

∗
b,kℓ), so (1) implies (3).

Next, we show that (3) implies (2). Let {P1, . . . ,Pc} be a PVM in Mn(A) for a separable unital C∗-algebra, and let τ be an amenable
trace onA such that X(a,b)

(i,j),(k,ℓ) = τ(Pa,ijP
∗
b,kℓ) for all a, b, i, j, k, ℓ. By Theorem 4.1, we may choose a sequence of completely positive contractive

maps φr : A→MN(r) with lim
r→∞
∥φr(xy) − φr(x)φr(y)∥2 = 0 and lim

r→∞
∣trN(r)(φr(x)) − τ(x)∣ = 0 for all x, y ∈ A. Define p(r)a,ij = φr(Pa,ij) and set

p(r)a = (p
(r)
a,ij ) ∈Mn(MN(r)). Using the 2-norm onMn(MN(r)) and the fact that P2

a = Pa implies p(r)a,ij = ∑
n
k=1φr(Pa,ikPa,kj), one sees that
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∥(p(r)a )
2
− p(r)a ∥2 =

XXXXXXXXXXXX

(
n

∑
k=1

p(r)a,ikp
(r)
a,kj − p

(r)
a,ij )

i,j

XXXXXXXXXXXX2

= ∥(
n

∑
k=1
(φr(Pa,ik)φr(Pa,kj) − φr(Pa,ikPa,kj)))∥

2

≤
n

∑
i,j,k=1
∥φr(Pa,ik)φr(Pa,kj) − φr(Pa,ikPa,kj)∥2

r→∞
ÐÐÐ→0.

Similarly, one can show that limr→∞∥p(r)a p(r)b ∥2 = 0 whenever a ≠ b and ∥∑
c
a=1p

(r)
a − 1n∥

2
→ 0. Applying Lemma 4.2 and dropping to a sub-

sequence if necessary, we obtain a sequence of PVMs {q(r)1 , . . . , q(r)c } ⊆Mn(MN(r)) with c outputs with ∥p(r)a,ij − q
(r)
a,ij ∥2

r→∞
ÐÐÐ→0 for all a, i, j.

There is a unital ∗-homomorphism ψr : Pn,c →MN(r) with ψr(pa,ij) = q(r)a,ij . As Pn,c is generated by {pa,ij}a,i,j, a standard argument shows
that lim

r→∞
∥φr(x) − ψr(x)∥2 = 0 for every x ∈ Pn,c. This implies that ∣trN(r)(φr(x)) − trN(r)(ψr(x))∣→ 0, so that lim

r→∞
∣trN(r)(ψr(x)) − τ(x)∣ = 0.

Hence, lim
r→∞

trN(r)(q
(r)
a,ij (q

(r)
b,kℓ)

∗) = τ(Pa,ijP∗b,kℓ) for all a, b, i, j, k, ℓ. As each correlation X(a,b)r,(i,j),(k,ℓ) = trN(r)(q
(r)
a,ij (q

(r)
b,kℓ)

∗) defines an element of

Q s
q(n, c), we see that X = (τ(Pa,ijP∗b,kℓ)) belongs toQ s

q(n, c). Hence, (3) implies (2).
SinceQqa(n, c) is the closure ofQq(n, c), it is easy to see that (2) implies (1).
To show that (3) implies (4), we use Theorem 4.1. If {P1, . . . ,Pc} is a PVM in Mn(A) and τ is an amenable trace on A satisfying

X(a,b)
(i,j),(k,ℓ) = τ(Pa,ijP

∗
b,kℓ), then there is a unital ∗-homomorphism ρ : A→R U that preserves τ. Setting qa,ij = ρ(Pa,ij), we obtain projections

qa = (qa,ij) ∈Mn(R U ) summing to the identity and satisfying

X(a,b)
(i,j),(k,ℓ) = trR U (qa,ijq∗b,kℓ),

which establishes (4).
Finally, we prove that (4) implies (3). Given the elements qa,ij in (4), there is a unital ∗-homomorphism σ : Pn,c →R U satisfying σ(pa,ij)

= qa,ij. By Theorem 2.8, Pn,c has the lifting property, so there is a ucp map ζ : Pn,c → ℓ∞(R) that is a lift of σ. Then Theorem 4.1 shows that

τ ∶= trR U ○ σ is an amenable trace on Pn,c. Since τ(pa,ijp∗b,kℓ) = trR U (qa,ijq∗b,kℓ) = X
(a,b)
(i,j),(k,ℓ), we see that (3) holds. ◻

V. THE GAME FOR QUANTUM-TO-CLASSICAL GRAPH HOMOMORPHISMS
In this section, we define the quantum-to-classical game for quantum–classical graph homomorphisms. Throughout our discussion, we

use the bimodule perspective of quantum graphs considered by Weaver12,13 (which is a direct generalization of the non-commutative graphs
considered by Duan, Severini, and Winter in Ref. 11, and Stahlke in Ref. 17). In addition, we will see later how our framework also relates
nicely to other perspectives as well (e.g., the quantum adjacency matrix formalism of quantum graphs introduced by Musto, Reuter, and
Verdon in Ref. 14).

For our purposes, we refer to a quantum graph as a triple (S,M,Mn), where

● M is a (non-degenerate) von Neumann algebra andM ⊆Mn;
● S ⊆Mn is an operator system; and
● S is anM ′-M ′-bimodule with respect to matrix multiplication.

In our discussion below, one can just as well use the “traceless” version of quantum graphs along the lines of Stahlke;17 i.e., one replaces
the second condition with the condition that S is a self-adjoint subspace of Mn with Tr(X) = 0 for every X ∈ S. This condition, combined
with the bimodule property, would force S ⊆ (M ′)�. Our use of the operator system approach is generally cosmetic: one can easily adapt the
quantum–classical game to traceless self-adjoint operator spaces that areM ′-M ′-bimodules with respect to matrix multiplication.

Before we begin, we recall that the spaceMn of n × nmatrices is naturally equipped with the structure of a Hilbert space, using the inner
product ⟨X,Y⟩ = Tr(Y∗X) for all X,Y ∈Mn, where Tr is the unnormalized trace on Mn. We will exhibit a certain orthonormal basis for the
operator system S with respect to this Hilbert space structure onMn. It is from this (preferred) basis for S that we will extract our input states
for the homomorphism game.

Proposition 5.1. Let K1, . . . ,Km be non-zero subspaces of Cn with K1⊕ ⋅ ⋅ ⋅⊕Km = Cn, such that M acts irreducibly on each Kr . Let
Er be the orthogonal projection of Cn onto Kr , for each 1 ≤ r ≤ m. Then, there exists an orthonormal basis F of S ⊆Mn with respect to the
unnormalized trace, such that

● 1√
dim(Kr)

Er ∈ F for each 1 ≤ r ≤ m;

● F contains an orthonormal basis for M ′; and
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● for each Y ∈ F , there are unique r, s with ErYEs = Y.

Proof. SinceM acts irreducibly on Kr , it follows that Er ∈M ′. Let X be an element of S. As S is anM ′-M ′-bimodule, it follows that
ErXEs ∈ S for all 1 ≤ r, s ≤ m. Moreover, since ∑m

r=1Er = 1, we have X = ∑
m
r,s=1ErXEs. Given X,Y ∈ S, we have ⟨ErXEs,EpYEq⟩ = 0 whenever

r ≠ p or s ≠ q, where ⟨⋅, ⋅⟩ is the inner product with respect to the unnormalized trace onMn. We choose an orthonormal basis F r,s for ErSEs
with respect to this inner product as follows. We start with an orthonormal basis for ErM ′Es; if r = s, then we arrange for this orthonormal
basis to contain 1√

dim(Kr)
Er . Then we extend the orthonormal basis for ErM ′Es to an orthonormal basis for ErSEs. We may do this since, if

X ∈ S ∩ (M ′)� and Y ∈M ′, then

⟨ErXEs,Y⟩ = Tr(Y∗ErXEs) = Tr(XEsY∗Er) = ⟨X,ErYEs⟩ = 0,

which shows that Er(S ∩ (M ′)�)Es �M ′. Then, F = ⋃r,sF r,s is an orthonormal basis for S, which evidently satisfies all three properties. ◻

Definition 5.2. We call a basis for S satisfying Proposition 5.1 as a quantum edge basis for (S,M,Mn).

Alternatively, one could arrange for a quantum edge basis for S to also contain a normalized system of matrix units for M ′, since a
quantum edge basis must already contain the normalized diagonal matrix units. We will see in Theorem 5.7 that the game is independent of
the quantum edge basis chosen.

Once an orthonormal basis forCn has been fixed, one can define the inputs for the game using the following well-known correspondence
between vectors in Cn ⊗Cn and matrices inMn. With respect to a basis {v1, . . . , vn}, this correspondence is given by the assignment vi ⊗ vj
↦ viv

∗
j , where viv

∗
j is the rank-one operator inMn such that viv∗j (x) = ⟨x, vj⟩vi for all x ∈ Cn.

Proposition 5.3. Let (S,M,Mn) be a quantum graph with quantum edge basis F . Let {v1, . . . , vn} be an orthonormal basis for Cn that
can be partitioned into bases for the subspacesK1, . . . ,Km. For each Yα ∈ F , write Yα = ∑p,q yα,pqvpv

∗
q for yα,pq ∈ C. Then, the set

⎧⎪⎪
⎨
⎪⎪⎩
∑
p,q
yα,pqvp ⊗ vq

⎫⎪⎪
⎬
⎪⎪⎭α

⊂ Cn
⊗Cn

is orthonormal.

Proof. This result immediately follows from the fact that the correspondence vi ⊗ vj ↦ viv
∗
j preserves inner products, when using the

canonical inner product on Cn ⊗Cn and the (unnormalized) Hilbert–Schmidt inner product onMn. ◻

With the notion of quantum edge bases in hand, we now define the homomorphism game for the quantum graph (S,M,Mn) and the
classical graph G.

Definition 5.4. Let (S,M,Mn) be a quantum graph, and let {v1, . . . , vn} be a basis for Cn that can be partitioned into bases for the
subspacesK1, . . . ,Kr . Let G be a classical (undirected) graph on c vertices, with no multiple edges and no loops. The quantum-to-classical graph
homomorphism game for [(S,M,Mn),G], with respect to the basis {v1, . . . , vn} and the quantum edge basis F , is defined as follows:

● The inputs are of the form ∑p,q yα,pqvp ⊗ vq, where Yα ∶= ∑p,qyα,pqvpv
∗
q is an element of F . The outputs are vertices a, b ∈ {1, . . . , c}

= V(G). There are two rules to the game:
● (Adjacency rule) If Yα �M ′, then Alice and Bob must respond with an edge in G; i.e., a ∼ b.
● (Same “vertex” rule) If Yα ∈M ′, then Alice and Bob must respond with the same vertex; i.e., a = b.

Notice that the second rule will include a synchronicity condition: the inputs corresponding to 1√
dim(Kr)

Er will arise in the second rule.
We will see that the rule applied to these inputs will force Bob’s projections to arise from Alice’s projections; the rule applied to the other basis
elements ofM ′ will be what forces the projections to live inM⊗ B(H), rather thanMn ⊗ B(H).

While the above definition of the game seems heavily basis-dependent, we will see that the existence of winning strategies in the various
models is independent of the basis {v1, . . . , vn}, and independent of the quantum edge basis F chosen for (S,M,Mn). This will be a direct
consequence of Theorem 5.7.

We would also like to relate winning strategies for the homomorphism game to the non-commutative graph homomorphisms in the
sense of Stahlke.17 For this, we first review Kraus operators in the infinite-dimensional case. Recall that a von Neumann algebra N is finite
if every isometry in N is a unitary; i.e., v∗v = 1 implies vv∗ = 1 in N . In this case, it is well-known that N is equipped with a normal tracial
state. We will be dealing with the case when N is a finite von Neumann algebra equipped with a faithful normal trace τ. One may always
choose a faithful normal representation N ⊆ B(H) such that τ(⋅) = ⟨(⋅)χ, χ⟩ for some unit vector χ ∈H.

Suppose that L ⊆ B(K) is another von Neumann algebra with faithful normal trace ρ. For our purposes, a normal ucp map Φ : L→ N
can be thought of as a quantum channel. If L = B(K) and N = B(H) and both of K and H are finite-dimensional, then Φ∗ : N ∗ → L∗ is
a Completely Positive and Trace Preserving (CPTP) map with respect to the canonical traces on B(K) and B(H), respectively–this is the
usual notion of quantum channels in finite dimensions. In our context, L will be a finite-dimensional von Neumann algebra, so a ucp map
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Φ : L→ N is automatically normal. One may choose K to be finite-dimensional and extend Φ to a ucp map from B(K) to B(H), which is
still (automatically) normal. Then, one may choose Kraus operators Fi such that Φ(⋅) = ∑m

i=1F
∗
i (⋅)Fi, where m is either finite or countably

infinite. In the latter case, the sum converges in the SOT∗-topology. The interested reader can consult48 (and the references therein) for more
information on these topics.

Now, we address some of the basis dependence of the game before the main theorem. The next lemma shows that, up to a unitary
conjugation, the basis for Cn in Definition 5.4 does not matter.

Lemma 5.5. Let (S,M,Mn) be a quantum graph, and writeCn = K1⊕ ⋅ ⋅ ⋅⊕Km, whereM acts irreducibly on eachKr . let G be a classical
graph on c vertices, and let {v1, . . . , vn} be an orthonormal basis for Cn that can be partitioned into bases for the subspaces K1, . . . ,Km. Define
U ∈Mn to be the unitary such that Uei = vi for all i, where {e1, . . . , en} is another orthonormal basis for Cn. Suppose that X ∈ Qqc(n, c), and let
{Yα}α be a quantum edge basis for (S,M,Mn). Then, X is a winning strategy for the homomorphism game for [(S,M,Mn),G] with respect to
{Yα}α if and only if Z ∶= (U ⊗U)∗X(U ⊗U) is a winning strategy for the homomorphism game for [(U∗SU,U∗MU,Mn),G] with respect to
the quantum edge basis {U∗YαU}α.

Proof. Suppose that we can write X = (⟨(Pa ⊗ In)(In ⊗Qb)(ej ⊗ χ ⊗ eℓ), ei ⊗ χ ⊗ ek⟩), where ({Pa}ca=1,{Qb}
c
b=1, χ) is a qc-strategy on a

Hilbert spaceH. Then,

⟨(Pa ⊗ In)(In ⊗Qb)(vj ⊗ χ ⊗ vℓ), vi ⊗ χ ⊗ vk⟩ = ⟨(U
∗PaU ⊗ In)(In ⊗U∗QbU)(ej ⊗ χ ⊗ eℓ), ei ⊗ χ ⊗ ek⟩.

In other words, the element Z = (Z(a,b)) ∶= ((U ⊗U)∗X(a,b)(U ⊗U)) is a qc-correlation with respect to the basis {v1, . . . , vn}. It is not hard
to see that, if F is a quantum edge basis for (S,M,Mn), then U∗FU is a quantum edge basis for (U∗SU,U∗MU,Mn), since U∗M ′U
= (U∗MU)′ and the Hilbert-Schmidt inner product is invariant under unitary conjugation. Therefore, if Yα = ∑p,qyα,pqvpv

∗
q belongs to F ,

then its associated input vector is ∑p,q yα,pqvp ⊗ vq. Then U∗YαU = ∑p,qyα,pqU
∗vpv

∗
qU has associated input vector ∑p,q yα,pqU

∗vp ⊗U∗vq
= ∑p,q yα,pqep ⊗ eq.

Therefore, the probability of Alice and Bob outputting (a, b) given the input vector ∑p,q yα,pqvp ⊗ vq, with respect to the correlation X,
is the same as the probability of outputting (a, b) given the input vector ∑p,q yα,pqep ⊗ eq, with respect to the correlation Z. As this equality
occurs for any element of the quantum edge basis F, the desired result follows. ◻

Remark 5.6. The previous remark, along with the adjacency rule, forces any winning strategy to be synchronous with respect to the basis
{v1, . . . , vn}. Thus, in our main theorem, we may assume that we are dealing with a synchronous t-strategy ({Pa}ca=1, χ), where {Pa}

c
a=1 is a

PVM and χ is a faithful normal tracial state on the von Neumann algebra generated by the entries of {Pa}ca=1. Note that conjugating {Pa}
c
a=1 by

a unitary in Mn does not change the von Neumann algebra generated by the entries of the operators Pa.

Theorem 5.7. Let (S,M,Mn) be a quantum graph, and let G be a classical graph on c vertices. Let N ⊆ B(H) be a (non-degenerate)
finite von Neumann algebra, and χ ∈H be a unit vector such that τ = ⟨(⋅)χ, χ⟩ is a faithful (normal) trace on N . The following are equivalent:

(1) There is a winning strategy ({Pa}ca=1, χ) from N for the homomorphism game for [(S,M,Mn),G] with respect to any quantum edge
basis.

(2) There is a winning strategy ({Pa}ca=1, χ) from N for the homomorphism game for [(S,M,Mn),G] with respect to some quantum edge
basis.

(3) There is a PVM {Pa}ca=1 inM⊗ N satisfying the following: if 1 ≤ a, b ≤ c and a ≁ b in G, then

Pa((S ∩ (M ′
)
�
)⊗ 1)Pb = 0.

(4) There is a UCP map Φ : Dc →M⊗ N of the form Φ(⋅) = ∑m
i=1F

∗
i (⋅)Fi such that

Fi((S ∩ (M ′
)
�
)⊗ 1N )F∗j ⊆ SG ∩ (Dc)

� for all i, j

and
Fi(M ′

⊗ 1N )F∗j ⊆ Dc for all i, j.

Proof. Clearly (1) implies (2). We will show that (2)Ô⇒ (3)Ô⇒ (4)Ô⇒ (1). Let {v1, . . . , vn} be an orthonormal basis forCn. LetU be
the unitary such that Uei = vi for all i. Suppose that we can establish (3) for the PVM {(U ⊗ 1N )

∗Pa(U ⊗ 1N )}
c
a=1 and the quantum graph

(U∗SU,U∗MU,Mn). Using the fact that (U∗MU)′ = U∗M ′U, the condition in (3) can be written as

(U ⊗ 1N )
∗Pa(U ⊗ 1N )((U∗SU) ∩ (U∗M ′U)� ⊗ 1N )(U ⊗ 1N )

∗Pb(U ⊗ 1N ) = 0 if a ≁ b.

It is not hard to see that (U∗M ′U)� = U∗(M ′)�U, so that the above reduces to

(U ⊗ 1N )
∗Pa((S ∩ (M ′

)
�
)⊗ 1N )Pb(U ⊗ 1N ) = 0.
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Since U is a unitary, we obtain the desired condition for {Pa}ca=1 with respect to the quantum graph (S,M,Mn). Hence, we may assume
without loss of generality that vi = ei for all i.

Then, given a matrix Y = ∑p,qypqvpv
∗
q with associated unit vector y = ∑p,q ypqvp ⊗ vq, the probability of Alice and Bob outputting a and

b, respectively, given y and using the synchronous strategy ({Pa}ca=1, χ), is

p(a, b∣y) = ⟨(Pa,ijP∗b,kℓ)(i,j),(k,ℓ)
⎛

⎝
∑
p,q
ypqvp ⊗ χ ⊗ vq

⎞

⎠
,∑
r,s
yrsvr ⊗ χ ⊗ vs⟩

= ⟨∑
i,j,k,ℓ

vi ⊗ Pa,ijyjℓP
∗
b,kℓχ ⊗ vk,∑

r,s
yrsvr ⊗ χ ⊗ vs⟩

= ∑
i,j,k,ℓ
⟨Pa,ijyjℓP

∗
b,kℓyikχ, χ⟩

= ∑
i,j,k,ℓ

τ(Pa,ijyjℓPb,ℓkyik)

= Tr⊗ τ
⎛
⎜
⎝

⎛

⎝
∑
j,ℓ
Pa,ijyjℓPb,ℓk

⎞

⎠
i,k

(Y∗ ⊗ 1N )
⎞
⎟
⎠

= Tr⊗ τ(Pa(Y ⊗ 1N )Pb(Y
∗
⊗ 1N ))

= Tr⊗ τ(Pa(Y ⊗ 1N )Pb(Y
∗
⊗ 1N )Pa), (5.1)

where we have used the fact that Pa is an orthogonal projection. Now, suppose that F = {Yα}α is a quantum edge basis for (S,M,Mn), and
suppose that ({Pa}ca=1, χ) is a winning strategy with respect to this quantum edge basis. If Yα ∈M ′, then Eq. (5.1) and faithfulness of the trace
gives Pa(Yα ⊗ 1N )Pb = 0 whenever a ≠ b. Then,

Pa(Yα ⊗ 1N )Pa =
c

∑
b=1

Pa(Yα ⊗ 1N )Pb = Pa(Yα ⊗ 1N )(
c

∑
b=1

Pb) = Pa(Yα ⊗ 1N ).

Similarly, Pa(Yα ⊗ 1N )Pa = (Yα ⊗ 1N )Pa. Hence, Pa commutes withYα ⊗ 1N wheneverYα ∈M ′. This shows that Pa ∈ (M ′ ⊗ 1N )
′ ∩ (Mn ⊗

N ) =M⊗ B(H) ∩ (Mn ⊗ N ) =M⊗ N .
Similarly, if Yα �M ′, then the rules of the game and the faithfulness of the trace force Pa(Yα ⊗ 1N )Pb = 0 whenever a ≁ b, which shows

that (3) holds.
Now we show that (3) implies (4). If (3) holds, then there is a projection-valued measure {Pa}ca=1 inM⊗ N such that Pa(Y ⊗ 1N )Pb = 0

for all Y ∈ S ∩ (M ′)� and a ≁ b. Then, the map Ψ : Dc →M⊗ N given by Ψ(Ekk) = Pk is a unital ∗-homomorphism. Since Dc is finite-
dimensional, Ψ is normal. Hence, we may find Kraus operators F1,F2, . . . in B(Cn ⊗H,Cc) such that

Ψ(⋅) =
m

∑
i=1

F∗i (⋅)Fi,

wherem is either finite orℵ0. In the infinite case, these sums converge in the SOT∗-topology. GivenY ∈ S, we set Za,b,i,j = EaaFi(Y ⊗ 1N )F∗j Ebb.
Notice that

Za,b,i,jZ
∗
a,b,i,j = EaaFi(Y ⊗ 1N )F∗j EbbFj(Y

∗
⊗ 1N )F∗i Eaa,

so summing over j (for fixed i, this sum will converge in the SOT∗-topology) and using the fact that∑m
i=1F

∗
j EbbFj = Ψ(Ebb) = Pb,

m

∑
j=1

Za,b,i,jZ
∗
a,b,i,j = EaaFi(Y ⊗ 1N )Pb(Y

∗
⊗ 1N )F∗i Eaa.

Now setWa,b,i = EaaFi(Y ⊗ 1N )Pb. Then∑m
j=1Za,b,i,jZ∗a,b,i,j =Wa,b,iW∗

a,b,i, since Pb is a projection. On the other hand,

W∗
a,b,iWa,b,i = Pb(Y

∗
⊗ 1N )F∗i EaaFi(Y ⊗ 1N )Pb,

so summing over i gives

m

∑
i=1

W∗
a,b,iWa,b,i = Pb(Y

∗
⊗ 1N )Pa(Y ⊗ 1N )Pb = (Pa(Y ⊗ 1N )Pb)

∗
(Pa(Y ⊗ 1N )Pb).
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It follows that, if the latter quantity is zero, then Za,b,i,j = 0 for all i, j. By condition (3), if a ≁ b in G and Y ∈ S ∩ (M ′)� , then Pa(Y ⊗ 1N )
Pb = 0. This immediately implies that EaaFi(Y ⊗ 1N )F∗j Ebb = 0. Then,

Fi(Y ⊗ 1N )F∗j =∑
a,b
EaaFi(Y ⊗ 1N )F∗j Ebb =∑

a∼b
EaaFi(Y ⊗ 1N )F∗j Ebb ∈ SG ∩D�c .

Since each Pa belongs to M⊗ N , Pa commutes with M ′ ⊗ 1N . Therefore, Pa(Y ⊗ 1N )Pb = 0 for all a ≠ b and Y ∈M ′. A consideration of
the above equations, yields EaaFi(Y ⊗ 1N )F∗j Ebb = 0 whenever Y ∈M ′ and a ≠ b. In that case, we have

Fi(Y ⊗ 1N )F∗j =∑
a,b
EaaFi(Y ⊗ 1N )F∗j Ebb =∑

a
EaaFi(Y ⊗ 1N )F∗j Eaa ∈ Dc,

which yields the second part of condition (4). Hence, (3) implies (4).
Finally, suppose that (4) holds; we will obtain a winning strategy for the game. Suppose thatΦ : Dc →M⊗ N is a UCP map of the form

Φ(⋅) = ∑m
i=1R

∗
i (⋅)Ri, such that Ri(Y ⊗ 1N )R∗j ∈ SG ∩D�c for all 1 ≤ i, j ≤ m and Y ∈ S ∩ (M ′)� , and Ri(Y ⊗ 1N )R∗j ∈ Dc for all Y ∈M ′. Let

Pa = Φ(Eaa) = ∑m
i=1R

∗
i EaaRi for each 1 ≤ a ≤ c. Since Φ is UCP, {Pa}ca=1 is a POVM inM⊗ N . By considering the unitary U sending ei to vi

for each i, along with the POVM {U∗PaU}ca=1, the quantum graph (U∗SU,U∗MU,Mn) and the operators RiU if necessary, we may assume
without loss of generality that vi = ei for all i. We will show that ({Pa}ca=1, χ) defines a winning strategy from N for the quantum graph
homomorphism game for [(S,M,Mn),G].

For 1 ≤ a, b ≤ c, 1 ≤ i, j ≤ m and Y ∈ S, we define Va,b,i,j = EaaRi(Y ⊗ 1N )R∗j Ebb. Then,

m

∑
j=1

Va,b,i,jV
∗
a,b,i,j =

m

∑
j=1

EaaRi(Y ⊗ 1N )R∗j EbbRj(Y∗ ⊗ 1N )R∗i Eaa = EaaRi(Y ⊗ 1N )Pb(Y
∗
⊗ 1N )R∗i Eaa,

since Pb = Φ∗(Ebb). Therefore,∑m
j=1Va,b,i,jV∗a,b,i,j = T

∗
a,b,iTa,b,i where Ta,b,i = P

1
2
b (Y

∗ ⊗ 1N )R∗i Eaa. Next, we examine the sum

m

∑
i=1

Ta,b,iT
∗
a,b,i =

m

∑
i=1

P
1
2
b (Y

∗
⊗ 1N )R∗i EaaRi(Y ⊗ 1N )P

1
2
b = P

1
2
b (Y

∗
⊗ 1N )Pa(Y ⊗ 1N )P

1
2
b .

In the case when Y ∈M ′, we have Va,b,i,j = 0 whenever a ≠ b, which implies that P
1
2
b (Y

∗ ⊗ 1N )Pa(Y ⊗ 1N )P
1
2
b = 0. It follows that P

1
2
a (Y

⊗ 1N )P
1
2
b = 0. Multiplying on the left by P

1
2
a and on the right by P

1
2
b , we obtain Pa(Y ⊗ 1N )Pb = 0 whenever Y ∈M ′ and a ≠ b. The case when

Y = 1M shows that PaPb = 0 for a ≠ b. Combining this orthogonality with the fact that {Pa}ca=1 is a POVM, we conclude that {Pa}ca=1 is a
PVM. Similarly, if Y ∈ S ∩ (M ′)� , then by condition (4),Va,b,i,j = 0 whenever a ≁ b inG. The same calculation shows that Pa(Y ⊗ 1N )Pb = 0
in this case as well.

Therefore, using Eq. (5.1), if {Yα}α is a quantum edge basis for (S,M,Mn), Yα has associated unit vector yα and Yα �M ′, then by
Eq. (5.1),

p(a, b∣yα) = ⟨Pa(Yα ⊗ 1N )Pb,Yα⟩ = 0. if a ≁ b.

If Yα belongs toM with associated unit vector yα, then p(a, b∣yα) = ⟨Pa(Y ⊗ 1N )Pb,Y ⊗ 1N ⟩ = 0 as well. This shows that ({Pa}ca=1, χ) defines
a winning strategy from N for the homomorphism game for (S,M,Mn) and G with respect to any quantum edge basis, completing the
proof. ◻

The next theoremwill show that, in the loc model, condition (4) of Theorem 5.7 is an analog of Stahlke’s notion of graph homomorphism
from a non-commutative graph (i.e., a quantum graph withM =Mn) into a classical graph,17 with an added assumption on the commutant
ofM. A similar analog holds in the q-model, with natural generalizations to the qa and qcmodels.

We observe that, if we start with a projection-valued measure {Pa}ca=1 whose block entries are in a tracial von Neumann algebra (N , τ),
where τ is faithful and normal, then either all four conditions of Theorem 5.7 are satisfied by the PVM, or none of the four conditions are
satisfied. Notice that we needed to start with a PVM and a faithful trace for this to happen.

In the following discussion, we write (S,M,Mn)
t
Ð→G to mean that there is a winning t-strategy for the graph homomorphism game

for [(S,M,Mn),G].We will also write (S,M,Mn)→ G if (S,M,Mn)
loc
ÐÐ→G. Our choice of notation is since, from a loc-homomorphism,

one can always obtain a graph homomorphism.
Using Theorem 5.7 and the characterizations of synchronous correlations, we obtain the following theorem:

Theorem 5.8. Let (S,M,Mn) be a quantum graph and let G be a classical graph on c vertices.

(1) (S,M,Mn)
loc
ÐÐ→G if and only if there is a UCP map Φ : Dc →M of the form Φ(⋅) = ∑m

i=1F
∗
i (⋅)Fi such that

Fi(S ∩ (M ′
)
�
)F∗j ⊆ SG ∩ (Dc)

� for all i, j
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and
FiM ′F∗j ⊆ Dc for all i, j.

(2) (S,M,Mn)
q
Ð→G if and only if there is d ∈ N and a UCP map Φ : Dc →M⊗Md of the form Φ(⋅) = ∑m

i=1F
∗
i (⋅)Fi such that

Fi((S ∩ (M ′
)
�
)⊗ Id)F

∗
j ⊆ SG ∩ (Dc)

� for all i, j

and
Fi(M ′

⊗ Id)F
∗
j ⊆ Dc for all i, j.

(3) (S,M,Mn)
qa
ÐÐ→G if and only if there is a UCP map Φ : Dc →M⊗R U of the form Φ(⋅) = ∑m

i=1F
∗
i (⋅)Fi such that

Fi((S ∩ (M ′
)
�
)⊗ 1R U )F∗j ⊆ SG ∩ (Dc)

� for all i, j

and
Fi(M ′

⊗ 1R U )F∗j ⊆ Dc for all i, j.

(4) (S,M,Mn)
qc
ÐÐ→G if and only if there is a von Neumann algebra N , a faithful normal trace τ on N , and a UCP mapΦ : Dc →M⊗ N

of the form Φ(⋅) = ∑m
i=1F

∗
i (⋅)Fi such that

Fi((S ∩ (M ′
)
�
)⊗ 1N )F∗j ⊆ SG ∩ (Dc)

� for all i, j

and
Fi(M ′

⊗ 1N )F∗j ⊆ Dc for all i, j.

Proof. We consider the case t = loc first. If (S,M,Mn)
loc
ÐÐ→G, then there is a winning loc-strategy for the homomorphism game from

(S,M,Mn) into G. Since Q s
loc(n, c) is convex and non-empty, one may obtain an extreme point in Q s

loc(n, c) that wins the game with
probability 1. Applying Corollary 3.8, there is a realization of this correlation using a PVM {Pa}ca=1 in M =M⊗C. Then the result follows
by condition (4) of Theorem 5.7 with N = C. The converse of (1) holds by condition (3) of Theorem 5.7.

The argument is similar for t = q. Indeed, if there is a winning strategy for the homomorphism game in the q-model, then an application
of Corollary 3.9 shows that there is a winning q-strategy using an extreme point in Q s

q(n, c), which can be realized using projections whose
entries are inMd, for some d. Then condition (4) of Theorem 5.7 with N =Md yields the desired UCPmap. The converse, as before, holds by
condition (3) of Theorem 5.7.

We note that (3) holds because of Theorem 4.3. Condition (4) is achieved using the following well-known trick: ifA is a unital, separable
C∗-algebra with tracial state τ, and if πτ : A→ B(Hτ) is the GNS representation of τ with cyclic vector ξ, then πτ(A )′′ is a finite vonNeumann
algebra and ⟨(⋅)ξ, ξ⟩ is a faithful normal trace on πτ(A )′′. We leave the details to the reader. ◻

For synchronous games with classical inputs and classical outputs, Helton et al. constructed a universal ∗-algebra for the game, generated
by self-adjoint idempotents whose products were 0 when the related pair of outputs was not allowed.7 One can define a game ∗-algebra in our
context as follows:

Definition 5.9. Let (S,M,Mn) be a quantum graph and let G be a classical graph on c vertices. The game ∗-algebra for the homomor-
phism game for [(S,M,Mn),G], denotedA(Hom((S,M,Mn),G)), is the universal ∗-algebra generated by entries {pa,ij : 1 ≤ a ≤ c, 1 ≤ i, j ≤ n}
subject to the relations

● pa = (pa,ij)i,j satisfies p2a = pa = p∗a and∑c
a=1 pa = In, where In is the n × n identity matrix;

● pa((S ∩ (M ′)� )⊗ 1)pb = 0 for each a ≁ b; and
● pa(M ′ ⊗ 1)pb = 0 for each a ≠ b.

We say that the algebra exists if 1 ≠ 0 in the algebra.

As one might expect, we obtain the following characterizations of the various flavors of winning strategies for the homomorphism game
in terms of ∗-homomorphisms of the game algebra.

Theorem 5.10. Let (S,M,Mn) be a quantum graph and let G be a classical graph.

(1) (S,M,Mn)
loc
ÐÐ→G ⇐⇒ there is a unital ∗-homomorphismA(Hom((S,M,Mn),G))→ C.

(2) (S,M,Mn)
q
Ð→G if and only if there is a unital ∗-homomorphismA(Hom((S,M,Mn),G))→Md for some d ∈ N.

(3) (S,M,Mn)
qa
ÐÐ→G if and only if there is a unital ∗-homomorphismA(Hom((S,M,Mn),G))→R U .
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(4) (S,M,Mn)
qc
ÐÐ→G if and only if there is a unital ∗-homomorphismA(Hom((S,M,Mn),G))→ C, where C is a tracial C∗-algebra.

(5) (S,M,Mn)
alg
ÐÐ→G if and only if A(Hom((S,M,Mn),G)) ≠ 0.

One can also define C∗-homomorphisms and hereditary homomorphisms of quantum graphs into classical graphs. We write

(S,M,Mn)
C∗
ÐÐ→G provided that there is a unital ∗-homomorphism

π : A(Hom((S,M,Mn),G))→ B(H)

for someHilbert spaceH. (Equivalently, by the Gelfand–Naimark theorem, onemay simply require that the game algebra has a representation
into some unital C∗-algebra.)

For hereditary homomorphisms, we recall the concept of a hereditary (unital) ∗-algebra. Recall that a unital ∗-algebra A is said to be
hereditary if, whenever x1, . . . , xn ∈ A are such that x∗1 x1 + ⋅ ⋅ ⋅ + x

∗
n xn = 0, then x1 = x2 = ⋅ ⋅ ⋅ = xn = 0. If one definesA+ as the cone generated

by all elements of the form x∗x for x ∈ A, then A being hereditary is equivalent to having A+ ∩ (−A+) = {0}. Every unital C∗-algebra is
hereditary as a unital ∗-algebra.

With this background in hand, we will write (S,M,Mn)
hered
ÐÐÐ→G provided that there is a unital ∗-homomorphism from

A(Hom((S,M,Mn),G)) into a (non-zero) hereditary unital ∗-algebra. One has the following sequence of implications for these types of
homomorphism:

(S,M,Mn)→ G Ô⇒ (S,M,Mn)
q
Ð→G Ô⇒ (S,M,Mn)

qa
ÐÐ→G Ô⇒ (S,M,Mn)

qc
ÐÐ→G

Ô⇒ (S,M,Mn)
C∗
ÐÐ→G Ô⇒ (S,M,Mn)

hered
ÐÐÐ→G Ô⇒ (S,M,Mn)

alg
ÐÐ→G. (5.2)

Our notions of homomorphisms reduce to the analogous types of homomorphisms for classical graphs in the case when (S,M,Mn) is
a classical graph. Recall49 that, for a classical graph G on n vertices, the graph operator system SG (or classical quantum graph) is defined as

SG = span ({Eii : 1 ≤ i ≤ n} ∪ {Eij : i ∼ j in G}).

Note that SG is naturally a quantum graph in the previous sense if we regard it as a bimodule over the diagonal algebra Dn = D′n ⊆Mn. In
Ref. 12, it is shown that quantum graphs of the form (S,Dn,Mn) are in one-to-one correspondence with classical graphs on n vertices.

Corollary 5.11. Let G and H be classical graphs on n and c vertices, respectively. Suppose that t ∈ {loc, q, qa, qc,C∗,hered, alg}. Then,
G t
Ð→H if and only if (SG,Dn,Mn)

t
Ð→H.

Proof. We will show that the algebraA(Hom(G,H)) from Ref. 7 is isomorphic toA(Hom((SG,Dn,Mn),H)). The former algebra is the
universal unital ∗-algebra generated by self-adjoint idempotents ex,a such that ∑n

x=1ex,a = 1, ex,aex,b = 0 if a ≠ b, and ex,aey,b = 0 if x ∼ y in G
but a ≁ b in H. Since Dn = D′n, the latter algebra is the universal unital ∗-algebra generated by elements pa,ij such that pa = (pa,ij) ∈Mn(A) is
a self-adjoint idempotent with ∑c

a=1 pa = In, pa((SG ∩ (Dn)
� )⊗ 1)pb = 0 whenever a ≁ b in H, and pa(Dn ⊗ 1)pb = 0 whenever a ≠ b. Since

Eii ∈ Dn, using the fact that pa(Dn ⊗ 1)pb = 0 for a ≠ b, we obtain

pa(Eii ⊗ 1)pa =
c

∑
b=1

pa(Eii ⊗ 1)pb = pa(Eii ⊗ 1).

Similarly, pa(Eii ⊗ 1)pa = (Eii ⊗ 1)pa, so that Eii ⊗ 1 commutes with pa. It follows that pa,ij = 0 whenever i ≠ j. Since p
2
a = pa = p∗a , we see that

p2a,ii = pa,ii = p
∗
a,ii. For 1 ≤ a ≤ c and 1 ≤ x ≤ n, we define qx,a = pa,xx. Then, qx,a is a self-adjoint idempotent and ∑c

a=1qx,a = 1 for all 1 ≤ x ≤ n.
Note that, if x ∼ y in G but a ≁ b in H, then

qx,aqy,b = pa,xxpb,yy = pa(Exy ⊗ 1)pb = 0,

since Exy ∈ SG ∩ (Dn)
� and a ≁ b in H. Similarly, if a ≠ b, then qx,aqx,b = pa(Exx ⊗ 1)pb = 0 since Exx ∈ Dn. By the universal property of

A(Hom(G,H)), there is a unital ∗-homomorphism π : A(Hom(G,H))→ A(Hom((SG,Dn,Mn),H)) such that π(ex,a) = qx,a for all x, a.
Conversely, in A(Hom(G,H)), one can construct the n × n matrices fa = ( fa,ij) with fa,ij = 0 for i ≠ j and fa,ii = ea,i. Then, evidently

f 2a = fa = f ∗a and∑c
a=1fa = In. Since ex,aex,b = 0 for a ≠ b, we see that fa(Exx ⊗ 1) fb = 0 if a ≠ b. Since Dn = span{Exx : 1 ≤ x ≤ n}, it follows that

fa(Dn ⊗ 1) fb = 0 for a ≠ b. Similarly, it is not hard to see that fa(Exy ⊗ 1) fb = 0 whenever x ∼ y in G but a ≁ b inH. By the universal property,
there is a unital ∗-homomorphism ρ : A(Hom((SG,Dn,Mn),H))→ A(Hom(G,H)) such that ρ(pa,ij) = fa,ij. Evidently ρ and π are mutual
inverses on the generators, so we conclude that the algebras are ∗-isomorphic. The result follows. ◻

It is known that some of the implications in (5.2) cannot be reversed. While there are many examples of classical graphs G and H with
G

q
Ð→H butG↛ H, Theorem 6.11 will show that (Mn,M,Mn)

q
Ð→Kdim(M) but (Mn,M,Mn)↛ Kdim(M) wheneverM is non-abelian. Here,
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Kdim(M) denotes the (classical) complete graph on dim(M) vertices. Using the work of Kim, Paulsen, and Schafhauser on synchronous binary

constraint (syncBCS) games, there is a graph G and a numberm such that Km
qa
ÐÐ→G holds, but Km

q
Ð→G does not hold, where G denotes the

graph complement of G (Ref. 18, Corollary 5.5). The other known separation is that
alg
ÐÐ→ does not imply hered

ÐÐÐ→ . For example, K5
alg
ÐÐ→K4

holds, but K5
hered
ÐÐÐ→K4 does not hold.7 This result will be generalized to quantum graphs.

VI. COLORING QUANTUM GRAPHS
A special case of the homomorphism game is when the target graph is the classical complete graph Kc on c vertices. In this case, the

resulting game is a generalization of the coloring game for classical graphs.

Definition 6.1. Let t ∈ {loc, q, qs, qa, qc,C∗,hered, alg}. Let (S,M,Mn) be a quantum graph. We define

χt((S,M,Mn)) = min{c ∈ N : (S,M,Mn)
t
Ð→Kc},

and we define χt((S,M,Mn)) =∞ if (S,M,Mn)
t
↛Kc for all c ∈ N.

Due the inclusions of the models, we always have

χloc((S,M,Mn)) ≥ χq((S,M,Mn)) ≥ χqa((S,M,Mn)) ≥ χqc((S,M,Mn))

≥ χC∗((S,M,Mn)) ≥ χhered((S,M,Mn)) ≥ χalg((S,M,Mn)).

As a consequence of Corollary 5.11, whenever G is a classical graph, we have χt(G) = χt((SG,Dn,Mn)). This result is well known
(see, e.g., Ref. 16). As χloc(G) is the (classical) chromatic number of a classical graph G, we sometimes use the notation χ((S,M,Mn))
for χloc((S,M,Mn)).

Example 6.2. Let
S = span {I, Eij : i ≠ j} ⊆Mn,

which is a quantum graph onMn. It is known15 that χ((S,Mn,Mn)) = n. Here, we will show that χqc((S,Mn)) = n as well, which shows that
χt((S,Mn)) = n for any t ∈ {loc, q, qa, qc}.

Evidently the basis F = {I,Eij : i ≠ j} is a quantum edge basis for (S,Mn,Mn). Now, suppose that P1, . . . ,Pc are projections inMn(B(H))
with Pa(Ekℓ ⊗ I)Pa = 0 for all 1 ≤ a ≤ c and 1 ≤ k ≠ ℓ ≤ n. A winning strategy in the qc-model for coloring (S,Mn) with c colors would mean
that there is a trace τ on the algebra generated by the Pa,ij’s and that

p(a, a∣ei ⊗ ej) = 0 if i ≠ j.

This implies that
τ(Pa,iiP∗a,jj) = 0 for all i ≠ j.

By taking a quotient by the kernel of the GNS representation of the trace, we may assume that τ is faithful. Then by faithfulness of τ and
positivity of Pa,jj, we have Pa,iiPa,jj = 0 for all i ≠ j. Now, choose i ≠ j. Notice that, for each i, the set {Pa,ii} is a POVM onH. Moreover, for any
a, b ∈ {1, . . . , c},

p(a, b∣ei ⊗ ej) = τ(Pa,iiP∗b,jj) = τ(Pa,iiPb,jj).

Thus, the only information relevant to Alice and Bob winning the game is the correlation (τ(Pa,iiPb,jj))a,b,i,j ∈ Cs
qc(n, c). By faithfulness, this

forces each Pa,ii to be a projection. By the synchronous condition, the previous equation and faithfulness of the trace, we obtain

Pa,iiPa,jj = 0 = Pa,iiPb,ii

whenever a ≠ b and i ≠ j. Therefore, (τ(Pa,iiPb,jj))a,b,i,j ∈ Cbs
qc(n, c); that is, the correlation is bisynchronous in the sense of Ref. 50 By Ref. 50, we

must have c ≥ n. Therefore, χqc(S,Mn,Mn) ≥ n. It follows that χt(S,Mn,Mn) = n for every t ∈ {loc, q, qa, qc}.

A. Quantum complete graphs and algebraic colorings
In this section, we consider quantum complete graphs; that is, graphs of the form (Mn,M,Mn), whereM ⊆Mn is a non-degenerate von

Neumann algebra.We show that χt((Mn,M,Mn)) = dim(M) for all t ∈ {q, qa, qc,C∗,hered}. In contrast, we will see that χloc((Mn,M,Mn))
is finite if and only ifM is Abelian; in the case whenM is Abelian, we recover known results on colorings for the (classical) complete graph
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on dim(M) vertices. The algebraic model for colorings is known to be very wild. At the end of this section, we will extend a surprising result
of Ref. 7: in the algebraic model, any quantum graph can be four colored.

We start with a simple proposition on unitary equivalence that we will use throughout this section.

Proposition 6.3. Let M ⊆Mn be a non-degenerate von Neumann algebra. Then, there is a unitary U ∈Mn such that U∗MU =⊕m
r=1CInr

⊗Mkr . Moreover, for any t ∈ {loc, q, qa, qs, qc,C∗,hered, alg}, we have

χt((Mn,M,Mn)) = χt(Mn,
m
⊕
r=1

CInr ⊗Mkr ,Mn).

Proof. The existence of the unitary U is a consequence of the theory of finite-dimensional C∗-algebras. It is not hard to see that
(U∗MU)′ = U∗M ′U. Now, an element X ∈Mn belongs to M ′ if and only if Tr(XY) = 0 for all Y ∈M ′. This statement is equivalent
to having Tr((U∗XU)(U∗YU)) = 0 for all Y ∈M ′, since U is unitary. It follows that U∗(M ′)�U = (U∗M ′U)� .

Now, suppose that {Pa}ca=1 ⊆Mn ⊗A is a collection of self-adjoint idempotents summing to In ⊗ 1A, whereA is a unital ∗-algebra. Then,
it is evident that Pa((M ′)� ⊗ 1A)Pa = 0 if and only if P̃a((U∗M ′U)� ⊗ 1A)P̃a = 0, where P̃a = (U∗ ⊗ 1A)Pa(U ⊗ 1A). Similarly, if a ≠ b,
then Pa(M ′ ⊗ 1A)Pb = 0 if and only if P̃a((U∗M ′U)⊗ 1A)P̃b = 0. Thus, there is a bijective correspondence between algebraic c-colorings
of (Mn,M,Mn) and algebraic c-colorings of (Mn,⊕m

r=1CInr ⊗Mkr ,Mn). This yields the equality of chromatic numbers for t = alg; the other
cases are similar. ◻

The different chromatic numbers satisfy a certain monotonicity as well.

Proposition 6.4. If (S,M,Mn) and (T ,M,Mn) are quantum graphs with S ⊆ T , then

χt((S,M,Mn)) ≤ χt((T ,M,Mn)).

Proof. Wedeal with the t = alg case; all the other cases are similar. If (T ,M,Mn) has no algebraic coloring, then χalg((T ,M,Mn)) =∞,
so the desired result holds. Otherwise, letA be a (non-zero) unital ∗-algebra. Suppose that {Pa}ca=1 are self-adjoint idempotents inMn(A) such
that∑c

a=1 pa = In, Pa((T ∩ (M ′)� )⊗ 1A)Pa = 0 for all a, and Pa(M ′ ⊗ 1A)Pb = 0 for all a ≠ b. Then evidently Pa((S ∩ (M ′)� )⊗ 1A)Pa =
0 as well, so the self-adjoint idempotents form an algebraic c-coloring of (S,M,Mn). This shows that χalg((S,M,Mn)) ≤ χalg((T ,M,Mn)).
The proof for the other models is the same. ◻

By Proposition 6.4, to establish that every quantum graph has a finite quantum coloring, it suffices to consider quantum complete graphs.
First, we look at (Mn,Mn,Mn), the quantum complete graph.While we will have an alternative quantum coloring of this quantum graph from
Theorem 6.6, the protocol given in Theorem 6.5 is minimal for (Mn,Mn,Mn) in terms of the dimension of the ancillary algebra. Moreover, it
gives a foretaste of the protocol that we use for the quantum complete graph (Mn,M,Mn) whenM is not isomorphic to a matrix algebra.

Theorem 6.5. Let d, k ∈ N, and let n = dk. Let M = CId ⊗Mk. Then χq((Mn,M,Mn)) ≤ k2.

Proof. We construct our projections from the canonical orthonormal basis for Ck ⊗Ck that consists of maximally entangled vectors;
that is, the basis of the form

φa,b =
1
√
k

k−1

∑
p=0

exp(
2πia(p + b)

k
)eb+p ⊗ ep,

where addition in the indices of the vectors is done modulo k. (See Ref. 51, for example.) We define projections inM⊗M, for all 1 ≤ a, b ≤ n,
by

P(a,b) =
1
k

k−1

∑
p,q=0

exp(
2πia(p − q)

k
)Id ⊗ Eb+p,b+q ⊗ Id ⊗ Epq.

Since the set {φ(a,b)}na,b=1 is orthonormal, it is not hard to see that {P(a,b)}na,b=1 is a family of mutually orthogonal projections. Moreover,
∑

n
a,b=1P(a,b) = Id ⊗ Ik ⊗ Id ⊗ Ik. With respect to Mn, (M ′)� is spanned by elements of the form Exy ⊗ Evw and Exy ⊗ (Evv − Eww) for

1 ≤ x, y ≤ d and 1 ≤ v,w ≤ k with v ≠ w. For Y = Exy ⊗ Evw ⊗ (Id ⊗ Ik), one computes P(a,b)YP(a,b) and obtains

1
k2

k−1

∑
p,q,p′ ,q′=0

exp(
2πia(p + p′ − q − q′)

k
)Exy ⊗ Eb+p,b+qEvwEb+p′ ,b+q′ ⊗ Id ⊗ EpqEp′q′.

For a term in the above sum to be non-zero, one requires that b + q = v, w = b + p′, and q = p′. Equivalently, a term in the sum is non-zero
only when q = p′ and b + q = v = w. Hence, if v ≠ w, then the above sum is 0. In the case when v = w, one obtains
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1
k2

k−1

∑
p,q′=0

exp(
2πia(p − q′)

k
)Exy ⊗ Eb+p,b+q′ ⊗ Id ⊗ Epq′.

The above expression does not depend on v, so we conclude that, for all 1 ≤ v,w ≤ k,

P(a,b)(Exy ⊗ Evv ⊗ Id ⊗ Ik)P(a,b) = P(a,b)(Exy ⊗ Eww ⊗ Id ⊗ Ik)P(a,b).

This shows that P(a,b)(X ⊗ Id ⊗ Ik)P(a,b) = 0 whenever X = Exy ⊗ Evw or X = Exy ⊗ (Evv − Eww) for v ≠ w. As such elements span (M ′)� ,
we see that

P(a,b)(X ⊗ Id ⊗ Ik)P(a,b) = 0∀X ∈ (M
′
)
� .

Finally, we show that P(a,b)(M ′ ⊗ Id ⊗ Ik)P(a′ ,b′) = 0 whenever (a, b) ≠ (a′, b′). If Y ∈M ′, then Y ⊗ (Id ⊗ Ik) commutes with each P(a,b),
since P(a,b) ∈M⊗ (Id ⊗Mk). Therefore, if (a, b) ≠ (a′, b′), we have

P(a,b)(Y ⊗ (Id ⊗ Ik))P(a′ ,b′) = P(a,b)P(a′ ,b′)(Y ⊗ (Id ⊗ Ik)) = 0.

Putting all of these equations together, we see that there is a representation of the game algebra π : A(Hom((Mn,M,Mn),Kk2))→ CId
⊗Mk ⊗Mk. Therefore, χq((Mn,M,Mn)) ≤ k2, which yields the claimed result. ◻

For a general complete quantum graph (Mn,M,Mn), we require a slightly different approach. The protocol in the previous proof is used
in the context of quantum teleportation, and essentially arises from the use of a “shift and multiply” unitary error basis forMn.51,52 To give a
dim(M)-coloring for (Mn,M,Mn) in the q-model, we will use what we refer to as a “global shift and local multiply” framework.

Theorem 6.6. Let M be a non-degenerate von Neumann algebra in Mn. For the quantum complete graph (Mn,M,Mn), we have
χq((Mn,M,Mn)) ≤ dim(M).

Proof. Up to unitary equivalence inMn, we may writeM =⊕
m
r=1(CInr ⊗Mkr), where n = ∑

m
r=1nrkr . We will exhibit a PVM inM⊗Md,

with d = lcm(k1, . . . , km), satisfying the properties of a quantum coloring for (Mn,M,Mn). For notational convenience, we index our set of
dim(M) colors by the triples (s, a, b), where 1 ≤ s ≤ m and 0 ≤ a, b ≤ ks − 1. For 1 ≤ r ≤ m and 1 ≤ i ≤ kr , we define P(s,a,b) =⊕m

r=1Inr ⊗ P(r,s)
(a,b),

where P(r,s)
(a,b) = (P

(r,s)
(a,b),(i,j))

kr−1
i,j=0 ∈Mkr(Md) is given by

P(r,s)
(a,b),(i,j) =

δrs
kr
ω(i−j)akr

Idr ⊗ Ei+b,j+b,

where ωkr is a primitive kr-th root of unity and dr = d
kr
. (Note that indices are computed modulo kr .) By our choice of the operators P(r,s)(a,b), we

see that each P(s,a,b) belongs toM⊗Md.
First, we show that∑m

s=1∑
ks−1
a,b=0P(s,a,b) = In ⊗ Id. For each 1 ≤ r ≤ m and 0 ≤ i, j ≤ kr − 1,

nr−1

∑
a,b=0

P(r,r)
(a,b),(i,j) =

1
kr

nr−1

∑
a,b=0

ω(i−j)akr
Idr ⊗ Ei+b,j+b.

If i ≠ j, then the above sum over a is 0, for each value of b. If i = j, then the above sum simply becomes

nr−1

∑
b=0

Idr ⊗ Ei+b,i+b = Idr ⊗ Inr = Id.

Thus,∑nr−1
a,b=0P

(r,r)
(a,b) = Ikr ⊗ Id. Since P

(r,s)
(a,b) = 0 if s ≠ r, it follows that∑

m
s=1∑

ns−1
a,b=0P

(r,s)
(a,b) = Ikr ⊗ Id for each 1 ≤ r ≤ m. As P(s,a,b) =⊕m

r=1Inr ⊗ P(r,s)
(a,b),

we must have∑m
s=1∑

ns−1
a,b=0P(s,a,b) = In ⊗ Id.

Next, we check that each P(s,a,b) is an orthogonal projection. By definition, it is easy to see that P∗(s,a,b) = P(s,a,b) for all s, a, b. To compute
P2
(s,a,b), we note that

P2
(s,a,b) =

m
⊕
r=1

Inr ⊗ (P
(r,s)
(a,b))

2,

so it suffices to show that each P(r,s)
(a,b) is an idempotent inMkr ⊗Md. If r ≠ s, then this is immediate. In the other case, we have
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P(r,r)
(a,b),(v,j)P

(r,r)
(a,b),(j,w) =

1
k2r
ω(v−w)akr

Idr ⊗ Ev+b,j+bEj+b,w+b

=
1
k2r
ω(v−w)akr

Idr ⊗ Ev+b,w+b

=
1
kr
P(r,r)
(a,b),(v,w).

Since this happens for all 0 ≤ v,w ≤ kr − 1, it follows that P(r,r)(a,b),(v,w) = ∑
kr−1
j=0 P(r,r)

(a,b),(v,j)P
(r,r)
(a,b),(j,w). Therefore, P

(r,r)
(a,b) is idempotent inMkr ⊗Md,

so P(s,a,b) is an orthogonal projection.
Now, we show that P(s,a,b)((M ′)� ⊗ Id)P(s,a,b) = 0 for all a. We note that M ′ =⊕

m
r=1Mnr ⊗CIkr . Hence, (M ′)� is spanned by the

canonical matrix units that do not reside in M ′, and elements from each Mnr ⊗Mkr of the form Eij ⊗ Evw and Eij ⊗ (Evv − Eww), where
1 ≤ i, j ≤ nr , 0 ≤ v,w ≤ kr − 1, and v ≠ w. By a consideration of blocks, if a matrix unit Exy does not belong to⊕m

r=1Mnr ⊗Mkr , then inMn ⊗Md,
the element P(s,a,b)(Exy ⊗ Id)P(s,a,b) is a product of two entries from P(s,a,b), at least one of which will be 0.

Next, we suppose that 0 ≤ v,w ≤ kr − 1 with v ≠ w and 1 ≤ i, j ≤ nr , and consider the matrix unit Eij ⊗ Evw ∈Mns ⊗Mks ⊂⊕
m
r=1Mnr

⊗Mkr . Since P(s,a,b) =⊕
m
r=1Inr ⊗ P(r,s)

(a,b),

P(s,a,b)(Eij ⊗ Evw ⊗ Id)P(s,a,b) = Eij ⊗
kr−1

∑
k,ℓ=0

P(s,s)
(a,b),(k,v)P

(s,s)
(a,b),(w,ℓ) = 0,

since P(s,s)
(a,b),(k,v)P

(s,s)
(a,b),(w,ℓ) = 0 for all v ≠ w in {0, . . . ,ns − 1}. For the last case, we look at the element Eij ⊗ (Evv − Eww) in Mns ⊗Mks

⊂ (M ′)� , where v ≠ w. Multiplying on the left and right by P(s,a,b) yields

P(s,a,b)(Eij ⊗ (Evv − Eww)⊗ Id)P(s,a,b) = Eij ⊗
kr−1

∑
k,ℓ=0
(P(s)
(s,a,b),(k,v)P

(s)
(s,a,b),(v,ℓ) − P

(s)
(s,a,b),(k,w)P

(s)
(s,a,b),(w,ℓ)) = 0,

since P(s)
(s,a,b),(k,v)P

(s)
(s,a,b),(v,ℓ) =

1
kr
P(s)
(s,a,b),(k,ℓ) for any 1 ≤ s ≤ m and 0 ≤ k, v, ℓ ≤ kr − 1. Putting all of these facts together, we conclude that

{P(s,a,b) : 1 ≤ s ≤ m, 0 ≤ a, b ≤ ns − 1} ⊂M⊗Md is a quantum dim(M)-coloring of (Mn,M,Mn), as desired. ◻

Remark 6.7. We suspect that the ancillary algebra in the previous proof is the minimal choice, but are unable to prove this. In the case when
M =Mn, this is immediate, since having a PVM with n2 outputs in Mn ⊗M f , and with each projection non-zero, requires f ≥ n.

Next, we will show that χhered((Mn,M,Mn)) ≥ dim(M), which will show that, for every t ∈ {q, qa, qc,C∗,hered}, we have
χt((Mn,M,Mn)) = dim(M). Moreover, we will show that dim(M)-colorings of (Mn,M,Mn) in the hereditary model must arise from
trace-preserving ∗-homomorphisms Ψ : Ddim(M) →M⊗A. More precisely, we equip Ddim(M) with its canonical uniform trace ψDdim(M) sat-
isfying ψDdim(M)(ea) =

1
dim(M) for all 1 ≤ a ≤ dim(M). We also equip the von Neumann algebra M ≃⊕

m
r=1CInr ⊗Mkr with its canonical

“Plancherel” trace given by

ψM =
m
⊕
r=1

kr
nr dim(M)

Trnrkr(⋅).

Then, we will show that the ∗-homomorphism Ψ satisfies the following trace covariance condition:

(ψM ⊗ id)Ψ(x) = ψDdim(M)(x)1A (x ∈ Ddim(M)).

We thus establish that the hereditary coloring number for any complete quantum graph (Mn,M,Mn) is dim(M), and moreover, the above
trace-preserving condition shows that any minimal hereditary coloring induces a quantum version of isomorphism between (Mn,M,Mn)
and the complete graphKdim(M) on dim(M) vertices. Here, the notion of a “quantum isomorphism”means a quantum isomorphism between
quantum graphs in the sense of Ref. 53, when using an ancillary hereditary unital ∗-algebra A. This result can be interpreted as a quantum
analog of the (classically obvious) fact that any minimal coloring of a complete graph Kc is automatically a graph isomorphism Kc → Kc.

We consider the case whenM ≃ CId ⊗Mk first.

Lemma 6.8. Let d, k ∈ N and let n = dk. Consider the quantum graph (Mn,M,Mn) withM = CId ⊗Mk. Let A be a unital ∗-algebra, and
let {P1, . . . ,Pc} ∈M⊗A be a family of mutually orthogonal projections such that ∑c

a=1 pa = Idk ⊗ 1A and

Pa(X ⊗ 1A)Pa = 0 for all X ∈ (M ′
)
� .
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Then for each a, the element Ra =
k

d dim(M)(Trdk ⊗ idA)(Pa) is a self-adjoint idempotent inA, and∑c
a=1Ra = k21A.

Proof. Since M = Id ⊗Mk, we have M ′ =Md ⊗ Ik and n = dk. Now, let 1 ≤ v,w ≤ k with x ≠ y, and let 1 ≤ i, j ≤ d. Then, Eij
⊗ (Evv − Eww) belongs to (M ′)� , so we must have

Pa(Eij ⊗ (Evv − Eww)⊗ 1A)Pa = 0∀1 ≤ a ≤ c.

Similarly, Eij ⊗ Evw is in (M ′)� , so
Pa(Eij ⊗ Evw ⊗ 1A)Pa = 0∀1 ≤ a ≤ c.

Note that Pa ∈M⊗A = Id ⊗Mk ⊗A, so Pa = ∑k
p,q=1∑

d
x=1Exx ⊗ Epq ⊗ Pa,x,pq, with the property that Pa,x,pq = Pa,y,pq for any 1 ≤ x, y ≤ d. For

simplicity, we set Pa,pq = Pa,x,pq for any 1 ≤ x ≤ d. The quantity on the left of the above is exactly

k

∑
p,q=1

Eij ⊗ Epq ⊗ Pa,pvPa,wq

so this says that Pa,pvPa,wq = 0 and Pa,pvPa,vq = Pa,pwPa,wq. Now, since Pa is a projection, we have Pa,pq = ∑k
v=1Pa,pvPa,vq = kPa,pvPa,vq for all

p, q. In particular, Pa,vv = kP2
a,vv . By scaling, we see that kPa,vv is a self-adjoint idempotent. Similarly, since Pa,pvPa,wq = 0 if v ≠ w, we see that

Pa,vvPa,ww = 0. Therefore, {kPa,vv}nv=1 is a collection of mutually orthogonal projections inA.
Next, we set Ra = ∑

k
v=1kPa,vv for each 1 ≤ a ≤ c. Then, Ra is a self-adjoint idempotent. We see that

c

∑
a=1

Ra =
c

∑
a=1

k

∑
v=1

kPa,vv =
k

∑
v=1

k1A = k21A,

which completes the proof. ◻

Now, we deal with the case of a general quantum complete graph.

Theorem 6.9. Let (Mn,M,Mn) be a quantum complete graph. LetA be a hereditary ∗-algebra, and let {Pa}ca=1 ⊆M⊗A be a hereditary
c-coloring of (Mn,M,Mn). Then c ≥ dim(M). Moreover, if c = dim(M), then for each 1 ≤ a ≤ dim(M) we have

(ψM ⊗ idA)(Pa) =
1

dim(M)
1A.

Proof. Up to unitary equivalence, we may writeM =⊕
m
r=1CInr ⊗Mkr . Then,

M ′
=

m
⊕
r=1

Mnr ⊗CIkr.

Define Er = 0⊕ ⋅ ⋅ ⋅⊕ Inr ⊗ Ikr ⊕ 0⊕ ⋅ ⋅ ⋅⊕ 0, which belongs to M ′ ∩M. Then, defining P̃a = (Er ⊗ 1A)Pa(Er ⊗ 1A) ∈ (ErMEr)⊗A, we
obtain a family of mutually orthogonal projections whose sum is Er . Since Er is central in M, we see that (E rME r)

′ = ErM ′Er , while
ErMnEr =Mnrkr . It is evident that X ∈ B(ErC

n) ∩ (E rM ′Er)� if and only if X = ErXEr and X �M ′ in Mn. Therefore, for X ∈ B(ErCn)
∩ (E rM ′Er)� and 1 ≤ a ≤ c, one has

P̃a(X ⊗ 1A)P̃a = (Er ⊗ 1A)Pa(ErXEr ⊗ 1A)Pa(Er ⊗ 1A) = 0

using the fact that ErXEr = X and X belongs to M ′. Therefore, {P̃a}
c
a=1 is a hereditary coloring of the quantum complete graph

(Mnrkr ,ErMEr ,Mnrkr).
Since ErMEr = CInr ⊗Mkr , by Lemma 6.8, we see that R(r)a ∶=

kr
nr
(Trnrkr ⊗ idA)(P̃a) is a self-adjoint idempotent in A for each 1 ≤ a ≤ c

and 1 ≤ r ≤ m. Moreover,∑c
a=1R

(r)
a = k2r1A.

Next, we claim that R(r)a R(s)a = 0 if r ≠ s. To show this orthogonality relation, it suffices to show that Pa,xxPa,yy = 0 whenever Pa,xx is a
block from (ErMEr)⊗A and Pa,yy is a block from (EsMEs)⊗A. If x and y are chosen in this way, then the matrix unit Exy in Mn satis-
fies Er(Exy)Es = Exy and EpExyEq = 0 for all other pairs (p, q). It is not hard to see that Exy belongs to (M ′)� , so that Pa(Exy ⊗ 1A)Pa = 0.
Considering the (x, y)-block of this equation gives Pa,xxPa,yy = 0. It follows that R(r)a R(s)a = 0 for r ≠ s.

Since {R(r)a }
m
r=1 is a collection of mutually orthogonal projections in A, the element Ra ∶= ∑

m
r=1R

(r)
a is a self-adjoint idempotent in A for

each a. Considering blocks, it is not hard to see that

c

∑
a=1

Ra =
c

∑
a=1

m

∑
r=1

R(r)a =
m

∑
r=1

k2r1A = dim(M)1A.
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Since Ra is a self-adjoint idempotent, so is 1A − Ra. Their sum is given by

c

∑
a=1
(1A − Ra) = c1A −

c

∑
a=1

Ra = (c − dim(M))1A.

It follows that c ≥ dim(M), since the sum above is a sum of positives andA is hereditary.
Now, if c = dim(M), then the above sum of positives in A is 0, which forces 1A − Ra = 0 for all a. Hence, Ra = 1A. Since Ra = ∑

m
r=1R

(r)
a

and R(r)a =
kr
nr
(Trnrkr ⊗ idA)(Pa), we see that

m

∑
r=1

kr
nr
(Trnrkr ⊗ idA)(Pa) = 1A.

Therefore,

(ψM ⊗ idA)(Pa) =
m

∑
r=1

kr
dim(M)nr

(Trnrkr ⊗ idA)(Pa) =
1

dim(M)
1A.

◻

Remark 6.10. In essence, Theorem 6.9 proves that any q-coloring of (Mn,M,Mn) with dim(M) colors induces a quantum isomor-
phism between the quantum graph (Mn,M,Mn) and the classical graph Kdim(M). This isomorphism occurs because any such coloring with
ancillary algebra A yields a (necessarily injective) unital ∗-isomorphism π : Ddim(M) →M⊗A satisfying the properties of a quantum graph
homomorphism, with the additional property that (ψM ⊗ idA) ○ π = π ○ ψDdim(M) .

In contrast to the case of q-colorings, the existence of a loc-coloring for a complete quantum graph is equivalent to the von Neumann
algebra being Abelian.

Theorem 6.11. Let M ⊆Mn be a non-degenerate von Neumann algebra. Then χloc((Mn,M,Mn)) is finite if and only if M is Abelian.
In particular, if M is non-abelian, then χ((Mn,M,Mn)) ≠ χq((Mn,M,Mn)).

Proof. Suppose that there is a c-coloring of (Mn,M,Mn) in the loc-model. Up to unitary equivalence, we write M =⊕
m
r=1CInr ⊗Mkr .

We may choose projections Pa ∈M such that∑c
a=1 pa = In and Pa((M ′)� )Pa = 0 for all a. Let Ra = ∑

m
r=1

kr
nr
Trnrkr(Pa) as in the proof of the

last theorem. Each Ra is an idempotent inC; hence, either Ra = 0 or Ra = 1. We know that∑c
a=1Ra = dim(M), so exactly dim(M) of the Ra’s

are non-zero. Since Ra is given by a trace onM that is faithful, having Ra = 0 implies that Pa = 0. Hence, by discarding any projections Pa for
which Ra = 0, we may assume without loss of generality that Ra = 1 for all a, and that c = dim(M).

Let Er be the orthogonal projection onto the copy of CInr ⊗Mkr inside of M =⊕
m
r=1CInr ⊗Mkr . Then, as before, the PVM

{E rPaE r}
dim(M )
a=1 yields a classical dim(M)-coloring for (Mnrkr ,CInr ⊗Mkr ,Mnrkr). We will show that kr = 1. By the same argument as

above, by discarding values of a for which kr
nr
Trnrkr(ErPaEr) = 0, we may assume that there are exactly k2r non-zero projections ErPaEr that

yield a k2r -classical coloring for (Mnrkr ,CInr ⊗Mkr ,Mnrkr). Set P̃a = ErPaEr . By Theorem 6.9, for each a, we have kr
nr
Trnrkr(P̃a) = 1. Notice

that krP̃a = Inr ⊗ krQa for some projection krQa ∈Mkr . Hence, Trkr(krQa) = 1. Let λ1, . . . , λkr be the eigenvalues of krQa in Mkr . Since each
λi ∈ {0, 1} and ∑kr

i=1λi = Trkr(krQa) = 1, there is exactly one λi that is non-zero. Hence, Qa is rank one. The sum over all non-zero Qa gives
Ikr , and each Qa is rank one. Hence, the number of a for which Qa is non-zero must be kr . Since we assumed that this number is k2r , we must
have kr = k2r . Since kr > 0, we have kr = 1. Since r was arbitrary, we see thatM =⊕

m
r=1CInr ⊗Mkr =⊕

m
r=1CInr is Abelian.

Conversely, suppose thatM is Abelian. Then, the Proof of Theorem 6.9 yields projections Pa ∈M⊗Md, where d = dim(M), such that
∑

d
a=1 pa = In ⊗ Id and Pa(X ⊗ Id)Pa = 0 whenever X ∈ (M ′)� . Moreover, the projections obtained in this case satisfy Pa,ijPb,kℓ = Pb,kℓPa,ij for

all 1 ≤ a, b ≤ d and 1 ≤ i, j, k, ℓ ≤ n. Thus, the entries of the projections Pa must ∗-commute with each other, so the C∗-algebra they generate is
Abelian. Since there is a d-coloring for (Mn,M,Mn) with an Abelian ancilla, this implies that χloc((Mn,M,Mn)) ≤ d. ◻

Using the monotonicity of colorings and the results above on quantum complete graphs, we see that every quantum graph has a finite
quantum coloring. As a result, we obtain the following generalization of a theorem from Ref. 7.

Theorem 6.12. Let (S,M,Mn) be any quantum graph. Then χalg((S,M,Mn)) ≤ 4.

Proof. Suppose that χalg(S,M,Mn) ≤ c for some c <∞. Then A(Hom((S,M,Mn),Kc)) exists. We will let p1, . . . , pc be the canonical
self-adjoint idempotents in the matrix algebraMn(A(Hom((S,M,Mn),Kc)) . By Ref. 7, there is an algebraic homomorphismKc → K4. Thus,
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there are self-adjoint idempotents fa,v inA(Hom(Kc,K4)) for 1 ≤ a ≤ c and 1 ≤ v ≤ 4 such that∑4
v=1 fa,v = 1 for all a and fa,v fb,v = 0 whenever

a ≠ b. Define

qv,ij =
c

∑
a=1

pa,ij ⊗ fa,v ∈ A(Hom((S,M,Mn),Kc))⊗A(Hom(Kc,K4)).

Then

n

∑
k=1

qv,ikqv,kj =
n

∑
k=1
(

c

∑
a=1

pa,ik ⊗ fa,v)(
c

∑
b=1

pb,kj ⊗ fb,v)

=
n

∑
k=1

c

∑
a,b=1

pa,ikpb,kj ⊗ fa,vfb,v

=
c

∑
a=1

n

∑
k=1

pa,ikpa,kj ⊗ f 2a,v

=
c

∑
a=1

pa,ij ⊗ fa,v = qv,ij.

Therefore, qv = (qv,ij) is an idempotent for each v. Similarly, one can see that q∗v = qv (that is, q∗v,ij = qv,ji) and ∑
4
v=1qv,ij is 0 if i ≠ j and 1 if

i = j. Let X = (xij) ∈Mn. Letting 1⊗ 1 denote the unit in the tensor product of the game algebras,

qv(X ⊗ 1⊗ 1)qw =
⎛

⎝

n

∑
k,ℓ=1

qv,ikxkℓqw,ℓj
⎞

⎠
i,j

=
⎛

⎝

n

∑
k,ℓ=1

c

∑
a,b=1

pa,ikxkℓpb,ℓj ⊗ fa,vfb,w
⎞

⎠
i,j

. (6.1)

If X ∈ (M ′)� and a = b, then the above sum becomes

qv(X ⊗ 1⊗ 1)qv =
⎛

⎝

n

∑
k,ℓ=1

c

∑
a=1

pa,ikxkℓpa,ℓj ⊗ fa,v
⎞

⎠
=

c

∑
a=1

pa(X ⊗ 1)pa ⊗ fa,v = 0,

by definition of A(Hom((S,M,Mn),Kc)). If X ∈M ′ and a ≠ b, then∑n
k,ℓ=1pa,ikxkℓpb,ℓj is the (i, j) entry of pa(X ⊗ 1)pb = 0. Thus, if v ≠ w,

then Eq. (6.1) reduces to

qv(X ⊗ 1⊗ 1)qw =
⎛

⎝

n

∑
k,ℓ=1

c

∑
a=1

pa,ikxkℓpa,ℓj ⊗ fa,vfa,w
⎞

⎠
i,j

= 0,

since fa,v fa,w = 0 for v ≠ w. Therefore, letting rv,ij be the canonical generators of A(Hom((S,M,Mn),K4)), we obtain a unital
∗-homomorphism

π : A(Hom((S,M,Mn),K4))→ A(Hom((S,M,Mn),Kc))⊗A(Hom(Kc,Kr)),
rv,ij ↦ qv,ij.

The latter algebra is non-zero, soA(Hom((S,M,Mn),K4)) ≠ {0}. Thus, χalg((S,M,Mn)) ≤ 4. ◻
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