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1. Introduction

Given an undirected graph G = (V,€) with vertex set V = {1,...,n} and edge set
E CVxV, we define a walk of length k, or k-walk, as a sequence of vertices (ig, 1, ... ,1k)
such that (is,is41) € € for s € {0,...,k — 1}. A walk of length k is called closed if
19 = ix; furthermore, we will refer to them as closed walk from vertex iy when we need to
distinguish them from the set of all closed k-walks. We denote the number of walks, closed
walks, and closed walks from vertex i of length k by wy, ¢k, and q’)g), respectively. Denote
by A the adjacency matrix of graph G and its eigenvalues by Ay > Ao > --- > \,. The
set containing these eigenvalues will be referred to as the spectrum of G. From Perron-
Frobenius’ Theorem [1], we have that the spectral radius of A, defined by p := max [Nl
is equal to A;. o

In the literature, we find several lower bounds on p formulated in terms of walks
in the graph. Bounds in terms of closed walks are rarer (see, e.g., [2]). Many of these
bounds come from dexterous applications of the Rayleigh principle [1] or the Cauchy-
Schwarz inequality. For example, making use of these tools, Collatz and Sinogowitz [3],
Hoffmeister [4], Yu et al. [5], and Hong and Zhang [6] derived, respectively, the following

w1 W2 Wy We
p>—,  p>—  p=—  p>,/— (1)
wWo wo w2 W4

Nikiforov' [7] generalized these results by expressing the number of walks wy, in terms

lower bounds:

of the eigenvalues, to obtain bounds of the form

r U)25+T
> =7 2
=~ (2)

for s,r € Ny. Cioabd and Gregory [8] provide the following improvement to the first
bound in (1) for the case of irregular graphs of order n > 4:

w1 1
> — 3
TN JN) 3)

where A is the maximum of the vertex degrees in G. Nikiforov [9] showed that

S
P wo 211}0-’-'[01,

(4)

also for irregular graphs of order n > 4. Favaron et al. [10] used the fact that there is a
K A subgraph in G to obtain:

! Nikiforov’s notation in [7] indexes wj, in terms of the number of nodes visited by the walks instead of
the number of steps, as used in our manuscript.
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p=> VA. (5)

There are a number of upper bounds on p in terms of graph invariants like the dom-
ination number [11], chromatic number [12,13], and clique number [13]. Nikiforov [7]
provides a whole hierarchy of bounds in terms of the clique number w(G), which for
k € Ng are given by

< (1 - w(lg)) w. (6)

We also find in the literature several bounds in terms of the fundamental weight of G,
defined as Y. | u;1, where u;; is the i-th entry of the leading eigenvector” of A denoted
by u;. For example, Wilf [14] proved the following upper bound:

oz (1) (Zu> ™)

Cioabd and Gregory [15] showed that, for k& € Np,
k
< i1
p* < Vwar max uin (8)
Moreover, Van Mieghem [16] proved the bound

k Wk

s Z?:l Uil 1?%){" i (9)
In this paper we provide upper and lower bounds on p by using classical results from
probability theory that relate the moments of a measure with its support. In particular,
we interpret the sequences {wy}32 . {dr )}, and {qbgf)}?zo as moments of three mea-
sures supported on [—p, p], and apply these results to derive a hierarchy of new bounds
on the spectral radius, as well as provide alternative proofs to several existing bounds in
the literature. The rest of the paper is organized as follows. Section 2 outlines the tools
we will use to analyze walks on graphs using measures and moment sequences. Section 3
presents multiple lower bounds on the spectral radius derived from the moment problem,

while Section 4 introduces several upper bounds.

2. Background and preliminaries
Throughout this paper, we use standard graph theory notation, as in [17]. We will use

upper-case letters for matrices, calligraphic upper-case letters for sets, and bold lower-
case letters for vectors. For a vector v or a matrix M, we denote by vT and MT their

2 The leading eigenvector of A is the eigenvector associated with the largest eigenvalue A;. We assume
eigenvectors to be normalized to be of unit Euclidean norm.
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respective transposes. The (4, j)-th entry of a matrix M is denoted by M;;. For an x n
matrix M and a set J C {0,...,n — 1}, the matrix M7 is defined to be the submatrix
of M formed by columns and rows corresponding to J; M7 is also called a principal
submatriz of M and, if 7 = {1,...,k}, M7 is called a leading principal submatriz. We
say that a symmetric matrix M € R™*™ is positive semidefinite (resp. positive definite)
if for every non-zero vector v € R™ we have viMv > 0 (resp. vIMv > 0) and we denote
this as M = 0 (resp. M > 0). Finally, the support of a Borel measure ¢ will be denoted

by supp (¢).
2.1. Spectral measures and walks

We can relate walks and closed walks on a graph G to its spectrum using measures,
as we describe in detail below. We begin by stating the following well-known result from
algebraic graph theory [18]:

Lemma 1. For any integer k, the (i,7)-th entry of the matriz A* is equal to the number
of k-walks from vertex i to vertex j on G.

Since G is undirected, A is symmetric and admits an orthonormal diagonalization. In
particular, let {uy, us,...,u,} be a complete set of orthonormal eigenvectors of A. Hence,
we have that A¥ = U diag (Af,...,AE) UT, for every k > 0, where U := [uj|uy]... |u,].
We denote the i-th entry of the I-th eigenvector by w;,. From this factorization, we can
obtain identities which will be used in the following sections.

Lemma 2. Define ¢, := (Y}, Uig)2. Then, for every k > 0, we have

n n n
Gk =Y AL, o\ = > up A, we =Y _ e
(=1 (=1 (=1

Proof. Using Lemma 1 we have that ¢, = Yo (A¥);, l(j) = (A, and wy =
Zi,j(Ak)ij~ Furthermore, we have that (Ak)ij = >, wieAFuj,, directly from the di-
agonalization of A. Combining these results, and the fact that Y., , u?, = 1, the result
follows. O

Next, we introduce three measures supported on the spectrum of A.

Definition 3 (Spectral measures). Let §(-) be the Dirac delta measure. For a simple graph
G with eigenvalues A\ > A, -+ > A, define the closed-walks measure as

n

ug(x) == Zé(a} -\

=1

We also define the closed-walks measure for vertex i as
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= z”: u?,d (x
=1

and the walks measure as

x) :ZC[é(Jf—Ag).

Lemma 4. For a real measure ((z), define its k-th moment as my (¢) = [p z*d((z)
Then, the measures in Definition (3) satisfy

me (ug) = de,  me(d) =0, my (vg) =

Proof. For the case of ug, we evaluate k-th moment, as follows:

n

mi (o) = [ +*dpg(o) /me =3 X =0

R =

The other two cases have analogous proofs. O
2.2. The moment problem

In order to derive bounds on the spectral radius p, we will make use of results from the
moment problem [19]. This problem is concerned with finding necessary and sufficient
conditions for a sequence of real numbers to be the moment sequence of a measure whose
support is contained in a set JC C R. This is formalized below.

Definition 5 (KC-moment sequence). The infinite sequence of real numbers m =
(mg,m1,ma,...) is called a KC-moment sequence if there exists a Borel measure ¢ with
supp (¢) € K C R such that

my = /xkdg(:p), for all k£ € Np.
K
The following result, known as Hamburger’s theorem [19], will be used in Sections 3

and 4.

Theorem 6 (Hamburger’s Theorem [19]). Let m = (mg, my,ma,...) be an infinite se-
quence of real numbers. For n € Ny, define the Hankel matriz of moments as

mo mi . My,
mq mo oo Mp41

H,(m):= | . o ‘ e R(m+x(n+1), (10)

my  Mp41 ces maon
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The sequence m is a R-moment sequence if and only if, for every n € Ng, H,(m) > 0.

The characterizations of K-moment sequences where K is an interval of the form
(—o0,u] or [—u,u] are known as the Stieltjes and Hausdorff moment problems, respec-
tively. A proof for the following theorem, known as Stieltjes’ theorem, can be found in
[19] for the case where u = 0, and it can be easily adapted to any u € R through a simple
change of variables.

Theorem 7 (Stieltjes’ theorem). Let m = (mg, my,ma,...) be an infinite sequence of real
numbers. For n € Ny, define the shifted Hankel matriz of moments S, (m) as

mq mo ‘e Mp+1
mao ms SPEN Mp+2

Sp(m) = | S .| e ROvED XD,
Mpy1 Mp42 ... M2n41

The sequence m is a (—oo, u]-moment sequence if and only if, for every n € Ny,
H,(m) >0, and uH,(m)-S,(m)?>0. (11)

Similarly, the sequence m is a [—u, 00)-moment sequence if and only if, for every n € Ny,
H,(m) =0, and uH,(m)+S,(m)>0. (12)

The positive (semi)definiteness of a symmetric matrix can be certified using Sylvester’s
criterion.

Theorem 8 (Sylvester’s criterion [20]). A matrix M is positive semidefinite if and only
if the determinant of every principal submatrixz is non-negative. Moreover, M is positive
definite if and only if the determinant of every leading principal submatriz R is positive.

3. Lower bounds on the spectral radius

The supports of the spectral measures in Definition (3) are contained in the interval
[—p, p] and their moments can be written in terms of walks in G. Since the moments of a
measure impose constraints on its support, the number of walks in G imposes constraints
on p, as stated below. (See Table 1.)

Lemma 9. For a graph G, let m be the sequence of moments of any measure supported
on the spectrum of G. Then, for any finite set J C Ny,

pHz(m) — S7(m) = 0, (13)
pHz(m)+ S7(m) = 0, (14)



Table 1

Summary of lower bounds on the spectral radius p, obtained as corollaries of Lemma 9. The number of k-walks, closed k-walks
and closed k-walks from node 4, in G, are denoted by wyg, ¢ and qS,(:), respectively. We write n, e and T to denote the number of
nodes, edges and triangles in G. We write d; and T; to denote the degree of node i and the number of triangles touching node 3,
respectively. The largest node degree is denoted by A.

General bound Corollaries Moment Reference
sequence
ok > M2stk ok > W2atk (7] walks Corollary 11
mog Was
ok > % closed walks
2s
plC > 2‘22319 closed walks
2s from node ¢
det (F®P det (F@»)? — 4 det (H @ SC» 3T 37\2
pk > | ¢ ( )‘ + \/ ot ( ) et ( ) p>— 4+ —) + d closed walks Corollary 14
2 det (H®=») 4e 4e n
T, +/T? +d3
p>  Jnax % closed walks Corollary 15
i€1,...,n p

from node %

p> VA [10] closed walks
from node i

[43}
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where Hz(m) and S7(m) are submatrices of Hy,(m) and S, (m), defined in (6) and (7),
respectively.

Proof. Since m corresponds to the sequence of moments of a measure whose support
is contained in [—p, p], it follows that p must satisfy the necessary conditions (11) and
(12). Furthermore, every principal submatrix of a positive semidefinite matrix is also
positive semidefinite by Sylvester’s criterion; hence, the matrix inequalities (13) and
(14) follow. O

As stated in Lemma 4, the moments of all the three measures defined in Definition 3
can be written in terms of walks in the graph. Since the supports of these three mea-
sures are equal to the eigenvalue spectrum of G, we can apply Lemma 9 to the moment
sequences obtained by counting different types of walks in the graph. Using the above
Lemma, we can use a truncated sequence of moments to find a lower bound on p by
solving a semidefinite program [21], as stated below:

Theorem 10. The solution to the following semidefinite program is a lower bound on the
spectral radius of G

min u
u

s.t.  uHp(m)— S,(m) =0,

uHp(m) 4+ S, (m) = 0,

where m = (mg, my,...,Mant+1) @S a truncated sequence of moments of any measure
supported on the spectrum of G.

The above Theorem can be used to compute numerical bounds on the spectral radius
by setting the moments to be one of qbk,(b,(:), or wy. Moreover, we can use Lemma 9
to obtain closed-form bounds on p involving a small number of moments for which the
semidefinite program in Theorem 10 can be solved analytically. The following corollary
analyzes the case where |J| = 1.

Corollary 11. For an undirected graph G, let m be the sequence of moments of a measure
supported on the spectrum of G. Then, for every k,s € Ny,
o > M2stk (15)
mas
Proof. Let ((x) be a measure supported on {A,As,...,A\,}, defined as ((z) :=

S zid(x — A;) and let {mg,my,...} be its moment sequence. For every k,s € Ny,
we construct the following measure based on ((z):

Conl@) 1= 2AP0(x — Af). (16)

i=1
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We see that (s x(x) is supported on {\F, A5 ... Ak} and its moments are given by
the sequence {maos, Mas ik, Masi2k,--- }, for k € Ny. We note that the support of the
measure (s () is contained in [—pF, p*]; thus, setting J = {0}, we use Lemma 9 to
obtain p*maos — magyk > 0, which implies (15). O

If we set m = {w;}52,, this corollary gives an alternative proof for the lower bounds
in (2), proven by Nikiforov [7]. It also generalizes these results to closed walks by using
@), or (bki as the sequence of moments.

Another interesting result comes from applying Lemma 9 to the case where |J| = 2.
Corollary 13 below provides a new lower bound in terms of the largest root of a quadratic
polynomial. Its proof relies on the following lemma.

Lemma 12. Let m be the sequence of moments of a measure supported on the spectrum
of G. For s,k > 0, define the following matrices:

mo Mosik mas+k Mas2k
R R I A LA
Mos4k  M2s42k Mosi2k  M2s54-3k

Whenever det (H(257k)) # 0, we have

ok -, det(SEH))
~ det(H@s:k))

Proof. Let (a55(z) be the measure defined in (16). The support of this measure is
contained in [—p*, p¥] and has moment sequence (mas, Masyik, Mastok,---). Applying
Lemma 9 with J = {0,1} we obtain

XTs(Qs,k)X

k r7(2s,k) (2s,k) k
prH +5 =0 == XTH5 k)%’

(18)
for every non-zero x € R2. From Theorem 6, we know that H®*) = 0; hence, its
eigenvalues £ and & satisfy & > & > 0. By Rayleigh principle, we have that

XTH(Qs,k)X WTH(Qs,k)W
— <&, — =&, (19)

XTx wTw

for every non-zero x and for w being the eigenvector corresponding to the second eigen-
value of H2%%) Similarly, let v, > 72 be the eigenvalues of S(2$%). By Perron-Frobenius,
we know that y; > 0. If 75 < 0, then det(S(2s7k)) < 0 and the inequality (18) is trivial.
If instead 72 > 0, then

XTS(Qs’k)X VTS(2s’k)V

> YOIV 20
<Tx = 72, VTV Y1 ( )
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for any non-zero x and for v equal to the leading eigenvector of S(*¥) We plug vectors
v and w into (18) to obtain

p o VISEsky o

Pz vTH2s,k)yy — é'_l’

k WTS(Qs’k)W Y2
> T 2 g

where the last inequalities come from (19) and (20). Multiplying both inequalities we
obtain

ok o M2 _ det(SEV)
— && det(H(2S=’f))'

O

We are now ready to prove the following corollary.
Corollary 13. Let m be the sequence of moments of a measure supported on the spectrum

of G. For s,k € Ny, let H?**) and SC5*) be defined as in (17) and define the following
matrix:

F2s.k) . M2s+k  MM2s43k
Mas mas42k

Then, whenever det (H2**)) 3£ 0, we have

S S 2 S S
‘s |det (FGsR))| + \/det (F2s:k))7 — ddet (H2sk) §(2s:0))
- 2det (H(2sk))

p

Proof. The inequality (18) implies that det (p"H 5 4 §(2s%)) > (0. This can be ex-
panded to

det pFmas + masik PPMmastr + Mastok -0
PPMmosir + Mosion  PPMasior + Maosyak

which simplifies to
det (H(Qs’k)> p*F — det (F(Qs’k)) P 4 det (S(Qs’k)> > 0. (21)
Similarly, Lemma 9 implies that det (pkH(237k) — S(Qs’k)) > 0, which implies

det (H(Qs’k)> p2F + det (F(Qs’k)> pF + det (S(Zs’k)) > 0. (22)



136 F. Barreras et al. / Linear Algebra and its Applications 625 (2021) 126-145

Inequalities (21) and (22) are satisfied simultaneously if and only if
det (H(QS”“)) o2 ‘det (F(Qs’k)) ‘ o+ det (5(23”“)> > 0. (23)

By Theorem 6 we have that det (H(Qs’k)) > 0. Using Lemma 12, we know that
det (S#R)) < det (H2*) p?*  which we substitute into (23) to yield

2det (H(Qs’k)) P2k — ‘det (F(zs’k)) ‘ p*>0.
Since p > 0, we conclude that

ko Jdet (F20)]

>\l
P = 2 det (H@)

Next, define the quadratic polynomial
P(r) = det (HC9) 72 — [det (P9 | 7+ det (52+0),

which has a positive leading coefficient. From (23) we know that P(p*) > 0 and from
(24) we know that p” is larger than the smallest root of P. This implies that p* is larger
than the largest root of P and the result follows. O

We can apply Corollary 13 with s = 0 and k£ = 1 to the closed-walks measure of a
graph G, leveraging the fact that ¢g = n, ¢1 = 0, ¢o is twice the number of edges, and
¢3 is three times the number of triangles in G, as follows.

Corollary 14. For a graph G with n vertices, e edges and T triangles, we have that

LT (3TN e
P= "4 de n’

Similarly, because qb(()i) =1, gbgi) =0, ¢;i) is the degree of vertex i, and ¢gi) is twice
the number of triangles touching vertex i, we can apply Corollary 13 to the closed-walks
measure for vertex i.

Corollary 15. Denoting by d; the degree of vertex i and T; the number of triangles touching
vertex i, we have

T, +\T? + d}
p> max @

i€l,...,n d;
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Notice how Corollary 15 implies
/T2 3
p>latVIat e ZAJFA > VA,

where A is the maximum of the vertex degrees in G and T, is the maximum triangle
count amongst vertices with degree A, improving the bound in (5).

4. Upper bounds on the spectral radius

In this section, we make use of Theorems 6 and 7 to derive upper bounds on p. (See
Table 2.) In particular, if {(x) is a spectral measure defined as ((z) := > 1| z0(z — \;)
with moment sequence {mg, m1, ...}, then {mg—p°, m;—p!,...} is the moment sequence
of the measure Y. , z;0(z — \;) whose support is also contained in [—p, p]. A direct
application of Hamburger’s Theorem thus yields the following result:

Lemma 16. Let m be the sequence of moments of a measure p(x) = Y i, a;6(z — X;)
supported on the spectrum of G, and define the infinite-dimensional Hankel matriz P

given by:
L p p
b |” P
=2 B2 Pt

S

Hence, for any finite J C Ng,
Hgz(m) — a1 Py = 0,
where H7(m) is a submatriz of H, defined in (10).
Proof. We simply note that the matrix Hy7(m) — a1 P is the Hankel matrix containing
the moments of the measure Y .-, a;6(z—2X;). The result follows directly from Theorem 6

and Sylvester’s criterion. 0O

Corollary 17. Let m be the sequence of moments of a measure p(x) = ., a;6(x — ;)
supported on the spectrum of

Proof. For J = {k}, Lemma 16 implies

mak — a1 p°F > 0.



Table 2
Upper bounds on the spectral radius p, where my, is the k-th moment of a measure pu(z) = Y1 ; a;6(x — A;) supported on the spectrum

of G. The number of k-walks, closed k-walks and closed k-walks from node ¢ are denoted by wy, ¢ and (b;;), respectively. We write w(G),
c1 and z; for the clique number of G, the fundamental weight of A, and the i-th component of the leading eigenvector of A, respectively.

SET

General bound Corollaries Moment Reference
sequence
m
p?F < azk p%F < dor closed walks Corollary 17
1
p2k < W2k all
C1
p2Rtl < (1 — L) wap [7] walks
B w(9)
p?F < % closed walks Corollary 20
2 (bipartite G)
¢(i)
p% < % closed walks

from node 1
(bipartite G)

m

mi + \/(—0 - 1> (momar —m3)
a;

k<

p" < closed walks Corollary 19
mo i from node i
max r max 7
r= st Makr + mapy1 — 20072 =0 ps st warT + wapt1 — 2¢c72K T =0 walls Corollary 23
max r
p < qut Wkt + Waki1 — 2 w(9) P2k+2 _ walks Corollary 24

w(g) —1

Sr1-931 (1308) G389 suouvoyddy s31 puv Duqab6]y 4D2ULT / ‘|D 32 SDL2UIDG "o



F. Barreras et al. / Linear Algebra and its Applications 625 (2021) 126-145 139

This finishes the proof. 0O

Applying this corollary to the measures ug, u(gi) and vg, we obtain three different
hierarchies of bounds. For example, applying Corollary 17 to the measure vg, which has
moments m = {w;}32,, we obtain the bound

P < B (25)
Cc1

where ¢; = (31, ui1)2 is the fundamental weight. One can show that the bound (6)
proved by Nikiforov [7] is a corollary of (25), albeit only for even exponents. In particular,
multiplying on both sides of (25) by p and using Wilf’s inequality (7), we obtain

2kt < %<<1——1 )c%:(l——l >w
P _pcl - w(G) e w(9) 2k

where the last quantity is the upper bound in (6).

Using Lemma 16 with larger principal submatrices, we can improve these upper
bounds further. The following upper bound is obtained by analyzing the case of
J ={0,k}.

Corollary 18. Let m be the sequence of moments of a measure p(z) = > 1 ;6(z — A;)
supported on the spectrum of G. Then, for any k € N

my + \/(Zf—f — ) (moma —m3)
pk < : (26)
mo

Furthermore, this bound is tighter than the one in Corollary 17.

Proof. Applying Lemma 16 with J = {0, k}, we conclude that det(H 7 (m)—a; P7) > 0,
which simplifies to the following expression:

1
—mop?* + 2myp* + o ((mo — a1)maor —mj) > 0.
1
Making the substitution y = p*, we obtain the following quadratic inequality
2 1 2
—moy” + 2miy + o ((mo — ax)mar —mj) > 0.

1
The quadratic on the left-hand side has a negative leading coefficient, which implies it is
negative whenever y is larger than its largest root, which is given by the right hand side

of (26). After substituting back p¥, the result follows. To see that this bound improves
the one in Corollary 17, note that Corollaries 17 and 11 imply
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My 1
mag > arp®* > = mag < a—mgk
2k 1

m
=  MmgMmuqi — mgk < (O — 1) m%k.
aq
Hence, we can use (26) to obtain

m
Mok + \/(—0 - 1) (momar —m3;)
o2 < a1

mo
m, m,
m2k+\/(—0—1> (—0—1)m§k
aq aq m
< _ Mak
mo g

As with previous results, we can obtain concrete bounds from this result by substitut-

ing o1 and my, by either (¢) 1 and ¢y, (i7) cgi) and qﬁ,(f), or (i11) ¢; and wy, respectively.

For example, we can apply Corollary 18 to the closed-walks measure for node 1, u(gi ),

using J = {0,1}. Since ¢g(i) = 1 and ¢;(i) = 0, we obtain the upper bound in the
following Corollary.

Corollary 19. For a graph G

p* < <i1 - 1) ¢a(i) = (% - 1) d;,  forallie{l,...,n}, (27)

i

where d; is the degree of vertex i and x; is the i-th component of the leading eigenvector

of A.

Notice that inequality (27) can be written as

z; <

which was first proven by Cioaba and Gregory in [15]. Our method provides an alternative
proof. Furthermore, in the case of bipartite graphs, we can refine Corollary 19 as follows.

Corollary 20. For a bipartite graph G and k € Ny, we have

< 2k (28)
2
(4)

p2k < 2k . (29)

=52
2uz;
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Proof. Notice that, since the eigenvalue spectrum of a bipartite graph is symmetric,
we have that ¢op = Z{Q] 2)2%. The upper bound given by (28) then follows by a
n

straightforward application of Corollary 17 to the measure Y1171 26 (z — A2).
A similar application can be done for closed-walks from node i. It is easy to see that

‘ [n/2]
Qj);lk) = Z (Uge + U?,nfz) )‘?k- (30)

=1

In what follows, we prove that u2, = uf,n% using the eigenvector-eigenvalue identity
[22]. We prove the equality for the case of odd n and note that for even n there is
an analogous proof. Let M{_;; be the submatrix of A obtained by deleting row i and
column 4, and let 73 > 2 > -+ > 7y,-1 be the eigenvalues of M _;y. Because My_;y is
the adjacency matrix of the graph obtained by deleting node 4, which is also bipartite,
its spectrum is also symmetric. From the eigenvector-eigenvalue identity we have:

n n—1
uie [T e=2) =TT v =) (31)
J=15570 =1

Using the symmetry of the spectrum of My _;y, the right hand side of (31) can be rewritten

as
n—1 [n/2]
H()\e—%‘): H ()‘?—7]2)~ (32)
j=1 j=1

Similarly, the symmetry of the spectrum of A implies A, _, = —A; and A, /27 = 0. Thus,
the left hand side of (31) can be rewritten as

ln/2]

uz, H (Ao = Aj) = ui, (2X0) As H (A7 = A3), (33)
=13t =l
JjFLn—L

where the factor 2, on the right corresponds to the term (A, — A,,—;) of the product on

the left, the factor A, corresponds to the term ()\g — )\[n/ﬂ) of the product on the left, and

the third factor is the product of the pairs of remaining eigenvalues, multiplying each fac-

tor (A\; — A;) with the corresponding factor (A, + A;). Because (2X\;) A, = (—2X,) (=),

it becomes clear that solving for u, in (31) yields the same result as solving for u7,, .
Hence, we can conclude from (30) that

. [n/2]
sz = Z 2u12£)\,?k.
=1

Thus, the upper bound (29) follows from applying Corollary 17 to the measure
22421 2ufd (z— A7), O
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A more general version of Corollary 18, for general undirected graphs, is given in the
following theorem.

Theorem 21. Let m be the sequence of moments of a measure p(z) = > o ; ;d(x — \;)
supported on the spectrum of G. Define the infinite dimensional Hankel matriz R given

by

1 r?
roor2 g3
R = P2 3 g4

Let T = {j1,---,4s} and T = {j1,...,Js—1} for j1 < jo < -+ < js € Ny, such that
Hz/(m) > 0. Then, the largest root r* of the polynomial:

Q(r) :=det (Hy(m) — a1Ry),

is an upper bound on the spectral radius.
Proof. We will prove that @Q(r) has a negative leading coefficient equal to
—ay det (H(m) /). It is well known (see for example [23]) that if A € R™*™ and u, v are
vectors in R™ then

det(A+uvT) = det(A) + vT adj(A)u, (34)
where adj(A) is the cofactor matrix of A. Let r := (r/*=1, ... rJ<=1). We note that

—a Ry = (a1 (rjl*l, cee rjs*l))T (f (rjl*l, e ,rjs*l)) = (aqr)(—1)T.
Using (34), we obtain
det(H7(m) —ayRy) = det(Hs7(m)) — aqrT adj(H 7 (m))r.

It follows that the leading coefficient of Q(r) is —adet(H /) < 0. By Lemma 16 we have
Q(p) > 0 and, therefore, p < r*. O

Lemma 16 was proved applying Hamburger’s Theorem to the moment sequence {ms—
a17°}22 5. We can also apply Stieltjes’ Theorem to the same moment sequence to obtain
a different hierarchy of upper bounds. This is stated in the following theorem.

Theorem 22. Let m be the sequence of moments of a measure p(x) = > o a;6(x — \;)
supported on the spectrum of G. Then, for any J € Ny,
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p(Hz(m) —aPgz)+ (S7(m) - a;pP7) =0,

where H(m) and S(m) are the Hankel matrices of moments defined in Theorems 6 and
7, respectively.

Proof. Recall from Lemma 16 that the sequence {m, — a1 p°}32, corresponds to the
moment sequence of a measure whose support is contained in [—p, p] and, therefore, the
result follows from Theorem 7. 0O

Theorem 22 can be used to obtain bounds that improve on those of Corollary 17, as
shown below.

Corollary 23. Let m be the sequence of moments of a measure p(z) = >_1"  ;6(z — A;)
supported on the spectrum of G. Then, the largest root v* of the following polynomial:

Q(’I") 1= MakT + Mogy1 — 20&17‘2k+1,

is an upper bound on the spectral radius. Furthermore, this bound is tighter than the
bound in Corollary 17.

Proof. Applying Theorem 22 with J = {k}, we obtain
p [mag] + [Mar41] — 201p [P%} =0 = pmaoy + magy1 — 2a1p* 1 >0,

and, thus, Q(p) > 0. Since the leading coefficient of Q(r) is negative, it follows that
p < r*. The upper bound in Corollary 17 can be written as (mmc/al)l/%, hence, proving
that r* is a tighter bound amounts to proving r* < (mgk/al)l/%. We first prove that
r* is the unique root of Q(r) in the region defined by

—_— 1/2k
> — . 35
"t <2a1(2k—|—1)> (35)
This is indeed the case, because the derivative of Q(r), given by Q'(r) = mar — 2(2k +
1)agr?* | is negative in the interval defined in (35). Also, note that

1/2k 1/2k
mak > M2k
o “\201(2k+1) '

Therefore, it suffices to show that

m 1/2k
Q ((—2’“) ) <0.
a

To this end, we evaluate and obtain
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1 1/2k
Q <_m2k:) <0
a1

1 1/2k 1/2k\ 2k+1
— (_m2k> Moy + Mopy1 — 201 <_m2k <0
(e 71 (€3]
1 1/2k 1 1/2k
— (_m2k> Mok + Mogt1 — 2Mog <_m2k> <0
(e71 a1
1/2k
Mogk41 1
o (1,0
mag aq

where the last inequality is true since the left-hand side is a lower bound of p by Corol-
lary 11, and the right hand side is an upper bound of p by Corollary 17. This finishes
the proof. O

The implicit bound in Corollary 23, when applied to the moment sequence m =
{ws}22,, provides an improvement on the bound given in Corollary 11. Using inequality
(7), we can also obtain a bound in terms of the clique number instead of the fundamental
weight, which also improves on (2), as we show below.

Corollary 24. The largest root r* of the following polynomial:

W(g) p2k+2

w(@) —1 ’

Q(r) := maogr + mogt1 — 2

is an upper bound on the spectral radius. Furthermore, this bound is an improvement on

(6).
Proof. The proof is very similar to that of Corollary 23. Using (7), we have that

w(G) 2k+1

pw2k + Wak 1 — — p > pwog + okt — 201 p?F T > 0.

We omit the details to avoid repetitions. O
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