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We compare the algebras of the quantum automorphism group of finite-dimensional
C*-algebra B, which includes the quantum permutation group S;;, where N = dim B. We
show that matrix amplification and crossed products by trace-preserving actions by a
finite Abelian group I' lead to isomorphic x-algebras. This allows us to transfer various
properties such as inner unitarity, Connes embeddability, and strong 1-boundedness

between the various algebras associated with these quantum groups.

1 Introduction

Given a finite dimensional C*-algebra B equipped with a faithful state ¢, Wang [58] con-
structed the quantum automorphism group Aut™ (B, ) of the finite measured quantum
space (B, ¥). By construction, it is a C*-algebraic compact quantum group whose under-
lying Hopf *-algebra O(Aut™ (B, y)) is defined to be the universal x-algebra generated
by the coefficients of a x-coaction on B that leaves ¢ invariant. In particular, when we

consider the “Plancherel” trace ¢ on B, the canonical tracial state invariant under the

Received March 13, 2022; Revised October 1, 2022; Accepted February 20, 2023
Communicated by Prof. Dan-Virgil Voiculescu

© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please
e-mail: journals.permission@oup.com.

20z Aleniged zz uo Jasn Aleiq seousIog [eaIpalN Aq 06.560./61L.1/0Z/€Z0Z/210ME/UIW/WO0d"dNO"0ILISPEOE)/:SARY W) PAPEOUMOQ


https://doi.org/10.1093/imrn/rnad060

17750 M. Brannan et al.

classical automorphism group Aut(B), then Aut™(B) = Aut(B, ¥) has a close analogy with
Aut(B), as the Abelianization of O(Aut™(B)) becomes the function algebra O(Aut(B)).

There are two extreme choices for B: on the one hand is the abelian B = CV;
on the other is the full matrix algebra B = M,,. In the former case, Autt(CV) is the
quantum permutation group SIJ(, that has a close analogy to the permutation group Sy
and is accessible via various combinatorial methods. In the latter case, Aut*(M,,) can
be identified with the projective version of the quantum orthogonal group O;; [4], which,
besides combinatorial methods, also allows analogy with classical functional analysis
on the orthogonal group O,,. This kind of correspondence is what we are going to exploit
in this work.

In the framework of operator algebraic quantum groups, operator algebraic
completions of O(Aut*(B)) are known to have various interesting properties. In general,
if dim B > 5, it is known that the reduced C*-algebra C"(Aut™(B)) is non-nuclear, exact,
simple, with unique trace, and possesses the complete metric approximation property,
while the von Neumann algebra L>®(Aut*(B)) is a non-injective, weakly amenable,
strongly solid II,-factor with the Haagerup property [17, 29, 37, 40]. Moreover, O(S;\“,)
is residually finite-dimensional and consequently L*(S;;) has the Connes embedding
property (CEP), for all N [18].

The above results lead to a question: how much do the operator algebras
C"(Aut*(B)) and L*°(Aut™ (B)) actually depend on the initial data B? One key tool common
in the above works is the C*-tensor category of finite dimensional unitary representa-
tions of these quantum groups and induction of algebraic properties through monoidal
equivalence. In fact, the monoidal equivalence classes of the quantum groups Aut™(B)
are classified by the dimension of B [30]; hence, one may hope that the operator algebras
C"(Aut™(B)) or L°(Aut™*(B)) may be closely related (possibly even isomorphic) as we range
over B with dim B fixed. In particular, it is natural to ask if monoidal equivalence can be
used to transfer the CEP from L*°(Sy,) to all L>(Aut™ (B)).

At the C*-algebraic level, even when dimB is fixed, Voigt [57] showed that
C"(Aut*(B)) do depend on the choice of fiber functors realizing these quantum groups
out of the common category Rep(Aut™(B)) = Rep(SR}). Nonetheless, it is an interesting
question to ask to what degree the algebras above differ, on either the C*-algebraic or
the von Neumann algebraic level.

Our main result is that, up to crossed products by finite Abelian groups and
matrix amplification, there are some concrete relations between the algebras of these

quantum groups.

20z Aleniged zz uo Jasn Aleiq seousIog [eaIpalN Aq 06.560./61L.1/0Z/€Z0Z/210ME/UIW/WO0d"dNO"0ILISPEOE)/:SARY W) PAPEOUMOQ



Crossed Product Equivalence of Quantum Automorphism Groups 17751

Theorem A (Corollary 3.6, Theorem 6.5). Let N = dimB > 4. Then there is a finite
Abelian group T, a trace-preserving action a of I' on O(Aut*(B)), and another trace-
preserving action B of I' on the crossed product O(Aut*(B)) x, I', such that we have

an isomorphism of tracial x-algebras
O(Aut*(B)) x, T x4 T = My @ O(SH).

We prove two versions of this result for different values of k = ord(T"). Let us
write B = @, M,

n, and set d = [T, n,. Using cocycle deformation of Hopf algebras

and coactions, we obtain the above result for k = d* from a 2-cocycle induced from
a finite subgroup of Sy. However, we also show that the more efficient value k = d?
is achievable using techniques inspired by non-local games in quantum information
theory; in particular, a certain quantum colouring game of the so-called quantum
complete graph Kj [21].

Both of these ideas lead to the construction of certain concrete finite dimensional
representations of the linking algebra O(Aut*(B),S;\“,) associated with the monoidal
equivalence between Aut*(B) and Sj;. Combining this with the standard induction
argument, we can transfer finite dimensional approximation results on SZJ(, [18] to all

quantum automorphism groups.

Theorem B (Corollary 4.6). Let B be a finite dimensional C*-algebra and  be a faithful
tracial state on B. Then the Hopf *-algebra O(Aut™ (B, v/)) is residually finite-dimensional
and the von Neumann algebra L (Aut*(B)) has the CEP.

In fact, an even stronger form of residual finite-dimensionality holds for
O(Aut™ (B)). Recall that the Hopf *-algebra O(G) of a compact quantum group is called
inner unitary if it admits an inner faithful *-homomorphism into some M, [6, 18].
Inner unitarity of O(G) is a quantum generalization of the property of discrete group I'
admitting an embedding into a unitary group U, € M. Indeed, if O(G) = CT for some
discrete group I', then O(G) is inner unitary if and only if an embedding I' < U, exists.

In general, O(G) is residually finite-dimensional if it is inner unitary.

Theorem C (Proposition 4.8, Theorem 4.9). Let B be a finite-dimensional C*-algebra.
Assume that dim(B) lies outside the range [6,9]. Then O(Aut™(B)) is inner unitary. The
same conclusion also holds for the Hopf *-algebras O(0;)) for n # 3, where O} is the free

orthogonal quantum group.
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Strong l-boundedness is an important free probabilistic property of tracial
von Neumann algebras M introduced by Jung [42], that is, computable from any finite
generating set &/ C M and is a strengthened version of §,(1/) < 1 for Voiculescu's
modified free entropy dimension [55]. In particular, this is an obstruction to isomorphism
with another tracial von Neumann algebra with a generating set satisfying §,(U) > 1,
such as an interpolated free group factor.

While §3(f) could be difficult to compute in general, a useful estimate is given
in terms of ¢2-Betti numbers. Generalizing an estimate for the von Neumann algebras
of discrete groups [27, 54], when G is a compact matrix quantum group and U is the

standard set of generators coming from the fundamental representation, one has [19]
18U = 1= 876 + 57 (©G), (1.1)

where ﬂ,(cz)(@) are the ¢?-Betti numbers of the discrete dual of G defined by Kyed [44].

For our quantum groups of interest, we have the vanishing of ,3(32)(@) and ,3;2)(@)
[9, 11, 45]; hence, the standard generators satisfy §,({/) = 1. To upgrade this to the strong
1-boundedness, one needs to work with more precise algebraic relations and estimate
regularity and rank of the induced operators [43, 49]. This was successfully carried out
by the 1st author and Vergnioux for O} [22], and by the 2nd author for the quantum
orthogonal group O}” associated with the symplectic matrix [32].

Based on these results and our main results, we can now prove the strong

1-boundedness of Aut™ (B) for some cases, as follows.

Theorem D (Corollary 5.8). Let B be a C*-algebra such that dim B = n? with n > 3. Then
L>®(Aut™(B)) is a strongly 1-bounded II, -factor.

The starting point is the index 2 inclusion L*®(Aut™(M,,)) C L*°(0;}). Moreover,
Theorem A gives rise to finite index embeddings into the common overfactors of the von
Neumann algebras L™ (Autt(B)) with fixed dim B. Thus, the remaining task is to obtain
permanence of strong 1-boundedness under such relations.

In general, given a finite index inclusions of II, -factors N' C M, one expects
8o(X) —1=[M: N1 (8,(Y) — 1)

for generating sets X for A/ and Y for M as an analogue of the Nielsen-Schreier theorem

for inclusions of free groups. This theorem states that a finite index subgroup H of a free
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group G of rank r(G) must also be free and moreover that the rank r(H) of the subgroup

satisfies

r(d)—1=I[G:Hl(rG) —1).

This was investigated by Jung [41], where he proved, among other things, that this
equality holds if M = N ® M, for some k and Y is X together with the matrix units,
but in general only weaker inequalities were established.

Notice that Schreier’'s formula above suggests that having free entropy dimension
equal to 1 is preserved by finite index inclusions. We can prove this statement under the
stronger assumption of strong 1-boundedness. The following result was also indepen-

dently obtained by Srivatsav Kunnawalkam Elayavalli (private communication).

Theorem E (Theorem 5.5). Assume that A/ C M is a unital finite index inclusion of

II, -factors. Then N is strongly 1-bounded if and only if M is strongly 1-bounded.

As a consequence of Theorems A and E, we can prove that an infinite family of
quantum automorphism groups give rise to new examples of strongly 1-bounded II,-
factors that have neither Property I nor Property (T).

We also briefly consider the free unitary quantum groups U,. The estimate (1.1)
becomes 1 < §,(Uf) < 2 for this case [13], and the isomorphism L°°(U;) = LF, [3] suggests
that equality with the upper bound is likely to happen. While we cannot quite verify this,
we can show that L>°(U;}) is not strongly 1-bounded (Proposition 5.13). In particular, this

implies the non-isomorphism result L*(U;}) 2 L*(0},) for any n,m > 2.

1.1 Outline of the paper

In Section 2, we briefly review the necessary material on compact quantum groups (in

particular the quantum automorphism groups) and monoidal equivalences between them.

We give the 1st proof of Theorem A using cocycle deformation in Section 3.
Section 4 contains transference results for monoidal equivalence when the linking alge-
bra admits a finite dimensional representation and applies these results to the embed-
dings in Theorem A. This establishes Theorems B and C. We continue with applications
of Theorem A to strong 1-boundedness in Section 5. We recall the definition of strong
1-boundedness and some results from the theory of subfactors before establishing

Theorem E, the main technical result of the section, and proceed to derive Theorem D.

20z Aleniged zz uo Jasn Aleiq seousIog [eaIpalN Aq 06.560./61L.1/0Z/€Z0Z/210ME/UIW/WO0d"dNO"0ILISPEOE)/:SARY W) PAPEOUMOQ



17754 M. Brannan et al.

Additionally, we discuss lack of strong 1-boundedness for the free unitary quantum
groups.

In the final Section 6, we provide another proof of Theorem A using ideas from
unitary error bases and the theory of non-local games, which we first recall. This proof
leads to a more efficient version of Theorem A, with a smaller acting group and lower

dimensional matrix algebras.

2 Preliminaries
2.1 Compact quantum groups

For the basic theory of compact quantum groups and their representation categories, we
refer to the book [47].

Definition 2.1. A compact quantum group G consists of a unital Hopf x-algebra O(G)
with coproduct A: O(G) — O(G) ® O(G) together with a Haar functional, which is a
linear map h: O(G) — C satisfying the following properties:

e h is invariant in the sense that (t ® h)A(x) = h(x)1 = (h ® )A(x) for all
x € O(G);

¢ his normalized such that h(1) = 1;

e for any x € O(G), it holds that h(x*x) > 0.

We can associate two reduced operator algebras to G using the Haar functional
in the obvious way. The reduced C*-algebra C"(G) is the C*-algebra completion of O(G)
relative to the GNS representation induced by the Haar functional h, and the von
Neumann algebra of G, L% (G),is the von Neumann algebra C"(G)” generated by C"(G). If
the Haar functional is a trace, we say that G is of Kac type. Note that in this case L (G)
is a finite von Neumann algebra, and we consider (the canonical normal extension of) h
to be the canonical trace on L*°(G).

A unitary representation of G on a finite dimensional Hilbert space # is a unitary
corepresentation of O(G) on H. It is well known that the category of finite dimensional
unitary representations of G, denoted Rep(G), is a rigid C*-tensor category. A right
action of G is a right coaction of O(G) on some x-algebra A. More precisely, this is a
x-homomorphism §: A - A ® O(G) such that (¢ ® A)§ = (8§ ® 1) and (¢ ® €)§ = . Left
actions are defined similarly. Given such an action of G on A, we can define the algebra

of invariant elements A® as consisting of those a € A that satisfy §(a) = a ® 1. If it
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happens that A¢ = C1, we say that the action is ergodic. The action is called free if the
linearmap A® A - A® O(G) given by a® b — §(a)(b ® 1) is invertible.

There are many interesting examples of compact quantum groups. To close
this section, we define the free unitary and free orthogonal quantum groups, and in
the next section, we discuss in detail the family of examples known as the quantum

automorphism groups.

Definition 2.2 ([2, 53]). Let n > 2 be an integer, and choose complex invertible matrices
Q and F of size n such that Q is positive and FF € RI,. We define the following two

universal x-algebras:

owy) = (C<Vij |1<i,j<n, V= (v),;and ava~! are unitary>

00}) = (C<uij |1 <i,j<n, U= (u;); is unitary and U = FﬁF‘1>.

The Hopf *-algebra structure is then defined by

n
Awy) =D wy@wy;, SRIW=W, (®idW=1,.
k=1

where W = [wy]l € {V,U}. The resulting compact quantum groups are called the free

unitary quantum group Uar and the free orthogonal quantum group O}, respectively.

In terms of representation theory, both Uar and O; can be interpreted as the
universal compact quantum groups given by defining unitary irreducible representa-
tions V and U, respectively, with prescribed dual representations. The matrices Q and
F enter the picture to correct for the fact that the contragredient representation to
a unitary representation is not automatically unitary in the case of quantum groups.
Instead, it is in general necessary to correct by conjugating by some matrix to obtain the
dual representation. Then U is the universal compact quantum group for which that
conjugating matrix is precisely Q, and the same statement for F holds for O;,S with the
additional demand that its defining representation is self-dual.

If one makes the choice Q@ = F = I, it is customary to write UIJ; = U,J{ and
0f = O}. 0} and U, are always of Kac type. Moreover, their associated von Neumann
algebras are II, -factors and have been extensively studied (see for instance [16, 24, 29,

35, 36, 40, 52]). The only other choice (up to isomorphism) of F that leads to a Kac-type
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compact quantum group is OLm, where J,,, is the standard symplectic matrix of size 2m.

We will denote O}’Zm = 057, as it can be realized as a graded twist of o;. [14].

2.2 Quantum automorphism groups

Following Wang, we consider the quantum automorphism group of a finite measured

quantum space (B, ¥), as follows.

Definition 2.3 ([58]). Let B be a finite-dimensional C*-algebra B equipped with a faithful
state . The quantum automorphism group Aut™ (B, V) is the compact quantum group
with Hopf x-algebra O(Aut™ (B, ¥)) given by the universal unital x-algebra generated by

the coefficients of a coaction
p:B— O(Aut™ (B, v)) ® B,
satisfying the ¥ -invariance condition
id®@¥)px) =¥ x)1 (x € B).

By coefficients of the coaction p, we mean the set {(w ® id)p(x): x € B, w € B*}.

The Hopf *-algebra structure of O(Aut™(B,v)) is uniquely determined by the

above requirements. For example, the coproduct map
A: O(Aut® (B, ¥)) — O(Aut™ (B, v)) ® O(Aut™ (B, v))
can be computed from the coaction identity
(p®id)p = (1d ® A)p.

The quantum group Aut™ (B, ¥) can be regarded as a universal quantum analogue
of the compact group of x-automorphisms Aut(B) of B. More precisely, we call an
automorphism o € Aut(B) y-preserving if ¢ o « = . Denoting the subgroup of all ¥ -
preserving automorphisms by Aut(B, ¥) < Aut(B), one sees that the algebra of coordinate
functions O(Aut(B, ¥)) is precisely the abelianization of O(Aut* (B, ¥)).
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Definition 2.4. Let B be a finite-dimensional C*-algebra, and § > 0. A §-form on B is a
state on B such that mom* = §id, where m*: B — B®B is the adjoint of the multiplication

map m: B® B — B with respect to the Hermitian inner products associated with .

It suffices to understand the quantum automorphism groups Aut* (B, v) with v

a §-form due to the following result, a proof of which can be found in [29].

Proposition 2.5. Let B be a finite-dimensional C*-algebra B equipped with a faithful
state y. Fix an isomorphism B = ), B, corresponding to the coarsest direct sum
decomposition with the property that every B, is a C*-algebra and every restriction ¥|g_
becomes a §,-form for some §,.. Denote by ¢, the state obtained on B, by normalizing the

restriction |p . Then we have an isomorphism
O(Aut™ (B, y)) =+, O(Autt (B,, ¥,)) (2.1)

of Hopf x-algebras.

Example 2.6. Let B be a finite-dimensional C*-algebra, and fix an isomorphism B =
@®;L, M,, . Its Plancherel trace is the tracial state defined by

m nr B m
Y (4) = Z‘ Tim ) T (A (A= DA, B A, eM,).

r=1

This is the unique tracial §-form on B, and we have § = +/dim B.

Since the Plancherel trace ¥ is always an invariant state for the action of Aut(B)
on B, we have Aut(B, ) = Aut(B), so Aut* (B, ¥) can truly be regarded as the quantum
analogue of Aut(B). With this in mind, we shall often suppress the i-dependence in
our notation and simply write Aut™(B) = Aut' (B, ) for the remainder of the paper,

understanding that the Plancherel trace is used unless specified otherwise.

2.3 Monoidal equivalence and the linking algebra

Let G, and G, be monoidally equivalent compact quantum groups, that is, suppose that
there is a unitary monoidal equivalence of C*-tensor categories F: Rep(G;) — Rep(G,).
Such a situation is captured by the associated linking algebra, or Hopf—Galois object [10,
12], which we denote by O(G,, G,).
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This is a unital x-algebra equipped with a pair of commuting free ergodic

coactions
8,: O(Gy, Gy) — O(G)) ® O(Gy, Gy), 8,: O(Gy,Gy) — O(Gy, Gy) @ O(Gy).

We denote by w;,: O(G,, G,) — C the unique faithful invariant state, which is character-

ized by

w1,(X)1 = (h; ®id)8; (%) = (A @ hy)8y(x) (X € O(Gy, Gy)).

More concretely, O(G;, G,) has a linear basis of the form (x”

i)n,ij Where 7 runs over

Irr(G;), t runs over an index set for an orthonormal basis of H, and j runs over such
a set for Hp(,;,, with the convention XZ. = 1 when = is the trivial representation. Note that
each (possibly rectangular) matrix X" = [x7] € My(r) qrr)) ® O(Gy, G,) is unitary. Then

we can present the above maps as

dim(r) dim(F (1)) o
b4
8 (XZ) = Z u?k ®ij/ Sz(XZ') = Z X;Tk ® Upi wlz(X?j) = 81,77-
k=1 k=1

Here, the uf; are the matrix coefficients of the representation 7. As the §; are *-
homomorphisms, the algebra structure is also determined by this.

Exchanging the role of G; and G,, we get another linking algebra O(G,, G;) and
invariant state w,;. There is a canonical isomorphism O(G,, G;) = O(G,, G,)°P given by
y]’.g — (Xg.)*, where the matrix coefficients yj’; are defined analogously to XZ Moreover,
there exists a unital *-homomorphism 6,: O(G;) — O(G;,G,) ® O(G,, G,) defined on

matrix elements of unitary representations uZ € O(G;) by

dim(F(n))
OHup= 2, xEOvy
k=1

Note that 0, is state preserving, in the sense that
Ry (x)1 = (w1, ®1d)6; (%) = (d @ wy1)6,(x)  (x € O(Gy)).

Let G be a compact quantum group, and denote the dual x-algebra of O(G) by
U(G) (the x-structure is defined w*(a) = w(S(a)*) for w € U(G) and a € O(G)). We write
U(G x G) for the dual of O(G) ® O(G). The “coproduct” map A UG) — UG x G) is
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defined to be dual of the product map O(G) ® O(G) — O(G). See [47] for more details. In
the following, we are mostly interested in monoidal equivalences given by unitary dual

2-cocycles in the following sense.

Definition 2.7. A unitary dual 2-cocycle for G is given by a unitary element o € U(G x G)
such that

01,2912,3 = 02,391,23-

Here, 0y, 3 denotes (A ®id)(0) € U(G x G x G). Without losing generality, we can

assume the normalization condition

(e®id)(0) =1=(Id®€)(0)

for the trivial representation ¢: U4(G) — C, which we always do. Alternatively, we can

interpret o as a bilinear form O(G) x O(G) — C satisfying

o(agy), a’(l))o(a(z)azz), a’) = o(a’(l), a’(’l))o(a, a’(z)a’(’z)), o(l,a) =€(a) =0(a,l),

and unitarity for the convolution algebra structure.
Given such o and a left O(G)-comodule x-algebra B, we can twist the product of

B to a new associative product

1 2 1 2 1 2
b o b" = a(bpy) bi1)bz bz

where we denote the coaction as

B— O(G)®B, b by @by,

With the new involution (see, e.g., [15]) given by

b* =0 (S (b)), baybis) = "Bz, S~ by )b,

we obtain a x-algebra (B, ,-,), which we denote by _B. This cocycle deformation is
compatible with C*-structures: if B is a C*-algebra and B — B ® C%(G) is a C*-algebraic
coaction and o is as above, then a similar construction can be carried through, resulting
in a C*-algebra _B. See [48] for details. In the particular case of a finite-dimensional
C*-algebra B of interest to us, the resulting algebraic construction and C*-algebraic
construction coincide. We also note that if 4 is a G-invariant state on B, then i/ remains

a state when viewed as a functional on B.
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Similarly, when B has a right coaction of O(G), we can define a new associative

product by
1 2 —1.pl  £2 \pl £2
o 7 =07 (o o)l
and a compatible x-structure. We denote this *x-algebra by B 1.

Definition 2.8. [cf. [31]] With G and o as above, we denote by O(G)? the Hopf *-algebra
with the underlying coalgebra O(G) and algebra ,O(G) ,-1. We also write G° for the

compact quantum group represented by O(G)°.

Recall that G° can be directly characterized in terms of the structure of U (G?):
as an algebra it is the same as U(G), but the coproduct is given by A (T) = o A(T)o 1.
There is a unitary monoidal equivalence F: Rep(G) — Rep(G°), whose underlying
C*-functor is the identity functor and the tensor transform F(r) ® F(z') — F(w ® n’)

is given by the action of (x ® 7/)(c~!) on H, ®H,.

Remark 2.9. Up to isomorphism, any unitary monoidal equivalence F: Rep(G) —

Rep(G) satisfying dim H, = dim Hp,, is of this form. See [12, Section 4].

The linking algebra O(G?, G) is given by ,O(G) . More generally, if B is any unital
x-algebra and B — O(G) ® B is a coaction, then this same linear map defines a coaction
+B — O(G°) ® ,B. See [12, Proposition 4.11] and [31].

Remark 2.10. When B is a finite dimensional C*-algebra endowed with a left O(G)-
comodule structure and a G-invariant state v, the twisting B comes from the above
monoidal equivalence F up to an isomorphism. To be more precise, let R be the unitary
antipode on O(G). Then the opposite algebra B°® = {b°? | b € B} admits a right O(G)-
comodule x-algebra structure given by b°P b(()g ® R(b(y)). Together with the GNS inner
product for the invariant state ¥/ (b°P) = ¥ (b), we get an object of Rep(G) represented by
B°P. The corresponding Rep(G°)-algebra has the product

b'P,-b%P = o (R(b(;)), R(b%)) (b by ) (b',b* € B).

In other words, the corresponding left O(G)-comodule algebra is B with the twisted
product

bl,'b? = o7 (R(by)) Ribi))big) by, = (R® R0 ™)1 (bly), by)bi by,

o
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for the unitary antipode R of U(G). By [28, Proposition 5.3], 0 and R ® ﬁ)(o‘l)z1 are

cohomologous, hence the C*-algebra (B, ,-’) is isomorphic to ,B.

Turning to the quantum automorphism groups, they obey the same fusion rules
as SO(3) = Aut(M,). In fact, these compact quantum groups have the following rigidity

properties.

Theorem 2.11 ([4,46]). The compact quantum groups Aut™ (B, v) for a finite-dimensional
C*-algebra B and a é-form ¢ have the same fusion rules as SO(3). Conversely, when G is
a compact quantum group with the same fusion rules as SO(3), there is such B and ¢
satisfying G = Aut™ (B, ¥).

Note that if G compact quantum group that has the fusion rules of SO(3),
G = Aut™ (B, ) where B is, as a representation of G, represented by the direct sum of the
trivial representation and the one corresponding to the irreducible 3D representation of
S0(3).

Theorem 2.12 ([30]). Let (B;, ;) be finite-dimensional C*-algebras with §;-forms v;, for
i = 1, 2. Then the compact quantum groups Aut™ (B;, ¥;) are monoidally equivalent if and

only if 6, = §,.

In this case, the linking algebra can be characterized as the universal x-algebra

generated by the coefficients of a unital *-homomorphism

p:By > B ® O(Aut+(Bll ¥y, AUt+(le ¥3))

satisfying the y,-y, -invariance condition

(W1 @ Dpx) = ¢y(x)1 (x € By).

In fact, the nontriviality of this universal algebra characterizes the existence of monoidal
equivalence between Aut™ (B;, v;). Note that if v; are the respective Plancherel traces, we
have §; = ,/dim B;, and therefore, the corresponding quantum groups Aut™ (B;) (of interest

to us in this paper) are monoidally equivalent if and only if dim B; = dim B,.
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3 Isomorphisms from 2-Cocycle Deformations

In this section, we establish our 1st main result of the paper—that every quantum
automorphism group Aut™ (B) arises as a cocycle twist of a quantum permutation group
Sy. The special case when B = M, was established in [7]. The general case is a
straightforward generalization of the arguments there. We then apply this structure
result to establish our 1st crossed product isomorphisms.

Given natural numbers n,,...,n,,,put ¥, = {0 <i < n,}, X, = Y, x Y, and
X=X, []---11X,, We also write N = |X| = >, n?. Note that each X, has a free transitive

action of I', = Z,, x Z,, . This induces an embedding
F=T; x---xT, <SymX) = Sy.

Recall that ft has a T-valued nondegenerate 2-cocycle: up to a choice of identification

[, =T, and difference by coboundary, it can be written as
. 2ni,
a);([]ll.]z]l [klr kz]) = exp (n_Jlkz) .
¢

Let w, be a 2-cocycle cohomologous to o) satisfying w,(h,h~!) = 1. Concretely, we can
choose (h) € T such that ¥ (h)~2 = w,(h, h~!) and take v, = w},dV.

Then the product w; x --- x w,, is a (nondegenerate) 2-cocycle on I', which can
be presented as a convolution invertible map oy: O(I') x O(I') — C, with the additional

normalization

00(g.gH =1 (gel). (3.1)

Composing the restriction maps O(S;\r,) — O(Sy) — O), we obtain a convolu-

tion invertible map
o: O(SH) ® O(Sf) — C.

This shall be the cocycle of interest in the sequel.

Theorem 3.1. We have O(Sy)” = O(Aut™(P2; My, )).

Proof. The corepresentation category of (’)(SX,)" is monoidally equivalent to Rep S;;,

and the general classification result of such compact quantum groups, discussed in the
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previous section, implies
OS))° = O(Aut™ (B, ¥))

for some finite-dimensional C*-algebra B and a §-form , such that 82 = N. Moreover,
the cocycle twisting does not change the vector spaces underlying the representations,
hence we have B = C(X) as a vector space. We thus have 82 = N = dim B; hence, ¥ must
be the Plancherel trace on B.

By Remark 2.10, the product map of B is given by the composition of the action
of ¢ and the product map of C(X), which is the product map of ;C(X). Thatis, B = ,1C(X).
Now, by the product structure of o, each block X, of X gives a copy of M,, , while different

blocks remain orthogonal. This shows that
m
B={Pm,,
r=1

and we obtain the claim. [ |

Remark 3.2. It was kindly pointed out to us by an anonymous referee that the above
theorem actually admits quite a broad generalization, as follows. We thank the referee

for allowing us to include this result and for conveying the idea of the proof.

Theorem 3.3. Let (B, ¢) be finite dimensional C*-algebra equipped with a §-form ¢, and
let o be a unitary 2-cocycle for Aut™ (B, v). Then Aut* (B, ¥)° = Aut™(,B, y) canonically.

Proof. Let G = Aut'(B,v), and form B and G’ as described in Section 2. Recall that
+B =B and O(G°) = O(G) as comodules and coalgebras, respectively. Moreover, the map
+B — ,B® O(G?) is a y-preserving coaction. Hence, we obtain a surjective morphism of
Hopf *-algebras = : O(Aut®(,B,¥)) — O(G%). That is, G° < Aut*(,B,¢) as a quantum
subgroup. But since these two quantum groups have the same fusion rules, it follows
that ker 7 = {0} and thus G = Aut™ (,B, ¥). [ |

Corollary 3.4. In the above setting of Theorem 3.1, with B = @/, M, , there are h-
preserving actions of I'? on O(Sy;) and O(Aut™(B)) such that

C"(Sf;) x T2 = C"(Aut™ (B)) x I'?,

intertwining the induced traces.
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Proof. This is a consequence of the structure theory for the general 2-cocycle defor-
mation scheme (cf. [59, Proposition 9]), but let us elaborate on this for the reader’s
convenience.

Let A be a finite commutative group and A its Pontryagin dual. An action of A on
a C*-algebra A is the same thing as a grading A = P, _; Ay by A or a coaction a: A —
C*(A) ® A. For k € A, let us write «® (x) for the projection of x to 4.

Now, let o be a 2-cocycle on f\, normalized as in (3.1). The deformed algebra jA
is still graded by A. Let us denote the corresponding coaction map A — C*(A) ® +A by
oy

We claim that A x A is isomorphic to ;A x A. The corollary follows from this
by considering the action of A = T'? on O(S};) obtained by combining left and right
translations.

We identify ;A with the algebra A” generated by )\](:)(X)a on (2(A)®A fork € A and
a € Ay, where 1\’ is the regular o-representation 1\"8;, = o (k, k)8 . (Here, (5),_; is an
orthonormal basis for ¢2(A)). Then the coaction «, becomes o, : )»,(f) ®ar A Q® )»g’) ®a

on A”. Thus, the crossed product
CA)xA"= A xA

is represented by the C*-algebra on the right Hilbert A-module £2(A)®% ® A generated by
(xg); for g € Aand Y, A ® k,(ca) ® a®(x) for k € A and x € A. (Here, Xg € C(A) denotes
the characteristic function of {g}.)

Similarly, we obtain an algebra A’ = A instead of A” by removing o and an
analogous spatial presentation of A x A = C(A) x A’. Let V be the unitary operator
8 ® 8y > o (k™1, k)8 ® 8, on €2(A)®2. We show that ® = Ady,, conjugates C(A) x A” to
C(A) x A'.

Ifk € A and x € A”, the action of D (o, (x)(xg)1) On the vector §;, ® 8 ® b is given
by

> 8gx0 (k7 K)o (h, K)o (kT B, hK)8y; ® S ® @™ ()b
h

Using the cocycle identity and (3.1) for o, we see that this is equal to

Z U(h'g)‘sg,k‘shk X Shk’ ® Ol(h) (X)b
h
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This is equal to the action of

D 0(r, )0y, ® hy @ &P X)) (xg)y = D (R, 9 (@ (0) (xg)1,
h h

which is indeed in C(A) x A'. |

Remark 3.5. The above corollary also holds at the purely algebraic level, as

O(Sf) x % = O(Aut™ (B)) x I'?.

This can be seen either by analysing the proof, or by considering the induced coactions

of the coalgebras (’)(SZJ(,) = O(Aut™(B)). Moreover, we also get isomorphisms
O(Sf) x T? = O(Aut™ (B), Sjy) x ' = O(S;, Autt (B)) x I'?,
since O(Aut™ (B), Sj;) = ,O(S};) and similarly for the opposite linking algebra.
By the Takesaki-Takai duality [51], we obtain the following.

Corollary 3.6. In the setting of Corollary 3.4, there is a trace-preserving action of I'2 on
C"(Sy) x I'? such that

(C"(S§) ¥ T?) x T2 = C"(Aut™(B)) ® My,

where d = [[, n, = /II'[. Moreover, this isomorphism intertwines the natural traces on
both sides.

Another consequence of the crossed product isomorphism in Corollary 3.4 are

the embeddings (see [5, Lemma 4.1])

O(Aut® (B)) < My @ OSf) ® My = O(S) @ My &  O(Sf) — O(Aut™ (B)) ® Mya
(3.2)

and various parallels for the C*-algebraic and von Neumann algebraic settings, which
has further implications for the structure of the associated algebras Aut™(B) as we will
see in the next section.

In Section 6, we improve on the above and give an isomorphism between the

iterated crossed product by I and amplification by M.

20z Aleniged zz uo Jasn Aleiq seousIog [eaIpalN Aq 06.560./61L.1/0Z/€Z0Z/210ME/UIW/WO0d"dNO"0ILISPEOE)/:SARY W) PAPEOUMOQ



17766 M. Brannan et al.
4 Monoidal Equivalence and Matrix Models

We now consider applications of the above crossed product isomorphism results to the
study of various external approximation properties for the associated quantum group
algebras, including the Connes embedding property, residual finite dimensionality, and
inner unitarity. We begin by working in a slightly more general framework and consider
how these approximation properties can be transferred between monoidally equivalent

quantum groups.

Definition 4.1 ([18]). A unital x-algebra A is said to be residually finite-dimensional, or

RFD, if there is an injective x-homomorphism

A= HMdi

iel
for some index set I and a family of positive integers (d,);.;.

We consider this property for the x-algebras of the form O(G) for some compact
quantum group. When O(G) is RFD, then its Haar state h is an amenable trace and the
quantum group von Neumann algebra L°°(G) has the CEP [8]. Recall that a finite von
Neumann algebra (M, t) has the CEP if and only if there exists a t-preserving embedding

M — R®, where R® is an ultrapower of the hyperfinite II,-factor R.

4.1 Transfer of finite approximations

The following theorem shows that under the assumption of the existence of a nonzero
finite-dimensional *-representation of the linking algebra O(G,, G,) on a Hilbert space,
then one can transfer many approximate finitary representation-theoretic properties

from one quantum group to another.

Theorem 4.2. Let G; and G, be monoidally equivalent compact quantum groups, and
assume that there exists a nonzero finite-dimensional *-representation = : O(G,, G;) —
M, of the linking algebra. Then the following statements are equivalent.

1. O(G,) is RFD.

2. O(G,,G,) is RFD.

3. O(G,) is RFD.

Proof. By symmetry, itis enough to prove the implications (1) — (2) and (2) — (3).
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(1) == (2). Define a *-homomorphism p: O(G;,G,) — M; ® O(G,) by
p = (r ® id)$,. Note that p is injective because

P =0 = pE'x)=0 = 0= (>1dQ® hy)p(x*x) = 7((id ® hy)8,(X*X)) = w,(X*X)7 (1),

and w;, is faithful. Since M; ® O(G,) is RFD and p is injective, we are done.

(2) = (3). Consider the injective x-homomorphism 6, : O(G,) - O(G;,G,) ®
O(G,, G,) (see Section 4). Since O(G;,G,) is RFD if and only if the opposite algebra
O(G,, Gy) is RFD, and tensor products of RFD algebras are RFD (indeed - if A — [[; My,
B < [J; Mg, then AQ B — ]_[i'jMdidj), we conclude that O(G,) is RFD. |

Since in the proof of Theorem 4.2, we established the existence of various state-

preserving embeddings, the preceding theorem admits a natural analogue for the CEP.

Theorem 4.3. Let G, and G, be monoidally equivalent compact quantum groups of
Kac type. Assume that there exists a nonzero finite-dimensional x-representation of the

linking algebra O(G,, G,). Then the following statements are equivalent.

1. L°°(G,) has the CEP.
2. L®(G,,G,) has the CEP.
3. L*°(G,) has the CEP.

Proof. First, note that the invariant state w;, on O(G,, G,) is a trace, since both G; are
of Kac type. Next, we note that in the proof of Theorem 4.2, we have constructed trace-

preserving embeddings

p: LGy, Gy) - My ®L™(Gy), 0,: L®(G;) — L¥(Gy, Gy) ® L®(Gy, Gy),

From these embeddings, it follows that (1)—(3) are equivalent. [ |

Remark 4.4. The existence of a finite-dimensional representation 7: O(G,,G,) —
M, is a fairly restrictive assumption. For example, it forces the unitary fiber functor
F: Rep(G;) — Rep(G,) to be dimension preserving, that is, we have dimH, = dim Hp,,,
for each p € Rep(G,). This follows from the fact that (id ® 7)(X*) € M), ampy) ® Mg is
a finite-dimensional unitary operator, which can happen only if dimH, = dim Hp(,,. In

particular, this forces G, to be a 2-cocycle deformation of G, (cf. Remark 2.9).
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On the other hand, this assumption on the existence of 7 is necessary for the
conclusions to hold. For example, if n > 3 and q € (—1,0) is such that g+ q~! = —n, then
o} ~m SU,(2) [12], O(0;3) is RFD [26], while on the other hand O(SU,(2)) cannot be RFD
because it is not of Kac type [50].

Proposition 4.5. Let B be a finite-dimensional C*-algebra, and put N = dim B. Then the

linking algebra O(Autt(B), S;(,) has a finite-dimensional representation.

Proof. By Theorem 3.1, we have Aut™(B) = (S;(,)" for some dual 2-cocycle o induced from
some such o, for a finite subgroup G < S;\“,. Thus, the linking algebra O(Aut*(B),S;\r,) =
JO(S;\’,) has a finite-dimensional quotient ;O(G) . |

Corollary 4.6. Let B be a finite-dimensional C*-algebra equipped with any faithful trace
Y. Then O(Aut™ (B, ¥)) is RFD and hence has the CEP.

Proof. The claim for S;\“, is established in [18]. This, together with Theorem 4.2 and
Proposition 4.5, implies the claim when v is the Plancherel trace. The general case then
follows from the free product decomposition in Proposition 2.5 and the stability of these

properties with respect to fee products [34]. [ ]

4.2 Inner faithful representations

Definition 4.7 ([1, 6]). Let G be a compact quantum group and A be unital x-algebra. A
x-homomorphism n: O(G) — A is said to be inner faithful if ker(z) does not contain
any nonzero Hopf *x-ideal. If there exists a finite-dimensional C*-algebra .4 and an inner

faithful 7 : O(G) — A, then we call O(G) an inner unitary Hopf x-algebra.

The notion of inner unitarity for Hopf x-algebras is a quantum analogue of (a
strong form of) linearity for discrete groups. Recall that a discrete group I' is called
a linear group if there exists a faithful group homomorphism 7: I' — GL4(C). In this
context, we have that I is linear if and only if the group algebra CI' admits an inner
faithful homomorphism to M, (without assuming compatibility for x-structures) [6]. If
the morphism 7 is x-preserving, this is equivalent to saying that we have an embedding

I' = Uy. In general, if O(G) is inner unitary, then it is RFD [18].

Proposition 4.8. Let B be a finite dimensional C*-algebra such that dim(B) lies outside
the range [6, 9]. Then O(Aut™ (B)) is inner unitary.

Proof. On the one hand, the Hopf x-algebras (’)(S;(,) are inner unitary for all N outside

the range [6,9] by [18, Theorem 4.11]. On the other, we have an embedding of the form
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(3.2). Then a straightforward adaptation of [6, Theorem 6.3] to the unitary setting implies
that O(Aut*(B)) must then also be inner unitary. |

Now, taking B = M,, and using the canonical embedding O(Aut™(B)) € O(0;)), we

are able to lift inner unitarity to free orthogonal quantum groups.

Theorem 4.9. The Hopf x-algebra O(0;)) is inner unitary for n = 2 and n > 4.

Proof. We denote the conditional expectation O(0}}) — O(Aut*(M,,)) preserving the
Haar state by E. Let 7: O(Aut™(M,))) — B(H) be a x-homomorphism for some finite-
dimensional Hilbert space H that gives the inner unitarity of O(Aut™ (M,,)). Consider the

Hilbert space H = O(0;) ®o(aut+(u,)) H, where, as usual, the inner product is given by

f®&.fet) = m@ESfNEE.

The left multiplication defines a *-homomorphism 7: O(0;}) — B(H).

Since O(0;) is finitely generated as a right O(Aut™(M,,))-module (we can take
1, uy for 1 <i,j < n as generators), H is finite-dimensional. We claim that ker # does not
contain any nonzero Hopf *x-ideal.

Let I be a Hopf *-ideal of O(0O;}) contained in ker7, and put O(G) = O(0;)/I.
To show that I = 0, it is enough to show that the restriction functor F: Rep O —
Rep G is full. By Frobenius reciprocity, this is equivalent to the claim that F(U®?)
contains the unit with multiplicity one whenever U is a nontrivial irreducible object
of Rep O

Take a nontrivial irreducible object U from RepO;;. First, suppose that
U € RepAut™(M,). Then, as 7|naui+m,) contains 7 as a direct summand, we have
IN O(Autt(M,,)) = 0. This implies that F(U) € Rep G is a nontrivial irreducible object
as well. For the general case of U being an irreducible object from Rep O}, note that
we have U®2 ¢ Rep Autt(M,,); hence, from the above, we have that F(U®?) has the same
irreducible decomposition as U®2. But this implies that F(U®?) contains the unit with

multiplicity one. u

Remark 4.10. The 1st half of the above proof is a special case of the one for [1, Theorem
5.7]. Indeed, the following generalization holds: if O(G) is the regular algebra of a
compact quantum group G, and A = O(G’) is an inner unitary Hopf *-subalgebra of
O(G) closed under the adjoint action, and such that O(G) is finitely generated over A4,

then O(G) is also inner unitary. To see this, one can observe that the proof of [1, Theorem
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5.7] as its commutativity assumption on A was only to make sure that O(G) is faithfully
flat over A, which holds in the above setting [25].

5 Strong 1-Boundedness of Quantum Automorphism Group Factors

Let (M, 1) be a tracial von Neumann algebra, and let X = (X;,...,X,) be an n-tuple
of self-adjoint elements of M and Y another such m-tuple. Recall Voiculescu's relative
microstates free entropy x (X : Y) introduced in [55], which we from now on will refer to

as just relative free entropy. Using this, Voiculescu defined the (modified) free entropy

dimension
. XX +eS:S)
50 X)=n+lim>Y——~
0X) H0 Tlog(e)l
where S = (S;,...,S,,) is a free family of semicircular elements free from X. It satisfies

8,(X) < n and equality is attained for instance when X consists of n free semicircular
elements. Thus, a free group factor £LF,, admits a generating set with the property that
its free entropy dimension is precisely m. While it is unknown whether this number is
a W*-invariant in general, the related property of strong 1-boundedness introduced by

Jung does satisfy this.

Definition 5.1 ([42]). Letr € R, then we call X an r-bounded set if and only if there exists

a constant K > 0 such that for sufficiently small ¢ we have the estimate
XX +¢eS:S) < (r—n)llog(e)| + K.

We call X a strongly 1-bounded set if and only if it is a 1-bounded set and it contains an

element with finite free entropy (relative to the empty set).

Note that being r-bounded is a strengthening of the inequality §,(X) < r. For a
self-adjoint element to have finite free entropy, it is sufficient that its spectral measure

with respect to t admits a bounded density with respect to the Lebesgue measure.

Definition 5.2 ([42]). A finite von Neumann algebra M has property (J) if any finite set
of self-adjoint generators is 1-bounded and is strongly 1-bounded if it admits a strongly

1-bounded generating set.
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Jung proved a remarkable result that any tracial von Neumann algebra admitting
a strongly 1-bounded generating set has property (J) [42]. In particular, these properties
are equivalent for finitely generated von Neumann algebras.

Now, let us note the following key technical ingredient, which is a slight modifi-
cation of [42, Theorem 5.3].

Proposition 5.3. Let A C B be an inclusion of tracial von Neumann algebras with A
strongly 1-bounded. Let {uj}J?'il be a sequence of unitaries in B, and write A; = A and
A, for the von Neumann algebra generated by A and {u,,..., u}. Assume that for every
J, there is a diffuse self-adjoint element y; € A;_; such that u;yju; € A;_,. Denote by A,
the von Neumann algebra generated by A and all of the u;s. Then A, has property (J).

Proof. The only difference from [42, Theorem 5.3] is that, instead of assuming
ujujflu]*-‘ € A;_; and that u; is diffuse (the latter implicit in [42]), we allow u; to have
atoms and assume another diffuse self-adjoint element y; € A;_; for the conjugation by
u;. This is still enough to have essentially the same proof as in [42, Theorem 5.3], noting

that [42, Lemmas 5.1 and 5.2] apply. |

Another ingredient we need is the permanence of strong 1-boundedness under

taking amplifications, as follows.

Proposition 5.4. ([39], cf.[38, Proposition A.13(ii)]; [42, Corollary 3.6]) Let M be a strongly
1-bounded II, -factor. For any ¢t > 0, the amplification M? is again strongly 1-bounded.

Next, let us recall some concepts from the theory of subfactors; see [33] and the
references therein for details. Let ' C M be a finite index inclusion of II, -factors. Then,
the orthogonal projection e, : L?(M) — L2(\) is called the Jones projection associated
with this inclusion. The von Neumann algebra M; generated by M and e, is again a
II, -factor, and the inclusion M C M, called the basic construction, has the same index
as N' C M. Moreover, M, is the commutant of the right multiplication action of A/ on

L%(M). Tterating this construction, we obtain the Jones tower
Mfchochc..., .Mflz./\/., MOZM

We denote the Jones projection of M; ; C M, by e; € B(L*(M;_,)), so that M; is
generated by M;_, and e;.
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A key observation is that M;_, and M?p are commutants of each other on
L?*(M;_;), so that M; and M,_, are amplifications of each other. In particular, M,; is
always an amplification of M, while M,;_, is always an amplification of N.

There is also a subfactor A7 C A such that ' C M is isomorphic to its basic

construction. Repeating this construction, we obtain the Jones tunnel

N_lDNoDNlD..., N_lz ’ N():N,

and we obtain corresponding Jones projections e_;

; € N;_; for i > 1. Again, N,; is an

amplification of N, while N,;_, is an amplification of M.

5.1 Strong 1-boundedness of quantum automorphism group factors

We are now ready for the proof of the main technical result of this section.

Theorem 5.5. Assume that we have a unital finite index inclusion N' ¢ M of II; -factors.

Then N is strongly 1-bounded if and only if M is strongly 1-bounded.

Proof. Assume that M is strongly 1-bounded. To show that A is strongly 1-bounded, it
is enough to have the same for M; by Proposition 5.4.

Take the 1st Jones projection e; as above, and set

u; =1-2e, u,=1 (m>1).

n
We want to use Proposition 5.3 for A = M, B = M,, and {u,} C B, to conclude that
My =Mv{u, | n=1,2,...}is strongly 1-bounded. It is enough to find a diffuse self-

adjoint element x € M that commutes with e, as we would have

u;xu; =x € M.

Since e, is in the commutant of N/, any choice of diffuse x = x* € N will do.
Conversely, assume that N is strongly 1-bounded. We can then simply apply the
same argument as before. Indeed, M is generated by A and the Jones projection for

N, CN. [ |

Corollary 5.6. Assume that we have a unital finite index inclusion ' C M of
I, -factors. If at least one of A and M is strongly 1-bounded, then all of the II,-factors

in the Jones tower and tunnel are strongly 1-bounded.
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Example 5.7. An interesting source of finite index inclusions comes from the graded
twists of compact quantum groups introduced in [14]. Using this technique, one can
realize L*°(037) as an index 4 subfactor of L*(0}, ) ® M, (Examples 3.3 and 2.17 in [14]).
Concretely, one obtains (’)(O{,{L) as a Hopf subalgebra of O(Oé“m) X, Z, via the embedding
ui; — u; ® g, where g is the generator of Z, and a(u) = —Jy,,uJyy,. One then takes the
crossed product by the dual action.

It was shown in [22] that L*°(0O;)) is strongly 1-bounded for all n > 3. Building
upon their techniques, the case of L“(O}L,{l) was settled for all m > 2 in [32]. With
Theorem 5.5 and the graded twist technique in hand, we obtain an alternative proof

for the latter case.

Corollary 5.8. Let B be a C*-algebra such that dim B = n? with n > 3. Then L (Aut* (B))

is a strongly 1-bounded II, -factor.

Proof. The factoriality of L°(Aut™(B)) is proved in [17], so it remains to prove the strong
1-boundedness.

Since L®(Aut™ (M,,)) is an index 2 subfactor of L>*(0;) [17], it must be strongly
1-bounded as soon as n > 3. By Corollary 3.6, L“(SZZ) is a finite index subfactor
of L*®(Aut™(M,)) ® M, for some k. Hence, L°°(SZZ) must be strongly 1-bounded. As

for the general B with dimB = n?, again by Corollary 3.6, we have a finite index
inclusion of L® (S:Z) in L (Aut™ (B)) ® M, for some ¢; hence, L°(Aut™ (B)) must be strongly
1-bounded. [ |

Similar arguments applied to embeddings for the linking algebras discussed in
Remark 3.5 give the following additional corollary.
Corollary 5.9. Let B; for i = 1,2 be finite dimensional C*-algebras such that dimB; =
dimB, = n? with n > 3. Then the linking algebra O,, = O(Autt(B,), Aut(B,))
is nontrivial. Let £;, be the tracial von Neumann algebra coming from the GNS-

construction for the trace w;, on O;,. Then £, is strongly 1-bounded.

5.2 Lack of strong 1-boundedness for free unitary group factors

We next show that the free unitary quantum groups U, give II, -factors L*(U;) that are
not strongly 1-bounded, in contrast to the quantum groups O, and Aut™ (B).

Let us begin with a few remarks on the behaviour of r-boundedness under
algebraic manipulations and free products. It is well known that the value of the free
entropy dimension of some finite tuple of self-adjoint elements in a tracial von Neumann
algebra depends only on the generated *x-algebra [56]. We show that this also holds for

r-boundedness.
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Proposition 5.10. Let (4, 1) be a tracial von Neumann algebra, and let X = (X;,...,X,)
and Y = (Y},...,Y,,) be finite tuples of self-adjoint elements of A. Assume that X and ¥

generate the same *-algebra. Then X is r-bounded if and only if Y is r-bounded.

Proof. Assume that X is r-bounded. By assumption, there exist noncommutative poly-
nomials P, ..., P, in n variables such that YJ = Pj(X) for 1 <j < m. It is clear that the
conditions of [32, Lemma 4.1] are met, and so we can conclude that X U Y is r-bounded.

But then [42, Lemma 3.1] implies that Y is r-bounded. By symmetry, we are done. |

We now investigate free products of r;-bounded sets. We get at least one estimate

for free from the subadditivity of relative free entropy.

Lemma 5.11. Let X, ..., X® for some i > 2 be such that X? is an rj-bounded set for
1 <j <i. Then UJ-XU) is (r; +--- + r;)-bounded.

Of course, if the sets X) are free, one expects this to be the optimal level of

boundedness (provided each r; was optimal). Here, optimal is meant in the sense that
3o UXU) =r +--+r.
J

This is not known in general even for just the free entropy dimension. However, the
following does hold by [23].

Proposition 5.12. Let A; for 1 < i < n be Connes embeddable diffuse finite von
Neumann algebras. Assume that X generates A; and §,(X?) = 1 for all i. Then, in
1| A;, we have §,(JX?) = n.

Proof. This follows from [23, Proposition 2.4 and Corollary 4.8]. |

Proposition 5.13. For any n > 2 and m > 3, the II, -factors L>*(U;/) and L*°(0;},) are not

isomorphic.

Proof. Since L°°(U;) = LF,, which is not strongly 1-bounded, we may assume that
n>3.

Consider L® (0} % O1), and let U® = {ugjl.c)};?,j:1 with k = 1, 2 be the two free sets
of matrix coefficients of the fundamental representations. Then 8,V UUP) = 2. We
now use again the graded twist technique of [14] (compare with Example 5.7 above). In

their Examples 3.6 and 2.18, it is shown how to realize U}/ as a graded twist of O;} x O}
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by Z,. The Z, action on O}; O} is the one that swaps the two free copies of the generators
of O} . Taking once again the crossed product by the dual action, it follows that L>(U;})
appears as a finite index subfactor of L*(0;} x O;)) ® M, and hence cannot be strongly
1-bounded. |

6 Unitary Error Bases and Crossed Product Isomorphisms

In this final section, we outline how the existence of “small” finite-dimensional represen-
tations of the linking algebra O(Aut™ (B), S;(,) as in Proposition 4.5 is intimately related to
the construction of unitary error bases in quantum information theory. Note that a finite
dimensional representation of the linking algebra can be interpreted as the isomorphism
game between B and CY having a quantum winning strategy. In fact, it was the study of
quantum graph colourings in [21] and their implementation via generalized unitary error
bases that initially inspired the authors to the concrete crossed product isomorphisms

for quantum automorphism groups that are derived in this section.

Definition 6.1. Let n € N. A unitary error basis is a basis {ua}gz=1 of M,, consisting of

unitary matrices that are orthogonal with respect to the normalized trace inner product:

tr(uju,) =8, (1 <a,b=<n?.

We note that an equivalent characterization of a unitary error basis in M, is a
family of unitaries {ua}Zz:1 with the following depolarization property:

n2

Z urxu, = nTr(x)1.

a=1

Let (|i>)?:0 be a standard basis of C", and put

n—1 n—1

L U L
|¢>=ﬁ2|ll>—ﬁ2|l>®ll)ec ®C".

i=0

Let us further fix a primitive n-th root of unity w. Then the generalized Pauli matrices
X,,Z, € M, are defined to be

X, 1) = i), Z, h=l+1), 6.1)
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where the index is computed modulo n. We then put Ti,j = XﬁLZJn for0<i,j<n-—1,and

9ij) = (T1;©1,)19).

The Pauli matrices satisfy the commutation relation X, Z,, = wZ, X, and we have tr(T; ;) =
81-'08]-'0. Thus, {TiJ |

error basis. On the other hand, {

0 <1i,j <n— 1} is a unitary basis for (M,,, tr), called the Weyl unitary

qbi,j) |0 <1i,j <n-—1}is an orthonormal basis for C*QC",

called a maximally entangled basis.

6.1 Finite dimensional representations of the linking algebra

Let us begin with a concrete presentation of O(Aut™ (B)). Throughout the section, we work

with a multimatrix decomposition

and denote the canonical matrix units for M, inside of B by Ei(;)’ 0<i,j<ng—1 Then

(s.r)

O(Aut™t(B)) is the universal unital *-algebra generated by elements 45 ko)

1<s,r<m,

0<i,j<ng—1,0<k,¢<n,—1,satisfying

n.—1 _(s,;r) (s',r) _ (s,r) .
2wlo ki, = Siirdss Ay, e

ns—1_, 1 _(s,1) (s, _ —1,(s7) .
Zv:o ng Q(iyv),(k,[)Q(V,j),(k/,gf) —SZk’Brr’nr Q(i,j),(k,gf)r

(s,r)* _ (s .
Qi g, ko) = ‘110,?,«;,@'
m ns— ST .
- D=1 2iso Qi iy, (ko) = Sxes
m ny—1 (s,r) _
C 21 ko 4G5,k k) = ngd;j.

GoR W N

The coproduct on O(Aut™(B)) is given by

m nz—1

(r,s) . (r,z) (z,8)
A, iy = Z Z i, k0 © ko), ) 6.2)
z=1 k(=0

Then the coaction of O(Aut*(B)) on B is given by

m ny—1

) _ (s.7) )
PE =D D i we ®Eie-
r=1k, (=0

We now proceed to present a finite-dimensional representation of the linking
algebra O(Autt(B), S}, ;). Put N = dimB, d = nyn,...n,, and identify M; = M, ®
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M

n,, 10 the usual way. For T € M,, , we put

T(T):In1®In2®”'®Inr71®T®I ®---®InmeMd,

Nr+1

For each 1 < r < m, let us write the Weyl error basis of M,, as U, ;; = T;;. We
then take, for 1 <s <m, 0 < a,b < ng, the elements
ny—1
P..,=> E.opP% M, @M, CB®M, P v ru
s,ab — Z ij ® (a,b),(i,j) € ns ® dC ® dr (a,b),i)) — n_ s,a,b™i,jYs,a,b
i,j=0 s

Now we can present a concrete representation of the linking algebra as in
Proposition 4.5, but with a smaller dimension than the one given in its proof. Write

the standard basis of minimal projections in the abelian G*-algebra C¥ as {e, ,,} for

s,a,b
l<s<mandO<a,b<n,

Proposition 6.2. Under the above setting, the map
,6: CN — B ®Md’ es'ayb > Ps,a,b

is a unital x-homomorphism that is Plancherel trace covariant. In particular, the linking
algebra O(Aut™ (B), S;(,) admits a nonzero *-homomorphism = to M, characterized by p =
(id @ m)p.

Proof. When m = 1, this result is exactly [20, Proposition 7.2]. The general case only
requires some small modifications of the proof there.

Let us first fix 1 < s < m. First, the polarization property implies
ZPs,a,b = Ins ®Iy.
ab

Next, each P, ;, is a projection by a standard calculation. Moreover, the orthogonality
of (Us,;;);; implies that the Py, , and P, ;, are mutually orthogonal. Since we also have
P pPsy oy = 0forall s # ¢, it follows that

IR cVN B ® My, ﬁ(es,a,b) = Ps,a,b

defines a *-homomorphism.
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We also have
(nsTrnS R id)(PS,a,b) = Id’

hence, (¥ ® id)(Ps,,) = § = ¥(€5,4p)- This shows the compatibility with Plancherel
traces. The existence of 7 then follows from the universal properties of the algebras

under consideration. [ |

Now, let Uy ) (rv,u) denote the matrix coefficients of O(S;) corresponding to

the basis (e of CN. For each 1 < s < m, we fix a primitive n,-th root of unity Wp

S,X, )s,x,
4 4

Theorem 6.3. In the above setting, there are unital #*-homomorphisms
m: O(Aut™ (B)) — My ® My ® O(S}), p: OSH) — My ® My ® O(Autt (B)),

for d = n, ---n,,, that are compatible with traces induced by the Haar traces (i.e., (id ®
®id®h5x’)n = hppi+ 3 (D (1®1) and 1d@®1d®hyy+p))p = hSXr ()(1®1)). These morphisms
are characterized by

ns—1 ny—1

(sr) ,X(l )] —V(k 0) 12(s) (r
ﬂ(q(iy]')y(kl)) o Z Z @n El viJ— y®Ek w,l— W®u(S,X,y),(ryv,W)’

SXy 0v,w=0

ns—1 n,—1

X)) =) ) " s.1)
PWUs xp),rvw) = Z D on E iy @B wew @ i) k)
i,j=0 k,t=0

Proof. As remarked in the proof of Theorem 4.3, the existence of a nonzero represen-
tation (’)(Aut+(B),S;(,) — M, canonically gives rise to trace-preserving embeddings =, p
with the correct domains and ranges. The specific form of r, p described in the statement
of the present theorem follows if we choose to use the Weyl unitary error bases in the

representation O(Aut™(B), S;(,) — M, supplied by Proposition 6.2. ]

Again, it is convenient to write the homomorphisms 7 and p in a different form.

Let X, ,Z, €M, be generalized Pauli matrices as in (6.1). In the tensor product

My, @ My, @ My, ® My, ® -+ @ My, @ My,
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we write wl[;] for the projection

QI

Ns+1

Inl ®In1 ®"'®In571 ®] Ns—1

®---®I,

® |917) (015 ® ® Iy,

ns+1 m

Then the projections {‘Pl[]s'] |0<1i,j<ng—1,1<s<m}form aprojection valued measure
with N outcomes in this rearranged tensor product M,; ® M. Similarly, we write TL[S]] for

the operator

In1 ®In1 Q- ® Ins ® Ins—l ® (X;lsZJ ® Ins) ® ® L

Ns+1

-1 Ns+1 ®®Inm®1nm

We set XS = T[S] and ZI! = T[S]

Foreach 1l <r,s <m,we set Q5" = Z?Js;é Z}_IOE(S) ® E(r) ® qgjr))(k 0 Then we

compute

(idy ® idd ® 1)(Q")

—X(l—J) (s) V(k £) (1) (s) (r)
= z Z E;j @ By @B, ;i ®EL i v ®Usxy) arvw):

ijk,exy.v,w
After a shuffle, we see that the image of (id; ®idy® 7)(Q®") in M5* ® O(Sdlm(B)) is given
by
ns—1 ny—1
[s] [ ]
ne DL DL Wy ® 0w ® Uy v
x,y=0v,w=0
Similarly, we have
ny—1 ng—1
_ X(l—J) (s) V(k £) (1) (s,r)
P U x,p),0rvw) = 7 Z Z E, iy®@ B wmw @i, k0
1,j=0 k,£=0

1
=T, 0T, ®1) (n—o(”)) T, o1, ® 1"
r

6.2 Iterated crossed product isomorphisms

Next, let us establish a parallel of Corollary 3.6, but with smaller group actions (using

I instead of I'?). For 1 < t < m, we define algebra automorphisms oy ;, @y ;, g ;04 ; O0
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O(Aut* (B)) by

(s,r) (s,r)
(@S = | Tapden 7 RO KX r#1t
1\ 5y, k,0) = 3,6, k0) = k—e (s,1)

i—j _(s,1) _ _
©ne (i j), k,0) (s=1), Dn, 4 jy, (k,0) (r=1),
(s,r) (s,r)
) t(qg"?(k o) = e c7y ! t(qgs,?(k o) = Qi ot 7Y
Co o s=t, (1) r=1).

(I+1,j+1),(k.0) @), (k+1,6+1)

In a, and a4, the shifts (if applicable) are done with indices modulo n,.
From the above presentation, we see that «; ; is an automorphisms of order n, for
all i. Moreover, «; , and a3 , commute for all ¢,' and «,, and a4, commute for all ¢,¢'.

Thus, we have obtained group actions of the group I' = H;’;l(Zm X ZLy,) on O(Aut™(B)).

Proposition 6.4. The actions «;, preserve the Haar trace of O(Aut™ (B)).

Proof. By (6.2), the automorphism «, , is a right comodule endomorphism in the sense
that

(0, ®id) o A = Aoay,.

Combined with the right invariance condition (id®h)oA(x) = h(x)1, we obtain hoa, ;, = h.
The other cases are proved in the same way (with left equivariance and invariance

for a3 , and oy ;). n

Next, we construct the crossed product O(Aut™ (B)) x I', which is the universal

x-algebra generated by elements quJr)) .0

1,03

and z, ;, z3 4, such that

¢ the elements q(s'r) generate a copy of O(Aut™(B));

(i) (k)
. Z(Ii,t = zgt =1landzj, = z‘f;l and z3 , = zg,;l; and [z, ;,z3 4] = 0; and
(s,1) * (s,m) (s,1) * (sm)
21,69y, k%1t = 91,0 ke) A0 23,640 k0 %3, = 3,615, k)

We consider the trace on this algebra induced by h.
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The automorphisms «, ., @, ., on O(Aut™ (B)) extend to trace-preserving automor-

phisms on O(Aut*(B)) x I" by setting

1,03

1t T#EL
A, (Z3¢) = Z34, A, (Z1) = .
Wy Z1p T=1,
z3, T#¢L
Uy, (214) = Z1 4 Ay, (Z34) =

-1 =
Wy Zg, T=1.

Theorem 6.5. Under the above setting, the homomorphism 7 in Theorem 6.3 extends to

a x-isomorphism

(OAUtT(B)) Xy, 4o T) Xy 0n T = My ® My ® O(SY)

that intertwines the traces induced by the Haar traces.

Proof. We extend n by the following formula on the generators of two copies of I':

7(21,0) = Xn, @13 ® 1, (23 =3 @ X5 ® 1,
7(Z2) = Zn ®1;®1, (24, =1Ig ®Zy, ®1,

with generalized Pauli matrices as in (6.1). The compatibility with the original

7T On

O(Aut™ (B)) follows from explicit presentation of (id; ® idg; ® 7)(Q® ") in the previous

section.

We thus see that the Weyl unitary error basis of M; ® M, together with the image

of = that was again defined through Weyl unitary bases of direct summands M,, of B and

maximally entangled bases of C" ® C™, generate a matrix amplification of O(S).
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There is a similar extension of the homomorphism p. On the algebra O(SZJ(,), we

define x-algebra automorphisms 8 l1<y<41<t<m,by

V.t

u (s#1)
ﬂl,t(u(s,x,y),(r,v,w)) = (S )

U(s,x+1,y),(r,v,w) (s=1),

u (r#t
ﬂ3,t(u(s,x,y),(r,v,w)) = (s ravawr)

u (s#t
ﬁz,t(u(s,x,y),(r,v,w)) = (S )

U(s.x,p),rv—1,w) (s=1),

u (r#t
ﬂ4,t(u(s,x,y),(r,v,w)) = (s ravawr)

[u(s!x!y-i-l),(r.v,W) (r=1),

u(s,x,y),(r,v,w—l) (T' - t)'

Evidently, each B, ; is an automorphism on O(Syy) of order n,, while BrioBs. = B3 0B
and By, 0By, = s, 0Py forall 1 <, < m. We thus get a group action of I on oS-
Again these preserve the Haar trace as in Proposition 6.4.

As before we form the crossed product
O(Sy) »g, 5, T,

which is the universal *x-algebra generated by elements Us x l1<rs<m,0<

), (rv,w)r

x,y<ng—1,0<v,w=<n,—1and z 4, z3,, 1 <t < m, satisfying the following:

* theelements ugy ) (v, Satisfy the relations of the fundamental unitary in
O(Sh;

. zrfft =1= zgft and 7} ; = z?ft_l and 74 ; = zgft_l foralll <t<m;

. [zl,t,z3,t] =0forallt,z;

. [zllt,zu] = [ZS,t'ZS,t] =0 forall ¢ r; and

« z),AZ{, =B, ,(A) and z;,,AzZ} , = B ,(A) for all A € O(S).
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The automorphisms g, ;, B, , extend to O(SIT,) X, g, I by setting

1,7 t 7& T
Boi(23.) =23, Vl=t=m, B2,:(2 ) = .
Wy Zy; t=T
t#1
3,T
,84,t(21,1) =2Zy Vi<t <m, /34;(23;) =

Theorem 6.6. Under the above setting, the homomorphism p in Theorem 6.3 extends to

a x-isomorphism
O(Sf) % g g, T X, 5. T — My ® My ® O(Aut* (B))

that intertwines the traces induced by the Haar traces.

Proof. We get this by defining p(z;,) by the same formula as in the proof of Theorem
6.5. |
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