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We compare the algebras of the quantum automorphism group of finite-dimensional

C∗-algebra B, which includes the quantum permutation group S+
N , where N = dimB. We

show that matrix amplification and crossed products by trace-preserving actions by a

finite Abelian group � lead to isomorphic ∗-algebras. This allows us to transfer various

properties such as inner unitarity, Connes embeddability, and strong 1-boundedness

between the various algebras associated with these quantum groups.

1 Introduction

Given a finite dimensional C∗-algebra B equipped with a faithful state ψ , Wang [58] con-

structed the quantum automorphism group Aut+(B,ψ) of the finite measured quantum

space (B,ψ). By construction, it is a C∗-algebraic compact quantum group whose under-

lying Hopf ∗-algebra O(Aut+(B,ψ)) is defined to be the universal ∗-algebra generated

by the coefficients of a ∗-coaction on B that leaves ψ invariant. In particular, when we

consider the “Plancherel” trace ψ on B, the canonical tracial state invariant under the
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classical automorphism group Aut(B), then Aut+(B) = Aut(B,ψ) has a close analogy with

Aut(B), as the Abelianization of O(Aut+(B)) becomes the function algebra O(Aut(B)).

There are two extreme choices for B: on the one hand is the abelian B = CN ;

on the other is the full matrix algebra B = Mn. In the former case, Aut+(CN) is the

quantum permutation group S+
N that has a close analogy to the permutation group SN

and is accessible via various combinatorial methods. In the latter case, Aut+(Mn) can

be identified with the projective version of the quantum orthogonal group O+
n [4], which,

besides combinatorial methods, also allows analogy with classical functional analysis

on the orthogonal group On. This kind of correspondence is what we are going to exploit

in this work.

In the framework of operator algebraic quantum groups, operator algebraic

completions of O(Aut+(B)) are known to have various interesting properties. In general,

if dimB ≥ 5, it is known that the reduced C∗-algebra Cr(Aut+(B)) is non-nuclear, exact,

simple, with unique trace, and possesses the complete metric approximation property,

while the von Neumann algebra L∞(Aut+(B)) is a non-injective, weakly amenable,

strongly solid II1-factor with the Haagerup property [17, 29, 37, 40]. Moreover, O(S+
N)

is residually finite-dimensional and consequently L∞(S+
N) has the Connes embedding

property (CEP), for all N [18].

The above results lead to a question: how much do the operator algebras

Cr(Aut+(B)) and L∞(Aut+(B)) actually depend on the initial data B? One key tool common

in the above works is the C∗-tensor category of finite dimensional unitary representa-

tions of these quantum groups and induction of algebraic properties through monoidal

equivalence. In fact, the monoidal equivalence classes of the quantum groups Aut+(B)

are classified by the dimension of B [30]; hence, one may hope that the operator algebras

Cr(Aut+(B)) or L∞(Aut+(B))may be closely related (possibly even isomorphic) aswe range

over B with dimB fixed. In particular, it is natural to ask if monoidal equivalence can be

used to transfer the CEP from L∞(S+
N) to all L∞(Aut+(B)).

At the C∗-algebraic level, even when dimB is fixed, Voigt [57] showed that

Cr(Aut+(B)) do depend on the choice of fiber functors realizing these quantum groups

out of the common category Rep(Aut+(B)) = Rep(S+
N). Nonetheless, it is an interesting

question to ask to what degree the algebras above differ, on either the C∗-algebraic or

the von Neumann algebraic level.

Our main result is that, up to crossed products by finite Abelian groups and

matrix amplification, there are some concrete relations between the algebras of these

quantum groups.
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Theorem A (Corollary 3.6, Theorem 6.5). Let N = dimB ≥ 4. Then there is a finite

Abelian group �, a trace-preserving action α of � on O(Aut+(B)), and another trace-

preserving action β of � on the crossed product O(Aut+(B)) �α �, such that we have

an isomorphism of tracial ∗-algebras

O(Aut+(B)) �α � �β � ∼= Mk ⊗ O(S+
N).

We prove two versions of this result for different values of k = ord(�). Let us

write B = ⊕m
r=1Mnr , and set d = ∏m

r=1 nr. Using cocycle deformation of Hopf algebras

and coactions, we obtain the above result for k = d4 from a 2-cocycle induced from

a finite subgroup of SN . However, we also show that the more efficient value k = d2

is achievable using techniques inspired by non-local games in quantum information

theory; in particular, a certain quantum colouring game of the so-called quantum

complete graph KB [21].

Both of these ideas lead to the construction of certain concrete finite dimensional

representations of the linking algebra O(Aut+(B),S+
N) associated with the monoidal

equivalence between Aut+(B) and S+
N . Combining this with the standard induction

argument, we can transfer finite dimensional approximation results on S+
N [18] to all

quantum automorphism groups.

Theorem B (Corollary 4.6). Let B be a finite dimensional C∗-algebra and ψ be a faithful

tracial state on B. Then the Hopf ∗-algebraO(Aut+(B,ψ)) is residually finite-dimensional

and the von Neumann algebra L∞(Aut+(B)) has the CEP.

In fact, an even stronger form of residual finite-dimensionality holds for

O(Aut+(B)). Recall that the Hopf ∗-algebra O(G) of a compact quantum group is called

inner unitary if it admits an inner faithful ∗-homomorphism into some Mk [6, 18].

Inner unitarity of O(G) is a quantum generalization of the property of discrete group �

admitting an embedding into a unitary group Uk ⊆ Mk. Indeed, if O(G) = C� for some

discrete group �, then O(G) is inner unitary if and only if an embedding � ↪→ Uk exists.

In general,O(G) is residually finite-dimensional if it is inner unitary.

Theorem C (Proposition 4.8, Theorem 4.9). Let B be a finite-dimensional C∗-algebra.
Assume that dim(B) lies outside the range [6, 9]. Then O(Aut+(B)) is inner unitary. The

same conclusion also holds for the Hopf ∗-algebrasO(O+
n ) for n 	= 3,where O+

n is the free

orthogonal quantum group.
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Strong 1-boundedness is an important free probabilistic property of tracial

von Neumann algebras M introduced by Jung [42], that is, computable from any finite

generating set U ⊂ M and is a strengthened version of δ0(U) ≤ 1 for Voiculescu’s

modified free entropy dimension [55]. In particular, this is an obstruction to isomorphism

with another tracial von Neumann algebra with a generating set satisfying δ0(U) > 1,

such as an interpolated free group factor.

While δ0(U) could be difficult to compute in general, a useful estimate is given

in terms of �2-Betti numbers. Generalizing an estimate for the von Neumann algebras

of discrete groups [27, 54], when G is a compact matrix quantum group and U is the

standard set of generators coming from the fundamental representation, one has [19]

1 ≤ δ0(U) ≤ 1 − β
(2)
0 (Ĝ) + β

(2)
1 (Ĝ), (1.1)

where β
(2)

k (Ĝ) are the �2-Betti numbers of the discrete dual of G defined by Kyed [44].

For our quantum groups of interest, we have the vanishing of β
(2)
0 (Ĝ) and β

(2)
1 (Ĝ)

[9, 11, 45]; hence, the standard generators satisfy δ0(U) = 1. To upgrade this to the strong

1-boundedness, one needs to work with more precise algebraic relations and estimate

regularity and rank of the induced operators [43, 49]. This was successfully carried out

by the 1st author and Vergnioux for O+
n [22], and by the 2nd author for the quantum

orthogonal group O+
J associated with the symplectic matrix [32].

Based on these results and our main results, we can now prove the strong

1-boundedness of Aut+(B) for some cases, as follows.

Theorem D (Corollary 5.8). Let B be a C∗-algebra such that dimB = n2 with n ≥ 3. Then

L∞(Aut+(B)) is a strongly 1-bounded II1-factor.

The starting point is the index 2 inclusion L∞(Aut+(Mn)) ⊂ L∞(O+
n ). Moreover,

Theorem A gives rise to finite index embeddings into the common overfactors of the von

Neumann algebras L∞(Aut+(B)) with fixed dimB. Thus, the remaining task is to obtain

permanence of strong 1-boundedness under such relations.

In general, given a finite index inclusions of II1-factors N ⊂ M, one expects

δ0(X) − 1 = [M : N ]
(
δ0(Y) − 1

)

for generating sets X for N and Y for M as an analogue of the Nielsen–Schreier theorem

for inclusions of free groups. This theorem states that a finite index subgroup H of a free
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group G of rank r(G) must also be free and moreover that the rank r(H) of the subgroup

satisfies

r(H) − 1 = [G : H] (r(G) − 1) .

This was investigated by Jung [41], where he proved, among other things, that this

equality holds if M = N ⊗ Mk for some k and Y is X together with the matrix units,

but in general only weaker inequalities were established.

Notice that Schreier’s formula above suggests that having free entropy dimension

equal to 1 is preserved by finite index inclusions. We can prove this statement under the

stronger assumption of strong 1-boundedness. The following result was also indepen-

dently obtained by Srivatsav Kunnawalkam Elayavalli (private communication).

Theorem E (Theorem 5.5). Assume that N ⊂ M is a unital finite index inclusion of

II1-factors. Then N is strongly 1-bounded if and only if M is strongly 1-bounded.

As a consequence of Theorems A and E, we can prove that an infinite family of

quantum automorphism groups give rise to new examples of strongly 1-bounded II1-

factors that have neither Property � nor Property (T).

We also briefly consider the free unitary quantum groups U+
n . The estimate (1.1)

becomes 1 ≤ δ0(U) ≤ 2 for this case [13], and the isomorphism L∞(U+
2 ) ∼= LF2 [3] suggests

that equality with the upper bound is likely to happen.While we cannot quite verify this,

we can show that L∞(U+
n ) is not strongly 1-bounded (Proposition 5.13). In particular, this

implies the non-isomorphism result L∞(U+
n ) � L∞(O+

m) for any n,m ≥ 2.

1.1 Outline of the paper

In Section 2, we briefly review the necessary material on compact quantum groups (in

particular the quantumautomorphism groups) andmonoidal equivalences between them.

We give the 1st proof of Theorem A using cocycle deformation in Section 3.

Section 4 contains transference results for monoidal equivalence when the linking alge-

bra admits a finite dimensional representation and applies these results to the embed-

dings in Theorem A. This establishes Theorems B and C. We continue with applications

of Theorem A to strong 1-boundedness in Section 5. We recall the definition of strong

1-boundedness and some results from the theory of subfactors before establishing

Theorem E, the main technical result of the section, and proceed to derive Theorem D.
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Additionally, we discuss lack of strong 1-boundedness for the free unitary quantum

groups.

In the final Section 6, we provide another proof of Theorem A using ideas from

unitary error bases and the theory of non-local games, which we first recall. This proof

leads to a more efficient version of Theorem A, with a smaller acting group and lower

dimensional matrix algebras.

2 Preliminaries

2.1 Compact quantum groups

For the basic theory of compact quantum groups and their representation categories, we

refer to the book [47].

Definition 2.1. A compact quantum group G consists of a unital Hopf ∗-algebra O(G)

with coproduct 	 : O(G) → O(G) ⊗ O(G) together with a Haar functional, which is a

linear map h : O(G) → C satisfying the following properties:

• h is invariant in the sense that (ι ⊗ h)	(x) = h(x)1 = (h ⊗ ι)	(x) for all

x ∈ O(G);

• h is normalized such that h(1) = 1;

• for any x ∈ O(G), it holds that h(x∗x) ≥ 0.

We can associate two reduced operator algebras to G using the Haar functional

in the obvious way. The reduced C∗-algebra Cr(G) is the C∗-algebra completion of O(G)

relative to the GNS representation induced by the Haar functional h, and the von

Neumann algebra of G, L∞(G), is the von Neumann algebra Cr(G)′′ generated by Cr(G). If

the Haar functional is a trace, we say that G is of Kac type. Note that in this case L∞(G)

is a finite von Neumann algebra, and we consider (the canonical normal extension of) h

to be the canonical trace on L∞(G).

A unitary representation ofG on a finite dimensional Hilbert spaceH is a unitary

corepresentation of O(G) on H. It is well known that the category of finite dimensional

unitary representations of G, denoted Rep(G), is a rigid C∗-tensor category. A right

action of G is a right coaction of O(G) on some ∗-algebra A. More precisely, this is a

∗-homomorphism δ : A → A ⊗ O(G) such that (ι ⊗ 	)δ = (δ ⊗ ι)δ and (ι ⊗ ε)δ = ι. Left

actions are defined similarly. Given such an action of G on A, we can define the algebra

of invariant elements AG as consisting of those a ∈ A that satisfy δ(a) = a ⊗ 1. If it
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happens that AG = C1, we say that the action is ergodic. The action is called free if the

linear map A⊗ A → A⊗ O(G) given by a⊗ b �→ δ(a)(b⊗ 1) is invertible.

There are many interesting examples of compact quantum groups. To close

this section, we define the free unitary and free orthogonal quantum groups, and in

the next section, we discuss in detail the family of examples known as the quantum

automorphism groups.

Definition 2.2 ([2, 53]). Let n ≥ 2 be an integer, and choose complex invertible matrices

Q and F of size n such that Q is positive and FF ∈ RIn. We define the following two

universal ∗-algebras:

O(U+
Q ) = C

〈
vij | 1 ≤ i, j ≤ n, V = (vij)ij and QVQ−1 are unitary

〉

O(O+
F ) = C

〈
uij | 1 ≤ i, j ≤ n, U = (uij)ij is unitary and U = FUF−1

〉
.

The Hopf ∗-algebra structure is then defined by

	(wij) =
n∑

k=1

wik ⊗wkj, (S ⊗ id)W = W
∗
, (ε ⊗ id)W = 1n.

where W = [wij] ∈ {V,U}. The resulting compact quantum groups are called the free

unitary quantum group U+
Q and the free orthogonal quantum group O+

F , respectively.

In terms of representation theory, both U+
Q and O+

F can be interpreted as the

universal compact quantum groups given by defining unitary irreducible representa-

tions V and U, respectively, with prescribed dual representations. The matrices Q and

F enter the picture to correct for the fact that the contragredient representation to

a unitary representation is not automatically unitary in the case of quantum groups.

Instead, it is in general necessary to correct by conjugating by some matrix to obtain the

dual representation. Then U+
Q is the universal compact quantum group for which that

conjugating matrix is precisely Q, and the same statement for F holds for O+
F with the

additional demand that its defining representation is self-dual.

If one makes the choice Q = F = In, it is customary to write U+
In

= U+
n and

O+
In

= O+
n . O

+
n and U+

n are always of Kac type. Moreover, their associated von Neumann

algebras are II1-factors and have been extensively studied (see for instance [16, 24, 29,

35, 36, 40, 52]). The only other choice (up to isomorphism) of F that leads to a Kac-type
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compact quantum group is O+
J2m

, where J2m is the standard symplectic matrix of size 2m.

We will denote O+
J2m

= O+J
2m, as it can be realized as a graded twist of O+

2m [14].

2.2 Quantum automorphism groups

Following Wang, we consider the quantum automorphism group of a finite measured

quantum space (B,ψ), as follows.

Definition 2.3 ([58]). Let B be a finite-dimensional C∗-algebra B equipped with a faithful

state ψ . The quantum automorphism group Aut+(B,ψ) is the compact quantum group

with Hopf ∗-algebra O(Aut+(B,ψ)) given by the universal unital ∗-algebra generated by

the coefficients of a coaction

ρ : B → O(Aut+(B,ψ)) ⊗ B,

satisfying the ψ-invariance condition

(id ⊗ ψ)ρ(x) = ψ(x)1 (x ∈ B).

By coefficients of the coaction ρ, we mean the set {(ω ⊗ id)ρ(x) : x ∈ B, ω ∈ B∗}.

The Hopf ∗-algebra structure of O(Aut+(B,ψ)) is uniquely determined by the

above requirements. For example, the coproduct map

	 : O(Aut+(B,ψ)) → O(Aut+(B,ψ)) ⊗ O(Aut+(B,ψ))

can be computed from the coaction identity

(ρ ⊗ id)ρ = (id ⊗ 	)ρ.

The quantum group Aut+(B,ψ) can be regarded as a universal quantum analogue

of the compact group of ∗-automorphisms Aut(B) of B. More precisely, we call an

automorphism α ∈ Aut(B) ψ-preserving if ψ ◦ α = ψ . Denoting the subgroup of all ψ-

preserving automorphisms by Aut(B,ψ) < Aut(B), one sees that the algebra of coordinate

functions O(Aut(B,ψ)) is precisely the abelianization of O(Aut+(B,ψ)).
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Definition 2.4. Let B be a finite-dimensional C∗-algebra, and δ > 0. A δ-form on B is a

state on B such thatm◦m∗ = δid,wherem∗ : B → B⊗B is the adjoint of the multiplication

map m : B⊗ B → B with respect to the Hermitian inner products associated with ψ .

It suffices to understand the quantum automorphism groups Aut+(B,ψ) with ψ

a δ-form due to the following result, a proof of which can be found in [29].

Proposition 2.5. Let B be a finite-dimensional C∗-algebra B equipped with a faithful

state ψ . Fix an isomorphism B = ⊕m
r=1 Br corresponding to the coarsest direct sum

decomposition with the property that every Br is a C∗-algebra and every restriction ψ |Br
becomes a δr-form for some δr. Denote by ψr the state obtained on Br by normalizing the

restriction ψ |Br . Then we have an isomorphism

O(Aut+(B,ψ)) ∼= ∗mr=1O(Aut+(Br,ψr)) (2.1)

of Hopf ∗-algebras.

Example 2.6. Let B be a finite-dimensional C∗-algebra, and fix an isomorphism B =⊕m
r=1Mnr . Its Plancherel trace is the tracial state defined by

ψ(A) =
m∑
r=1

nr
dim(B)

Trnr (Ar) (A =
m⊕
r=1

Ar ∈ B, Ar ∈ Mnr ).

This is the unique tracial δ-form on B, and we have δ = √
dimB.

Since the Plancherel trace ψ is always an invariant state for the action of Aut(B)

on B, we have Aut(B,ψ) = Aut(B), so Aut+(B,ψ) can truly be regarded as the quantum

analogue of Aut(B). With this in mind, we shall often suppress the ψ-dependence in

our notation and simply write Aut+(B) = Aut+(B,ψ) for the remainder of the paper,

understanding that the Plancherel trace is used unless specified otherwise.

2.3 Monoidal equivalence and the linking algebra

Let G1 and G2 bemonoidally equivalent compact quantum groups, that is, suppose that

there is a unitary monoidal equivalence of C∗-tensor categories F : Rep(G1) → Rep(G2).

Such a situation is captured by the associated linking algebra, or Hopf–Galois object [10,

12], which we denote by O(G1,G2).
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This is a unital ∗-algebra equipped with a pair of commuting free ergodic

coactions

δ1 : O(G1,G2) → O(G1) ⊗ O(G1,G2), δ2 : O(G1,G2) → O(G1,G2) ⊗ O(G2).

We denote by ω12 : O(G1,G2) → C the unique faithful invariant state, which is character-

ized by

ω12(x)1 = (h1 ⊗ id)δ1(x) = (id ⊗ h2)δ2(x) (x ∈ O(G1,G2)).

More concretely, O(G1,G2) has a linear basis of the form (xπ
ij)π ,i,j where π runs over

Irr(G1), i runs over an index set for an orthonormal basis of Hπ , and j runs over such

a set for HF(π), with the convention xπ
ij = 1 when π is the trivial representation. Note that

each (possibly rectangular) matrix Xπ = [xπ
ij ] ∈ Md(π),d(F(π)) ⊗ O(G1,G2) is unitary. Then

we can present the above maps as

δ1(x
π
ij) =

dim(π)∑
k=1

uπ
ik ⊗ xπ

kj, δ2(x
π
ij) =

dim(F(π))∑
k=1

xπ
ik ⊗ uF(π)

kj , ω12(x
π
ij) = δ1,π .

Here, the uπ
ij are the matrix coefficients of the representation π . As the δi are ∗-

homomorphisms, the algebra structure is also determined by this.

Exchanging the role of G1 and G2, we get another linking algebra O(G2,G1) and

invariant state ω21. There is a canonical isomorphism O(G2,G1)
∼= O(G1,G2)

op given by

yπ
ji �→ (xπ

ij)
∗, where the matrix coefficients yπ

ji are defined analogously to xπ
ij . Moreover,

there exists a unital ∗-homomorphism θ1 : O(G1) → O(G1,G2) ⊗ O(G2,G1) defined on

matrix elements of unitary representations uπ
ij ∈ O(G1) by

θ1(u
π
ij) =

dim(F(π))∑
k=1

xπ
ik ⊗ yπ

kj.

Note that θ1 is state preserving, in the sense that

h1(x)1 = (ω12 ⊗ id)θ1(x) = (id ⊗ ω21)θ1(x) (x ∈ O(G1)).

Let G be a compact quantum group, and denote the dual ∗-algebra of O(G) by

U(G) (the ∗-structure is defined ω∗(a) = ω(S(a)∗) for ω ∈ U(G) and a ∈ O(G)). We write

U(G × G) for the dual of O(G) ⊗ O(G). The “coproduct” map 	̂ : U(G) → U(G × G) is
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Crossed Product Equivalence of Quantum Automorphism Groups 17759

defined to be dual of the product map O(G) ⊗ O(G) → O(G). See [47] for more details. In

the following, we are mostly interested in monoidal equivalences given by unitary dual

2-cocycles in the following sense.

Definition 2.7. A unitary dual 2-cocycle forG is given by a unitary element σ ∈ U(G×G)

such that

σ1,2σ12,3 = σ2,3σ1,23.

Here, σ12,3 denotes (	̂ ⊗ id)(σ ) ∈ U(G×G×G). Without losing generality, we can

assume the normalization condition

(ε ⊗ id)(σ ) = 1 = (id ⊗ ε)(σ )

for the trivial representation ε : U(G) → C, which we always do. Alternatively, we can

interpret σ as a bilinear form O(G) × O(G) → C satisfying

σ(a(1),a
′
(1))σ (a(2)a

′
(2),a

′′) = σ(a′
(1),a

′′
(1))σ (a,a′

(2)a
′′
(2)), σ(1,a) = ε(a) = σ(a, 1),

and unitarity for the convolution algebra structure.

Given such σ and a left O(G)-comodule ∗-algebra B, we can twist the product of

B to a new associative product

b1σ · b2 = σ(b1(1), b
2
(1))b

1
(2)b

2
(2),

where we denote the coaction as

B → O(G) ⊗ B, b �→ b(1) ⊗ b(2).

With the new involution (see, e.g., [15]) given by

b� = σ(S−1(b(2)), b(1))b
∗
(3) = σ ∗(b∗

(2), S
−1(b∗

(1)))b
∗
(3),

we obtain a ∗-algebra (B, σ · , �), which we denote by σB . This cocycle deformation is

compatible with C∗-structures: if B is a C∗-algebra and B → B⊗ Cu(G) is a C∗-algebraic
coaction and σ is as above, then a similar construction can be carried through, resulting

in a C∗-algebra σB. See [48] for details. In the particular case of a finite-dimensional

C∗-algebra B of interest to us, the resulting algebraic construction and C∗-algebraic
construction coincide. We also note that if ψ is a G-invariant state on B, then ψ remains

a state when viewed as a functional on σB.
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Similarly, when B has a right coaction of O(G), we can define a new associative

product by

f 1 ·σ−1 f 2 = σ−1(f 1(2), f
2
(2))f

1
(1)f

2
(1),

and a compatible ∗-structure. We denote this ∗-algebra by Bσ−1 .

Definition 2.8. [cf. [31]] With G and σ as above, we denote by O(G)σ the Hopf ∗-algebra
with the underlying coalgebra O(G) and algebra σO(G) σ−1 . We also write Gσ for the

compact quantum group represented by O(G)σ .

Recall that Gσ can be directly characterized in terms of the structure of U(Gσ ):

as an algebra it is the same as U(G), but the coproduct is given by 	σ (T) = σ	(T)σ−1.

There is a unitary monoidal equivalence F : Rep(G) → Rep(Gσ ), whose underlying

C∗-functor is the identity functor and the tensor transform F(π) ⊗ F(π ′) → F(π ⊗ π ′)
is given by the action of (π ⊗ π ′)(σ−1) on Hπ ⊗ Hπ ′ .

Remark 2.9. Up to isomorphism, any unitary monoidal equivalence F : Rep(G) →
Rep(G′) satisfying dimHπ = dimHF(π) is of this form. See [12, Section 4].

The linking algebra O(Gσ ,G) is given by σO(G) . More generally, if B is any unital

∗-algebra and B → O(G) ⊗ B is a coaction, then this same linear map defines a coaction

σB → O(Gσ ) ⊗ σB . See [12, Proposition 4.11] and [31].

Remark 2.10. When B is a finite dimensional C∗-algebra endowed with a left O(G)-

comodule structure and a G-invariant state ψ , the twisting σB comes from the above

monoidal equivalence F up to an isomorphism. To be more precise, let R be the unitary

antipode on O(G). Then the opposite algebra Bop = {bop | b ∈ B} admits a right O(G)-

comodule ∗-algebra structure given by bop �→ bop(2) ⊗R(b(1)). Together with the GNS inner

product for the invariant state ψ ′(bop) = ψ(b), we get an object of Rep(G) represented by

Bop. The corresponding Rep(Gσ )-algebra has the product

b1opσ · b2op = σ−1(R(b1(1)),R(b2(2)))(b
2op
(2) b

1op
(2) )op (b1, b2 ∈ B).

In other words, the corresponding left O(G)-comodule algebra is B with the twisted

product

b1σ · ′b2 = σ−1(R(b2(1)),R(b1(2)))b
1
(2)b

2
(2) = (R̂⊗ R̂)(σ−1)21(b

1
(1), b

2
(1))b

1
(2)b

2
(2)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/20/17749/7095790 by M
edical Sciences Library user on 22 February 2024



Crossed Product Equivalence of Quantum Automorphism Groups 17761

for the unitary antipode R̂ of U(G). By [28, Proposition 5.3], σ and (R̂ ⊗ R̂)(σ−1)21 are

cohomologous, hence the C∗-algebra (B, σ · ′) is isomorphic to σB .

Turning to the quantum automorphism groups, they obey the same fusion rules

as SO(3) = Aut(M2). In fact, these compact quantum groups have the following rigidity

properties.

Theorem 2.11 ([4, 46]). The compact quantum groups Aut+(B,ψ) for a finite-dimensional

C∗-algebra B and a δ-form ψ have the same fusion rules as SO(3). Conversely, when G is

a compact quantum group with the same fusion rules as SO(3), there is such B and ψ

satisfying G ∼= Aut+(B,ψ).

Note that if G compact quantum group that has the fusion rules of SO(3),

G = Aut+(B,ψ) where B is, as a representation of G, represented by the direct sum of the

trivial representation and the one corresponding to the irreducible 3D representation of

SO(3).

Theorem 2.12 ([30]). Let (Bi,ψi) be finite-dimensional C∗-algebras with δi-forms ψi, for

i = 1, 2. Then the compact quantum groups Aut+(Bi,ψi) are monoidally equivalent if and

only if δ1 = δ2.

In this case, the linking algebra can be characterized as the universal ∗-algebra
generated by the coefficients of a unital ∗-homomorphism

ρ : B2 → B1 ⊗ O(Aut+(B1,ψ1), Aut
+(B2,ψ2))

satisfying the ψ2-ψ1-invariance condition

(ψ1 ⊗ 1)ρ(x) = ψ2(x)1 (x ∈ B2).

In fact, the nontriviality of this universal algebra characterizes the existence ofmonoidal

equivalence between Aut+(Bi,ψi). Note that if ψi are the respective Plancherel traces, we

have δi = √
dimBi, and therefore, the corresponding quantum groups Aut+(Bi) (of interest

to us in this paper) are monoidally equivalent if and only if dimB1 = dimB2.
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3 Isomorphisms from 2-Cocycle Deformations

In this section, we establish our 1st main result of the paper—that every quantum

automorphism group Aut+(B) arises as a cocycle twist of a quantum permutation group

S+
N . The special case when B = Mn was established in [7]. The general case is a

straightforward generalization of the arguments there. We then apply this structure

result to establish our 1st crossed product isomorphisms.

Given natural numbers n1, . . . ,nm, put Yr = {0 ≤ i < nr}, Xr = Yr × Yr, and

X = X1
∐ · · · ∐Xm. We also write N = |X| = ∑

r n
2
r . Note that each Xr has a free transitive

action of �r = Znr × Znr . This induces an embedding

� = �1 × · · · × �m < Sym(X) ∼= SN .

Recall that �̂t has a T-valued nondegenerate 2-cocycle: up to a choice of identification

�̂t
∼= �t and difference by coboundary, it can be written as

ω′
t([j1, j2], [k1, k2]) = exp

(
2π i

nt
j1k2

)
.

Let ωt be a 2-cocycle cohomologous to ω′
t satisfying ωt(h,h

−1) = 1. Concretely, we can

choose ψ(h) ∈ T such that ψ(h)−2 = ω′
t(h,h

−1) and take ωt = ω′
t∂ψ .

Then the product ω1 × · · · × ωm is a (nondegenerate) 2-cocycle on �̂, which can

be presented as a convolution invertible map σ0 : O(�) × O(�) → C, with the additional

normalization

σ0(g,g
−1) = 1 (g ∈ �). (3.1)

Composing the restriction maps O(S+
N) → O(SN) → O(�), we obtain a convolu-

tion invertible map

σ : O(S+
N) ⊗ O(S+

N) → C.

This shall be the cocycle of interest in the sequel.

Theorem 3.1. We have O(S+
N)σ ∼= O(Aut+(

⊕m
i=1Mnr )).

Proof. The corepresentation category of O(S+
N)σ is monoidally equivalent to RepS+

N ,

and the general classification result of such compact quantum groups, discussed in the
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previous section, implies

O(S+
N)σ ∼= O(Aut+(B,ψ))

for some finite-dimensional C∗-algebra B and a δ-form ψ , such that δ2 = N. Moreover,

the cocycle twisting does not change the vector spaces underlying the representations,

hence we have B = C(X) as a vector space. We thus have δ2 = N = dimB; hence, ψ must

be the Plancherel trace on B.

By Remark 2.10, the product map of B is given by the composition of the action

of σ and the product map of C(X), which is the product map of σC(X). That is, B = σ ]C(X).

Now,by the product structure of σ0, each block Xr of X gives a copy ofMnr ,while different

blocks remain orthogonal. This shows that

B ∼=
m⊕
r=1

Mnr ,

and we obtain the claim. �

Remark 3.2. It was kindly pointed out to us by an anonymous referee that the above

theorem actually admits quite a broad generalization, as follows. We thank the referee

for allowing us to include this result and for conveying the idea of the proof.

Theorem 3.3. Let (B,ψ) be finite dimensional C∗-algebra equipped with a δ-form ψ , and

let σ be a unitary 2-cocycle for Aut+(B,ψ). Then Aut+(B,ψ)σ ∼= Aut+(σB,ψ) canonically.

Proof. Let G = Aut+(B,ψ), and form σB and Gσ as described in Section 2. Recall that

σB = B and O(Gσ ) = O(G) as comodules and coalgebras, respectively. Moreover, the map

σB → σB⊗O(Gσ ) is a ψ-preserving coaction. Hence, we obtain a surjective morphism of

Hopf ∗-algebras π : O(Aut+(σB,ψ)) → O(Gσ ). That is, Gσ < Aut+(σB,ψ) as a quantum

subgroup. But since these two quantum groups have the same fusion rules, it follows

that kerπ = {0} and thus Gσ = Aut+(σB,ψ). �

Corollary 3.4. In the above setting of Theorem 3.1, with B = ⊕m
r=1Mnr , there are h-

preserving actions of �2 on O(S+
N) and O(Aut+(B)) such that

Cr(S+
N) � �2 ∼= Cr(Aut+(B)) � �2,

intertwining the induced traces.
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Proof. This is a consequence of the structure theory for the general 2-cocycle defor-

mation scheme (cf. [59, Proposition 9]), but let us elaborate on this for the reader’s

convenience.

Let � be a finite commutative group and �̂ its Pontryagin dual. An action of � on

a C∗-algebra A is the same thing as a grading A = ⊕
k∈�̂

Ak by �̂ or a coaction α : A →
C∗(�̂) ⊗ A. For k ∈ �̂, let us write α(k)(x) for the projection of x to Ak.

Now, let σ be a 2-cocycle on �̂, normalized as in (3.1). The deformed algebra σA

is still graded by �̂. Let us denote the corresponding coaction map σA → C∗(�̂) ⊗ σA by

ασ .

We claim that A � � is isomorphic to σA � �. The corollary follows from this

by considering the action of � = �2 on O(S+
N) obtained by combining left and right

translations.

We identify σA with the algebraA′′ generated by λ
(σ)

k ⊗a on �2(�̂)⊗A for k ∈ �̂ and

a ∈ Ak, where λ
(σ)

k is the regular σ -representation λ
(σ)

k δk′ = σ(k, k′)δkk′ . (Here, (δk)k∈�̂
is an

orthonormal basis for �2(�̂)). Then the coaction ασ becomes α′
σ : λ

(σ)

k ⊗ a �→ λk ⊗ λ
(σ)

k ⊗ a

on A′′. Thus, the crossed product

C(�̂) � A′′ ∼= σA � �

is represented by the C∗-algebra on the right Hilbert A-module �2(�̂)⊗2 ⊗A generated by

(χg)1 for g ∈ �̂ and
∑

k λk ⊗ λ
(σ)

k ⊗ α(k)(x) for k ∈ �̂ and x ∈ A. (Here, χg ∈ C(�̂) denotes

the characteristic function of {g}.)
Similarly, we obtain an algebra A′ ∼= A instead of A′′ by removing σ and an

analogous spatial presentation of A � � ∼= C(�̂) � A′. Let V be the unitary operator

δk ⊗ δk′ �→ σ(k−1, k′)δk ⊗ δk′ on �2(�̂)⊗2. We show that � = AdV12
conjugates C(�̂) � A′′ to

C(�̂) � A′.
If k ∈ �̂ and x ∈ A′′, the action of �(α′

σ (x)(χg)1) on the vector δk ⊗ δk′ ⊗ b is given

by

∑
h

δg,kσ(k−1, k′)σ (h,k′)σ (k−1h−1,hk′)δhk ⊗ δhk′ ⊗ α(h)(x)b.

Using the cocycle identity and (3.1) for σ , we see that this is equal to

∑
h

σ(h,g)δg,kδhk ⊗ δhk′ ⊗ α(h)(x)b.
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This is equal to the action of

∑
h

σ(h,g)(λh ⊗ λh ⊗ α(h)(x))(χg)1 =
∑
h

σ(h,g)α′(α(h)(x))(χg)1,

which is indeed in C(�̂) � A′. �

Remark 3.5. The above corollary also holds at the purely algebraic level, as

O(S+
N) � �2 ∼= O(Aut+(B)) � �2.

This can be seen either by analysing the proof, or by considering the induced coactions

of the coalgebras O(S+
N) ∼= O(Aut+(B)). Moreover, we also get isomorphisms

O(S+
N) � �2 ∼= O(Aut+(B),S+

N) � �2 ∼= O(S+
N , Aut

+(B)) � �2,

since O(Aut+(B),S+
N) = σO(S+

N) and similarly for the opposite linking algebra.

By the Takesaki–Takai duality [51], we obtain the following.

Corollary 3.6. In the setting of Corollary 3.4, there is a trace-preserving action of �2 on

Cr(S+
N) � �2 such that

(Cr(S+
N) � �2) � �2 ∼= Cr(Aut+(B)) ⊗Md4 ,

where d = ∏
r nr = √|�|. Moreover, this isomorphism intertwines the natural traces on

both sides.

Another consequence of the crossed product isomorphism in Corollary 3.4 are

the embeddings (see [5, Lemma 4.1])

O(Aut+(B)) ↪→ Md2 ⊗ O(S+
N) ⊗Md2 ∼= O(S+

N) ⊗Md4 & O(S+
N) ↪→ O(Aut+(B)) ⊗Md4

(3.2)

and various parallels for the C∗-algebraic and von Neumann algebraic settings, which

has further implications for the structure of the associated algebras Aut+(B) as we will

see in the next section.

In Section 6, we improve on the above and give an isomorphism between the

iterated crossed product by � and amplification by Md2 .
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4 Monoidal Equivalence and Matrix Models

We now consider applications of the above crossed product isomorphism results to the

study of various external approximation properties for the associated quantum group

algebras, including the Connes embedding property, residual finite dimensionality, and

inner unitarity. We begin by working in a slightly more general framework and consider

how these approximation properties can be transferred between monoidally equivalent

quantum groups.

Definition 4.1 ([18]). A unital ∗-algebra A is said to be residually finite-dimensional, or

RFD, if there is an injective ∗-homomorphism

A →
∏
i∈I

Mdi

for some index set I and a family of positive integers (di)i∈I .

We consider this property for the ∗-algebras of the form O(G) for some compact

quantum group. When O(G) is RFD, then its Haar state h is an amenable trace and the

quantum group von Neumann algebra L∞(G) has the CEP [8]. Recall that a finite von

Neumann algebra (M, τ) has the CEP if and only if there exists a τ -preserving embedding

M ↪→ Rω, where Rω is an ultrapower of the hyperfinite II1-factor R.

4.1 Transfer of finite approximations

The following theorem shows that under the assumption of the existence of a nonzero

finite-dimensional ∗-representation of the linking algebra O(G1,G2) on a Hilbert space,

then one can transfer many approximate finitary representation-theoretic properties

from one quantum group to another.

Theorem 4.2. Let G1 and G2 be monoidally equivalent compact quantum groups, and

assume that there exists a nonzero finite-dimensional ∗-representation π : O(G1,G2) →
Md of the linking algebra. Then the following statements are equivalent.

1. O(G2) is RFD.

2. O(G1,G2) is RFD.

3. O(G1) is RFD.

Proof. By symmetry, it is enough to prove the implications (1) �⇒ (2) and (2) �⇒ (3).
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(1) �⇒ (2). Define a ∗-homomorphism ρ : O(G1,G2) → Md ⊗ O(G2) by

ρ = (π ⊗ id)δ2. Note that ρ is injective because

ρ(x) = 0 �⇒ ρ(x∗x) = 0 �⇒ 0 = (id ⊗ h2)ρ(x∗x) = π((id ⊗ h2)δ2(x
∗x)) = ω12(x

∗x)π(1),

and ω12 is faithful. Since Md ⊗ O(G2) is RFD and ρ is injective, we are done.

(2) �⇒ (3). Consider the injective ∗-homomorphism θ1 : O(G1) → O(G1,G2) ⊗
O(G2,G1) (see Section 4). Since O(G1,G2) is RFD if and only if the opposite algebra

O(G2,G1) is RFD, and tensor products of RFD algebras are RFD (indeed – if A ↪→ ∏
i Mdi

,

B ↪→ ∏
j Mdj

, then A ⊗ B ↪→ ∏
i,j Mdidj

), we conclude that O(G1) is RFD. �

Since in the proof of Theorem 4.2, we established the existence of various state-

preserving embeddings, the preceding theorem admits a natural analogue for the CEP.

Theorem 4.3. Let G1 and G2 be monoidally equivalent compact quantum groups of

Kac type. Assume that there exists a nonzero finite-dimensional ∗-representation of the

linking algebra O(G1,G2). Then the following statements are equivalent.

1. L∞(G2) has the CEP.

2. L∞(G1,G2) has the CEP.

3. L∞(G1) has the CEP.

Proof. First, note that the invariant state ω12 on O(G1,G2) is a trace, since both Gi are

of Kac type. Next, we note that in the proof of Theorem 4.2, we have constructed trace-

preserving embeddings

ρ : L∞(G1,G2) → Md ⊗ L∞(G2), θ1 : L
∞(G1) → L∞(G1,G2) ⊗̄ L∞(G2,G1),

σ : L∞(G2) → Md ⊗ L∞(G1) ⊗Md.

From these embeddings, it follows that (1)—(3) are equivalent. �

Remark 4.4. The existence of a finite-dimensional representation π : O(G1,G2) →
Md is a fairly restrictive assumption. For example, it forces the unitary fiber functor

F : Rep(G1) → Rep(G2) to be dimension preserving, that is, we have dimHρ = dimHF(ρ)

for each ρ ∈ Rep(G1). This follows from the fact that (id ⊗ π)(Xρ) ∈ Md(ρ),d(F(ρ)) ⊗ Md is

a finite-dimensional unitary operator, which can happen only if dimHρ = dimHF(ρ). In

particular, this forces G2 to be a 2-cocycle deformation of G1 (cf. Remark 2.9).
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On the other hand, this assumption on the existence of π is necessary for the

conclusions to hold. For example, if n ≥ 3 and q ∈ (−1, 0) is such that q+ q−1 = −n, then
O+
n ∼m SUq(2) [12],O(O+

n ) is RFD [26], while on the other hand O(SUq(2)) cannot be RFD

because it is not of Kac type [50].

Proposition 4.5. Let B be a finite-dimensional C∗-algebra, and put N = dimB. Then the

linking algebra O(Aut+(B),S+
N) has a finite-dimensional representation.

Proof. By Theorem 3.1,we have Aut+(B) ∼= (S+
N)σ for some dual 2-cocycle σ induced from

some such σ0 for a finite subgroup G < S+
N . Thus, the linking algebra O(Aut+(B),S+

N) =
σO(S+

N) has a finite-dimensional quotient σO(G) . �

Corollary 4.6. Let B be a finite-dimensional C∗-algebra equipped with any faithful trace

ψ . Then O(Aut+(B,ψ)) is RFD and hence has the CEP.

Proof. The claim for S+
N is established in [18]. This, together with Theorem 4.2 and

Proposition 4.5, implies the claim when ψ is the Plancherel trace. The general case then

follows from the free product decomposition in Proposition 2.5 and the stability of these

properties with respect to fee products [34]. �

4.2 Inner faithful representations

Definition 4.7 ([1, 6]). Let G be a compact quantum group and A be unital ∗-algebra. A
∗-homomorphism π : O(G) → A is said to be inner faithful if ker(π) does not contain

any nonzero Hopf ∗-ideal. If there exists a finite-dimensional C∗-algebra A and an inner

faithful π : O(G) → A, then we call O(G) an inner unitary Hopf ∗-algebra.

The notion of inner unitarity for Hopf ∗-algebras is a quantum analogue of (a

strong form of) linearity for discrete groups. Recall that a discrete group � is called

a linear group if there exists a faithful group homomorphism π : � → GLd(C). In this

context, we have that � is linear if and only if the group algebra C� admits an inner

faithful homomorphism to Md (without assuming compatibility for ∗-structures) [6]. If
the morphism π is ∗-preserving, this is equivalent to saying that we have an embedding

� ↪→ Ud. In general, if O(G) is inner unitary, then it is RFD [18].

Proposition 4.8. Let B be a finite dimensional C∗-algebra such that dim(B) lies outside

the range [6, 9]. Then O(Aut+(B)) is inner unitary.

Proof. On the one hand, the Hopf ∗-algebras O(S+
N) are inner unitary for all N outside

the range [6, 9] by [18, Theorem 4.11]. On the other, we have an embedding of the form
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(3.2). Then a straightforward adaptation of [6, Theorem 6.3] to the unitary setting implies

that O(Aut+(B)) must then also be inner unitary. �

Now, taking B = Mn and using the canonical embedding O(Aut+(B)) ⊆ O(O+
n ), we

are able to lift inner unitarity to free orthogonal quantum groups.

Theorem 4.9. The Hopf ∗-algebra O(O+
n ) is inner unitary for n = 2 and n ≥ 4.

Proof. We denote the conditional expectation O(O+
n ) → O(Aut+(Mn)) preserving the

Haar state by E. Let π : O(Aut+(Mn)) → B(H) be a ∗-homomorphism for some finite-

dimensional Hilbert space H that gives the inner unitarity of O(Aut+(Mn)). Consider the

Hilbert space H̃ = O(O+
n ) ⊗O(Aut+(Mn)) H, where, as usual, the inner product is given by

(f ′ ⊗ ξ ′, f ⊗ ξ) = (π(E(f ∗f ′))ξ ′, ξ).

The left multiplication defines a ∗-homomorphism π̃ : O(O+
n ) → B(H̃).

Since O(O+
n ) is finitely generated as a right O(Aut+(Mn))-module (we can take

1,uij for 1 ≤ i, j ≤ n as generators), H̃ is finite-dimensional. We claim that ker π̃ does not

contain any nonzero Hopf ∗-ideal.
Let I be a Hopf ∗-ideal of O(O+

n ) contained in ker π̃ , and put O(G) = O(O+
n )/I.

To show that I = 0, it is enough to show that the restriction functor F : RepO+
n →

RepG is full. By Frobenius reciprocity, this is equivalent to the claim that F(U⊗2)

contains the unit with multiplicity one whenever U is a nontrivial irreducible object

of RepO+
n .

Take a nontrivial irreducible object U from RepO+
n . First, suppose that

U ∈ RepAut+(Mn). Then, as π̃ |O(Aut+(Mn)) contains π as a direct summand, we have

I ∩ O(Aut+(Mn)) = 0. This implies that F(U) ∈ RepG is a nontrivial irreducible object

as well. For the general case of U being an irreducible object from RepO+
n , note that

we have U⊗2 ∈ RepAut+(Mn); hence, from the above, we have that F(U⊗2) has the same

irreducible decomposition as U⊗2. But this implies that F(U⊗2) contains the unit with

multiplicity one. �

Remark 4.10. The 1st half of the above proof is a special case of the one for [1, Theorem

5.7]. Indeed, the following generalization holds: if O(G) is the regular algebra of a

compact quantum group G, and A = O(G′) is an inner unitary Hopf ∗-subalgebra of

O(G) closed under the adjoint action, and such that O(G) is finitely generated over A,

then O(G) is also inner unitary. To see this, one can observe that the proof of [1, Theorem
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5.7] as its commutativity assumption on A was only to make sure that O(G) is faithfully

flat over A, which holds in the above setting [25].

5 Strong 1-Boundedness of Quantum Automorphism Group Factors

Let (M, τ) be a tracial von Neumann algebra, and let X = (X1, . . . ,Xn) be an n-tuple

of self-adjoint elements of M and Y another such m-tuple. Recall Voiculescu’s relative

microstates free entropy χ(X : Y) introduced in [55], which we from now on will refer to

as just relative free entropy. Using this, Voiculescu defined the (modified) free entropy

dimension

δ0(X) = n+ lim
ε↓0

χ(X + εS : S)

|log(ε)| ,

where S = (S1, . . . , Sn) is a free family of semicircular elements free from X. It satisfies

δ0(X) ≤ n and equality is attained for instance when X consists of n free semicircular

elements. Thus, a free group factor LFm admits a generating set with the property that

its free entropy dimension is precisely m. While it is unknown whether this number is

a W∗-invariant in general, the related property of strong 1-boundedness introduced by

Jung does satisfy this.

Definition 5.1 ([42]). Let r ∈ R, then we call X an r-bounded set if and only if there exists

a constant K ≥ 0 such that for sufficiently small ε we have the estimate

χ(X + εS : S) ≤ (r − n)|log(ε)| + K.

We call X a strongly 1-bounded set if and only if it is a 1-bounded set and it contains an

element with finite free entropy (relative to the empty set).

Note that being r-bounded is a strengthening of the inequality δ0(X) ≤ r. For a

self-adjoint element to have finite free entropy, it is sufficient that its spectral measure

with respect to τ admits a bounded density with respect to the Lebesgue measure.

Definition 5.2 ([42]). A finite von Neumann algebra M has property (J) if any finite set

of self-adjoint generators is 1-bounded and is strongly 1-bounded if it admits a strongly

1-bounded generating set.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/20/17749/7095790 by M
edical Sciences Library user on 22 February 2024



Crossed Product Equivalence of Quantum Automorphism Groups 17771

Jung proved a remarkable result that any tracial vonNeumann algebra admitting

a strongly 1-bounded generating set has property (J) [42]. In particular, these properties

are equivalent for finitely generated von Neumann algebras.

Now, let us note the following key technical ingredient, which is a slight modifi-

cation of [42, Theorem 5.3].

Proposition 5.3. Let A ⊂ B be an inclusion of tracial von Neumann algebras with A
strongly 1-bounded. Let {uj}∞j=1 be a sequence of unitaries in B, and write A0 = A and

Ak for the von Neumann algebra generated by A and {u1, . . . ,uk}. Assume that for every

j, there is a diffuse self-adjoint element yj ∈ Aj−1 such that ujyju
∗
j ∈ Aj−1. Denote by A∞

the von Neumann algebra generated by A and all of the ujs. Then A∞ has property (J).

Proof. The only difference from [42, Theorem 5.3] is that, instead of assuming

ujuj−1u
∗
j ∈ Aj−1 and that uj is diffuse (the latter implicit in [42]), we allow uj to have

atoms and assume another diffuse self-adjoint element yj ∈ Aj−1 for the conjugation by

uj. This is still enough to have essentially the same proof as in [42, Theorem 5.3], noting

that [42, Lemmas 5.1 and 5.2] apply. �

Another ingredient we need is the permanence of strong 1-boundedness under

taking amplifications, as follows.

Proposition 5.4. ([39], cf. [38,Proposition A.13(ii)]; [42,Corollary 3.6]) LetM be a strongly

1-bounded II1-factor. For any t > 0, the amplification Mt is again strongly 1-bounded.

Next, let us recall some concepts from the theory of subfactors; see [33] and the

references therein for details. Let N ⊂ M be a finite index inclusion of II1-factors. Then,

the orthogonal projection e1 : L
2(M) → L2(N ) is called the Jones projection associated

with this inclusion. The von Neumann algebra M1 generated by M and e1 is again a

II1-factor, and the inclusion M ⊂ M1, called the basic construction, has the same index

as N ⊂ M. Moreover, M1 is the commutant of the right multiplication action of N on

L2(M). Iterating this construction, we obtain the Jones tower

M−1 ⊂ M0 ⊂ M1 ⊂ . . . , M−1 = N , M0 = M.

We denote the Jones projection of Mi−1 ⊂ Mi by ei ∈ B(L2(Mi−1)), so that Mi is

generated by Mi−1 and ei.
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A key observation is that Mi−2 and Mop
i are commutants of each other on

L2(Mi−1), so that Mi and Mi−2 are amplifications of each other. In particular, M2i is

always an amplification of M, while M2i−1 is always an amplification of N .

There is also a subfactor N1 ⊂ N such that N ⊂ M is isomorphic to its basic

construction. Repeating this construction, we obtain the Jones tunnel

N−1 ⊃ N0 ⊃ N1 ⊃ . . . , N−1 = M, N0 = N ,

and we obtain corresponding Jones projections e−i ∈ Ni−1 for i ≥ 1. Again, N2i is an

amplification of N , while N2i−1 is an amplification of M.

5.1 Strong 1-boundedness of quantum automorphism group factors

We are now ready for the proof of the main technical result of this section.

Theorem 5.5. Assume that we have a unital finite index inclusionN ⊂ M of II1-factors.

Then N is strongly 1-bounded if and only if M is strongly 1-bounded.

Proof. Assume that M is strongly 1-bounded. To show that N is strongly 1-bounded, it

is enough to have the same for M1 by Proposition 5.4.

Take the 1st Jones projection e1 as above, and set

u1 = 1 − 2e1, un = 1 (n > 1).

We want to use Proposition 5.3 for A = M, B = M2, and {un} ⊂ B, to conclude that

M1 = M ∨ {un | n = 1, 2, . . . } is strongly 1-bounded. It is enough to find a diffuse self-

adjoint element x ∈ M that commutes with e1, as we would have

u1xu
∗
1 = x ∈ M.

Since e1 is in the commutant of N , any choice of diffuse x = x∗ ∈ N will do.

Conversely, assume that N is strongly 1-bounded. We can then simply apply the

same argument as before. Indeed, M is generated by N and the Jones projection for

N1 ⊂ N . �

Corollary 5.6. Assume that we have a unital finite index inclusion N ⊂ M of

II1-factors. If at least one of N and M is strongly 1-bounded, then all of the II1-factors

in the Jones tower and tunnel are strongly 1-bounded.
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Example 5.7. An interesting source of finite index inclusions comes from the graded

twists of compact quantum groups introduced in [14]. Using this technique, one can

realize L∞(O+J
2m) as an index 4 subfactor of L∞(O+

2m)⊗M2 (Examples 3.3 and 2.17 in [14]).

Concretely, one obtainsO(O+J
2m) as a Hopf subalgebra ofO(O+

2m)�α Z2 via the embedding

uJij �→ uij ⊗ g, where g is the generator of Z2 and α(u) = −J2muJ2m. One then takes the

crossed product by the dual action.

It was shown in [22] that L∞(O+
n ) is strongly 1-bounded for all n ≥ 3. Building

upon their techniques, the case of L∞(O+J
2m) was settled for all m ≥ 2 in [32]. With

Theorem 5.5 and the graded twist technique in hand, we obtain an alternative proof

for the latter case.

Corollary 5.8. Let B be a C∗-algebra such that dimB = n2 with n ≥ 3. Then L∞(Aut+(B))

is a strongly 1-bounded II1-factor.

Proof. The factoriality of L∞(Aut+(B)) is proved in [17], so it remains to prove the strong

1-boundedness.

Since L∞(Aut+(Mn)) is an index 2 subfactor of L∞(O+
n ) [17], it must be strongly

1-bounded as soon as n ≥ 3. By Corollary 3.6, L∞(S+
n2) is a finite index subfactor

of L∞(Aut+(Mn)) ⊗ Mk for some k. Hence, L∞(S+
n2) must be strongly 1-bounded. As

for the general B with dimB = n2, again by Corollary 3.6, we have a finite index

inclusion of L∞(S+
n2) in L

∞(Aut+(B))⊗M� for some �; hence, L∞(Aut+(B)) must be strongly

1-bounded. �
Similar arguments applied to embeddings for the linking algebras discussed in

Remark 3.5 give the following additional corollary.

Corollary 5.9. Let Bi for i = 1, 2 be finite dimensional C∗-algebras such that dimB1 =
dimB2 = n2 with n ≥ 3. Then the linking algebra O12 = O(Aut+(B1), Aut

+(B2))

is nontrivial. Let L12 be the tracial von Neumann algebra coming from the GNS-

construction for the trace ω12 on O12. Then L12 is strongly 1-bounded.

5.2 Lack of strong 1-boundedness for free unitary group factors

We next show that the free unitary quantum groups U+
n give II1-factors L

∞(U+
n ) that are

not strongly 1-bounded, in contrast to the quantum groups O+
m and Aut+(B).

Let us begin with a few remarks on the behaviour of r-boundedness under

algebraic manipulations and free products. It is well known that the value of the free

entropy dimension of some finite tuple of self-adjoint elements in a tracial von Neumann

algebra depends only on the generated ∗-algebra [56]. We show that this also holds for

r-boundedness.
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Proposition 5.10. Let (A, τ) be a tracial von Neumann algebra, and let X = (X1, . . . ,Xn)

and Y = (Y1, . . . ,Ym) be finite tuples of self-adjoint elements of A. Assume that X and Y

generate the same ∗-algebra. Then X is r-bounded if and only if Y is r-bounded.

Proof. Assume that X is r-bounded. By assumption, there exist noncommutative poly-

nomials P1, . . . , Pm in n variables such that Yj = Pj(X) for 1 ≤ j ≤ m. It is clear that the

conditions of [32, Lemma 4.1] are met, and so we can conclude that X ∪ Y is r-bounded.

But then [42, Lemma 3.1] implies that Y is r-bounded. By symmetry, we are done. �

We now investigate free products of ri-bounded sets.We get at least one estimate

for free from the subadditivity of relative free entropy.

Lemma 5.11. Let X(1), . . . ,X(i) for some i ≥ 2 be such that X(j) is an rj-bounded set for

1 ≤ j ≤ i. Then ∪jX
(j) is (r1 + · · · + ri)-bounded.

Of course, if the sets X(j) are free, one expects this to be the optimal level of

boundedness (provided each rj was optimal). Here, optimal is meant in the sense that

δ0

⎛
⎝⋃

j

X(j)

⎞
⎠ = r1 + · · · + ri.

This is not known in general even for just the free entropy dimension. However, the

following does hold by [23].

Proposition 5.12. Let Ai for 1 ≤ i ≤ n be Connes embeddable diffuse finite von

Neumann algebras. Assume that X(i) generates Ai and δ0(X
(i)) = 1 for all i. Then, in

∗ni=1Ai, we have δ0(
⋃
X(i)) = n.

Proof. This follows from [23, Proposition 2.4 and Corollary 4.8]. �

Proposition 5.13. For any n ≥ 2 and m ≥ 3, the II1-factors L
∞(U+

n ) and L∞(O+
m) are not

isomorphic.

Proof. Since L∞(U+
2 ) ∼= LF2, which is not strongly 1-bounded, we may assume that

n ≥ 3.

Consider L∞(O+
n ∗ O+

n ), and let U (k) = {u(k)
ij }ni,j=1 with k = 1, 2 be the two free sets

of matrix coefficients of the fundamental representations. Then δ0(U (1) ∪ U (2)) = 2. We

now use again the graded twist technique of [14] (compare with Example 5.7 above). In

their Examples 3.6 and 2.18, it is shown how to realize U+
n as a graded twist of O+

n ∗ O+
n
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by Z2. The Z2 action onO+
n ∗O+

n is the one that swaps the two free copies of the generators

of O+
n . Taking once again the crossed product by the dual action, it follows that L∞(U+

n )

appears as a finite index subfactor of L∞(O+
n ∗ O+

n ) ⊗ M2 and hence cannot be strongly

1-bounded. �

6 Unitary Error Bases and Crossed Product Isomorphisms

In this final section,we outline how the existence of “small” finite-dimensional represen-

tations of the linking algebraO(Aut+(B),S+
N) as in Proposition 4.5 is intimately related to

the construction of unitary error bases in quantum information theory. Note that a finite

dimensional representation of the linking algebra can be interpreted as the isomorphism

game between B and CN having a quantum winning strategy. In fact, it was the study of

quantum graph colourings in [21] and their implementation via generalized unitary error

bases that initially inspired the authors to the concrete crossed product isomorphisms

for quantum automorphism groups that are derived in this section.

Definition 6.1. Let n ∈ N. A unitary error basis is a basis {ua}n
2

a=1 of Mn consisting of

unitary matrices that are orthogonal with respect to the normalized trace inner product:

tr(u∗
aub) = δa,b (1 ≤ a,b ≤ n2).

We note that an equivalent characterization of a unitary error basis in Mn is a

family of unitaries {ua}n
2

a=1 with the following depolarization property:

n2∑
a=1

u∗
axua = nTr(x)1.

Let (|i〉)ni=0 be a standard basis of Cn, and put

|φ〉 = 1√
n

n−1∑
i=0

|ii〉 = 1√
n

n−1∑
i=0

|i〉 ⊗ |i〉 ∈ Cn ⊗ Cn.

Let us further fix a primitive n-th root of unity ω. Then the generalized Pauli matrices

Xn, Zn ∈ Mn are defined to be

Xn |j〉 = ωj |j〉 , Zn |j〉 = |j + 1〉 , (6.1)
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where the index is computed modulo n. We then put Ti,j = Xi
nZ

j
n for 0 ≤ i, j ≤ n− 1, and

∣∣∣φi,j
〉
= (Ti,j ⊗ In) |φ〉 .

The Pauli matrices satisfy the commutation relationXnZn = ωZnXn, andwe have tr(Ti,j) =
δi,0δj,0. Thus, {Ti,j | 0 ≤ i, j ≤ n− 1} is a unitary basis for (Mn, tr), called the Weyl unitary

error basis. On the other hand, {
∣∣∣φi,j

〉
| 0 ≤ i, j ≤ n−1} is an orthonormal basis for Cn⊗Cn,

called a maximally entangled basis.

6.1 Finite dimensional representations of the linking algebra

Let us beginwith a concrete presentation ofO(Aut+(B)). Throughout the section,wework

with a multimatrix decomposition

B =
m⊕
r=1

Mnr ,

and denote the canonical matrix units for Mns inside of B by E(s)
ij , 0 ≤ i, j ≤ ns − 1. Then

O(Aut+(B)) is the universal unital ∗-algebra generated by elements q(s,r)
(i,j),(k,�), 1 ≤ s, r ≤ m,

0 ≤ i, j ≤ ns − 1, 0 ≤ k, � ≤ nr − 1, satisfying

1.
∑nr−1

v=0 q(s,r)
(i,j),(k,v)

q(s′,r)
(i′,j′),(v,�) = δji′δss′q

(s,r)
(i,j′),(k,�);

2.
∑ns−1

v=0 n−1
s q(s,r)

(i,v),(k,�)q
(s,r′)
(v,j),(k′,�′) = δ�k′δrr′n

−1
r q(s,r)

(i,j),(k,�′);

3. q(s,r)∗
(i,j),(k,�) = q(s,r)

(j,i),(�,k);

4.
∑m

s=1
∑ns−1

i=0 q(s,r)
(i,i),(k,�) = δk�;

5.
∑m

r=1
∑nr−1

k=0 nrq
(s,r)
(i,j),(k,k) = nsδij.

The coproduct on O(Aut+(B)) is given by

	(q(r,s)
(i,j),(i′j′)) =

m∑
z=1

nz−1∑
k,�=0

q(r,z)
(i,j),(k,�) ⊗ q(z,s)

(k,�),(i′,j′). (6.2)

Then the coaction of O(Aut+(B)) on B is given by

ρ(E(s)
ij ) =

m∑
r=1

nr−1∑
k,�=0

q(s,r)
(i,j),(k,�) ⊗ E(r)

k� .

We now proceed to present a finite-dimensional representation of the linking

algebra O(Aut+(B),S+
dimB). Put N = dimB, d = n1n2 . . .nm, and identify Md

∼= Mn1
⊗
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. . .Mnm in the usual way. For T ∈ Mnr , we put

T(r) = In1
⊗ In2

⊗ · · · ⊗ Inr−1
⊗ T ⊗ Inr+1

⊗ · · · ⊗ Inm ∈ Md.

For each 1 ≤ r ≤ m, let us write the Weyl error basis of Mnr as Ur,i,j = Ti,j. We

then take, for 1 ≤ s ≤ m, 0 ≤ a,b < ns, the elements

Ps,a,b =
nr−1∑
i,j=0

Ei,j ⊗ P(s)
(a,b),(i,j) ∈ Mns ⊗Md ⊂ B⊗Md, P(a,b),(i,j) = 1

ns
U∗
s,a,bEi,jUs,a,b.

Now we can present a concrete representation of the linking algebra as in

Proposition 4.5, but with a smaller dimension than the one given in its proof. Write

the standard basis of minimal projections in the abelian C∗-algebra CN as {es,a,b} for

1 ≤ s ≤ m and 0 ≤ a,b < ns.

Proposition 6.2. Under the above setting, the map

ρ̂ : CN → B⊗Md, es,a,b �→ Ps,a,b

is a unital ∗-homomorphism that is Plancherel trace covariant. In particular, the linking

algebraO(Aut+(B),S+
N) admits a nonzero ∗-homomorphism π toMd characterized by ρ̂ =

(id ⊗ π)ρ.

Proof. When m = 1, this result is exactly [20, Proposition 7.2]. The general case only

requires some small modifications of the proof there.

Let us first fix 1 ≤ s ≤ m. First, the polarization property implies

∑
a,b

Ps,a,b = Ins ⊗ Id.

Next, each Ps,a,b is a projection by a standard calculation. Moreover, the orthogonality

of (Us,i,j)i,j implies that the Ps,a,b and Ps,a′,b′ are mutually orthogonal. Since we also have

Ps,a,bPs′,a′,b′ = 0 for all s 	= s′, it follows that

ρ̂ : CN → B⊗Md, ρ̂(es,a,b) = Ps,a,b

defines a ∗-homomorphism.
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We also have

(nsTrns ⊗ id)(Ps,a,b) = Id;

hence, (ψ ⊗ id)(Ps,a,b) = 1
N = ψ(es,a,b). This shows the compatibility with Plancherel

traces. The existence of π then follows from the universal properties of the algebras

under consideration. �

Now, let u(s,x,y),(r,v,w) denote the matrix coefficients of O(S+
N) corresponding to

the basis (es,x,y)s,x,y of CN . For each 1 ≤ s ≤ m, we fix a primitive ns-th root of unity ωns .

Theorem 6.3. In the above setting, there are unital ∗-homomorphisms

π : O(Aut+(B)) → Md ⊗Md ⊗ O(S+
N), ρ : O(S+

N) → Md ⊗Md ⊗ O(Aut+(B)),

for d = n1 · · ·nm, that are compatible with traces induced by the Haar traces (i.e., (id ⊗
⊗id⊗hS+

N
)π = hAut+(B)(·)(1⊗1) and (id⊗⊗id⊗hAut+(B))ρ = hS+

N
(·)(1⊗1)). These morphisms

are characterized by

π(q(s,r)
(i,j),(k,�)) = 1

ns

ns−1∑
x,y=0

nr−1∑
v,w=0

ω
−x(i−j)
ns ω

−v(k−�)
nr E(s)

i−y,j−y ⊗ E(r)
k−w,�−w ⊗ u(s,x,y),(r,v,w),

ρ(u(s,x,y),(r,v,w)) = 1

nr

ns−1∑
i,j=0

nr−1∑
k,�=0

ω
x(i−j)
ns ω

v(k−�)
nr E(s)

i−y,j−y ⊗ E(r)
k−w,�−w ⊗ q(s,r)

(i,j),(k,�).

Proof. As remarked in the proof of Theorem 4.3, the existence of a nonzero represen-

tation O(Aut+(B),S+
N) → Md canonically gives rise to trace-preserving embeddings π , ρ

with the correct domains and ranges. The specific form of π , ρ described in the statement

of the present theorem follows if we choose to use the Weyl unitary error bases in the

representation O(Aut+(B),S+
N) → Md supplied by Proposition 6.2. �

Again, it is convenient to write the homomorphisms π and ρ in a different form.

Let Xnr , Znr ∈ Mnr be generalized Pauli matrices as in (6.1). In the tensor product

Mn1
⊗Mn1

⊗Mn2
⊗Mn2

⊗ · · · ⊗Mnm ⊗Mnm ,
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we write ϕ[s]
ij for the projection

In1
⊗ In1

⊗ · · · ⊗ Ins−1
⊗ Ins−1

⊗
∣∣∣φi,j

〉 〈
φi,j

∣∣∣ ⊗ Ins+1
⊗ Ins+1

⊗ · · · ⊗ Inm ⊗ Inm .

Then the projections {ϕ[s]
ij | 0 ≤ i, j ≤ ns − 1, 1 ≤ s ≤ m} form a projection valued measure

with N outcomes in this rearranged tensor product Md ⊗Md. Similarly, we write T [s]
i,j for

the operator

In1
⊗ In1

⊗ · · · ⊗ Ins−1
⊗ Ins−1

⊗ (Xi
nsZ

j
ns ⊗ Ins) ⊗ Ins+1

⊗ Ins+1
⊗ · · · ⊗ Inm ⊗ Inm .

We set X [s] = T [s]
1,0 and Z[s] = T [s]

0,1.

For each 1 ≤ r, s ≤ m, we set Q(s,r) = ∑ns−1
i,j=0

∑nr−1
k,�=0 E

(s)
ij ⊗ E(r)

k� ⊗ q(s,r)
(i,j),(k,�). Then we

compute

(idd ⊗ idd ⊗ π)(Q(s,r))

= 1

ns

∑
i,j,k,�

∑
x,y,v,w

ω
−x(i−j)
ns E(s)

ij ⊗ ω
−v(k−�)
nr E(r)

k� ⊗ E(s)
i−y,j−y ⊗ E(r)

k−w,�−w ⊗ u(s,x,y),(r,v,w).

After a shuffle, we see that the image of (idd⊗ idd⊗π)(Q(s,r)) inM⊗4
d ⊗O(S+

dim(B)
) is given

by

nr

ns−1∑
x,y=0

nr−1∑
v,w=0

ϕ[s]−x,y ⊗ ϕ[r]−v,w ⊗ u(s,x,y),(r,v,w).

Similarly, we have

ρ(u(s,x,y),(r,v,w)) = 1

nr

nr−1∑
i,j=0

ns−1∑
k,�=0

ω
x(i−j)
ns E(s)

i−y,j−y ⊗ ω
v(k−�)
nr E(r)

k−w,�−w ⊗ q(s,r)
(i,j),(k,�)

= (T [s]
x,−y ⊗ T [r]

v,−w ⊗ 1)

(
1

nr
Q(s,r)

)
(T [s]

x,−y ⊗ T [r]
v,−w ⊗ 1)∗.

6.2 Iterated crossed product isomorphisms

Next, let us establish a parallel of Corollary 3.6, but with smaller group actions (using

� instead of �2). For 1 ≤ t ≤ m, we define algebra automorphisms α1,t,α2,t,α3,t,α4,t on
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O(Aut+(B)) by

α1,t(q
(s,r)
(i,j),(k,�)) =

⎧⎨
⎩
q(s,r)

(i,j),(k,�) (s 	= t)

ω
i−j
nt q

(s,r)
(i,j),(k,�) (s = t),

α3,t(q
(s,r)
(i,j),(k,�)) =

⎧⎨
⎩
q(s,r)

(i,j),(k,�) (r 	= t)

ωk−�
nr q(s,r)

(i,j),(k,�) (r = t),

α2,t(q
(s,r)
(i,j),(k,�)) =

⎧⎨
⎩
q(s,r)

(i,j),(k,�) (s 	= t)

q(s,r)
(i+1,j+1),(k,�) (s = t),

α4,t(q
(s,r)
(i,j),(k,�)) =

⎧⎨
⎩
q(s,r)

(i,j),(k,�) (r 	= t)

q(s,r)
(i,j),(k+1,�+1)

(r = t).

In α2 and α4, the shifts (if applicable) are done with indices modulo nt.

From the above presentation, we see that αi,t is an automorphisms of order nt for

all i. Moreover, α1,t and α3,t′ commute for all t, t′ and α2,t and α4,t′ commute for all t, t′.
Thus, we have obtained group actions of the group � = ∏m

t=1(Znt × Znt) on O(Aut+(B)).

Proposition 6.4. The actions αi,t preserve the Haar trace of O(Aut+(B)).

Proof. By (6.2), the automorphism α1,t is a right comodule endomorphism in the sense

that

(α1,t ⊗ id) ◦ 	 = 	 ◦ α1,t.

Combinedwith the right invariance condition (id⊗h)◦	(x) = h(x)1,we obtain h◦α1,t = h.

The other cases are proved in the sameway (with left equivariance and invariance

for α3,t and α4,t). �

Next,we construct the crossed productO(Aut+(B))�α1,α3�,which is the universal

∗-algebra generated by elements q(s,r)
(i,j),(k,�) and z1,t, z3,t′ , such that

• the elements q(s,r)
(i,j),(k,�) generate a copy of O(Aut+(B));

• zd1,t = zd3,t = 1 and z∗
1,t = zd−1

1,t and z∗
3,t = zd−1

3,t ; and [z1,t, z3,t′ ] = 0; and

• z1,tq
(s,r)
(i,j),(k,�)z

∗
1,t = α1,t(q

(s,r)
(i,j),(k,�)) and z3,tq

(s,r)
(i,j),(k,�)z

∗
3,t = α3,t(q

(s,r)
(i,j),(k,�)).

We consider the trace on this algebra induced by h.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/20/17749/7095790 by M
edical Sciences Library user on 22 February 2024



Crossed Product Equivalence of Quantum Automorphism Groups 17781

The automorphisms α2,τ ,α4,τ ′ onO(Aut+(B)) extend to trace-preserving automor-

phisms on O(Aut+(B)) �α1,α3 � by setting

α2,τ (z3,t) = z3,t, α2,τ (z1,t) =
⎧⎨
⎩
z1,t τ 	= t

ω−1
nτ
z1,t τ = t,

α4,τ (z1,t) = z1,t, α4,τ (z3,t) =
⎧⎨
⎩
z3,t τ 	= t

ω−1
nτ
z3,t τ = t.

Theorem 6.5. Under the above setting, the homomorphism π in Theorem 6.3 extends to

a ∗-isomorphism

(O(Aut+(B)) �α1,α3 �) �α2,α4 � → Md ⊗Md ⊗ O(S+
N)

that intertwines the traces induced by the Haar traces.

Proof. We extend π by the following formula on the generators of two copies of �:

π(z1,t) = X(t)
nt ⊗ Id ⊗ 1, π(z3,t) = Id ⊗ X(t)

nt ⊗ 1,

π(z2,t) = Z(t)
nt ⊗ Id ⊗ 1, π(z4,t) = Id ⊗ Z(t)

nt ⊗ 1,

with generalized Pauli matrices as in (6.1). The compatibility with the original π on

O(Aut+(B)) follows from explicit presentation of (idd ⊗ idd ⊗ π)(Q(s,r)) in the previous

section. �

We thus see that theWeyl unitary error basis ofMd⊗Md, together with the image

of π that was again defined throughWeyl unitary bases of direct summandsMnr of B and

maximally entangled bases of Cnr ⊗ Cnr , generate a matrix amplification of O(S+
N).
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There is a similar extension of the homomorphism ρ. On the algebra O(S+
N), we

define ∗-algebra automorphisms βγ ,t, 1 ≤ γ ≤ 4, 1 ≤ t ≤ m, by

β1,t(u(s,x,y),(r,v,w)) =
⎧⎨
⎩
u(s,x,y),(r,v,w) (s 	= t)

u(s,x+1,y),(r,v,w) (s = t),

β3,t(u(s,x,y),(r,v,w)) =
⎧⎨
⎩
u(s,x,y),(r,v,w) (r 	= t)

u(s,x,y+1),(r,v,w) (r = t),

β2,t(u(s,x,y),(r,v,w)) =
⎧⎨
⎩
u(s,x,y),(r,v,w) (s 	= t

u(s,x,y),(r,v−1,w) (s = t),

β4,t(u(s,x,y),(r,v,w)) =
⎧⎨
⎩
u(s,x,y),(r,v,w) (r 	= t)

u(s,x,y),(r,v,w−1) (r = t).

Evidently, each βγ ,t is an automorphism on O(S+
N) of order nt, while β1,t ◦ β3,τ = β3,τ ◦ β1,t

and β2,t ◦ β4,τ = β4,τ ◦ β2,t for all 1 ≤ t, τ ≤ m. We thus get a group action of � on O(S+
N).

Again these preserve the Haar trace as in Proposition 6.4.

As before we form the crossed product

O(S+
N) �β1,β3 �,

which is the universal ∗-algebra generated by elements u(s,x,y),(r,v,w), 1 ≤ r, s ≤ m, 0 ≤
x, y ≤ ns − 1, 0 ≤ v,w ≤ nr − 1, and z1,t, z3,t, 1 ≤ t ≤ m, satisfying the following:

• the elements u(s,x,y),(r,v,w) satisfy the relations of the fundamental unitary in

O(S+
N);

• znt1,t = 1 = znt3,t and z∗
1,t = znt−1

1,t and z∗
3,t = znt−1

3,t for all 1 ≤ t ≤ m;

• [z1,t, z3,τ ] = 0 for all t, τ ;

• [z1,t, z1,τ ] = [z3,t, z3,τ ] = 0 for all t, τ ; and

• z1,tAz
∗
1,t = β1,t(A) and z3,tAz

∗
3,t = β3,t(A) for all A ∈ O(S+

N).
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The automorphisms β2,t,β4,t extend to O(S+
N) �β1,β3 � by setting

β2,t(z3,τ ) = z3,τ ∀1 ≤ τ ≤ m, β2,t(z1,τ ) =
⎧⎨
⎩
z1,τ t 	= τ

ω−1
nt z1,τ t = τ

β4,t(z1,τ ) = z1,τ , ∀1 ≤ τ ≤ m, β4,t(z3,τ ) =
⎧⎨
⎩
z3,τ t 	= τ

ω−1
nt z3,τ t = τ .

Theorem 6.6. Under the above setting, the homomorphism ρ in Theorem 6.3 extends to

a ∗-isomorphism

O(S+
N) �β1,β3 � �β2,β4 � → Md ⊗Md ⊗ O(Aut+(B))

that intertwines the traces induced by the Haar traces.

Proof. We get this by defining ρ(zi,t) by the same formula as in the proof of Theorem

6.5. �
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