

1 **A cosmogenic ^{10}Be moraine chronology of arid, alpine Late Pleistocene glaciation in the**
2 **Pioneer Mountains of Montana, USA.**

4 Spruce W. Schoenemann¹, Mana M. Bryant¹, Will B. Larson¹, Lee B. Corbett², Paul R. Bierman²

6 Affiliations:

7 ¹Environmental Sciences Department, University of Montana Western, Dillon, MT 59725 USA

8 ²Rubenstein School of the Environment and Natural Resources, University of Vermont,
9 Burlington, VT 05405, USA

11 Corresponding author:

12 S Schoenemann, Email: spruce.schoenemann@umwestern.edu

13 Environmental Sciences Department, University of Montana Western, 710 S. Atlantic St. Dillon,
14 MT, 59725 USA.

16 **Keywords:** surface exposure dating; mountain glaciation; moraines; paleoclimate reconstruction;
17 terrestrial cosmogenic nuclides; Western United States; Late Pleistocene; Laurentide Ice Sheet

19 **Abstract**

20 We test the hypothesis that glacier systems, located in continental regions proximal to the
21 Laurentide Ice Sheet (LIS), had local ice maxima considerably earlier than the LIS maximum
22 and thus before the insolation minima at \sim 21 ka. Ranges located in the northwest US exhibit
23 earlier deglaciation timing between \sim 23–22 ka, except for the Yellowstone region where younger
24 time-transgressive ages complicate regional interpretations and the northern Montana ice cap
25 where late glacial ages have recently been produced (Fig. 1). Constraining the glacial history of
26 more ice sheet-proximal alpine glaciers provides insight into whether the contrasting maximum-
27 ice times in the northern Rocky Mountains were caused by regional climatic differences, such as
28 anticyclonic wind patterns driven by the presence of the LIS.

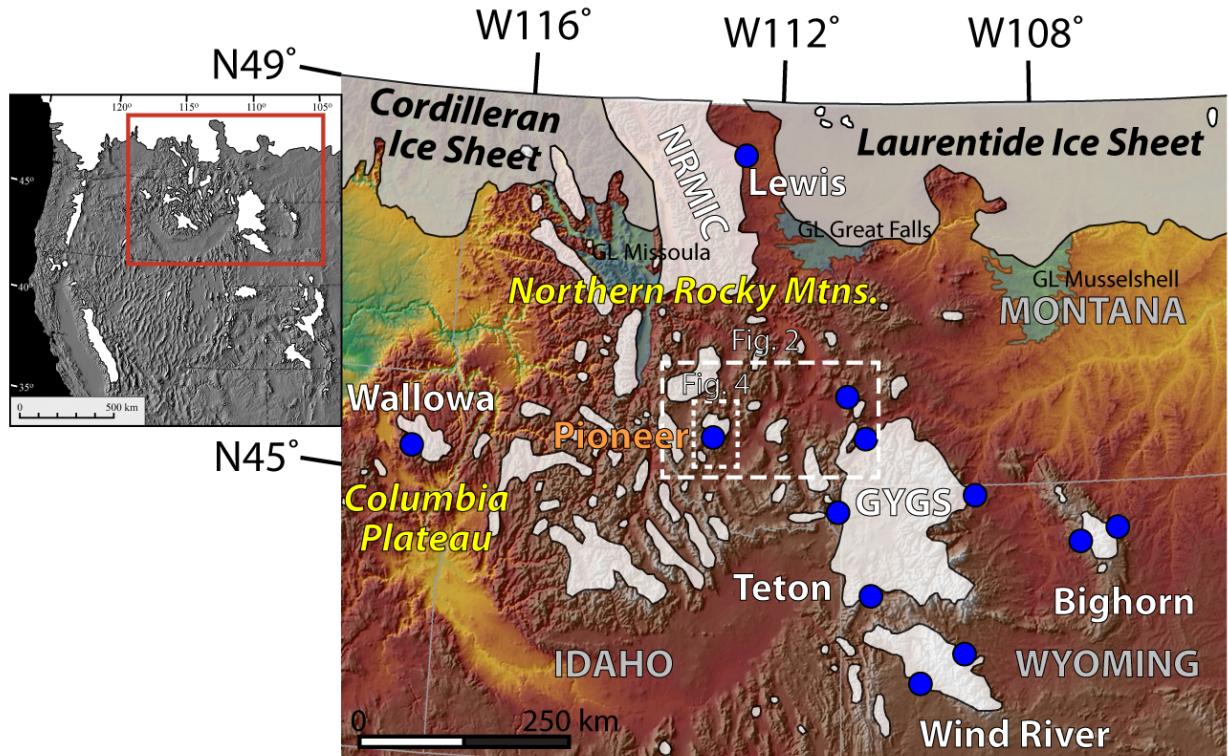
29 In the Pioneer Mountains of Montana, we measured *in situ* cosmogenic ^{10}Be in 35 boulders
30 on moraines marking the maximum Late Pleistocene positions of alpine glaciers from three
31 valleys. The ^{10}Be samples produced a range of ages, spanning pre Bull Lake to the last glaciation
32 (i.e., Pinedale/Marine Isotope Stage (MIS) 2). We find an average exposure age for initial
33 deglaciation of 18.2 ± 0.9 during the local Last Glacial Maximum, indicative of synchronous
34 retreat in the Pioneer Mountains.

35 The similarity of initial deglaciation timing of the Pioneer Mountain glaciers with the
36 northwestern Yellowstone glacial system and northern MT ice cap suggests that topography

37 more proximal to the LIS margin maintained full ice extent longer. Our findings, in context of
38 previous work, suggest that in the case of the Pioneer Mountains their more proximal location to
39 the ice margin may have delayed onset of deglaciation by greater exposure to local cooling from
40 katabatic winds and/or additional moisture sourced from large ice-marginal glacial lakes, hence
41 the lack of earlier deglacial ages like those found further to the west and east of the northern
42 Rocky Mountain cordillera.

43

44 **1. Introduction**


45 Located south of the Cordilleran and Laurentide Ice Sheets (LIS), alpine glaciers occupied
46 numerous mountain ranges across the western Cordillera during the latest Pleistocene, spanning
47 a wide range of climatic zones that likely controlled glacier behavior (Laabs et al., 2020;
48 Licciardi et al., 2004; Thackray, 2008). The pattern of glacial retreat during the last glaciation in
49 the northwestern United States reveals regionally variable responses to shared climatic forcings
50 (Laabs et al., 2020; Licciardi et al., 2004; Thackray, 2008), however, variability in the timing of
51 deglaciation between regions appears to be related to climatic setting, differences in glacier mass
52 balance characteristics (precipitation versus temperature), and changing atmospheric patterns
53 driven by ice sheet growth and decay (Laabs et al., 2020; Licciardi et al., 2004; Licciardi and
54 Pierce, 2018; Oster et al., 2015; Ullman et al., 2016, 2014; Wong et al., 2016).

55 Because glacier extent is controlled by both temperature and precipitation (Leclercq and
56 Oerlemans, 2012; Oerlemans, 2005; Roe, 2011; Roe and O’Neal, 2009), it is often difficult to
57 disentangle which of these parameters controlled glacier response to past climate fluctuations
58 (Oerlemans, 2005). To evaluate which climatic factor might explain the significant timing
59 differences among glacier maxima of the interior northwestern U.S., we focus on a once-
60 glaciated range with an arid climate whose glacier response is thus likely to be temperature-
61 dependent and controlled by solar insolation (Huybers and Roe, 2009; Roe and O’Neal, 2009;
62 Rupper and Roe, 2008). We use cosmogenic ^{10}Be exposure dating of glacier moraines in the
63 Pioneer Mountains of southwestern Montana to explore ice retreat timing and hence climate
64 sensitivity in an arid region.

65 The Pioneer Mountains are well located to record responses of alpine glaciers to climate
66 forcings (Fig. 1). Due to the proximity of the LIS margin (~250 km north of the Pioneer
67 Mountains), the region’s glacial climate would likely have been precipitation starved due to the

68 dry, cold, katabatic winds descending off the ice sheet during the LGM (Oster et al., 2015). As
69 deglaciation of the LIS commenced, the formation of pro-glacial meltwater lakes may have
70 altered local precipitation patterns, supplying additional moisture relative to more distal alpine
71 regions. Hence, these glaciated landforms archive valuable records of changes in temperature
72 and regional precipitation, providing insight into the onset and drivers of deglaciation in the
73 continental northwestern North America.

74 Previously published chronological data from the interior northwestern United States suggest
75 that the glacial maxima observed in continental ranges (i.e., Wallowa, Wind River, and Big Horn
76 mountains), followed insolation pacing, initiating deglaciation between 23–22 ka (Dahms et al.,
77 2018; Laabs et al., 2020; Licciardi et al., 2004; Licciardi and Pierce, 2018; Phillips et al., 1997).
78 Exposure ages from the northwestern (17.6 ka) and eastern (19.8 ka) greater Yellowstone glacial
79 system (GYGS) do not show such an early response, and interpretation of its retreat timing is
80 complicated by a migrating ice cap (Licciardi et al., 2001; Licciardi and Pierce, 2018, 2008).
81 The goals of this study are to explore (1) differences in timing between alpine and LIS
82 deglaciation timing, and (2) differences in timing between different mountain ranges in order to
83 understand the impact of arid glacial environments and regional hydroclimate drivers.

85 **Figure 1.** Map of Late Pleistocene mountain glaciation in the interior Northwest U.S and northern Rocky
86 Mountains. Color relief map base produced from the National Map ([http://www.usgs.gov/core-
87 sciencesystems/national-geospatial-program/national-map](http://www.usgs.gov/core-sciencesystems/national-geospatial-program/national-map)). The Pioneer Mountains (orange label) are located at
88 45.5°N, 113°W. Physiographic regions described in the text are labeled in yellow. Mountain glacier systems are
89 labeled in white, and redrawn from Porter et al. (1983) and Pierce (2003). Approximate locations of ice-sheet
90 marginal glacial lakes (GL) outlined in blue. Circles indicate approximate locations of sites dated with exposure
91 ages. NRMIC = Northern Rocky Mountain Ice Cap. Box indicates area shown in Fig. 2. Modified from Laabs et al.
92 (2020) and Licciardi & Pierce (2018).

93

94 **2. Previous work, study area, and study design**

95 *2.1 Previous work: Pioneer Mountains*

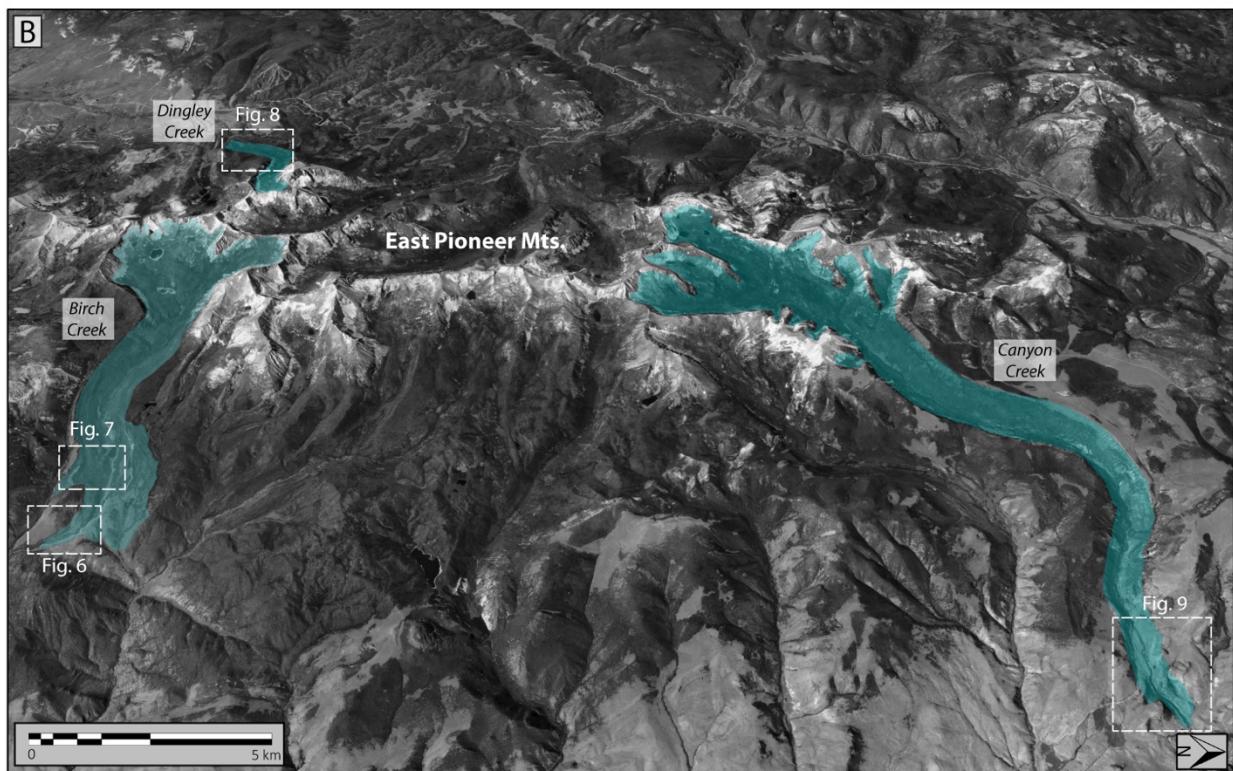
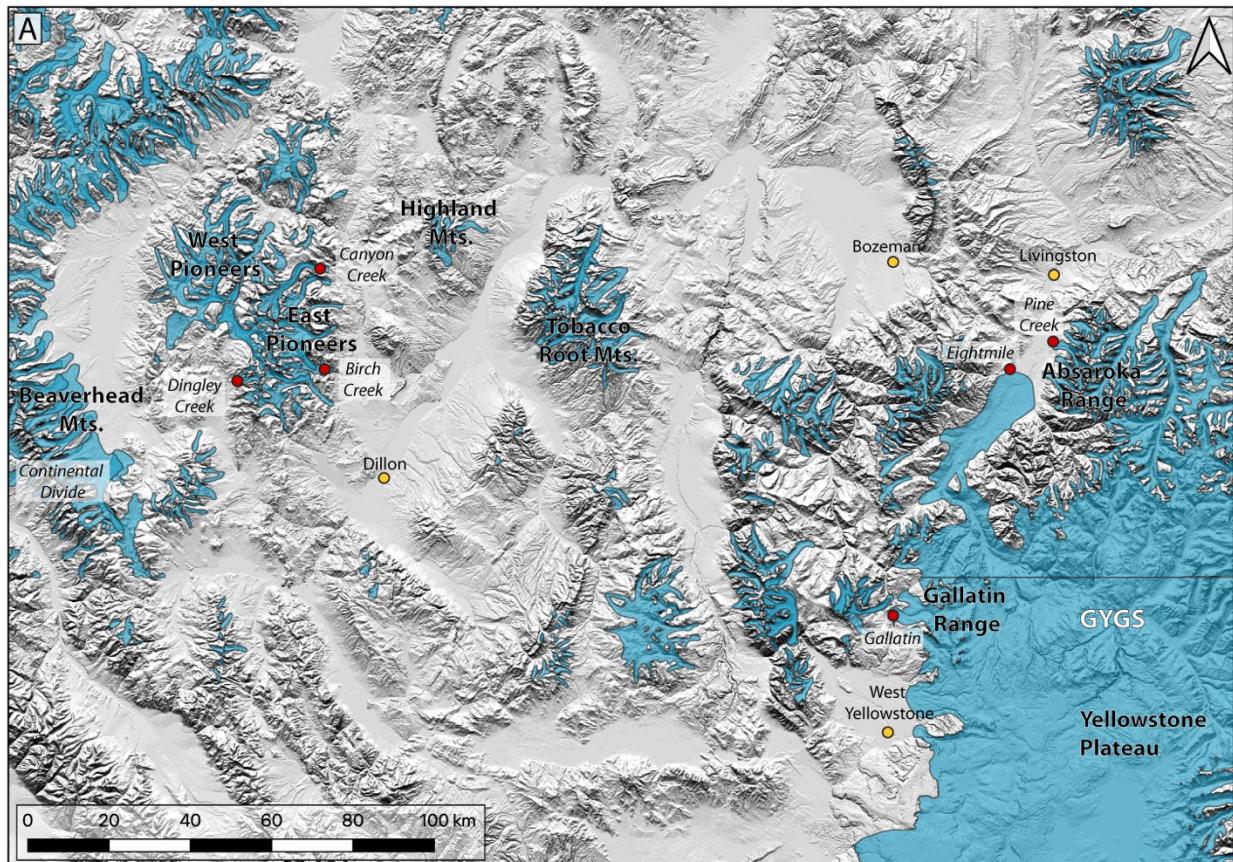
96 In southwest Montana, glacial moraines, outwash, and erosional landforms indicate that
97 many of the mountain ranges with land area above 2,500 m contained glaciers during the LGM
98 (Locke, 1990; Porter, 1983). However, ice extent and glacier history are known only generally.
99 Ice extents in the region are broadly delineated based on glacial geomorphic field mapping by
100 Alden (1953). Glacial deposits mapped by Pearson and Zen (1985) and Ruppel et al. (1993)
101 helped to further establish glacial extents, although slightly different limits were outlined by
102 Locke and Smith (2004) who derived ice limits from map and aerial photo interpretation.

103 During Pleistocene glaciations, ice extent expanded in southwest Montana, producing small
104 ice fields with outlet glaciers in some ranges and alpine glaciers that carved and filled mountain
105 valleys, preferentially in north-northeast aspects. Evidence for previous glaciers include bowl-
106 shaped cirques in the valley headwaters, which now contain small tarns or meadows, striations
107 on bedrock, U-shaped valleys with obvious trimlines, erratic boulders, and moraines of bouldery
108 till (Alden, 1953; Locke and Smith, 2004; Pearson and Zen, 1985). The east and west Pioneer
109 Mountains are one of the largest ranges in the region (Fig. 2), and during the Pinedale glaciation
110 (i.e. the last glaciation, as termed by Blackwelder, 1915 based on the type locale in Wyoming),
111 ice on the ranges merged in the Wise River/Grasshopper drainages to form a small ice cap
112 (Smith, 2007). According to Smith (2007), the east Pioneer ice cap may have been thick enough
113 to form outlet glaciers that spilled across drainage divides near the headwaters of Wise River,
114 Birch Creek, and Grasshopper Creeks (Smith, 2007, see Fig. 1).

115 Geomorphic descriptions of glacial landforms by Alden (1953) provide the earliest
116 documentation of ice extent in western Montana. Alden explored many localities in the
117 Beaverhead, Madison, Tobacco Root, and Pioneer Mountains between 1927 and 1938, and
118 described both younger and older moraines and outwash plains that extended down valley of the

119 glacial ice extent. In some valleys of the Pioneer Mountains, he identified older till with boulders
120 containing large surface pits and moraines with subdued relief. Alden hypothesized that these
121 landforms were formed during an earlier glaciation, and indeed, the differences in till
122 characteristics are similar to those differences identified on confirmed Bull Lake and Pinedale
123 moraines in the nearby West Yellowstone area by (Pierce, 2003). These early mapping efforts
124 provided initial locations for Quaternary glacial deposits and have since been improved upon by
125 Pearson and Zen (1985) and Locke and Smith (2004), although neither separated moraines from
126 multiple glaciations. More recent regional surficial geology mapping efforts by McDonald et al.
127 (2012) at 1:100,000 scale include the northeast portion of the Pioneer Mountains and McDonald
128 and Yakovlev (2019) at 1:24,000 scale of Birch Creek valley provide more detailed glacial
129 outlines. However, even these most recent maps of the Pioneer Mountains have not delineated
130 between Bull Lake and Pinedale till deposits, nor glacial outwash, with some boundaries
131 mistaking hillslope colluvium with till.

132 *2.2 Study area: Pioneer Mountains, Montana*



133 The Pioneer Mountains are located in southwestern Montana in a region characterized as
134 arid-steppe-cold summer (BSk) based on the Köppen-Geiger climate classification (Peel et al.,
135 2007). When the LIS was present, between ~35 and ~13 ka (Dyke, 2004; Fullerton et al., 2004;
136 Stokes et al., 2012), the Pioneer Mountains were located within the anti-cyclonic katabatic winds
137 that descended off the ice sheet (Oster et al., 2015; Wong et al., 2016). The isolated dome-shaped
138 range is comprised of Cretaceous (~75 Ma) granodiorite of the Pioneer Batholith forming the
139 north-south spine of the East Pioneer Mountains that rise to ~3200 m asl and Paleozoic
140 metasedimentary rocks forming the more subdued peaks of the West Pioneers (Hyndman and
141 Thomas, 2020).

142 The Pioneer Mountains are located east of the Continental Divide, in the orographic shadow
143 of the Beaverhead Mountains which deplete moisture from the prevailing westerly winds.
144 Today, the Pioneer Mountains receive the bulk of their precipitation in the winter and spring,
145 with an average of 775 mm/year of water equivalent and a mean summer (JJA) temperature of
146 11°C (1981-2021, Mule Creek station, 2530 m asl, NRCS). Major valleys along the eastern
147 flanks of the Pioneer Mountains contained large valley glaciers (10–20 km length) during the
148 Late Pleistocene. Although no ice remains, the semi-arid climate of southwest Montana has
149 preserved many geomorphic features of the last glaciation (Smith, 2007).

150 *2.3 Study Design*

151 We selected multiple drainages in different sectors of the Pioneer Mountains with varying
152 orientations to capture a range of physical and geomorphic characteristics that were most
153 representative of the paleoglacier systems that once occupied the region. Of these, we narrowed
154 down the selection to those glacial valleys that had well preserved glacial landforms, including
155 lateral and terminal moraines. We attempted to find uneroded, undisturbed boulders for
156 cosmogenic nuclide sampling. In some cases, we dated boulders on moraines that appeared to be
157 the maximum lateral extent but were located considerably up-valley from the terminus; in other
158 cases, we sampled some apparently older deposits based on their lack of obvious well-preserved
159 terminus features from the prior glaciation (i.e., Bull Lake). In all, a total of 35 samples were
160 collected from glacial deposits.

161 The three glacial valleys selected for sampling provide different orientations, hypsometry,
162 lengths, shading, accumulation/ablation areas, and valley geometry (i.e., multiple cirque basins,
163 pinch points, hanging valleys, etc.), representative of the variety of paleoglaciers that once filled
164 the Pioneer Mountains (Fig. 2). Birch Creek valley was selected for its east aspect, which is the
165 most common orientation for the larger valley glaciers, its moderate length, and prominent
166 lateral moraine crests. Canyon Creek valley was selected for its unique northeast-facing aspect
167 and greatest cirque-to-moraine length of the entire mountain range. Dingley Creek valley was
168 selected for its west-facing aspect, short valley length, and simple geometry (i.e., single
169 accumulation basin). Together, the three different glacial valleys offer a broad range of
170 characteristics to explore how the timing of glacier retreat may differ within the range.

172 **Figure 2.** A) Extent of Pinedale glaciation (outlines from Western US Paleoglaciers) of southwest Montana and
173 northwest Greater Yellowstone Glacial System (GYGS) overlain on USGS shaded relief base map. Relevant
174 mountain ranges (black), glacial valleys (italics) and sample locations (red circles) included. B) Oblique aerial view
175 of the East Pioneer Mountains looking west (Google Earth). Erosional and depositional glacial landforms are visible
176 along the north-south spine of the range. The blue outlines show the maximum glacial extent during the LGM of the
177 three valleys sampled in this study. Canyon Creek, Birch Creek, and Dingley Creek study areas outlined in dashed
178 white.

179
180 *2.3.1 Birch Creek*

181 Located on the eastern side of the Pioneer Mountains, the east-facing Birch Creek valley
182 contains geomorphic evidence for a ~13 km-long valley glacier, ranging in elevation from ~3100
183 m to 1995 m (Fig. 2b). The upper valley is characterized by sharp aretes dissecting the
184 accumulation area into three larger cirques with multiple tarns. The down-valley section of the
185 glacier split into two lobes, with the second and more subtle left-hand lobe to the northeast
186 having been identified by aerial imagery after field sampling (Fig. 2b). Much of the lower half of
187 the glacier's extent is well outlined by lateral moraines, as well as some recessional moraines.
188 The entire drainage sits within the Pioneer Batholith granodiorite.

189 *2.3.2 Canyon Creek*

190 The northeast-facing Canyon Creek valley contains glacial landforms extending ~23 km
191 down valley (Fig. 2b), spanning elevations of ~3050 m to 1750 m. The head of the valley holds a
192 cirque complex with three large cirques and multiple small cirques. The cirque basin is divided
193 by numerous aretes, with threads of medial moraines leading downstream into a long u-shaped
194 valley with mappable trimlines. Near the terminus a steep-sided roche moutonée of quartzite
195 crosses the valley floor obliquely, with a downstream medial moraine indicating that flow was
196 split at one time, likely once the glacier receded from its maximum extent and thinned below the
197 maximum height of the roche moutonée (1907 m). The lithology of upper Canyon Creek
198 consists of granodiorite and in the lower canyon, meta sedimentary sequences, including
199 quartzite, dominate the valley.

200 *2.3.3 Dingley Creek*

201 Dingley Creek is located on the west side of the East Pioneer Mountains (Fig. 2b). The west
202 facing valley has well-preserved glacial trimlines up-valley and lateral moraines down-valley,
203 and it extends ~5 km from the cirque headwall to the terminus. The elevation ranges from ~2900
204 m to 2150 m. The upper valley is characterized by one cirque flanked by steep peaks to the east
205 and south and a col to the north. The quartz-rich granodiorite dominated valley contains an

206 abundance of large, semi-rounded boulders along the moraines. The glacier terminus is
207 comprised of a steep end-moraine incised by the creek, with extensive hummocky ground till, a
208 well-preserved, right-lateral moraine crest, and a more subtle, broad, left-lateral ridge.

209

210 **3. Background: Cosmogenic nuclide dating techniques and applications**

211 *3.1 In-situ cosmogenic exposure dating: theory and assumptions*

212 Terrestrial (in-situ) produced cosmogenic nuclides have been used since the 1990s to
213 determine the timing and rates of deglaciation measured (Balco, 2011; Bierman, 1994; Fabel and
214 Harbor, 1999; Phillips et al., 1990). The most commonly measured nuclide, ^{10}Be in quartz,
215 accumulates at known rates in rock surfaces as they are exposed to high-energy cosmic radiation
216 (Lal, 1988). The production rate of ^{10}Be is empirically constrained (Borchers et al., 2016);
217 quantifying the abundance of the nuclide of interest in rock surfaces provides an integrated
218 history about the exposure of that surface since deglaciation.

219 The interpretation of a cosmogenic nuclide measurement as an exposure age relies upon
220 several key assumptions: (1) that the surface was deeply eroded during the most recent glaciation
221 and nuclides from prior interglacial periods were removed (Briner et al., 2016), (2) that rock
222 surfaces were not shielded by sediments or deep snow cover following deglaciation (Heyman et
223 al., 2016; Schildgen et al., 2005), (3) that rock has not been removed from sampled surfaces by
224 weathering or rock spalling after deglaciation (Zimmerman et al., 1994), and (4) that boulders (in
225 the case of moraines) have not rolled or been exhumed from beneath eroding sediments. If these
226 assumptions are not fully met, then calculated exposure ages under-estimate (in the case of post
227 erosion, shielding, or boulder rolling) or over-estimate (in the case of prior inheritance of
228 nuclides) the timing of actual surface exposure.

229 *3.2 Applications of cosmogenic nuclide dating to Western US glacial history*

230 Over the past three decades, the application of in-situ cosmogenic nuclide exposure dating to
231 Late Pleistocene moraines in the western U.S. has produced hundreds of ages of alpine glacial
232 features in the region (Dahms et al., 2010; Laabs et al., 2009; Licciardi et al., 2004, 2001;
233 Licciardi and Pierce, 2018, 2008; Munroe et al., 2006; Phillips et al., 1997, 1990; Pierce, 2003;
234 Thackray, 2008; Young et al., 2011). As reviewed in Laabs et al. 2020, cosmogenic nuclide
235 exposure chronologies of moraines deposited during the last glaciation have been obtained for
236 most major glaciated mountain ranges in the conterminous western United States including: the

237 Cascade Range and interior Pacific Northwest (e.g., (Licciardi et al., 2004; Porter and Swanson,
238 2008; Speth et al., 2018), the Rocky Mountains (e.g., (Brugger, 2007; Brugger et al., 2019b,
239 2019a; Gosse et al., 1995; Laabs et al., 2009; Leonard et al., 2017a; Licciardi et al., 2001;
240 Licciardi and Pierce, 2008, 2018; Phillips et al., 1997; Young et al., 2011), the Colorado Plateau
241 (e.g., (Marchetti et al., 2011, 2007, 2005), portions of the Basin and Range (e.g., (Laabs et al.,
242 2013; Wesnousky et al., 2016), and the Sierra Nevada (e.g., (Nishiizumi et al., 1993; Phillips et
243 al., 2009, 1996, 1990; Rood et al., 2011) (see Fig. 1).

244 Most of these studies have focused on determining the timing of glacial maxima by dating
245 terminal moraines. When moraine crests were dated within a single mountain range or multiple
246 moraine crests within a single glaciated valley, studies have found millennial-scale differences in
247 the timing of maximum extent and/or timing of subsequent ice retreat (e.g., (Guido et al., 2007;
248 Laabs et al., 2009; Leonard et al., 2017a, 2017b; Licciardi et al., 2004; Licciardi and Pierce,
249 2008; Marcott et al., 2019; Young et al., 2011). These chronologies have provided the basis for
250 developing reconstructions of past temperature and precipitation and benchmarks for climate
251 modeling during the last glaciation and deglacial transition in the western U.S. (Leonard et al.,
252 2017a; Plummer and Phillips, 2003; Quirk et al., 2018; Refsnider et al., 2008)

253 Although a number of cosmogenic nuclide exposure chronologies exist from ranges in the
254 Cascades (e.g., Icicle Creek near Leavenworth, WA, Porter and Swanson, 2008), the inland
255 Pacific Northwest (e.g., Wallowa Lake near Joseph, OR, Licciardi et al., 2004), and greater
256 Yellowstone (e.g., Beartooth Front near Livingston, MT, Licciardi and Pierce, 2008), there is a
257 ~500 km gap spanning the northern Rocky Mountain region (Fig. 1). Besides a few radiocarbon
258 ages derived from lake sediments in the Sawtooth Range, there are no exposure chronologies
259 north of the Snake River Plain including central Idaho or southwestern Montana. Recent ages
260 from the northern MT ice cap in Glacier National Park (e.g. Lewis Range) expand spatial
261 coverage to the ice sheet margin (Quirk et al., 2022).

262 Studies using cosmogenic ^{10}Be exposure dating in the northwestern US have shown spatially
263 variable Pinedale retreat timing between neighboring regions (Fig. 1; (Dahms et al., 2018; Laabs
264 et al., 2020; Licciardi et al., 2004; Licciardi and Pierce, 2008; Phillips et al., 1997; Thackray et
265 al., 2004). The LGM extents have been mapped and chronologies developed for a handful of
266 ranges in the northwestern US including the Wallowa Mountains, OR, greater Yellowstone
267 glacial system (GYGS: Beartooth Uplift, Absaroka Range, & Gallatin Range), Teton Range,

268 WY, Bighorn Mountains, WY and Wind River Range, WY. The chronologies indicate bi-modal
269 ages at some locations with an older and younger mode (i.e., Wallowa Mountains (22.8/18.5 ka),
270 Wind River Range (22.1/18.7 ka) and Bighorn Mountain (22.9/18.0 ka), while chronologies from
271 the Yellowstone glacial system indicate a time transgressive pattern moving from the northeast
272 (i.e., Beartooth Uplift) to the southwest (Yellowstone Plateau). The existing LGM chronologies
273 from the northern Rocky Mountains are based on ages from the GYGS which span a broad
274 temporal range (e.g., 19.8 – 15.4 ka, Clarks Fork Canyon, WY to Jenny Lake, WY) driven by the
275 migrating position of the Yellowstone ice cap (Licciardi and Pierce, 2018, 2008; Pierce, 2003;
276 Pierce et al., 2018) and a limited number of ages from the Glacier National Park (e.g. Lewis
277 Range, Quirk et al., 2022). The drivers of spatial heterogeneity of glacier responses in these
278 northern ranges proximal to the LIS remains unclear.

279

280 4. Methods

281 4.1 *Geomorphic and aerial mapping of landforms*

282 In order to visualize large-scale glacial features remotely, we analyzed Landsat satellite
283 imagery available through Google Earth Pro. Using the imagery, we identified terminal and
284 lateral moraines with large boulders for potential sampling. In addition, we outlined polygons of
285 the paleo-glacial extent based on trimlines and moraine crests to determine total area. Using a
286 drone and photogrammetry software (Metashape by Agisoft), we created digital elevation models
287 (DEMs) and orthophotos of glacial landforms for each glacier terminus in the study region. The
288 high-resolution aerial imagery allowed us to identify subtleties in the glacial landforms and till
289 extent. From the DEMs and imagery, along with ground truthing, we produced geomorphic maps
290 of the termini that provided context for interpreting the cosmogenic exposure ages of the glacial
291 boulders.

292 4.2 *Sampling and field methods*

293 To develop the first glacial chronologies for the Pioneer Mountains, we targeted the best
294 preserved moraines mapped as Quaternary in age. For each valley, we selected boulders from
295 well-preserved, outermost moraine crests. We collected samples during 2019 and 2020 from 35
296 boulder surfaces (Fig. 3, Table 1). We selected the largest boulders of granite and quartzite,
297 standing at least >0.5 m above the ground to minimize potential complications related to cosmic-
298 ray shielding by sediment and/or snow cover. We avoided boulders with obvious evidence of

299 surface weathering (e.g., cm-scale weathering features), loss of mass (e.g., from fire or
300 exhumation), or overturning. Most sampled boulders were large (~1–4 m), broad-based, and had
301 rounded or flat upper surfaces with negligible surface pitting, with the exception of the quartzite
302 boulders which tended to show some signs of frost shattering (Fig. 6f). We collected samples
303 from boulder surfaces using a hammer and chisel.

304 At each sample site, we used handheld GPS (Garmin 64st, meter-scale accuracy) to record
305 geographic coordinates and elevation; we measured boulder dimensions, the position of the
306 boulder relative to the moraine crest, and topographic shielding using an inclinometer. In
307 addition, we recorded the thickness of each sample, distance from boulder edge, and aspect of
308 the boulder surface. Photographs were taken of the four cardinal locations and sampled area on
309 the boulder. Sample elevations range from 1800 to 2350 m asl.

310 In the Birch Creek valley terminus, we collected six boulder samples (BC07–09, BC11–13)
311 along the right lobe, from relatively broad moraine crests, but the terminus moraine itself had
312 been mostly washed out with few in-place boulders (Fig. 4d). While the left lateral moraine had
313 many optimal boulders (BC07–09), minimal boulders were present along the right lateral
314 moraine (BC11–13) where the glacier deposited only a thin veneer of till that merged with
315 colluvium derived from upslope. Although BC13 was located ~12 m below the moraine crest on
316 a steep slope and was partly buried on the upslope side, it was the only large boulder positioned
317 near the terminus (Fig. 4d, 6). Four additional boulders (BC01–04) were sampled along the
318 outer crest of a prominent right lateral moraine ~4 km up valley from the terminus (Fig. 3a,d),
319 with two boulders (BC05–06) sampled from a lower, nested, recessional moraine at the same
320 location (Fig. 4d).

321 At Canyon Creek valley, we collected a total of twelve boulder samples. The complex
322 terminus zone included a smaller right-hand lobe that was constrained by topography, a steep
323 roche moutonnerie in the center of the valley which produced a discontinuous medial moraine in
324 its lee, and a high, subdued left-lateral moraine (see Fig. 4b). The lower right side of the
325 terminus is not well defined by lateral or terminal moraines, so we collected four boulder
326 samples ~800 m up valley within the right lobe (CC01–04). We gathered two samples (CC07,
327 09) along the crest of the medial moraine (Fig. 3c) and three sub-rounded granitic boulders
328 (CC16, 17, 19) from the highest point on the roche moutonnerie (Fig. 3e). The presence of large
329 granitic boulders atop the quartzitic roche moutonnerie indicate glacial ice overrode the landform

330 during maximum ice thickness. Along the smoothed and weathered left-lateral moraine, only
 331 quartzite boulders were present, many of which were frost shattered and few above 0.5 m height
 332 (Fig. 3f). From these, we collected three samples (CC13–15).

333 In Dingley Creek valley, we sampled a total of eleven boulders (Fig. 4c). We collected four
 334 samples from the terminus (DC02–04, 11), three samples from the left lateral moraine (DC12–
 335 14) which onlapped the bedrock valley wall, and four samples (DC05, 06, 08, 10) from the well-
 336 defined right lateral moraine crest.

Table 1

Sample location information and field data for 35 boulder samples from the Pioneer Mountains, MT

Sample Name	Latitude (°N)	Longitude (°E)	Elevation (m a.s.l.)	Boulder Height (m)	Sample Thickness (cm)	Shielding corr.	Rock Type
Birch Creek Recessional							
BC-01	45.4230	-112.8877	2221	1.2	1.5	1.00	Granite
BC-02	45.4236	-112.8891	2266	1.8	10	1.00	Granite
BC-03	45.4238	-112.8913	2293	1.98	2	1.00	Granite
BC-04	45.4238	-112.8927	2319	0.61	6	1.00	Granite
BC-05	45.4252	-112.8869	2271	1.17	1.5	1.00	Granite
BC-06	45.4251	-112.8856	2267	1.8	4.5	1.00	Granite
Birch Creek Terminus							
BC-07	45.4252	-112.8556	2050	1.82	2	1.00	Granite
BC-08	45.4265	-112.8557	2075	1.98	3	1.00	Granite
BC-09	45.4276	-112.8564	2083	1.52	5	1.00	Granite
BC-11	45.4258	-112.8605	2057	0.57	3	1.00	Granite
BC-12	45.4264	-112.8628	2085	0.82	4	1.00	Granite
BC-13	45.4236	-112.8592	2042	0.75	8	0.99	Granite
Canyon Creek Terminus							
CC-01	45.6681	-112.7993	1908	0.76	3.5	1.00	Granite
CC-02	45.6686	-112.7942	1891	0.93	7	0.99	Granite
CC-03	45.6700	-112.7952	1872	1.98	5	0.97	Granite
CC-04	45.6697	-112.7951	1873	1.24	7	0.99	Granite
CC-07	45.6766	-112.7939	1806	0.5	2	1.00	Granite
CC-09	45.6747	-112.7964	1830	0.74	5.5	1.00	Quartzite
CC-13	45.6772	-112.7966	1808	0.59	4	1.00	Quartzite
CC-14	45.6772	-112.7970	1820	0.71	2	1.00	Quartzite
CC-15	45.6772	-112.7979	1831	1.45	8	1.00	Quartzite
CC-16	45.6730	-112.7997	1904	1.21	1.5	1.00	Granite
CC-17	45.6730	-112.7999	1900	1.32	3	1.00	Granite
CC-19	45.6735	-112.8013	1899	1.17	3	1.00	Granite

Dingley Creek Terminus

DC-02	45.4305	-113.0832	2221	0.7	4	1.00	Granite
DC-03	45.4311	-113.0838	2229	0.74	3	1.00	Granite
DC-04	45.4318	-113.0842	2230	1.15	3	1.00	Granite
DC-05	45.4363	-113.0793	2354	0.57	5	1.00	Granite
DC-06	45.4362	-113.0799	2342	0.8	3	1.00	Granite
DC-08	45.4350	-113.0808	2311	1.26	4	1.00	Granite
DC-10	45.4345	-113.0825	2279	1.01	1.5	1.00	Granite
DC-11	45.4297	-113.0791	2241	2	5	0.99	Granite
DC-12	45.4299	-113.0771	2260	1.5	7	0.98	Granite
DC-13	45.4305	-113.0765	2285	1.5	5	0.97	Granite
DC-14	45.4313	-113.0755	2298	3	4	0.97	Granite

337

338

339

340

341 **Figure 3.** Photographs from the study area. A) View down-valley along right lateral moraine crest of Birch Creek
 342 (location of sample BC-03, 2293 m a.s.l.). B) Sub-rounded boulder on left lateral terminus of Birch Creek Valley
 343 (location of sample BC-07, 2050 m a.s.l.). C) Example of sub-angular quartzite boulder on medial moraine of
 344 Canyon Creek (location of sample CC-09, 1830 m a.s.l.). D) A typical granite boulder exhibiting subtle rounding
 345 (location of sample BC-01, 2221 m a.s.l.). E) Aerial view up-valley of rounded granitic boulders perched on the
 346 crest of a roche moutonnée exhibiting frost shattering of quartzitic bedrock in the Canyon Creek Valley (location of
 347 sample CC-19, 1899 m a.s.l.). F) Sampling boulder CC-15, which sits on the crest of the left lateral Bull Lake aged
 348 moraine in Canyon Creek (1831 m a.s.l.).

349

350 *4.3 Sample preparation and isotopic analysis*

351 We crushed and pulverized rock samples with a jaw crusher and disc pulverizer at Montana
352 Technological University and isolated the 250 – 710 μm size fraction by sieving. We then
353 isolated and purified quartz at the NSF/UVM Community Cosmogenic Facility following the
354 methods of Kohl and Nishiizumi (1992) and verified quartz purity by Inductively Coupled
355 Plasma Optical Emission Spectrometry.

356 We extracted beryllium ($n = 35$) in the NSF/UVM Community Cosmogenic Facility using
357 methods described in Corbett et al. (2016) and ~20 g of quartz per sample. Samples were
358 prepared in batches of 12, each of which included ten unknowns, one blank, and one quality
359 control standard. We spiked each sample with ~250 μg Be using an in-house-made carrier,
360 termed UVM-SPEX, created from a dilution of SPEX 1000 ppm Be standard, with a resulting Be
361 concentration of 304 $\mu\text{g mL}^{-1}$ (Table 2).

362 Accelerator Mass Spectrometry (AMS) analysis of $^{10}\text{Be}/^{9}\text{Be}$ occurred at the Purdue Rare
363 Isotope Measurement (PRIME) Laboratory (Table 2). Sample analyses were normalized to
364 primary standard 07KNSTD3110, with an assumed ratio of 2.850×10^{-12} (Nishiizumi et al.,
365 2007). We corrected samples for backgrounds using the average and standard deviation of the
366 four blanks associated with the samples ($4.6 \pm 1.1 \times 10^{-15}$) and propagated the blank
367 uncertainties in quadrature. Background-corrected sample ratios range from 2.63 to 38.3×10^{-13} ;
368 analytic uncertainties (including the propagated blank uncertainty) are $2.1 \pm 0.5\%$ (average, 1
369 SD).

Table 2Sample preparation and laboratory information for $^{10}\text{Be}/^{9}\text{Be}$ analyses.

Sample Name	Quartz Mass (g)	Mass of ^{9}Be Added (μg)*	AMS Cathode Number	Uncorrected $^{10}\text{Be}/^{9}\text{Be}$ Ratio**	Uncorrected $^{10}\text{Be}/^{9}\text{Be}$ Ratio Uncertainty**	Background-Corrected $^{10}\text{Be}/^{9}\text{Be}$ Ratio	Background-Corrected $^{10}\text{Be}/^{9}\text{Be}$ Ratio Uncertainty	^{10}Be Concentration (atoms g^{-1})	^{10}Be Concentration Uncertainty (atoms g^{-1})
BC-01	22.056	250.1	163559	5.311E-13	1.266E-14	5.265E-13	1.271E-14	3.99E+05	9.63E+03
BC-02	21.972	253.0	163560	5.038E-13	1.220E-14	4.992E-13	1.225E-14	3.84E+05	9.42E+03
BC-03	21.724	250.8	163561	5.232E-13	1.263E-14	5.186E-13	1.268E-14	4.00E+05	9.78E+03
BC-04	21.926	251.8	163562	4.815E-13	1.561E-14	4.769E-13	1.565E-14	3.66E+05	1.20E+04
BC-05	22.107	250.6	163563	5.134E-13	1.286E-14	5.088E-13	1.291E-14	3.85E+05	9.78E+03
BC-06	21.901	250.3	163564	4.785E-13	1.200E-14	4.739E-13	1.205E-14	3.62E+05	9.20E+03
BC-07	21.459	251.0	163683	5.006E-13	1.343E-14	4.960E-13	1.347E-14	3.88E+05	1.05E+04
BC-08	21.350	249.8	163671	5.239E-13	1.437E-14	5.193E-13	1.441E-14	4.06E+05	1.13E+04
BC-09	21.382	250.6	163672	5.138E-13	9.660E-15	5.092E-13	9.723E-15	3.99E+05	7.62E+03
BC-11	17.843	250.4	163673	4.223E-13	7.802E-15	4.177E-13	7.880E-15	3.92E+05	7.39E+03
BC-12	21.476	251.0	163684	5.440E-13	1.225E-14	5.393E-13	1.230E-14	4.21E+05	9.61E+03
BC-13	20.983	250.0	163674	4.073E-13	7.737E-15	4.027E-13	7.816E-15	3.21E+05	6.22E+03
CC-01	21.438	249.8	163676	4.069E-13	1.078E-14	4.023E-13	1.083E-14	3.13E+05	8.44E+03
CC-02	21.463	249.5	163677	1.821E-12	3.392E-14	1.817E-12	3.394E-14	1.41E+06	2.64E+04
CC-03	12.891	250.4	163685	2.671E-13	6.449E-15	2.625E-13	6.543E-15	3.41E+05	8.49E+03
CC-04	21.488	249.8	163678	4.304E-13	7.973E-15	4.258E-13	8.050E-15	3.31E+05	6.25E+03
CC-07	15.404	250.7	163686	3.236E-13	7.360E-15	3.190E-13	7.443E-15	3.47E+05	8.10E+03
CC-09	21.585	249.7	163687	4.464E-13	9.730E-15	4.418E-13	9.793E-15	3.42E+05	7.57E+03
CC-13	16.004	250.0	163689	2.524E-12	2.531E-14	2.519E-12	2.533E-14	2.63E+06	2.64E+04
CC-14	16.673	249.8	163690	1.709E-12	1.927E-14	1.705E-12	1.930E-14	1.71E+06	1.93E+04
CC-15	15.407	250.5	163691	3.833E-12	3.450E-14	3.828E-12	3.452E-14	4.16E+06	3.75E+04
CC-16	21.508	250.7	163692	4.824E-13	1.047E-14	4.778E-13	1.053E-14	3.72E+05	8.20E+03
CC-17	21.657	250.0	163693	5.400E-13	9.079E-15	5.354E-13	9.146E-15	4.13E+05	7.06E+03
CC-19	21.555	250.7	163696	4.621E-13	9.357E-15	4.574E-13	9.422E-15	3.55E+05	7.32E+03
DC-02	21.288	250.8	163679	5.376E-13	8.822E-15	5.330E-13	8.891E-15	4.20E+05	7.00E+03
DC-03	21.536	250.2	163680	5.775E-13	9.313E-15	5.729E-13	9.379E-15	4.45E+05	7.28E+03
DC-04	15.879	249.3	163682	4.349E-13	9.482E-15	4.303E-13	9.547E-15	4.51E+05	1.00E+04

DC-05	21.522	249.1	163697	6.389E-13	1.025E-14	6.343E-13	1.031E-14	4.91E+05	7.97E+03
DC-06	21.581	249.4	163698	4.996E-13	8.761E-15	4.950E-13	8.831E-15	3.82E+05	6.82E+03
DC-08	21.522	249.1	163699	5.965E-13	1.018E-14	5.919E-13	1.024E-14	4.58E+05	7.92E+03
DC-10	21.525	250.3	163700	1.695E-12	2.027E-14	1.690E-12	2.030E-14	1.31E+06	1.58E+04
DC-11	14.378	251.3	163702	3.790E-13	7.500E-15	3.744E-13	7.581E-15	4.37E+05	8.85E+03
DC-12	21.505	250.3	163703	5.726E-13	9.364E-15	5.680E-13	9.429E-15	4.42E+05	7.33E+03
DC-13	21.524	250.9	163704	5.595E-13	1.739E-14	5.549E-13	1.742E-14	4.32E+05	1.36E+04
DC-14	21.542	249.1	163705	5.877E-13	1.113E-14	5.830E-13	1.119E-14	4.50E+05	8.64E+03

*⁹Be was added through a carrier made at University of Vermont, termed UVM-SPEX, created from a dilution of SPEX 1000 ppm Be standard, with a resulting BE concentration of 304 $\mu\text{g mL}^{-1}$.

**Isotopic analysis was conducted at PRIME Laboratory; ratios were normalized against standard 07KNSTD3110 with an assumed ratio of 2.850×10^{-12} (Nishiizumi et al., 2007).

370 *4.4 Exposure age calculations*

371 We calculated cosmogenic ^{10}Be exposure ages using version 3.0 of the Online Exposure Age
372 Calculator (OEAC, <http://hess.ess.washington.edu/math/>, last access: 27 February 2023) (Balco
373 et al., 2008). The calculated ages assume no nuclides were inherited from previous exposure, no
374 post-exposure erosion, no snow cover, a rock density of 2.65 g cm^{-3} , and the standard
375 atmosphere model. In order to facilitate comparison with other glacial moraine exposure ages in
376 western North America (e.g., Laabs et al., 2020), we calculated exposure ages using the time-
377 dependent scaling method of Lifton et al. (2014) (LSDn) and the regional ^{10}Be production rates
378 determined at Promontory Point, Utah (Balco et al., 2008; Lifton et al., 2015).

379 *4.5 Age uncertainties*

380 We report cosmogenic exposure ages of individual sample surfaces using both 1σ internal
381 and external uncertainties (Table 3). We use the internal uncertainties when assessing
382 relationships between samples in our dataset and the external uncertainties when comparing to
383 other studies and other forms of chronology.

384 For each glacial valley, we calculated the timing of moraine occupation and abandonment as
385 the arithmetic mean of all boulder exposure ages from the maximum extent of datable landforms.
386 We first report these averages including all sample points, then explore whether a subset of the
387 samples record processes other than simple deglaciation timing (e.g., surface burial, boulder
388 rolling, fire spalling, recessional deposition, etc.). In the latter case, we then assess how the
389 resulting averages would change based on the exclusion of possible outliers. To identify possible
390 outliers, we use the OEAC's built-in landform outlier detection which calculates the p-value of
391 the chi-squared statistic with respect to the mean, using measurement uncertainties, of the entire
392 dataset by landform and/or valley (see Section 4C of the OEAC documentation).

393 The effects of snow cover on cosmogenic nuclide production are difficult to estimate, but
394 were likely minimized by selecting relatively tall boulders (Schildgen et al., 2005). In most
395 reports of exposure ages in the western U.S., the effects of snow cover on cosmogenic nuclide
396 production have been assumed to be negligible (Laabs et al., 2020) and recent modeling studies
397 by Ye et al., (2023) using modern and time-integrated snow cover suggest that in the Northern
398 Rockies, wind-swept regions have minimal snow correction factors (e.g., Fig. 4, Ye et al., 2023).
399 The modern-day down-valley moraine crests ($\sim 2100\text{--}2200 \text{ m}$) of the Pioneer Mountains
400 generally receive minimal amounts of snow cover (SWE = 0.78 m/yr , Mule Creek SnoTel,

2530m, NRCS), and are often scoured by strong winds. As such, we assume that snow cover is negligible but note that snow cover would cause our reported ages to be minima.

4.6 Regional comparison of northern Rocky Mountain Last Glacial Maximum ages

The widespread application of exposure dating to moraines of the last glaciation throughout the Western US has provided numerous exposure ages that affords comparison of the timing of the Pinedale Glaciation in the Rocky Mountains. We compare our results of the last glaciation timing of the Pioneer Mountains with other northern Rocky Mountain moraines including the northwest portions of the greater Yellowstone glacial system (GYGS), Lewis Range, Teton Range, Big Horn Mountains, Wind River Range, and the Columbia Plateau (i.e., Wallowa Mountains), using comparable exposure ages recalculated by Laabs et al., (2020) with the LSDn scaling model and in-situ production rate from Promontory Point, UT (Lifton et al., 2015). To identify region-wide patterns in the timing of deglaciation, we grouped last glacial (MIS 2) exposure ages from each range that shared similar modes (i.e., old and young) and averaged them together for each mode to obtain a larger sample size (see Table 4). In the case of the GYGS, we included last glacial ^{10}Be exposure ages from the northwestern sector (see Fig. 1 in Licciardi and Pierce, 2018 for details): Eightmile (17.9 ± 1.2 ka), Pine Creek (18.2 ± 1.3 ka), South Fork Deep Creek (17.5 ± 1.1 ka), Cascade Canyon (16.9 ± 0.2 ka) and Gallatin River Valley (17.7 ± 0.4 ka), yielding an average age of 17.8 ± 1.1 ka ($n = 24$, 1 SD).

Table 3

Calculated exposure ages based on in situ ^{10}Be ($n = 35$) concentrations

Sample Name	Latitude (°N)	Longitude (°E)	Elevation (m a.s.l.)	^{10}Be Exposure Age (ka) ^a	^{10}Be Internal Uncertainty (ka) ^a	^{10}Be External Uncertainty (ka) ^a
Birch Creek Recessional (4 km up-valley)						
BC-01	45.4230	-112.8877	2221	16.0	0.4	0.7
BC-02	45.4236	-112.8891	2266	16.0	0.4	0.7
BC-03	45.4238	-112.8913	2293	15.3	0.4	0.7
BC-04	45.4238	-112.8927	2319	14.3	0.5	0.7
BC-05	45.4252	-112.8869	2271	15.0	0.4	0.7
BC-06	45.4251	-112.8856	2267	14.5	0.4	0.7
Recessional (n = 6) avg \pm st dev				15.2	0.7	
Birch Creek Terminus						
BC-07	45.4252	-112.8556	2050	17.7	0.5	0.8
BC-08	45.4265	-112.8557	2075	18.3	0.5	0.9
BC-09	45.4276	-112.8564	2083	18.1	0.4	0.8

BC-11	45.4258	-112.8605	2057	17.9	0.3	0.8
BC-12	45.4264	-112.8628	2085	19.0	0.4	0.8
*BC-13	45.4236	-112.8592	2042	15.7	0.3	0.7
		(n = 6) avg ± st dev		17.8	1.1	
		LGM (no outliers, n = 5) avg ± st dev		18.2	0.5	

Canyon Creek Terminus

*CC-01	45.6681	-112.7993	1908	16.1	0.4	0.8
CC-02	45.6686	-112.7942	1891	68.2	1.3	2.9
CC-03	45.6700	-112.7952	1872	18.7	0.5	0.9
CC-04	45.6697	-112.7951	1873	18.0	0.3	0.8
CC-07	45.6766	-112.7939	1806	18.9	0.4	0.8
CC-09	45.6747	-112.7964	1830	18.8	0.4	0.8
CC-16	45.6730	-112.7997	1904	18.7	0.4	0.8
*CC-17	45.6730	-112.7999	1900	20.9	0.4	0.9
CC-19	45.6735	-112.8013	1899	18.2	0.4	0.8
		(n = 8) avg ± st dev		18.5	1.3	
		LGM (no outliers, n = 6) avg ± st dev		18.5	0.4	

Canyon Creek pre-LGM Composite Moraine

CC-13	45.6772	-112.7966	1808	142.5	1.5	5.8
CC-14	45.6772	-112.7970	1820	90.6	1.1	3.7
CC-15	45.6772	-112.7979	1831	222.5	2.1	9.1

Dingley Creek Terminus

DC-02	45.4305	-113.0832	2221	17.2	0.3	0.7
DC-03	45.4311	-113.0838	2229	17.9	0.3	0.7
DC-04	45.4318	-113.0842	2230	18.1	0.4	0.8
DC-05	45.4363	-113.0793	2354	18.3	0.3	0.8
*DC-06	45.4362	-113.0799	2342	14.4	0.3	0.6
DC-08	45.4350	-113.0808	2311	17.5	0.3	0.7
DC-10	45.4345	-113.0825	2279	49.0	0.6	2.0
DC-11	45.4297	-113.0791	2241	17.8	0.4	0.8
DC-12	45.4299	-113.0771	2260	18.3	0.3	0.8
DC-13	45.4305	-113.0765	2285	17.4	0.6	0.9
DC-14	45.4313	-113.0755	2298	18.0	0.4	0.8
		(n = 10) avg ± st dev		17.5	1.2	
		LGM (no outliers, n = 9) avg ± st dev		17.8	0.4	

Pioneer Mountains ALL Samples (n = 35) median	18.0
Pioneer Mountains LGM/Pinedale (n = 22) avg ± st dev	18.2

Exposure ages were calculated using version 3.0 of the Online Exposure Age Calculator (Balco et al., 2008) and the Promontory Point production rate (Lifton et al., 2015) with LSDn scaling. Calculations assumed no erosion, elevation/pressure flag = standard atmosphere, and 07KNSTD.

Italics indicate samples not included in the LGM/Pinedale (30–16 ka) averages

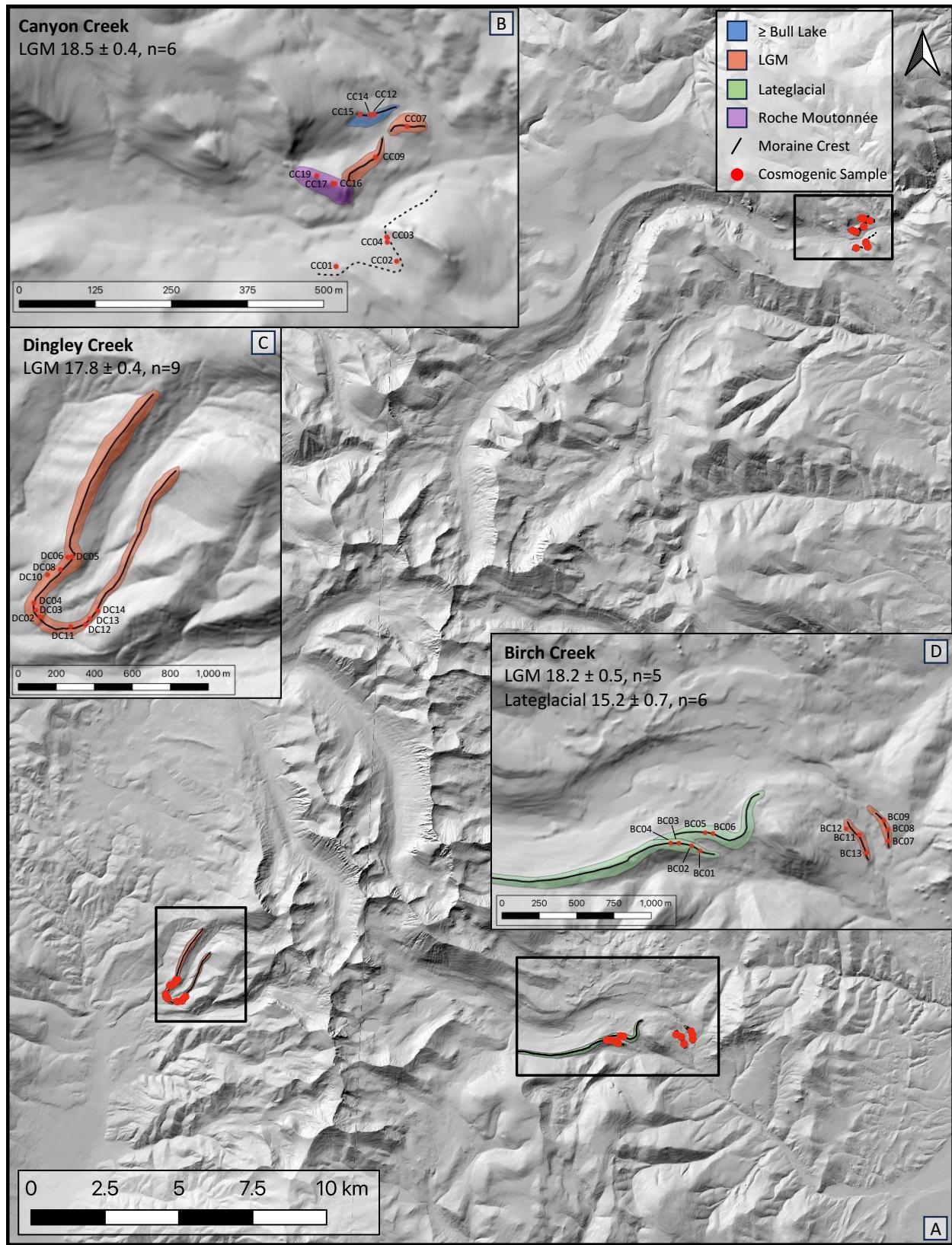
Asterisk (*) indicate possible outliers as identified by the OEAC single landform outlier detection

419

420 5. Results and Implications

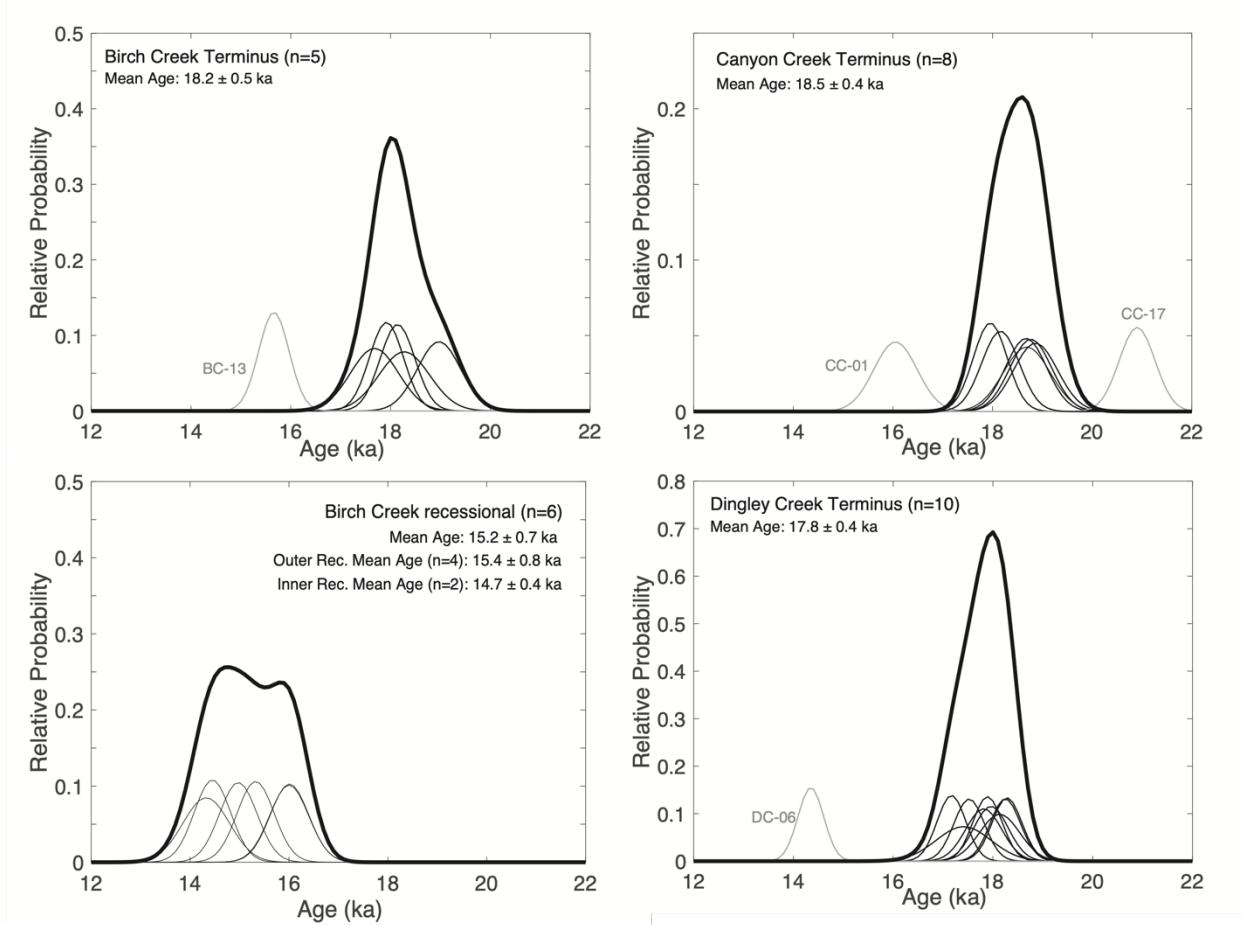
421 5.1 *Geomorphic landforms and mapping*

422 In each of the three glacial valleys, terminal and/or lateral moraines are prominent
423 topographic features forming latero-frontal ridges (Fig. 4). During the course of our field work,
424 we observed many glacio-geomorphic landforms (e.g., moraines, kettle ponds, hummocky
425 topography, steep U-shaped valley walls, and lateral ridges) and evidence of glacial abrasion
426 (e.g., striations and polish on boulders), quarrying (e.g., roche moutonnée with bouldery till in its
427 lee), deposition of glacial erratics, and post-glacial landslides, rock fall, and slumps along some
428 of the steep-sided moraine crests. Based on these field observations within the study region, few
429 examples of older moraines exist in the east Pioneers, however, we did find one location with
430 exceptionally weathered boulders along a low-relief, sub-rounded moraine in the Canyon Creek
431 terminus zone that produced ages much older than the Pinedale.


432 Based on the Google Earth satellite imagery and drone-derived aerial orthophotos, we
433 derived maximum glacier extents for Birch Creek ($\sim 28 \text{ km}^2$), Canyon Creek ($\sim 47 \text{ km}^2$), and
434 Dingley Creek ($\sim 4 \text{ km}^2$). In the upper valley and cirque regions where terrain is rugged and
435 access limited (i.e., no roads or trails, extensive blowdown, and/or private land), the satellite
436 imagery provided sufficient resolution to estimate past glacier coverage. The aerial imagery
437 indicates a number of cols along the central and southern portion of East Pioneer spine, where
438 glacial ice may have overridden drainage divides.

439 5.2 *Cosmogenic ^{10}Be exposure ages*

440 Background-corrected sample ^{10}Be concentrations are $(3.13 \text{ to } 41.59) \times 10^5 \text{ atoms g}^{-1}$ (Table
441 2), yielding exposure ages of $14.3 \pm 0.5 \text{ ka}$ to $222.5 \pm 2.1 \text{ ka}$ ($n = 35$, 1 SD internal uncertainties,
442 Table 3). Overall, the median exposure age is 18.0 ka, with a broad range of exposure ages that
443 span the pre Bull Lake, penultimate glacial (i.e., Bull Lake), last glacial (i.e., Pinedale), and late
444 glacial. The youngest grouping of exposure ages (14.3–16.0 ka, BC01–06) are from a
445 recessional lateral moraine in the Birch Creek valley, while the oldest exposure ages (90.6,


446 142.5, 222.5 ka, CC13–15) occur on a rounded, left-lateral, composite moraine indicating
447 multiple prior glacial advances in the Canyon Creek drainage. Samples uniquely indicative of the
448 last glacial maximum extent from well-preserved outer moraines show deglaciation occurring at
449 18.2 ± 0.9 ka, (n = 22, average, 1 SD). In the following sections, we combine our field
450 observations and calculated exposure ages to create a best estimate for LGM deglaciation timing
451 in each valley.

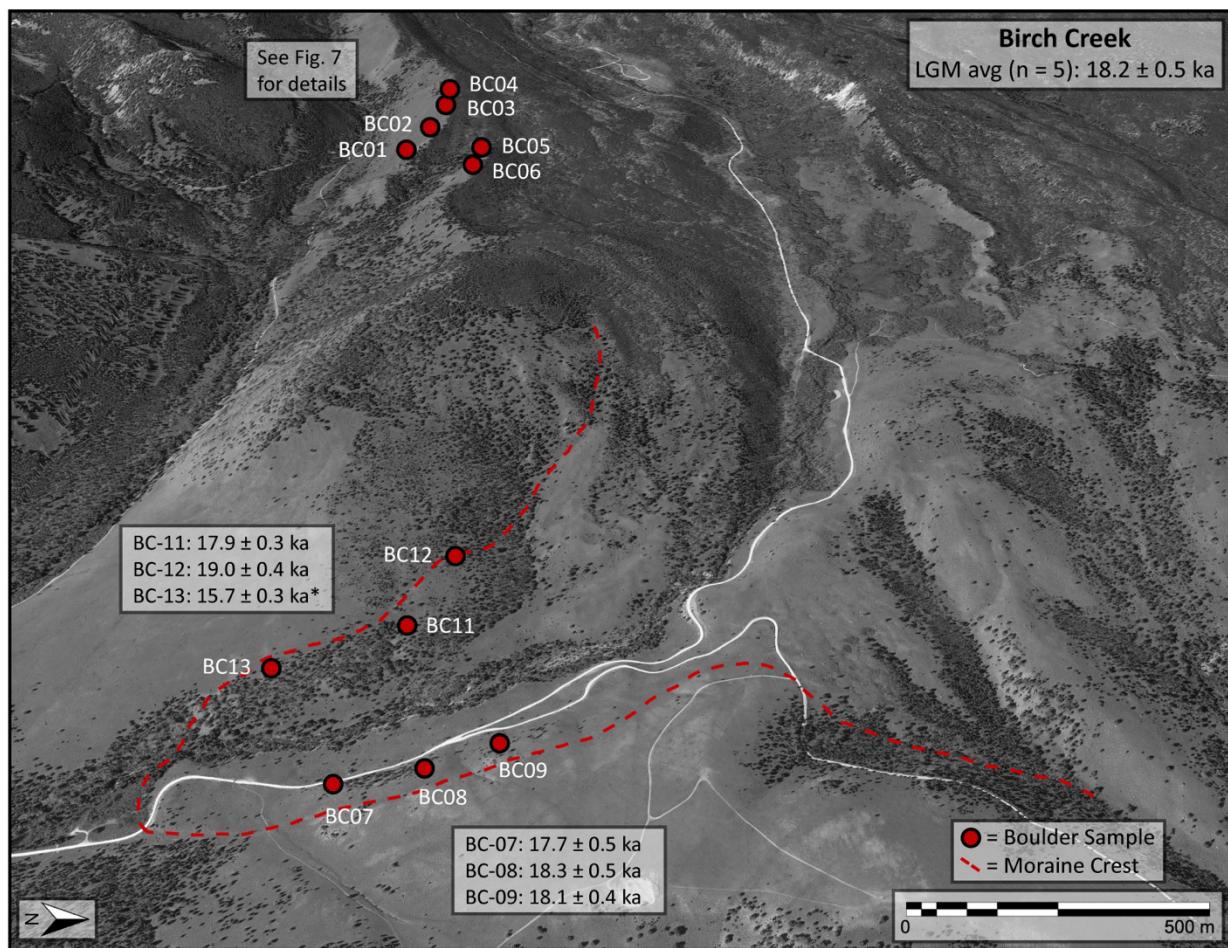
452

454
 455
 456
 457
 458
 459

Figure 4. A) Hillshade-derived image from 10 m LiDAR from the USGS of the Pioneer Mountains showing mapped Last Glacial Maximum (LGM) and late glacial deposits. Cosmogenic samples are shown as red circles (refer to Table 1 for sample names, Figs. 6, 7, 8, 9, and Table 3 for ages). Boxes include LGM/Pinedale averages and 1 SD deviation, excluding outliers. Insets B, C, & D) Same as (A) but close-up view of Canyon Creek, Dingley Creek, and Birch Creek, respectively, showing the moraines and sampling sites, corresponding to the black boxes in (A).

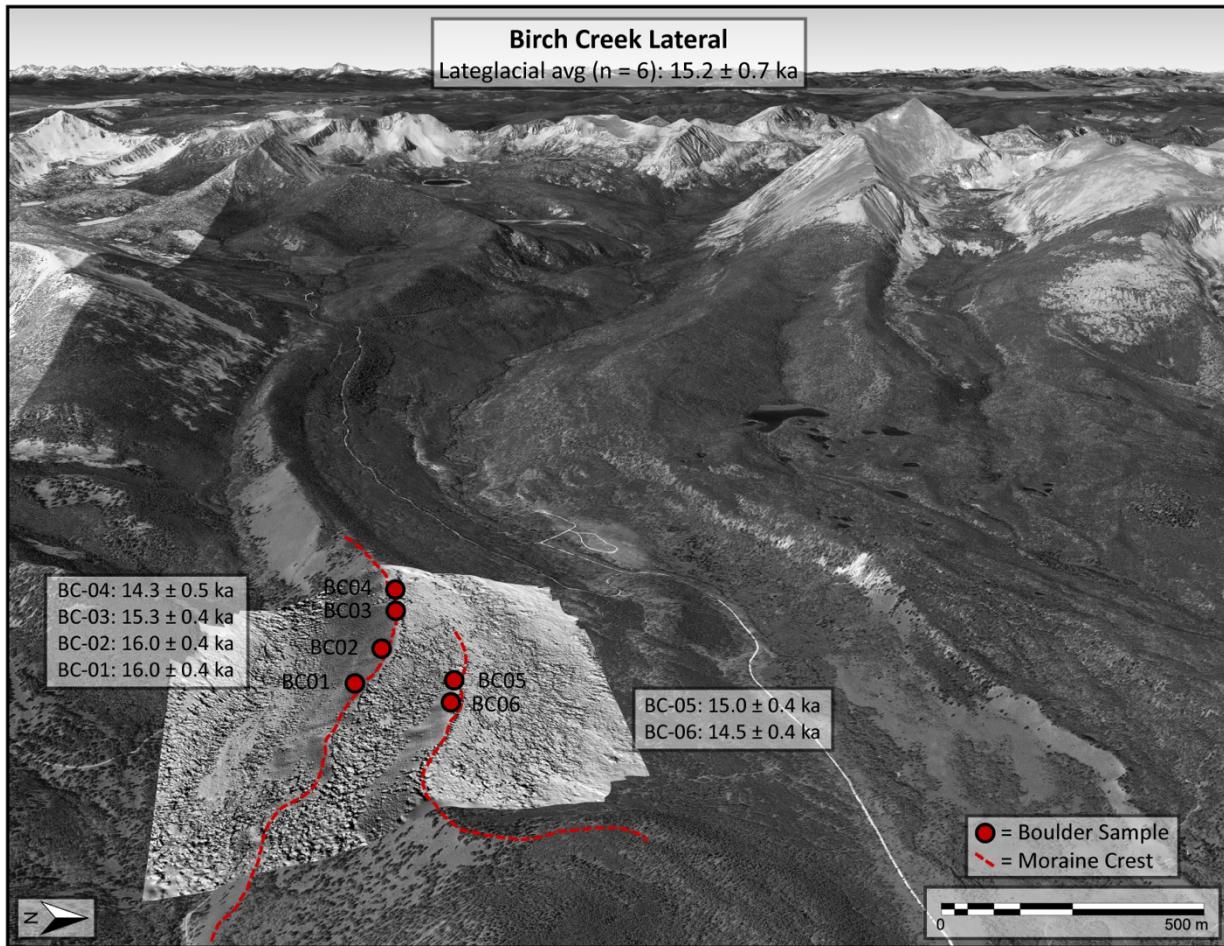
460
 461
 462
 463
 464
 465

Figure 5. Probability distribution functions of ^{10}Be ages from (top left) Birch Creek terminus, (bottom left) Birch Creek right-lateral recessional, (top right) Canyon Creek terminus, and (bottom right) Dingley Creek terminus. Thin black lines represent individual samples with internal uncertainties, thin grey lines represent individual outliers, and thick black lines show summed probability distributions. The means exclude one Birch Creek boulder (BC13), one Dingley Creek boulder (DC06) and two Canyon Creek boulder outliers (CC01, CC17).


466
 467

5.2.1 Birch Creek ^{10}Be ages

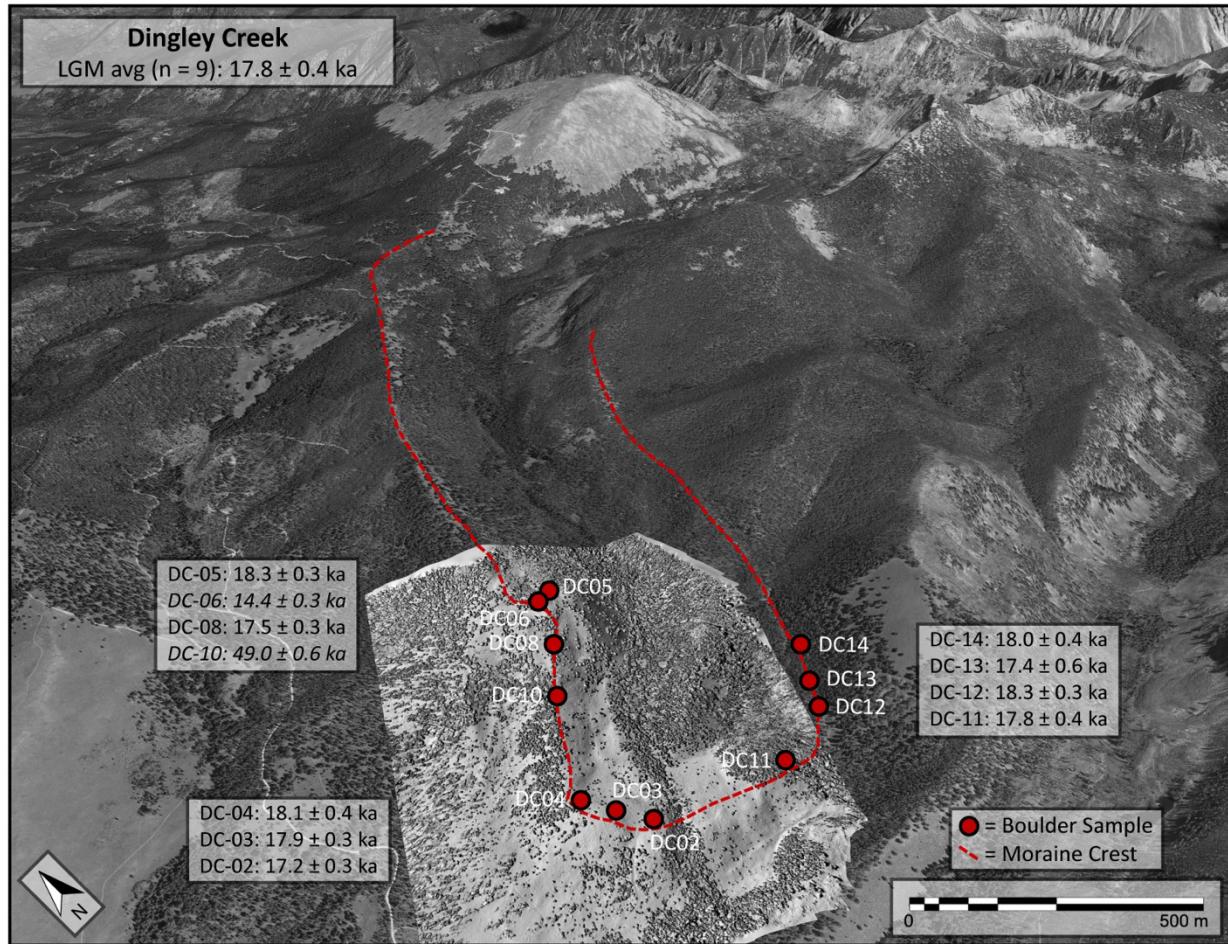
468 Six samples from the Birch Creek end moraine yield cosmogenic exposure ages ranging from
 469 15.7 ± 0.3 ka to 19.0 ± 0.4 ka (internal uncertainties, Table 3, Fig. 5). Ages on the end moraine
 470 are distributed about a mean age of 17.8 ± 1.1 ka ($n = 6$, average, 1SD, Table 3, Fig. 5, 6). BC13
 471 yielded a younger age (15.7 ± 0.3 ka, Fig. 6) than the rest, which suggests it had either rolled
 472 from the crest or had been fully buried and later exhumed after deposition. Using the OEAC's


473 landform outlier detection, we identified BC13 as a significant outlier (Fig. 5). Excluding BC13,
474 the Birch Creek terminus has a mean exposure age of 18.2 ± 0.5 ka (n = 5, average, 1SD).

475 Four kilometers up-valley, six boulder samples (BC01–06) from a well-preserved, narrow,
476 right-lateral crest yielded an average exposure age of 15.2 ± 0.7 ka (n = 6). Two of these
477 boulders (BC05 & BC06) were sampled from a nested, inset moraine crest that merged nearby
478 with the ice-distal ridge and yielded an average exposure age of 14.7 ± 0.4 ka (Figs. 4 and 7).
479 The four boulders (BC01–04, 15.4 ± 0.8 ka, n = 4) along the outer moraine crest suggest that
480 despite the boulders' positions, the Birch Creek glacier had receded from its terminus position
481 approximately three thousand years earlier while maintaining its ice thickness at this location.
482 This pattern may be due to the position of a large ridge blocking and constraining the glacier's
483 flow path up-valley of the terminus (e.g., Laabs et al., 2009).

484

485 **Figure 6.** Aerial image of the Birch Creek terminus (Google Earth). Red lines indicate moraine crests/maximum ice
 486 extent. Boulder samples were collected from the right and left lateral moraines of the right lobe. Asterisk (*)
 487 indicates outlier(s) identified using OEAC single landform outlier detection.



488
 489 **Figure 7.** Aerial image (Google Earth) with shaded relief map (from drone survey/photogrammetry) of the Birch
 490 Creek right lateral moraine located ~4 km up-valley from the terminus with boulder sample locations (red circles)
 491 and ages (boxes). Red lines indicate moraine crests/maximum ice extent.

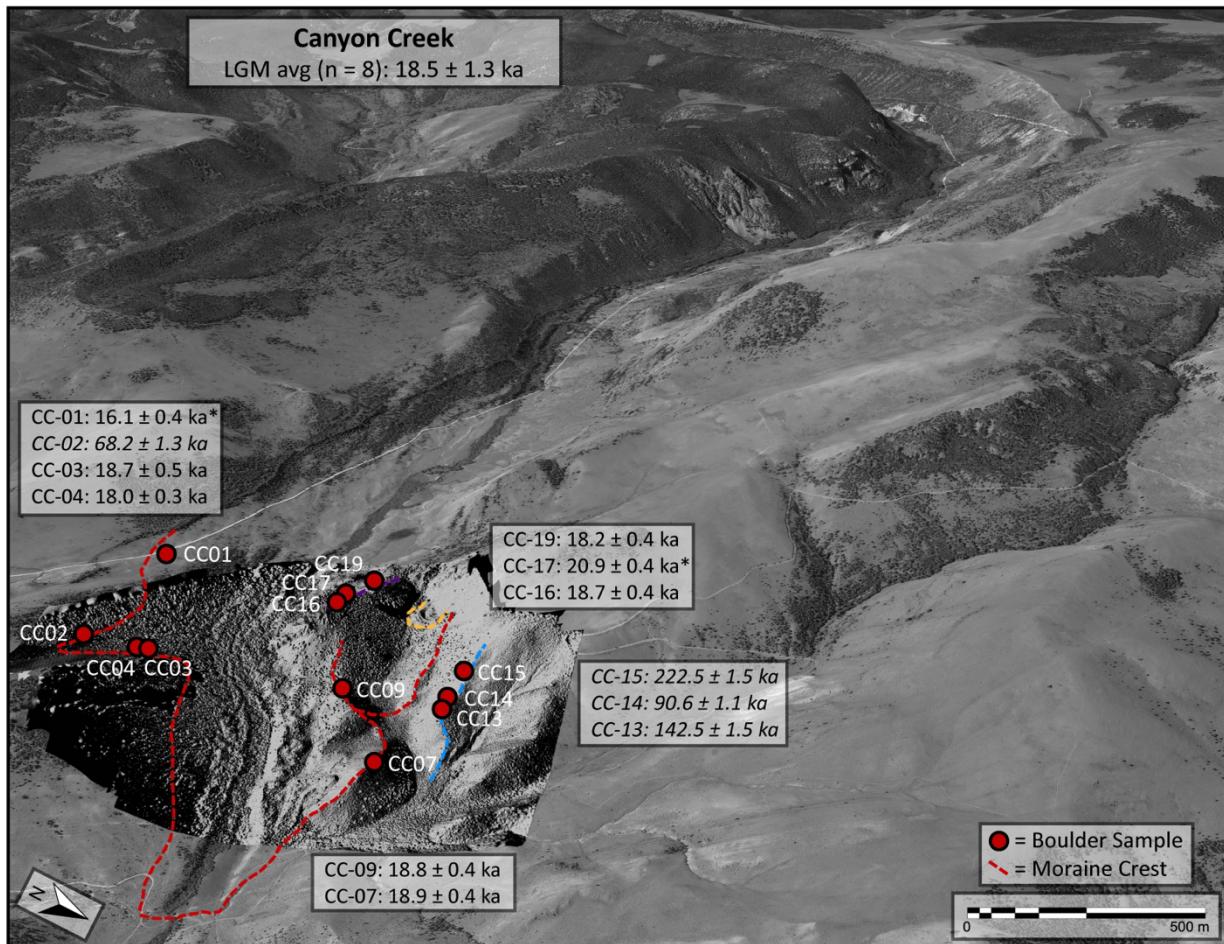
492 *5.2.2 Dingley Creek ^{10}Be ages*

493 In the Dingley Creek terminus, eleven samples marking the outermost extent yield
 494 cosmogenic-exposure ages ranging from 14.4 ± 0.3 ka to 49.0 ± 0.6 ka, with a median age of
 495 17.9 ka (Figs. 5 and 8). Of the eleven exposure ages in Dingley Creek valley, two were
 496 identified by CRONUS as outliers. The older outlier, DC10 (49.0 ± 0.6 ka), was a very large
 497 boulder (~2 m wide) located ice proximal of the right-lateral moraine crest and appeared to be in
 498 place. Based on its geomorphic position, it was likely reworked, with the significantly older age
 499 indicative of inheritance of ^{10}Be from a prior period of exposure followed by minimal erosion
 500 before deposition. The younger outlier, DC06 (14.4 ± 0.3 ka), was sampled from a lower bench,

501 ice-distal of the steep-sided, right-lateral crest where the moraine bends sharply (Figs. 4 and 8).
 502 Although DC06 was located ~10 m below the moraine ridge, it was sampled as a possible older
 503 Bull Lake boulder based on its extremely weathered and oxidized appearance. The younger age
 504 suggests the boulder was exhumed and rolled from above to the bench. The remaining nine
 505 cosmogenic-exposure ages have a mean age of 17.8 ± 0.4 ka (average, 1 SD, Table 3, Figs. 5 and
 506 8), suggesting that glacier ice in Dingley Creek valley persisted at the terminal moraine until this
 507 time.

508
 509 **Figure 8.** Aerial imagery (Google Earth) with shaded relief map (from drone survey/photogrammetry) of Dingley
 510 Creek terminus with boulder sample locations (red circles) and ages (boxes). Red lines indicate moraine crests-
 511 maximum ice extent. Italics indicate ages not included in the LGM (30–16 ka) average, asterisk (*) indicates
 512 outliers detected using the OEAC single landform outlier detection.

513 *5.2.3 Canyon Creek ^{10}Be ages*


514 In Canyon Creek valley, a total of 12 boulders were sampled, resulting in a broad range of
 515 exposure ages from 16.1 ka to 222.5 ka. A reason for the large spread is that the Canyon Creek
 516 terminus area presented an unusual combination of glacial features. These included a lack of an

517 obvious terminal moraine, a broad outwash plain, a right lateral moraine composed of thin till
518 onlapped to a steep bedrock slope, a massive bedrock ridge splitting the drainage, a
519 discontinuous medial moraine with multiple slope failures, and a large, left-lateral moraine
520 entirely absent of granodiorite boulders (Fig. 9). Based on these geomorphic complexities,
521 boulder selection was challenging and produced some unexpectedly old ages, including one
522 likely re-worked with prior exposure (CC02, 68.2 ka, MIS 4) and three (CC13–15) indicating
523 previous glacial advances within the Canyon Creek drainage (discussed in Section 6.3).

524 LGM boulders from the Canyon Creek terminus yield a range of exposure ages from 16.1 ka
525 to 20.9 ka, with ages uniformly distributed about a mean age of 18.5 ± 1.3 ka ($n = 8$, average,
526 1SD, Table 3, Figs. 4, 5, & 9). Of the eight samples, CRONUS identified two outliers, CC01
527 and CC17 (Fig. 5). CC01 has an exposure age of 16.1 ± 0.4 ka and was sampled from the right-
528 lateral moraine ~ 0.8 km up valley from the terminus in a small side-valley where ice had bulged
529 outward (Fig. 9). The medium-sized boulder was positioned on the shoulder of a broad,
530 hummocky moraine, but later examination uncovered smaller, partially buried boulders 10–15 m
531 upslope, indicating that the maximum extent was at a higher elevation. Therefore, CC01 likely
532 represents a younger recessional deposit as the glacier thinned and retreated. CC17 has an
533 exposure age of 20.9 ± 0.4 ka; this sample was collected atop the roche moutonnée (Fig. 9), from
534 a large granite boulder perched directly on quartzite bedrock, and may have been exposed earlier
535 while within or on the glacier surface before deposition. After omitting two outliers, the mean
536 age remains 18.5 ka, but yields a narrower standard deviation (0.4 versus 1.3 ka, 1 SD; Table 3).

537 Older exposure ages on a single outer moraine in the Canyon Creek valley indicate evidence
538 of prior glacial advances in the Pioneer Mountains. The left side of the glacier terminus in
539 Canyon Creek is bounded by a high-sloping ridge, hemming in the northside of the drainage. The
540 broad, left-lateral moraine crest merges with the tertiary-aged surface creating a subtle bench
541 scattered with large quartzite boulders (Figs. 4 and 9); however the resulting data are difficult to
542 interpret due to the large scatter of ages from the moraine. The three boulders all predate the
543 Pinedale (MIS 2), and range in age from pre-Bull Lake to MIS 5b: CC15 (222.5 ± 2.1 ka), CC13
544 (142.5 ± 1.5 ka), CC14 (90.6 ± 1.1 ka) (Fig. 10).

545

546

547 **Figure 9.** Aerial imagery (Google Earth) with shaded relief map (from drone survey/photogrammetry) of Canyon
 548 Creek terminus with boulder sample locations (red circles) and ages (boxes). Red lines indicate maximum Pinedale
 549 ice extent, purple line highlights the roche moutonnée, yellow line indicates rock fall atop Pinedale till, and blue line
 550 indicates a left-lateral compound moraine of Bull Lake/MIS 7d age. Italics indicate ages not included in the
 551 calculation of the LGM (30–16 ka) average, asterisk (*) indicates outliers detected using the OEAC single landform
 552 outlier detection.

553

556 **Figure 10.** Probability distribution function of ^{10}Be exposure ages from the Pioneer Mountains (lower) with marine
 557 benthic $\delta^{18}\text{O}$ global compilation from *Lisiecki and Raymo (2005)* for comparison to past glacial/interglacial periods
 558 (upper). Ages range from pre-Bull Lake to late glacial, with a median age of 18.0 ka ($n = 35$) and Last Glacial
 559 Maximum (LGM 30–16 ka) mean of 18.2 ka ($n = 22$).

561 6. Discussion

562 In the Pioneer Mountains, the maximum Pinedale glacier extent occurred around 18 ka, with
 563 all three glacial valleys overlapping in their retreat timing, suggesting a synchronous deglaciation
 564 throughout the mountain range. The specific timing of the onset of deglaciation is essential for
 565 understanding both the large-scale climatic drivers causing glacier retreat (e.g., insolation,
 566 greenhouse gases, albedo, and ocean-atmospheric circulation), as well as the regional factors
 567 (e.g., elevation/extent of LIS, locally sourced moisture from pro-glacial lakes, prevailing winds)
 568 that influence the spatial pattern of retreat across the northern Rocky Mountains and inland
 569 northwest.

570 6.1 Synchronous LGM glacial retreat among Pioneer Mountain valleys

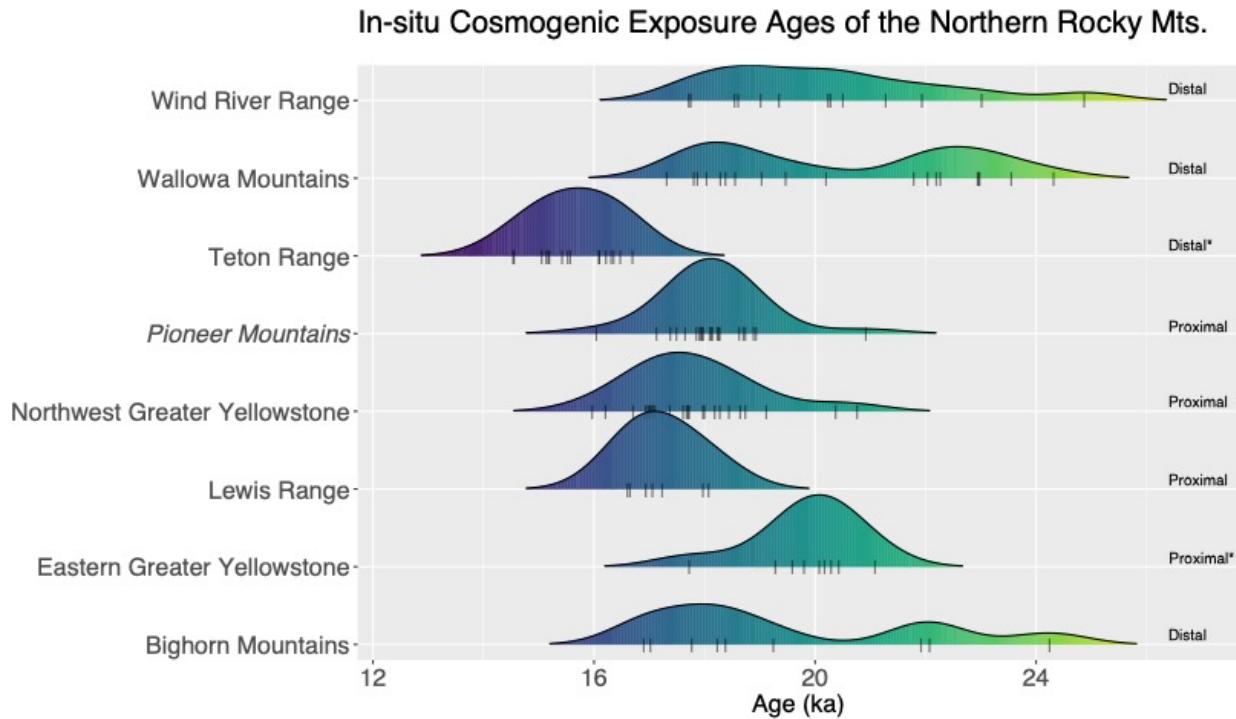
571 Compilation of the cosmogenic-exposure ages from all three glacial valleys indicates
 572 synchronous timing of maximum glacier extent in the Pioneer Mountains. The individual mean

573 ages for each valley, from the northeast to southwest, are Canyon Creek (18.5 ± 0.4 ka, $n = 6$),
574 Birch Creek (18.2 ± 0.5 ka, $n = 5$), and Dingley Creek (17.8 ± 0.4 ka, $n = 9$), yielding a range-
575 wide average of 18.2 ± 0.9 ka ($n = 22$). The exposure ages from the different valleys are
576 indistinguishable from one another in their maximum extent timing based on their 1SD age
577 ranges. This overlap indicates that, despite the different orientations (northeast, east, and west-
578 facing) and differing paleo-valley characteristics, the Pioneer Mountain glaciers responded
579 synchronously to the large-scale climatic forces within the resolution of the ^{10}Be chronometer.
580 The consistent timing of moraine abandonment between the three distinct glacier valleys
581 provides confidence that ice retreat among the valleys reflects a broader, regional response,
582 unlike the transient ages derived from the greater Yellowstone glacial system.

583 *6.2 Recessional moraine deposition consistent with Late Pinedale GYGS retreat*

584 Based on the original study design, we had intended on only dating glacial features indicative
585 of maximum extent; however the younger ages determined from boulders along the moraine
586 crest in the Birch Creek Valley were unexpected (Fig. 7). The four exposure ages from the right-
587 lateral outer moraine crest indicate that recession and thinning of the glacier began around $15.4 \pm$
588 0.8 ka, which is consistent with recessional ages in the Lewis Range (e.g., Cut Bank Recessional
589 16.4 ± 0.4 ka) but distinctly younger than initial recession of the northern outlet glacier of the
590 Yellowstone ice cap (e.g., Chico recessional moraine 17.1 ± 0.6 ka).

591 In general, the Birch Creek recessional ages overlap more closely with the late Pinedale
592 interval of 16–13 ka, as identified in the Greater Yellowstone region by Licciardi and Pierce
593 (2018). During this time period, exposure ages indicate that ice extent on the Beartooth Uplift
594 and Gallatin Range diminished as the Yellowstone ice cap migrated southwest toward the
595 dominant source of moisture, leading to ice advances in the Teton Range (e.g., Jenny Lake
596 Outer, 15.5 ± 0.5 ka) and Jackson Hole region (e.g., Pinedale 2 southern lobe, 15.8 ± 0.8 ka)
597 (Licciardi and Pierce, 2018). The remaining glaciers in the northern GYGS stabilized,
598 depositing the recessional moraines of the Deckard Flats readjustment (15.1 ± 1.2 ka) and
599 Junction Butte (14.9 ± 0.4 ka) terminus (Licciardi and Pierce, 2018). The timing of the Birch
600 Creek recession appears to overlap broadly with the draining and cessation of Glacial Lake
601 Missoula after 15.6 ka (Dyke et al., 2003) and aligns with other down-valley recessional moraine
602 ages in the northern and central Rocky Mountains (see Table 3 of Laabs et al., 2020).


603 *6.3 Bull Lake and pre-Bull Lake ages indicate previous glacial advances*

604 The significantly older exposure ages in Canyon Creek valley suggest evidence of prior
605 glacial advances in the Pioneer Mountains. Three boulders from the outer left-lateral moraine
606 range in age from pre-Bull Lake (MIS 7d, 225 ka) to MIS 5b (87 ka, Figs. 9 and 10). The
607 outermost, left-lateral moraine has none of the granodiorite boulders common to the Pinedale-
608 aged landforms, many of the quartzite boulders show signs of frost shattering, the moraine
609 morphology is relatively smooth, and the ages are all appreciably older than the LGM, all of
610 which suggest the moraine may have been occupied during multiple previous glaciations. After
611 determination of the boulder ages, a follow-up field effort identified a much smaller moraine in
612 the lower portion of the narrower, left valley that had initially been mapped as a recessional
613 moraine. The moraine contained similarly appearing granodiorites as the other Pinedale-age
614 glacial features, thus presenting a much reduced Pinedale maximum extent compared to the
615 higher Bull Lake moraine (crest located 25–35 m above Pinedale left-lateral moraine, Fig. 9).
616 These exposure ages are the only dated evidence of prior glaciations in the Pioneer Mountains,
617 and from our field observations throughout the range, few examples of older moraines exist in
618 the eastern glacial valleys.

619 Bull Lake-aged moraines in alpine glacial systems are generally sparse in the western US
620 compared to Pinedale moraines, and where present are typically ~10% greater in maximum
621 extent than the Pinedale, suggesting that the penultimate glaciation was either cooler or wetter
622 (Blackwelder, 1915; Licciardi and Pierce, 2018; Pierce, 2003). One caveat is that the up-valley
623 morphology and hypsometry of glacial valleys during the Bull Lake is unknown, complicating
624 the interpretations of relative glacier lengths between the two glacial periods (e.g., Anderson et
625 al., 2012). In many northern Rocky Mountain locales, the Pinedale glacial extents have
626 overridden the Bull Lake ice advances, and reworked the till, thus erasing any prior evidence of
627 their presence. Moreover, the remaining evidence for Bull Lake glacial extents is generally more
628 degraded by surface processes, being an order of magnitude older than fresher Pinedale features.
629 Finding a relatively well-preserved composite moraine of Bull Lake age in the northeast aspect
630 of the Pioneer Mountains is in line with other occurrences of Bull Lake-aged moraines, which
631 tend to be preserved along north and northeast aspects of the northern Rocky Mountains (e.g.,
632 Beartooth Uplift) (Licciardi and Pierce, 2018, 2008; Pierce, 2003).

633 *6.4 Pioneer Mountain glacier maxima younger than global and regional LGM*

634 The maximum Pinedale glacier extents of the Pioneer Mountains (18.2 ± 0.9 ka, $n = 22$, avg.,
635 1SD) may be younger than the global LGM (21 ± 2 ka, Peltier and Fairbanks, 2006). The timing
636 of initial moraine abandonment in the Pioneer Mountains is relatively young compared to most
637 other northern Rocky Mountain ranges (e.g., average of old modes for the Wind River/Big Horn
638 Mountains: 22.4 ± 1.7 ka, $n = 8$, 1SD) and Columbia Plateau (e.g., old mode of the Wallowa
639 Mountains: 22.8 ± 0.8 ka, $n = 9$, 1SD, Table 4, Fig. 11). The timing of maximum glacier extents
640 of the Pioneer Mountains are more similar to the alpine and outlet glaciers of the northwestern
641 greater Yellowstone glacial system (17.8 ± 1.1 ka, $n = 24$, (Laabs et al., 2020; Licciardi et al.,
642 2001; Licciardi and Pierce, 2008; Quirk et al., 2022), and the Lewis Range (17.2 ± 0.6 ka, $n = 7$,
643 1 SD, Quirk et al., 2022) which are approximately five-hundred to one thousand years younger
644 than the Pioneer Mountains and overlap within their 1 SD ranges. Proceeding the early onset of
645 deglaciation (i.e., old mode), there is a second period of near-maximum extents within the
646 terminal moraine complexes of the Wallowa, Big Horn, and Wind River Mountains, which are
647 known as the “young” mode (18.3 ± 1.0 ka, $n = 11$), Table 4. This similar timing of both
648 maximum and near-terminal extents occurring region wide at ~ 18 ka signals a consistent
649 response to a broader climate forcing, and the later deglaciation timing is closely aligned with the
650 timing of global patterns of change (e.g., atmospheric CO₂ increase, northern-hemisphere ice-
651 sheet area decline, and strengthened snow-albedo feedback: see Shakun et al., 2012, Fig. 3).

652
653
654
655
656
657

Figure 11. Probability density function comparison of the last glaciation (MIS 2) ages of the Wind River Range, Wallowa Mountains, Teton Range, Pioneer Mountains, Northern and Eastern GYGS, and Bighorn Mountains. The color gradient shows the ages from dark blue (youngest) to yellow (oldest). Ranges are labeled as proximal or distal to the LIS margin, and * indicates sites that were partially impacted by the migrating position of the Yellowstone Ice Cap. Compiled using code in R-Studio shared by Jordan Dahle.

Table 4

Northwest/Northern Rocky Mountain region Last Glacial Maximum exposure ages

Sample name/locality by N-S proximity to LIS	Moraine Type/Number of ages	Original Source	^{10}Be Exposure Age (ka) ^a	^{10}Be Internal Uncertainty (ka) ^a
Lewis Range, Glacier National Park, MT				
Cut Bank Creek	terminal moraine, n = 7	Quirk et al. 2022	17.2	0.6
Cut Bank Creek	recessional moraine, n = 3	Quirk et al. 2022	16.4	0.4
Northwestern Greater Yellowstone Glacial System, MT/WY				
Eightmile, GYGS, MT	terminal moraine, northern Yellowstone outlet glacier, n = 11	Licciardi et al. 2001	17.9	1.2
Pine Creek, Absaroka Range, MT	terminal and lateral moraines, n = 7	Licciardi & Pierce, 2008	18.2	1.3
South Fork Deep Creek, Absaroka Range, MT	left lateral moraine, n = 3	Laabs et al. 2020	17.5	1.1
Cascade Creek, Absaroka Range, MT	scoured bedrock, n = 2	Laabs et al. 2020	16.9	0.2
Gallatin River Valley, Gallatin Range, WY	terminal moraine, n = 1	<u>Licciardi & Pierce, 2008</u>	17.7	0.4
		<i>avg ± st dev (n=24)</i>	17.8	1.1
Pioneer Mountains, MT				
Birch Creek	terminal moraine, n = 5	This Study	18.2	0.5
Canyon Creek	terminal moraine, n = 6	This Study	18.5	0.4
Dingley Creek	terminal moraine, n = 9	This Study	17.8	0.4
		<i>avg ± st dev (n=22)</i>	18.2	0.9
Birch Creek	recessional moraine, n = 6	This Study	15.2	0.7
Eastern Greater Yellowstone Glacial System, MT/WY				
Clarks Fork, WY	terminal moraine, n = 9	Licciardi & Pierce, 2008	19.8	0.9
Wallowa Mountains, OR				
Wallowa Lake Old Mode	multi-crested terminal moraine complex, n = 9	Licciardi et al. 2004	22.8	0.8
Wallowa Lake Young Mode	multi-crested terminal moraine complex, n = 10	Licciardi et al. 2004	18.5	0.8
Teton Range, WY				
Hendricks Pond (Pinedale 2- southern lobe)	southern terminal of Snake River lobe, n = 5	Licciardi & Pierce, 2008	15.8	0.8
Cascade Canyon/Jenny Lake Outer	broad terminal complex impounding Jenny Lake on east side of range, n = 11	<u>Licciardi & Pierce, 2018</u>	15.5	0.5
		<i>avg ± st dev (n=16)</i>	15.7	0.7
Wind River/Bighorn, WY Old Mode				
Wind River, Bull Lake, Pinedale 2, 36Cl	terminal moraine complex-middle moraine, n = 3	Phillips et al. 1997	22.4	2.8
Wind River, North Fork, Popo Agie Basin	terminal moraine, n = 2	Dahms et al. 2018	21.7	0.5

Bighorn, North Fork Clear Creek Canyon	terminal, oldest grouping, n = 3	<u>Laabs et al. 2020</u>	22.8	1.3
		<i>avg ± st dev (n=8)</i>	22.4	1.7
Wind River/Bighorn, WY Young Mode				
Wind River, Bull Lake, Pinedale3 PN3, 36Cl	terminal moraine complex-inner moraine, n = 3	Phillips et al. 1997	18.9	1.2
Wind River, Sinks Canyon 2, Popo Agie Basin	recessional moraine ~few km up-valley, inner, n = 2	Dahms et al. 2018	18.4	0.9
Bighorn, North Fork Clear Creek Canyon	terminal moraine, intermediate grouping, n = 3	Laabs et al. 2020	18.0	1.1
Bighorn, Tensleep Canyon	terminal moraine, n = 3	<u>Laabs et al. 2020</u>	17.9	1.8
		<i>avg ± st dev (n=11)</i>	18.3	1.0

^a All recalculated ages from Laabs et al., 2020 using Version 3 of the Online Exposure Age Calculator (Balco et al., 2008) and the Promontory Point production rate (Lifton et al., 2015) with LSDn scaling, Std atmosphere, zero erosion rate, and available on Ice-D Alpine

658 *6.5 Differences in regional deglaciation history and climate impacts*

659 Differences in the regional spatial pattern of deglaciation onset timing are apparent, based on
660 the relatively young ages from the Pioneer Mountains, northwestern GYGS, and Lewis Range,
661 and the older ages to the west (e.g., Wallowa Mountains) and east (Big Horn Mountains) of the
662 northern Rocky Mountain cordillera (Fig. 11). Prior explanation for the relatively younger
663 deglacial timing of the northwestern GYGS focused on the migrating center of the Yellowstone
664 ice cap, which influenced the timing of outlet glaciers as the divide progressed southwestward
665 from self-sustaining orographic precipitation (Licciardi and Pierce, 2018). Our findings from the
666 Pioneer Mountains, in concert with the northwestern GYGS and Lewis Range, suggest that the
667 relatively young timing of deglaciation was not solely related to the migrating ice cap, but to
668 regional climate conditions that impacted the ranges proximal to the LIS. The question then
669 arises, why do the Pioneer Mountains, northwestern GYGS, and Lewis Range have younger
670 maximum glacial extents, and why do they not record a similar response to the initial summer
671 insolation forcing like the Wallowa, Big Horn, and Wind River Mountains between 23–22 ka?

672 *6.5.1 Ice-sheet driven shifts in atmospheric circulation and timing of northern Rocky Mountain
673 glacier maxima*

674 A prevailing hypothesis in previous work (Alder and Hostetler, 2015; Hostetler and Clark,
675 1997; Licciardi et al., 2004; Thackray, 2008) is that the retreat of North American ice sheets (i.e.,
676 Cordilleran and Laurentide) and the accompanying northward shift of the jet stream resulted in
677 increased precipitation, allowing glaciers to persist at or re-advance to their maximum extents in
678 the northern Rocky Mountains. Licciardi et al. (2004) and Thackray et al. (2004) have attributed
679 the relatively late maxima of glaciers in the region to increased moisture availability after 21 ka
680 induced by retreat of the LIS. They proposed that precipitation controls on glacier mass balance
681 were substantial and that regional-scale climate change was important in determining the timing
682 of the start of ice retreat in ranges of the Rocky Mountains.

683 This explanation has been more recently investigated by Oster et al., (2015), who compiled
684 an ensemble of general circulation model (GCM) experiments from the Paleoclimate Modeling
685 Intercomparison Project (PMIP2 and PMIP3, Braconnot et al., 2012, 2007) that incorporated the
686 North American ice sheet to simulate past shifts in climatic conditions during the LGM: 21 ka.
687 The majority of the climate models analyzed showed agreement between the simulated
688 conditions and the precipitation-sensitive proxy records from western North America. In

689 general, the model-proxy data agreement indicated drier than modern conditions in the Pacific
690 Northwest and wetter than modern conditions in the Southwest, but with some mismatch in the
691 central Rocky Mountains (Oster et al., 2015). This north-to-south LGM precipitation dipole
692 formed due to the North American ice sheets causing a southward shift in the winter storm track
693 and a strengthened jet related to squeezing by high pressure systems (Bartlein et al., 1998;
694 Harrison et al., 2013; Hudson et al., 2019; Lora, 2018; Lora and Ibarra, 2019; Oster et al., 2015)

695 Some of the limitations of the migrating jet-stream hypothesis are related to the timing and
696 extent of the northward shift as the LIS began its retreat after ~21 ka. Transient and time-slice
697 GCM simulations of the LGM (e.g., Transient Climate Evolution of the past 21 kyr experiments:
698 TraCE 21, Liu et al., 2009 and Paleoclimate Model Intercomparison Project: PMIP3, Braconnot
699 et al., 2012) that incorporate variations of North American ice sheet orography based on
700 reconstructions (e.g., ICE-5G, Peltier, 2004) indicate that Northern Hemisphere annual
701 temperatures remained low throughout the LGM, and then relatively rapid warming beginning at
702 ~17 ka and continuing until 14.5 ka (Clark et al., 2012; He et al., 2013; Liu et al., 2009; Shakun
703 et al., 2012). Tulenko et al. (2020) utilized the TraCE 21 simulations to investigate the impact of
704 the LIS on the temperature and precipitation patterns in the western US and find that although
705 annual temperatures began increasing at ~17.5 ka, both winter and summer precipitation
706 continued to decrease between 19–17 ka, with winter precipitation not increasing until around 16
707 ka and summer precipitation not increasing until ~14 ka (see Fig. 3 E & G in Tulenko et al.,
708 2020).

709 These simulations are inconsistent with the proposed winter jet-stream migration causing
710 increases in precipitation in the northern Rocky Mountains at the 19–17 ka interval, leading to
711 later advances of northern glaciers. In addition, proxy records and glacier extent from the central
712 Rocky Mountains indicate the mean position of the winter jet remained shifted southward based
713 on the prolonged high-stand of pluvial Lake Bonneville, UT until ~16 ka (Laabs et al., 2009),
714 and is also supported by the younger near-LGM glacier dimensions observed in the central
715 Rocky Mountains (e.g., Wasatch—Bells Canyon, 16.7 ka and Lake Fork, 16.8 ka, Ruby
716 Mountains—Seitz Canyon 4-7, 16.7 ka, Sangre de Cristo—Willow Creek, 15.7 ka, Sawatch
717 Range, 15.5–17.2 ka, and Teton Range—Jenny Lake Outer/Hendrick Pond, 15.7 ka, see Laabs et
718 al., 2020 for ages). The pattern of higher precipitation sustaining pluvial lakes and near-

719 maximum glacier extents in the central Rocky Mountains until 17–16 ka, consistent with the
720 TraCE results, point to a later northward return of the jet-stream.

721 It remains plausible that a northward migration of an expanded jet stream would be broad
722 enough to increase precipitation in both the central and northern Rocky Mountains concurrently
723 (e.g., Quirk et al., 2020), allowing glaciers to maintain near-terminal extents in the Wasatch and
724 Ruby Mountains while increasing even more further north, resulting in the late local LGM
725 observed in the northern Rocky Mountain records (Quirk et al., 2020b). Based on the existing
726 glacier chronologies, we are unable to exclude this latter scenario, but the GCM simulations
727 generally produce a squeezed, strengthened jet-stream during the LGM, incompatible with a
728 wider zonal flow (Hudson et al., 2019; Lora and Ibarra, 2019; Oster et al., 2015).

729 *6.5.2 Glacier maxima sustained by ice-sheet proximity*

730 As an alternative to some of the shortcomings with the migrating jet-stream hypothesis, we
731 propose that the glacier mass balances and extents were maintained due to the Pioneer Mountains
732 and northern GYGS proximity to the Laurentide Ice Sheet (Fig. 1). This could be achieved in a
733 number of ways, including cold, katabatic winds that descended off the ice sheet reducing
734 melting and a greater contribution of precipitation offsetting ablation (Bartlein et al., 1998;
735 Hudson et al., 2019; Lora and Ibarra, 2019; Oster et al., 2015; Wong et al., 2016). In simulations
736 of the last glacial period, the presence of the LIS produced its own high pressure system with
737 anticyclonic winds, prevailing from the north/northeast along the ice sheet margin in northern
738 ID/MT (Oster et al., 2015, see Fig. 1 in Putnam, 2015). Additionally, it is possible that locally
739 derived precipitation from extensive pro-glacial meltwater lakes along the LIS margin provided
740 extra precipitation, thus increasing glacier mass balance and prolonging glacier extents (e.g.,
741 Laabs et al., 2009; Munroe et al., 2006; Munroe and Mickelson, 2002). North of the Pioneer
742 Mountains, radiocarbon ages from paleo-shorelines indicate initial meltwater filling of Glacial
743 Lake Missoula (~3,000 square miles, ~2x the modern Great Salt Lake) after 20.8 ka along the ice
744 margin (Dyke, 2004; Dyke et al., 2003), and as the LIS receded continual meltwater production
745 formed numerous pro-glacial lakes (including Glacial Lakes Missoula, Great Falls, and
746 Musselshell located to the north/northeast of the Pioneer Mountains and GYGS, Fig. 1). A
747 comparable scenario was discussed by Laabs et al. (2009), where the glacier maxima in the
748 western Uinta Mountains was likely sustained by nearby, pluvial Lake Bonneville (~100 km to
749 the west), maintaining glaciers until 4–5 kyr after the global LGM (21 ± 2 cal. ka, Peltier and

750 Fairbanks, 2006). As the LIS margin retreated further northward throughout the deglaciation and
751 meltwater production decreased and then ceased, we expect that the central Montana pro-glacial
752 lakes drained, eventually eliminating the extra moisture source feeding glaciers in the Pioneer
753 Mountains and other ice-proximal ranges. The youngest paleo-shoreline radiocarbon ages
754 indicate Glacial Lake Missoula was greatly reduced after 15.6 ka (Dyke et al., 2003), which
755 closely overlaps with the timing of the recessional moraines in Birch Creek Valley and the
756 northern GYGS. No age constraints exist for when Glacial Lakes Great Falls and Musselshell
757 drained but based on reconstructions of the retreat of the LIS margin the pro-glacial lakes would
758 have shifted further northward tracking the recession (Dyke et al., 2003; Fullerton et al., 2004).

759 If the presence of pro-glacial meltwater lakes northward of the Pioneer Mountains and
760 GYGS significantly impacted glacier mass balance, thereby sustaining glacier maxima later than
761 in the Walla Walla and Wind Rivers/Big Horns, it may have done so in a number of ways. For
762 example, the presence of a large glacial lake, or series of lakes, along the ice margin may have
763 induced “lake-effect” precipitation, enhancing snow accumulation in areas downwind of the
764 margin from the hypothesized/model-simulated katabatic winds, including ranges in its lee like
765 the Absaroka and Gallatin of the GYGS to the south and the Tobacco Root and Pioneer
766 Mountains to the southwest (Figs. 1 & 2). In addition, reduced glacier ablation may have been
767 caused by decreased melt-season temperatures or increased cloudiness in adjacent areas, similar
768 to effects of the modern Great Lakes (Changnon and Jones, 1972). Due to their more distal
769 location from the ice margin (~300 km: Walla Walla; >350 km: Big Horns/Wind Rivers), and lack
770 of large glacial lakes upwind (i.e., north/northeast of the Big Horn and Wind River Mountains),
771 it is possible these ranges did not receive substantial “lake-effect” precipitation and therefore
772 commenced earlier deglaciation following the N.H. summer insolation forcing.

773

774 **7. Conclusion**

775 Based on the in-situ cosmogenic ^{10}Be exposure ages, as well as field observations of moraine
776 morphology, the maximum extent of the last glaciation in the Pioneer Mountains occurred during
777 the Pinedale (MIS 2) at about 18 ka. The start of ice retreat in the Pioneer Mountains, GYGS,
778 and Lewis Range was delayed until after the global LGM (21 ka) and occurred 3–4 kyr after the
779 onset of deglaciation in the Wallowa Mountains to the west and the Big Horn and Wind River
780 Mountains to the east and southeast, respectively. Glaciers in the Pioneer Mountains began

781 retreating in phase with glaciers in the northwestern greater Yellowstone glacial system and were
782 approximately synchronous with the deglacial timing of near-terminal extents in the Wallowa,
783 Wind River, and Big Horn Mountains, suggesting a coherent, region-wide response to climate
784 forcings driven by increases in global CO₂ concentrations, Northern Hemisphere summer
785 insolation, snow-albedo feedbacks, and ice sheet orography at ~18 ka.

786 Within the northern Rocky Mountain cordillera, it appears that topography more proximal to
787 the LIS margin maintained full ice extent longer than glaciers further west and east. We propose
788 that glacier extents of the Pioneer Mountains, Lewis Range, and northwestern GYGS persisted at
789 their maxima until ~18 ka due to localized temperature and precipitation impacts from the ice
790 sheet's presence. Anticyclonic winds over the continent-wide ice sheet would have produced
791 cold, katabatic winds that may have reduced summer melting and transported glacial-lake
792 derived moisture, potentially offsetting ablation and sustaining the ice proximal glaciers. In
793 contrast, northern glaciers located further from the ice sheet margin and associated meltwater
794 lakes retreated earlier, most likely due to increases in summer air temperature and continuing
795 reductions in summer precipitation following the global LGM (e.g., Tulenko et al., 2020). A
796 compilation of precipitation-sensitive proxy records from the western US supports the likelihood
797 that the LIS forced an equatorward hydroclimate shift in western North America, resulting in
798 reduced precipitation in the interior northwestern US during the LGM (Oster et al., 2015), and
799 likely persisted into the post-glacial interval (~21–18 ka) when air temperatures began to rise
800 (Tulenko et al., 2020). Thus, the contrast between relatively dry climate conditions in the
801 northwestern US and enhanced moisture availability along certain sections of the ice sheet
802 margin as lakes developed, may explain the timing differences in glacier maxima between the
803 more distal Wallowa, Wind River, and Big Horn Mountains compared to the more proximal
804 Pioneer Mountains, northwestern GYGS, and Lewis Range.

805

806 Acknowledgements

807 We thank Marc Caffee for prompt and meticulous measurement of ¹⁰Be at PRIME: Jesse
808 Mosolf for use of laboratory facilities at Montana Tech; Jason Drebber for help with sample
809 preparation; Ben Laabs for permission to use a modified version of his Western U.S.
810 topographic/ice extent map in Fig.1; Jordan Dahle for providing her age compilation script (R-
811 Studio) for the ridgeline plots. The manuscript was improved by informal conversations with

812 Eric Leonard. This work was funded by NSF-EAR 2018222 to S. Schoenemann and NSF-EAR
813 2018059 to L. Corbett and P. Bierman as well as NSF-EAR 1735676 that supported laboratory
814 analysis. Additional support provided by the MT EPSCoR.

815
816

817 **Data Availability**

818 The Pioneer Mountain cosmogenic exposure ages will be made available on the ICE-D: Alpine
819 website: <https://version2.ice-d.org/alpine/> and the Northern Rocky Mountain individual ages
820 used in Table 4/Figure 11 will be provided as a supplementary Excel data table per request.

821

822 **References**

823

824

825 Alden, W.C., 1953. Physiography and glacial geology of western Montana and adjacent areas.
826 U.S. Geological Survey Professional Paper 231 200.

827 Alder, J.R., Hostetler, S.W., 2015. Global climate simulations at 3000-year intervals for the last
828 21 000 years with the GENMOM coupled atmosphere–ocean model. *Clim. Past* 11, 449–471.
829 <https://doi.org/10.5194/cp-11-449-2015>

830 Balco, G., 2011. Contributions and unrealized potential contributions of cosmogenic-nuclide
831 exposure dating to glacier chronology, 1990-2010. *Quat. Sci. Rev.* 30, 3–27.
832 <https://doi.org/10.1016/j.quascirev.2010.11.003>

833 Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., 2008. A complete and easily accessible means
834 of calculating surface exposure ages or erosion rates from ^{10}Be and ^{26}Al measurements.
835 *Quaternary Geochronology* 3, 174–195. <https://doi.org/10.1016/j.quageo.2007.12.001>

836 Bartlein, P.J., Anderson, K.H., Anderson, P.M., Edwards, M.E., Mock, C.J., Thompson, R.S.,
837 Webb, R.S., III, T.W., Whitlock, C., 1998. Paleoclimate simulations for North America over
838 the past 21,000 years: features of the simulated climate and comparisons with
839 paleoenvironmental data. *Quat. Sci. Rev.* 17, 549–585. [https://doi.org/10.1016/s0277-3791\(98\)00012-2](https://doi.org/10.1016/s0277-3791(98)00012-2)

841 Bierman, P.R., 1994. Using in situ produced cosmogenic isotopes to estimate rates of landscape
842 evolution: A review from the geomorphic perspective. *J. Geophys. Res.: Solid Earth* 99,
843 13885–13896. <https://doi.org/10.1029/94jb00459>

844 Blackwelder, E., 1915. Post-cretaceous history of the mountains of western Wyoming. *J. Geol.*
845 23, 302–340.

- 846 Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K.,
847 Phillips, F., Schaefer, J., Stone, J., 2016. Geological calibration of spallation production rates
848 in the CRONUS-Earth project. *Quat. Geochronol.* 31, 188–198.
849 <https://doi.org/10.1016/j.quageo.2015.01.009>
- 850 Braconnot, P., Harrison, S.P., Kageyama, M., Bartlein, P.J., Masson-Delmotte, V., Abe-Ouchi,
851 A., Otto-Bliesner, B., Zhao, Y., 2012. Evaluation of climate models using palaeoclimatic
852 data. *Nat. Clim. Change.* 2, 417–424. <https://doi.org/10.1038/nclimate1456>
- 853 Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A.,
854 Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C.D., Kageyama, M., Kitoh, A., Laîné,
855 A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S.L., Yu, Y., Zhao,
856 Y., 2007. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial
857 Maximum; Part 1: experiments and large-scale features. *Clim. Past.* 3, 261–277.
858 <https://doi.org/10.5194/cp-3-261-2007>
- 859 Briner, J.P., Goehring, B.M., Mangerud, J., Svendsen, J.I., 2016. The deep accumulation of ^{10}Be
860 at Utsira, southwestern Norway: Implications for cosmogenic nuclide exposure dating in
861 peripheral ice sheet landscapes. *Geophys. Res. Lett.* 43, 9121–9129.
862 <https://doi.org/10.1002/2016gl070100>
- 863 Brugger, K.A., 2007. Cosmogenic ^{10}Be and ^{36}Cl ages from Late Pleistocene terminal moraine
864 complexes in the Taylor River drainage basin, central Colorado, USA. *Quat. Sci. Rev.* 26,
865 494–499. <https://doi.org/10.1016/j.quascirev.2006.09.006>
- 866 Brugger, K.A., Laabs, B., Reimers, A., Bensen, N., 2019a. Late Pleistocene glaciation in the
867 Mosquito Range, Colorado, USA: chronology and climate. *J. Quat. Sci.* 34, 187–202.
868 <https://doi.org/10.1002/jqs.3090>
- 869 Brugger, K.A., Ruleman, C.A., Caffee, M.W., Mason, C.C., 2019b. Climate during the Last
870 Glacial Maximum in the Northern Sawatch Range, Colorado, USA. *Quaternary* 2, 36.
871 <https://doi.org/10.3390/quat2040036>
- 872 Changnon, S.A., Jones, D.M.A., 1972. Review of the influences of the Great Lakes on weather.
873 *Water Resour. Res.* 8, 360–371. <https://doi.org/10.1029/wr008i002p00360>
- 874 Clark, P.U., Shakun, J.D., Baker, P.A., Bartlein, P.J., Brewer, S., Brook, E.J., Carlson, A.E.,
875 Cheng, H., Kaufman, D.S., Liu, Z., 2012. Global climate evolution during the last
876 deglaciation. *Proc. Natl. Acad. Sci. U.S.A.* 109, E1134–E1142.
877 <https://doi.org/10.1073/pnas.1116619109/-/dcsupplemental/appendix.pdf>
- 878 Corbett, L.B., Bierman, P.R., Rood, D.H., 2016. An approach for optimizing in situ cosmogenic
879 ^{10}Be sample preparation. *Quaternary Geochronology* 33, 24–34.
880 <https://doi.org/10.1016/j.quageo.2016.02.001>

- 881 Dahms, D., Egli, M., Fabel, D., Harbor, J., Brandová, D., Portes, R. de C., Christl, M., 2018.
882 Revised Quaternary glacial succession and post-LGM recession, southern Wind River Range,
883 Wyoming, USA. *Quat. Sci. Rev.* 192, 167–184.
884 <https://doi.org/10.1016/j.quascirev.2018.05.020>
- 885 Dahms, D.E., Birkeland, P.W., Shroba, R.R., Miller, C.D., 2010. Latest Quaternary glacial and
886 periglacial stratigraphy, Wind River Range, Wyoming. *The Geological Society of America*
887 Digital Map and Chart Series 7. <https://doi.org/10.1130/2010.dmch007.txt>
- 888 Dyke, A.S., 2004. An outline of North American deglaciation with emphasis on central and
889 northern Canada. *Quat. Glaciat. Extent Chronol.* 2, 373–424. [https://doi.org/10.1016/s1571-0866\(04\)80209-4](https://doi.org/10.1016/s1571-0866(04)80209-4)
- 890
- 891 Dyke, A.S., Moore, A., Robertson, L., 2003. Deglaciation of North America, Open File 1574.
892 Geological Survey of Canada.
- 893 Fabel, D., Harbor, J., 1999. The use of in-situ produced cosmogenic radionuclides in glaciology
894 and glacial geomorphology. *Ann. Glaciol.* 28, 103–110.
895 <https://doi.org/10.3189/172756499781821968>
- 896 Fullerton, D.S., Colton, R.B., Bush, C.A., 2004. Limits of mountain and continental glaciations
897 east of the Continental Divide in northern Montana and north-western North Dakota, U.S.A.
898 *Dev. Quat. Sci.* 2, 131–150. [https://doi.org/10.1016/s1571-0866\(04\)80194-5](https://doi.org/10.1016/s1571-0866(04)80194-5)
- 899 Gosse, J.C., Klein, J., Lawn, B., Middleton, R., Evenson, E.B., 1995. Beryllium-10 Dating of the
900 Duration and Retreat of the Last Pinedale Glacial Sequence. *Science* 268, 1329–1333.
901 <https://doi.org/10.1126/science.268.5215.1329>
- 902 Guido, Z.S., Ward, D.J., Anderson, R.S., 2007. Pacing the post-Last Glacial Maximum demise
903 of the Animas Valley glacier and the San Juan Mountain ice cap, Colorado. *Geology* 35, 739–
904 742. <https://doi.org/10.1130/g23596a.1>
- 905 Harrison, S.P., Bartlein, P.J., Brewer, S., Prentice, I.C., Boyd, M., Hessler, I., Holmgren, K.,
906 Izumi, K., Willis, K., 2013. Climate model benchmarking with glacial and mid-Holocene
907 climates. *Clim. Dyn.* 43, 671–688. <https://doi.org/10.1007/s00382-013-1922-6>
- 908 He, F., Shakun, J.D., Clark, P.U., Carlson, A.E., Liu, Z., Otto-Bliesner, B.L., Kutzbach, J.E.,
909 2013. Northern Hemisphere forcing of Southern Hemisphere climate during the last
910 deglaciation. *Nature* 494, 81–85. <https://doi.org/10.1038/nature11822>
- 911 Heyman, J., Applegate, P.J., Blomdin, R., Gribenski, N., Harbor, J.M., Stroeven, A.P., 2016.
912 Boulder height – exposure age relationships from a global glacial 10Be compilation. *Quat.*
913 *Geochronol.* 34, 1–11. <https://doi.org/10.1016/j.quageo.2016.03.002>
- 914 Hostetler, S., Clark, P.U., 1997. Climatic controls of Western U.S. Glaciers at the last glacial
915 maximum. *Quat. Sci. Rev.* 16, 505–511. [https://doi.org/10.1016/s0277-3791\(96\)00116-3](https://doi.org/10.1016/s0277-3791(96)00116-3)

- 916 Hudson, A.M., Hatchett, B.J., Quade, J., Boyle, D.P., Bassett, S.D., Ali, G., Santos, M.G.D. los,
917 2019. North-south dipole in winter hydroclimate in the western United States during the last
918 deglaciation. *Sci. Rep.* 9, 4826. <https://doi.org/10.1038/s41598-019-41197-y>
- 919 Huybers, K., Roe, G.H., 2009. Spatial Patterns of Glaciers in Response to Spatial Patterns in
920 Regional Climate. *J. Climate* 22, 4606–4620. <https://doi.org/10.1175/2009jcli2857.1>
- 921 Hyndman, D.W., Thomas, R., 2020. *Roadside Geology of Montana*. Mountain Press Publishing.
- 922 Kohl, C.P., Nishiizumi, K., 1992. Chemical isolation of quartz for measurement of in-situ -
923 produced cosmogenic nuclides. *Geochim. Cosmochim. Acta* 56, 3583–3587.
924 [https://doi.org/10.1016/0016-7037\(92\)90401-4](https://doi.org/10.1016/0016-7037(92)90401-4)
- 925 Laabs, B.J.C., Licciardi, J.M., Leonard, E.M., Munroe, J.S., Marchetti, D.W., 2020. Updated
926 cosmogenic chronologies of Pleistocene mountain glaciation in the western United States and
927 associated paleoclimate inferences. *Quat. Sci. Rev.* 242, 106427.
928 <https://doi.org/10.1016/j.quascirev.2020.106427>
- 929 Laabs, B.J.C., Munroe, J.S., Best, L.C., Caffee, M.W., 2013. Timing of the last glaciation and
930 subsequent deglaciation in the Ruby Mountains, Great Basin, USA. *Earth Planet Sci. Lett.*
931 361, 16–25. <https://doi.org/10.1016/j.epsl.2012.11.018>
- 932 Laabs, B.J.C., Refsnider, K.A., Munroe, J.S., Mickelson, D.M., Applegate, P.J., Singer, B.S.,
933 Caffee, M.W., 2009. Latest Pleistocene glacial chronology of the Uinta Mountains: support
934 for moisture-driven asynchrony of the last deglaciation. *Quat. Sci. Rev.* 28, 1171–1187.
935 <https://doi.org/10.1016/j.quascirev.2008.12.012>
- 936 Lal, D., 1988. In situ-produced cosmogenic isotopes in terrestrial rocks. *Annu. Rev. Earth Planet
937 Sci.* 16, 355–388. <https://doi.org/10.1146/annurev.ea.16.050188.002035>
- 938 Leclercq, P.W., Oerlemans, J., 2012. Global and hemispheric temperature reconstruction from
939 glacier length fluctuations. *Clim. Dyn.* 38, 1065–1079. [https://doi.org/10.1007/s00382-011-1145-7](https://doi.org/10.1007/s00382-011-
940 1145-7)
- 941 Leonard, E.M., Laabs, B.J.B., Schweinsberg, A.D., Russell, C.M., Briner, J.P., Young, N.E.,
942 2017a. Deglaciation of the Colorado Rocky Mountains following the Last Glacial Maximum.
943 *Cuadernos De Investigación Geográfica* 43, 497–526. <https://doi.org/10.18172/cig.3234>
- 944 Leonard, E.M., Laabs, B.J.C., Plummer, M.A., Kroner, R.K., Brugger, K.A., Spiess, V.M.,
945 Refsnider, K.A., Xia, Y., Caffee, M.W., 2017b. Late Pleistocene glaciation and deglaciation
946 in the Crestone Peaks area, Colorado Sangre de Cristo Mountains, USA – chronology and
947 paleoclimate. *Quat. Sci. Rev.* 158, 127–144. <https://doi.org/10.1016/j.quascirev.2016.11.024>
- 948 Licciardi, J.M., Clark, P.U., Brook, E.J., Elmore, D., Sharma, P., 2004. Variable responses of
949 western U.S. glaciers during the last deglaciation. *Geology* 32, 81–84.
950 <https://doi.org/10.1130/g19868.1>

- 951 Licciardi, J.M., Clark, P.U., Brook, E.J., Pierce, K.L., Kurz, M.D., Elmore, D., Sharma, P., 2001.
952 Cosmogenic ^{3}He and ^{10}Be chronologies of the late Pinedale northern Yellowstone ice cap,
953 Montana, USA. *Geology* 29, 1095–1098.
- 954 Licciardi, J.M., Pierce, K.L., 2018. History and dynamics of the Greater Yellowstone Glacial
955 System during the last two glaciations. *Quat. Sci. Rev.* 200, 1–33.
956 <https://doi.org/10.1016/j.quascirev.2018.08.027>
- 957 Licciardi, J.M., Pierce, K.L., 2008. Cosmogenic exposure-age chronologies of Pinedale and Bull
958 Lake glaciations in greater Yellowstone and the Teton Range, USA. *Quat. Sci. Rev.* 27, 814–
959 831. <https://doi.org/10.1016/j.quascirev.2007.12.005>
- 960 Lifton, N., Caffee, M., Finkel, R., Marrero, S., Nishiizumi, K., Phillips, F.M., Goehring, B.,
961 Gosse, J., Stone, J., Schaefer, J., Theriault, B., Jull, A.J.T., Fifield, K., 2015. In situ
962 cosmogenic nuclide production rate calibration for the CRONUS-Earth project from Lake
963 Bonneville, Utah, shoreline features. *Quat. Geochronol.* 26, 56–69.
964 <https://doi.org/10.1016/j.quageo.2014.11.002>
- 965 Lifton, N., Sato, T., Dunai, T.J., 2014. Scaling in situ cosmogenic nuclide production rates using
966 analytical approximations to atmospheric cosmic-ray fluxes. *Earth Planet Sci. Lett.* 386, 149–
967 160. <https://doi.org/10.1016/j.epsl.2013.10.052>
- 968 Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed
969 benthic $\delta^{18}\text{O}$ records. *Paleoceanography* 20. <https://doi.org/10.1029/2004pa001071>
- 970 Liu, Z., Otto-Bliesner, B.L., He, F., Brady, E.C., Tomas, R., Clark, P.U., Carlson, A.E., Lynch-
971 Stieglitz, J., Curry, W., Brook, E.J., Erickson, D., Jacob, R., Kutzbach, J., Cheng, J., 2009.
972 Transient Simulation of Last Deglaciation with a New Mechanism for Bolling-Allerod
973 Warming. *Science* 325, 310–314. <https://doi.org/10.1126/science.1171041>
- 974 Locke, W., Smith, L.N., 2004. Pleistocene mountain glaciation in Montana, USA, in: Quaternary
975 Glaciations-Extent and Chronology. Elsevier, pp. 125–129. [https://doi.org/10.1016/s1571-0866\(04\)80193-3](https://doi.org/10.1016/s1571-0866(04)80193-3)
- 977 Locke, W.W., 1990. Late Pleistocene glaciers and the climate of western Montana, USA. *Arctic*
978 and *Alpine Research* 22, 1–13. <https://doi.org/10.1080/00040851.1990.12002761>
- 979 Lora, J.M., 2018. Components and Mechanisms of Hydrologic Cycle Changes over North
980 America at the Last Glacial Maximum. *J. Climate* 31, 7035–7051.
981 <https://doi.org/10.1175/jcli-d-17-0544.1>
- 982 Lora, J.M., Ibarra, D.E., 2019. The North American hydrologic cycle through the last
983 deglaciation. *Quat. Sci. Rev.* 226, 105991. <https://doi.org/10.1016/j.quascirev.2019.105991>
- 984 Marchetti, D.W., Cerling, T.E., Dohrenwend, J.C., Gallin, W., 2007. Ages and significance of
985 glacial and mass movement deposits on the west side of Boulder Mountain, Utah, USA.

- 986 Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 503–513.
987 <https://doi.org/10.1016/j.palaeo.2007.05.016>
- 988 Marchetti, D.W., Cerling, T.E., Lips, E.W., 2005. A glacial chronology for the Fish Creek
989 drainage of Boulder Mountain, Utah, USA. Quat. Res. 64, 264–271.
990 <https://doi.org/10.1016/j.yqres.2005.05.004>
- 991 Marchetti, D.W., Harris, M.S., Bailey, C.M., Cerling, T.E., Bergman, S., 2011. Timing of
992 glaciation and last glacial maximum paleoclimate estimates from the Fish Lake Plateau, Utah.
993 Quat. Res. 75, 183–195. <https://doi.org/10.1016/j.yqres.2010.09.009>
- 994 Marcott, S.A., Clark, P.U., Shakun, J.D., Brook, E.J., Davis, P.T., Caffee, M.W., 2019. ¹⁰Be age
995 constraints on latest Pleistocene and Holocene cirque glaciation across the western United
996 States. NPJ Clim. Atmospheric Sci. 2, Article 5. <https://doi.org/10.1038/s41612-019-0062-z>
- 997 McDonald, C., Elliott, C.G., Vuke, S.M., Lonn, J.D., Berg, R.B., 2012. Geologic Map of the
998 Butte South 30'X 60'Quadrangle, Southwestern, Montana. Montana Bureau of Mines and
999 Geology.
- 1000 McDonald, C., Yakovlev, P., 2019. Geologic Map of the Twin Adams Mountain 7.5'
1001 Quadrangle, Southwestern Montana. Montana Bureau of Mines and Geology.
- 1002 Munroe, J.S., Laabs, B.J.C., Shakun, J.D., Singer, B.S., Mickelson, D.M., Refsnider, K.A.,
1003 Caffee, M.W., 2006. Latest Pleistocene advance of alpine glaciers in the southwestern Uinta
1004 Mountains, Utah, USA: evidence for the influence of local moisture sources. Geology 34,
1005 841–844. <https://doi.org/10.1130/g22681.1>
- 1006 Munroe, J.S., Mickelson, D.M., 2002. Last Glacial Maximum equilibrium-line altitudes and
1007 paleoclimate, northern Uinta Mountains, Utah, U.S.A. J. Glaciol. 48, 257–266.
1008 <https://doi.org/10.3189/172756502781831331>
- 1009 Nishiizumi, K., Imamura, M., Caffee, M.W., Sounthor, J.R., Finkel, R.C., McAninch, J., 2007.
1010 Absolute calibration of ¹⁰Be AMS standards. Nucl. Inst. and Meth. in Phys. Res. B 258, 403–
1011 413.
- 1012 Nishiizumi, K., Kohl, C.P., Arnold, J.R., Dorn, R., Klein, I., Fink, D., Middleton, R., Lal, D.,
1013 1993. Role of in situ cosmogenic nuclides ¹⁰Be and ²⁶Al in the study of diverse geomorphic
1014 processes. Earth Surf. Process. Landforms 18, 407–425.
1015 <https://doi.org/10.1002/esp.3290180504>
- 1016 Oerlemans, J., 2005. Extracting a climate signal from 169 glacier records. Science 308, 675–677.
1017 <https://doi.org/10.1126/science.1107046>
- 1018 Oster, J.L., Ibarra, D.E., Winnick, M.J., Maher, K., 2015. Steering of westerly storms over
1019 western North America at the Last Glacial Maximum. Nat. Geosci. 8, 201–205.
1020 <https://doi.org/10.1038/ngeo2365>

- 1021 Pearson, R.C., Zen, E., 1985. Geologic map of the Eastern Pioneer Mountains, Beaverhead
1022 County, Montana (Report No. 1806A), Miscellaneous Field Studies Map.
- 1023 Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-Geiger
1024 climate classification. *Hydrol. Earth Syst. Sci.* 11, 1633–1644.
- 1025 Peltier, W., Fairbanks, R.G., 2006. Global glacial ice volume and Last Glacial Maximum
1026 duration from an extended Barbados sea level record. *Quat. Sci. Rev.* 25, 3322–3337.
- 1027 Peltier, W.R., 2004. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G
1028 (VM2) model and GRACE. *Annu. Rev. Earth Planet. Sci.* 32, 111–149.
1029 <https://doi.org/10.1146/annurev.earth.32.082503.144359>
- 1030 Phillips, F.M., Zreda, M., Plummer, M.A., Elmore, D., Clark, D.H., 2009. Glacial geology and
1031 chronology of Bishop Creek and vicinity, eastern Sierra Nevada, California. *Geol. Soc. Am.*
1032 *Bull.* 121, 1013–1033. <https://doi.org/10.1130/b26271.1>
- 1033 Phillips, F.M., Zreda, M.G., Benson, L.V., Plummer, M.A., Elmore, D., Sharma, P., 1996.
1034 Chronology for Fluctuations in Late Pleistocene Sierra Nevada Glaciers and Lakes. *Science*
1035 274, 749–751. <https://doi.org/10.1126/science.274.5288.749>
- 1036 Phillips, F.M., Zreda, M.G., Gosse, J.C., 1997. Cosmogenic ^{36}Cl and ^{10}Be ages of Quaternary
1037 glacial and fluvial deposits of the Wind River Range, Wyoming. *Geol. Soc. Am. Bull.* 109,
1038 1453–1463.
- 1039 Phillips, F.M., Zreda, M.G., Smith, S.S., Elmore, D., Kubik, P.W., Sharma, P., 1990.
1040 Cosmogenic Chlorine-36 Chronology for Glacial Deposits at Bloody Canyon, Eastern Sierra
1041 Nevada. *Science* 248, 1529–1532. <https://doi.org/10.1126/science.248.4962.1529>
- 1042 Pierce, K.L., 2003. Pleistocene glaciations of the Rocky Mountains. *Dev. Quat. Sci.* 1, 63–76.
1043 [https://doi.org/10.1016/s1571-0866\(03\)01004-2](https://doi.org/10.1016/s1571-0866(03)01004-2)
- 1044 Pierce, K.L., Licciardi, J.M., Good, J.M., Jaworowski, C., 2018. Pleistocene glaciation of the
1045 Jackson Hole area, Wyoming (No. 1835). US Geological Survey.
1046 <https://doi.org/10.3133/pp1835>
- 1047 Plummer, M.A., Phillips, F.M., 2003. A 2-D numerical model of snow/ice energy balance and
1048 ice flow for paleoclimatic interpretation of glacial geomorphic features. *Quat. Sci. Rev.* 22,
1049 1389–1406. [https://doi.org/10.1016/s0277-3791\(03\)00081-7](https://doi.org/10.1016/s0277-3791(03)00081-7)
- 1050 Porter, S.C., 1983. Late Wisconsin mountain glaciation in the western United States, in: Late-
1051 Quaternary Environments of the United States, Vol. 1. University of Minnesota, Minneapolis,
1052 pp. 71–111.

- 1053 Porter, S.C., Swanson, T.W., 2008. ^{36}Cl dating of the classic Pleistocene glacial record in the
1054 northeastern Cascade Range, Washington. *Am. J. Sci.* 308, 130–166.
1055 <https://doi.org/10.2475/02.2008.02>
- 1056 Putnam, A.E., 2015. Palaeoclimate: A glacial zephyr. *Nat. Geosci.* 8, 175–176.
1057 <https://doi.org/10.1038/ngeo2377>
- 1058 Quirk, B.J., Huss, E., Laabs, B.J.C., Leonard, E., Licciardi, J., Plummer, M.A., Caffee, M.W.,
1059 2022. Late Pleistocene glacial chronologies and paleoclimate in the northern Rocky
1060 Mountains. *Clim. Past* 18, 293–312. <https://doi.org/10.5194/cp-18-293-2022>
- 1061 Quirk, B.J., Moore, J.R., Laabs, B.J.C., Caffee, M.W., Plummer, M.A., 2018. Termination II,
1062 Last Glacial Maximum, and Lateglacial chronologies and paleoclimate from Big Cottonwood
1063 Canyon, Wasatch Mountains, Utah. *Geol. Soc. Am. Bull.* 130, 1889–1902.
1064 <https://doi.org/10.1130/b31967.1>
- 1065 Quirk, B.J., Moore, J.R., Laabs, B.J.C., Plummer, M.A., Caffee, M.W., 2020a. Latest Pleistocene
1066 glacial and climate history of the Wasatch Range, Utah. *Quat. Geochronol.* 238, 106313.
1067 <https://doi.org/10.1016/j.quascirev.2020.106313>
- 1068 Quirk, B.J., Moore, J.R., Laabs, B.J.C., Plummer, M.A., Caffee, M.W., 2020b. Latest Pleistocene
1069 glacial and climate history of the Wasatch Range, Utah. *Quaternary Sci Rev* 238, 106313.
1070 <https://doi.org/10.1016/j.quascirev.2020.106313>
- 1071 Refsnider, K.A., Laabs, B.J.C., Plummer, M.A., Mickelson, D.M., Singer, B.S., Caffee, M.W.,
1072 2008. Last glacial maximum climate inferences from cosmogenic dating and glacier modeling
1073 of the western Uinta ice field, Uinta Mountains, Utah. *Quat. Res.* 69, 130–144.
1074 <https://doi.org/10.1016/j.yqres.2007.10.014>
- 1075 Roe, G.H., 2011. What do glaciers tell us about climate variability and climate change? *J Glaciol*
1076 57, 567–578. <https://doi.org/10.3189/002214311796905640>
- 1077 Roe, G.H., O’Neal, M.A., 2009. The response of glaciers to intrinsic climate variability:
1078 observations and models of late-Holocene variations in the Pacific Northwest. *J. Glaciol.* 55,
1079 839–854. <https://doi.org/10.3189/002214309790152438>
- 1080 Rood, D.H., Burbank, D.W., Finkel, R.C., 2011. Chronology of glaciations in the Sierra Nevada,
1081 California, from ^{10}Be surface exposure dating. *Quat. Sci. Rev.* 30, 646–661.
1082 <https://doi.org/10.1016/j.quascirev.2010.12.001>
- 1083 Ruppel, E.T., O’Neill, J.M., Lopez, D.A., 1993. Geologic map of the Dillon $1^\circ \times 2^\circ$ quadrangle,
1084 Idaho and Montana. U.S. Geological Survey.
- 1085 Rupper, S., Roe, G., 2008. Glacier changes and regional climate: a mass and energy balance
1086 approach. *J. Clim.* 21, 5384–5401.

- 1087 Schildgen, T.F., Phillips, W.M., Purves, R.S., 2005. Simulation of snow shielding corrections for
1088 cosmogenic nuclide surface exposure studies. *Geomorphology* 64, 67–85.
1089 <https://doi.org/10.1016/j.geomorph.2004.05.003>
- 1090 Shakun, J.D., Clark, P.U., He, F., Marcott, S.A., Mix, A.C., Liu, Z., Otto-Bliesner, B.,
1091 Schmittner, A., Bard, E., 2012. Global warming preceded by increasing carbon dioxide
1092 concentrations during the last deglaciation. *Nature* 484, 49–54.
1093 <https://doi.org/10.1038/nature10915>
- 1094 Smith, L.N., 2007. Quaternary Geology of the Dillon Area, Beaverhead County, Montana, in:
1095 *Northwest Geology*. Northwest Geology, pp. 143–150.
- 1096 Speth, G.T., Amos, C.B., Amidon, W.H., Balco, G., Meigs, A.J., Graf, S., 2018. Glacial
1097 chronology and slip rate on the west Klamath Lake fault zone, Oregon. *Geol. Soc. Am. Bull.*
1098 131, 444–460. <https://doi.org/10.1130/b31961.1>
- 1099 Stokes, C.R., Tarasov, L., Dyke, A.S., 2012. Dynamics of the North American Ice Sheet
1100 Complex during its inception and build-up to the Last Glacial Maximum. *Quat. Sci. Rev.* 50,
1101 86–104. <https://doi.org/10.1016/j.quascirev.2012.07.009>
- 1102 Thackray, G.D., 2008. Varied climatic and topographic influences on Late Pleistocene mountain
1103 glaciation in the western United States. *J. Quat. Sci., Publ. Quat. Res. Assoc.* 23, 671–681.
1104 <https://doi.org/10.1002/jqs.1210>
- 1105 Thackray, G.D., Lundein, K.A., Borgert, J.A., 2004. Latest Pleistocene alpine glacier advances
1106 in the Sawtooth Mountains, Idaho, USA: Reflections of midlatitude moisture transport at the
1107 close of the last glaciation. *Geology* 32, 225–228. <https://doi.org/10.1130/g20174.1>
- 1108 Tulenko, J.P., Lofverstrom, M., Briner, J.P., 2020. Ice sheet influence on atmospheric circulation
1109 explains the patterns of Pleistocene alpine glacier records in North America. *Earth Planet. Sci.
1110 Lett.* 534, 116115. <https://doi.org/10.1016/j.epsl.2020.116115>
- 1111 Ullman, D.J., Carlson, A.E., Hostetler, S.W., Clark, P.U., Cuzzone, J., Milne, G.A., Winsor, K.,
1112 Caffee, M., 2016. Final Laurentide ice-sheet deglaciation and Holocene climate-sea level
1113 change. *Quat. Sci. Rev.* 152, 49–59. <https://doi.org/10.1016/j.quascirev.2016.09.014>
- 1114 Ullman, D.J., LeGrande, A.N., Carlson, A.E., Anslow, F.S., Licciardi, J.M., 2014. Assessing the
1115 impact of Laurentide Ice Sheet topography on glacial climate. *Clim. Past* 10, 487–507.
1116 <https://doi.org/10.5194/cp-10-487-2014-supplement>
- 1117 Wesnousky, S.G., Briggs, R.W., Caffee, M.W., Ryerson, F.J., Finkel, R.C., Owen, L.A., 2016.
1118 Terrestrial cosmogenic surface exposure dating of glacial and associated landforms in the
1119 Ruby Mountains-East Humboldt Range of central Nevada and along the northeastern flank of
1120 the Sierra Nevada. *Geomorphology* 268, 72–81.
1121 <https://doi.org/10.1016/j.geomorph.2016.04.027>

- 1122 Wong, C.I., Potter, G.L., Montañez, I.P., Otto-Bliesner, B.L., Behling, P., Oster, J.L., 2016.
1123 Evolution of moisture transport to the western US during the last deglaciation. *Geophys. Res.*
1124 Lett.
- 1125 Ye, S., Cuzzzone, J.K., Marcott, S.A., Licciardi, J.M., Ward, D.J., Heyman, J., Quinn, D.P., 2023.
1126 A quantitative assessment of snow shielding effects on surface exposure dating from a
1127 western North American ^{10}Be data compilation. *Quat. Geochronol.* 76, 101440.
1128 <https://doi.org/10.1016/j.quageo.2023.101440>
- 1129 Young, N.E., Briner, J.P., Leonard, E.M., Licciardi, J.M., Lee, K., 2011. Assessing climatic and
1130 nonclimatic forcing of Pinedale glaciation and deglaciation in the western United States.
1131 *Geology* 39, 171–174. <https://doi.org/10.1130/g31527.1>
- 1132 Zimmerman, S.G., Evenson, E.B., Gosse, J.C., Erskine, C.P., 1994. Extensive Boulder Erosion
1133 Resulting from a Range Fire on the Type-Pinedale Moraines, Fremont Lake, Wyoming. *Quat.*
1134 *Res.* 42, 255–265. <https://doi.org/10.1006/qres.1994.1076>