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1. Introduction

Given an undirected graph G = (V, E) with vertex set V = {1, . . . , n} and edge set 
E ⊆ V×V, we define a walk of length k, or k-walk, as a sequence of vertices (i0, i1, . . . , ik)
such that (is, is+1) ∈ E for s ∈ {0, . . . , k − 1}. A walk of length k is called closed if 
i0 = ik; furthermore, we will refer to them as closed walk from vertex i0 when we need to 
distinguish them from the set of all closed k-walks. We denote the number of walks, closed 
walks, and closed walks from vertex i of length k by wk, φk, and φ(i)

k , respectively. Denote 
by A the adjacency matrix of graph G and its eigenvalues by λ1 ≥ λ2 ≥ · · · ≥ λn. The 
set containing these eigenvalues will be referred to as the spectrum of G. From Perron-
Frobenius’ Theorem [1], we have that the spectral radius of A, defined by ρ := max

1≤i≤n
|λi|, 

is equal to λ1.
In the literature, we find several lower bounds on ρ formulated in terms of walks 

in the graph. Bounds in terms of closed walks are rarer (see, e.g., [2]). Many of these 
bounds come from dexterous applications of the Rayleigh principle [1] or the Cauchy-
Schwarz inequality. For example, making use of these tools, Collatz and Sinogowitz [3], 
Hoffmeister [4], Yu et al. [5], and Hong and Zhang [6] derived, respectively, the following 
lower bounds:

ρ ≥ w1
w0

, ρ ≥
√

w2
w0

, ρ ≥
√

w4
w2

, ρ ≥
√

w6
w4

. (1)

Nikiforov1 [7] generalized these results by expressing the number of walks wk in terms 
of the eigenvalues, to obtain bounds of the form

ρr ≥ w2s+r

w2s
, (2)

for s, r ∈ N0. Cioabă and Gregory [8] provide the following improvement to the first 
bound in (1) for the case of irregular graphs of order n ≥ 4:

ρ ≥ w1
w0

+ 1
w0(∆ + 2) , (3)

where ∆ is the maximum of the vertex degrees in G. Nikiforov [9] showed that

ρ >
w1
w0

+ 1
2w0 + w1

, (4)

also for irregular graphs of order n ≥ 4. Favaron et al. [10] used the fact that there is a 
K1,∆ subgraph in G to obtain:

1 Nikiforov’s notation in [7] indexes wk in terms of the number of nodes visited by the walks instead of 
the number of steps, as used in our manuscript.
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ρ ≥
√

∆. (5)

There are a number of upper bounds on ρ in terms of graph invariants like the dom-
ination number [11], chromatic number [12,13], and clique number [13]. Nikiforov [7]
provides a whole hierarchy of bounds in terms of the clique number ω(G), which for 
k ∈ N0 are given by

ρk+1 ≤
(

1 − 1
ω(G)

)
wk. (6)

We also find in the literature several bounds in terms of the fundamental weight of G, 
defined as 

∑n
i=1 ui1, where ui1 is the i-th entry of the leading eigenvector2 of A denoted 

by u1. For example, Wilf [14] proved the following upper bound:

ρ ≤
(

1 − 1
ω(G)

)(
n∑

i=1
ui1

)2

. (7)

Cioabă and Gregory [15] showed that, for k ∈ N0,

ρk ≤
√
w2k max

1≤i≤n
ui1. (8)

Moreover, Van Mieghem [16] proved the bound

ρk ≤ wk∑n
i=1 ui1

max
1≤i≤n

ui1. (9)

In this paper we provide upper and lower bounds on ρ by using classical results from 
probability theory that relate the moments of a measure with its support. In particular, 
we interpret the sequences {wk}∞k=0, {φk}∞k=0 and {φ(i)

k }∞k=0 as moments of three mea-
sures supported on [−ρ, ρ], and apply these results to derive a hierarchy of new bounds 
on the spectral radius, as well as provide alternative proofs to several existing bounds in 
the literature. The rest of the paper is organized as follows. Section 2 outlines the tools 
we will use to analyze walks on graphs using measures and moment sequences. Section 3
presents multiple lower bounds on the spectral radius derived from the moment problem, 
while Section 4 introduces several upper bounds.

2. Background and preliminaries

Throughout this paper, we use standard graph theory notation, as in [17]. We will use 
upper-case letters for matrices, calligraphic upper-case letters for sets, and bold lower-
case letters for vectors. For a vector v or a matrix M , we denote by vᵀ and Mᵀ their 

2 The leading eigenvector of A is the eigenvector associated with the largest eigenvalue λ1. We assume 
eigenvectors to be normalized to be of unit Euclidean norm.



F. Barreras et al. / Linear Algebra and its Applications 625 (2021) 126–145 129

respective transposes. The (i, j)-th entry of a matrix M is denoted by Mij . For a n × n

matrix M and a set J ⊆ {0, . . . , n − 1}, the matrix MJ is defined to be the submatrix 
of M formed by columns and rows corresponding to J ; MJ is also called a principal 
submatrix of M and, if J = {1, . . . , k}, MJ is called a leading principal submatrix. We 
say that a symmetric matrix M ∈ Rn×n is positive semidefinite (resp. positive definite) 
if for every non-zero vector v ∈ Rn we have vᵀMv ≥ 0 (resp. vᵀMv > 0) and we denote 
this as M ≽ 0 (resp. M ≻ 0). Finally, the support of a Borel measure ζ will be denoted 
by supp (ζ).

2.1. Spectral measures and walks

We can relate walks and closed walks on a graph G to its spectrum using measures, 
as we describe in detail below. We begin by stating the following well-known result from 
algebraic graph theory [18]:

Lemma 1. For any integer k, the (i, j)-th entry of the matrix Ak is equal to the number 
of k-walks from vertex i to vertex j on G.

Since G is undirected, A is symmetric and admits an orthonormal diagonalization. In 
particular, let {u1, u2, . . . , un} be a complete set of orthonormal eigenvectors of A. Hence, 
we have that Ak = U diag

(
λk

1 , . . . ,λ
k
n

)
Uᵀ, for every k ≥ 0, where U := [u1|u2| . . . |un]. 

We denote the i-th entry of the l-th eigenvector by uiℓ. From this factorization, we can 
obtain identities which will be used in the following sections.

Lemma 2. Define cℓ := (
∑n

i=1 uiℓ)2. Then, for every k ≥ 0, we have

φk =
n∑

ℓ=1
λk
ℓ , φ(i)

k =
n∑

ℓ=1
u2
iℓλ

k
ℓ , wk =

n∑

ℓ=1
cℓλ

k
ℓ .

Proof. Using Lemma 1 we have that φk =
∑n

i=1(Ak)ii, φ(i)
k = (Ak)ii, and wk =∑

i,j(Ak)ij . Furthermore, we have that 
(
Ak

)
ij

=
∑n

ℓ=1 uiℓλk
ℓ ujℓ, directly from the di-

agonalization of A. Combining these results, and the fact that 
∑n

i=1 u
2
iℓ = 1, the result 

follows. !

Next, we introduce three measures supported on the spectrum of A.

Definition 3 (Spectral measures). Let δ(·) be the Dirac delta measure. For a simple graph 
G with eigenvalues λ1 ≥ λ2, · · · ≥ λn, define the closed-walks measure as

µG(x) :=
n∑

ℓ=1
δ (x− λℓ) .

We also define the closed-walks measure for vertex i as
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µ(i)
G (x) :=

n∑

ℓ=1
u2
iℓδ (x− λℓ) ,

and the walks measure as

νG(x) :=
n∑

ℓ=1
cℓδ (x− λℓ) .

Lemma 4. For a real measure ζ(x), define its k-th moment as mk (ζ) =
∫
R xkdζ(x). 

Then, the measures in Definition (3) satisfy

mk (µG) = φk, mk(µ(i)
G ) = φ(i)

k , mk (νG) = wk.

Proof. For the case of µG , we evaluate k-th moment, as follows:

mk (µG) =
∫

R

xkdµG(x) =
∫

R

xk
n∑

ℓ=1
δ(x− λℓ)dx =

n∑

ℓ=1
λk
ℓ = φk.

The other two cases have analogous proofs. !

2.2. The moment problem

In order to derive bounds on the spectral radius ρ, we will make use of results from the 
moment problem [19]. This problem is concerned with finding necessary and sufficient 
conditions for a sequence of real numbers to be the moment sequence of a measure whose 
support is contained in a set K ⊆ R. This is formalized below.

Definition 5 (K-moment sequence). The infinite sequence of real numbers m =
(m0,m1,m2, . . .) is called a K-moment sequence if there exists a Borel measure ζ with 
supp (ζ) ⊆ K ⊆ R such that

mk =
∫

K

xkdζ(x), for all k ∈ N0.

The following result, known as Hamburger’s theorem [19], will be used in Sections 3
and 4.

Theorem 6 (Hamburger’s Theorem [19]). Let m = (m0,m1,m2, . . .) be an infinite se-
quence of real numbers. For n ∈ N0, define the Hankel matrix of moments as

Hn(m) :=

⎡

⎢⎢⎢⎢⎣

m0 m1 . . . mn

m1 m2 . . . mn+1
...

... . . . ...
mn mn+1 . . . m2n

⎤

⎥⎥⎥⎥⎦
∈ R(n+1)×(n+1). (10)
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The sequence m is a R-moment sequence if and only if, for every n ∈ N0, Hn(m) ≽ 0.

The characterizations of K-moment sequences where K is an interval of the form 
(−∞, u] or [−u, u] are known as the Stieltjes and Hausdorff moment problems, respec-
tively. A proof for the following theorem, known as Stieltjes’ theorem, can be found in 
[19] for the case where u = 0, and it can be easily adapted to any u ∈ R through a simple 
change of variables.

Theorem 7 (Stieltjes’ theorem). Let m = (m0,m1,m2, . . .) be an infinite sequence of real 
numbers. For n ∈ N0, define the shifted Hankel matrix of moments Sn(m) as

Sn(m) :=

⎡

⎢⎢⎢⎢⎣

m1 m2 . . . mn+1
m2 m3 . . . mn+2
...

... . . . ...
mn+1 mn+2 . . . m2n+1

⎤

⎥⎥⎥⎥⎦
∈ R(n+1)×(n+1).

The sequence m is a (−∞, u]-moment sequence if and only if, for every n ∈ N0,

Hn(m) ≽ 0, and uHn(m) − Sn(m) ≽ 0. (11)

Similarly, the sequence m is a [−u, ∞)-moment sequence if and only if, for every n ∈ N0,

Hn(m) ≽ 0, and uHn(m) + Sn(m) ≽ 0. (12)

The positive (semi)definiteness of a symmetric matrix can be certified using Sylvester’s 
criterion.

Theorem 8 (Sylvester’s criterion [20]). A matrix M is positive semidefinite if and only 
if the determinant of every principal submatrix is non-negative. Moreover, M is positive 
definite if and only if the determinant of every leading principal submatrix R is positive.

3. Lower bounds on the spectral radius

The supports of the spectral measures in Definition (3) are contained in the interval 
[−ρ, ρ] and their moments can be written in terms of walks in G. Since the moments of a 
measure impose constraints on its support, the number of walks in G imposes constraints 
on ρ, as stated below. (See Table 1.)

Lemma 9. For a graph G, let m be the sequence of moments of any measure supported 
on the spectrum of G. Then, for any finite set J ⊂ N0,

ρHJ (m) − SJ (m) ≽ 0, (13)
ρHJ (m) + SJ (m) ≽ 0, (14)
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Table 1
Summary of lower bounds on the spectral radius ρ, obtained as corollaries of Lemma 9. The number of k-walks, closed k-walks 
and closed k-walks from node i, in G, are denoted by wk, φk and φ(i)

k , respectively. We write n, e and T to denote the number of 
nodes, edges and triangles in G. We write di and Ti to denote the degree of node i and the number of triangles touching node i, 
respectively. The largest node degree is denoted by ∆.

General bound Corollaries Moment 
sequence

Reference

ρk ≥
m2s+k

m2s
ρk ≥

w2s+k

w2s
[7] walks Corollary 11

ρk ≥
φ2s+k

φ2s
closed walks

ρk ≥
φ(i)

2s+k

φ(i)
2s

closed walks 
from node i

ρk ≥
∣∣det

(
F (2s,k)

)∣∣ +
√

det (F (2s,k))2 − 4 det (H(2s,k)S(2s,k))
2 det (H(2s,k))

ρ ≥
3T
4e

+
√(3T

4e

)2
+ e

n
closed walks Corollary 14

ρ ≥ max
i∈1,...,n

Ti +
√
T 2
i + d3

i

di
closed walks 
from node i

Corollary 15

ρ ≥
√

∆ [10] closed walks 
from node i
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where HJ (m) and SJ (m) are submatrices of Hn(m) and Sn(m), defined in (6) and (7), 
respectively.

Proof. Since m corresponds to the sequence of moments of a measure whose support 
is contained in [−ρ, ρ], it follows that ρ must satisfy the necessary conditions (11) and
(12). Furthermore, every principal submatrix of a positive semidefinite matrix is also 
positive semidefinite by Sylvester’s criterion; hence, the matrix inequalities (13) and 
(14) follow. !

As stated in Lemma 4, the moments of all the three measures defined in Definition 3
can be written in terms of walks in the graph. Since the supports of these three mea-
sures are equal to the eigenvalue spectrum of G, we can apply Lemma 9 to the moment 
sequences obtained by counting different types of walks in the graph. Using the above 
Lemma, we can use a truncated sequence of moments to find a lower bound on ρ by 
solving a semidefinite program [21], as stated below:

Theorem 10. The solution to the following semidefinite program is a lower bound on the 
spectral radius of G

min
u

u

s.t. uHn(m) − Sn(m) ≽ 0,
uHn(m) + Sn(m) ≽ 0,

where m = (m0, m1, . . . , m2n+1) is a truncated sequence of moments of any measure 
supported on the spectrum of G.

The above Theorem can be used to compute numerical bounds on the spectral radius 
by setting the moments to be one of φk, φ

(i)
k , or wk. Moreover, we can use Lemma 9

to obtain closed-form bounds on ρ involving a small number of moments for which the 
semidefinite program in Theorem 10 can be solved analytically. The following corollary 
analyzes the case where |J | = 1.

Corollary 11. For an undirected graph G, let m be the sequence of moments of a measure 
supported on the spectrum of G. Then, for every k, s ∈ N0,

ρk ≥ m2s+k

m2s
. (15)

Proof. Let ζ(x) be a measure supported on {λ1, λ2, . . . , λn}, defined as ζ(x) :=∑n
i=1 ziδ(x − λi) and let {m0, m1, . . . } be its moment sequence. For every k, s ∈ N0, 

we construct the following measure based on ζ(x):

ζs,k(x) :=
n∑

i=1
ziλ

2s
i δ(x− λk

i ). (16)
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We see that ζs,k(x) is supported on {λk
1 , λ

k
2 , . . . , λ

k
n}, and its moments are given by 

the sequence {m2s, m2s+k, m2s+2k, . . . }, for k ∈ N0. We note that the support of the 
measure ζs,k(x) is contained in [−ρk, ρk]; thus, setting J = {0}, we use Lemma 9 to 
obtain ρkm2s −m2s+k ≥ 0, which implies (15). !

If we set m = {ws}∞s=0, this corollary gives an alternative proof for the lower bounds 
in (2), proven by Nikiforov [7]. It also generalizes these results to closed walks by using 
φk or φ(i)

k as the sequence of moments.
Another interesting result comes from applying Lemma 9 to the case where |J | = 2. 

Corollary 13 below provides a new lower bound in terms of the largest root of a quadratic 
polynomial. Its proof relies on the following lemma.

Lemma 12. Let m be the sequence of moments of a measure supported on the spectrum 
of G. For s, k ≥ 0, define the following matrices:

H(2s,k) :=
[
m2s m2s+k

m2s+k m2s+2k

]
, and S(2s,k) :=

[
m2s+k m2s+2k
m2s+2k m2s+3k

]
. (17)

Whenever det
(
H(2s,k)) ̸= 0, we have

ρ2k ≥ det(S(2s,k))
det(H(2s,k)) .

Proof. Let ζ2s,k(x) be the measure defined in (16). The support of this measure is 
contained in [−ρk, ρk] and has moment sequence (m2s, m2s+k, m2s+2k, . . . ). Applying 
Lemma 9 with J = {0, 1} we obtain

ρkH(2s,k) ± S(2s,k) ≽ 0 =⇒ ρk ≥ xᵀS(2s,k)x
xᵀH(2s,k)x , (18)

for every non-zero x ∈ R2. From Theorem 6, we know that H(2s,k) ≽ 0; hence, its 
eigenvalues ξ1 and ξ2 satisfy ξ1 ≥ ξ2 ≥ 0. By Rayleigh principle, we have that

xᵀH(2s,k)x
xᵀx ≤ ξ1,

wᵀH(2s,k)w
wᵀw = ξ2, (19)

for every non-zero x and for w being the eigenvector corresponding to the second eigen-
value of H(2s,k). Similarly, let γ1 ≥ γ2 be the eigenvalues of S(2s,k). By Perron-Frobenius, 
we know that γ1 ≥ 0. If γ2 < 0, then det(S(2s,k)) < 0 and the inequality (18) is trivial. 
If instead γ2 ≥ 0, then

xᵀS(2s,k)x
xᵀx ≥ γ2,

vᵀS(2s,k)v
vᵀv = γ1, (20)
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for any non-zero x and for v equal to the leading eigenvector of S(2s,k). We plug vectors 
v and w into (18) to obtain

ρk ≥ vᵀS(2s,k)v
vᵀH(2s,k)v ≥ γ1

ξ1
,

ρk ≥ wᵀS(2s,k)w
wᵀH(2s,k)w ≥ γ2

ξ2
,

where the last inequalities come from (19) and (20). Multiplying both inequalities we 
obtain

ρ2k ≥ γ1γ2
ξ1ξ2

= det(S(2s,k))
det(H(2s,k)) . !

We are now ready to prove the following corollary.

Corollary 13. Let m be the sequence of moments of a measure supported on the spectrum 
of G. For s, k ∈ N0, let H(2s,k) and S(2s,k) be defined as in (17) and define the following 
matrix:

F (2s,k) :=
[
m2s+k m2s+3k
m2s m2s+2k

]
.

Then, whenever det
(
H(2s,k)) ̸= 0, we have

ρk ≥

∣∣det
(
F (2s,k))∣∣ +

√
det

(
F (2s,k)

)2 − 4 det
(
H(2s,k)S(2s,k)

)

2 det
(
H(2s,k)

) .

Proof. The inequality (18) implies that det
(
ρkH(2s,k) + S(2s,k)) ≥ 0. This can be ex-

panded to

det
([

ρkm2s + m2s+k ρkm2s+k + m2s+2k
ρkm2s+k + m2s+2k ρkm2s+2k + m2s+3k

])
≥ 0,

which simplifies to

det
(
H(2s,k)

)
ρ2k − det

(
F (2s,k)

)
ρk + det

(
S(2s,k)

)
≥ 0. (21)

Similarly, Lemma 9 implies that det
(
ρkH(2s,k) − S(2s,k)) ≥ 0, which implies

det
(
H(2s,k)

)
ρ2k + det

(
F (2s,k)

)
ρk + det

(
S(2s,k)

)
≥ 0. (22)
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Inequalities (21) and (22) are satisfied simultaneously if and only if

det
(
H(2s,k)

)
ρ2k −

∣∣∣det
(
F (2s,k)

)∣∣∣ ρk + det
(
S(2s,k)

)
≥ 0. (23)

By Theorem 6 we have that det
(
H(2s,k)) > 0. Using Lemma 12, we know that 

det
(
S(2s,k)) ≤ det

(
H(2s,k)) ρ2k, which we substitute into (23) to yield

2 det
(
H(2s,k)

)
ρ2k −

∣∣∣det
(
F (2s,k)

)∣∣∣ ρk ≥ 0.

Since ρ ≥ 0, we conclude that

ρk ≥
∣∣det

(
F (2s,k))∣∣

2 det
(
H(2s,k)

) . (24)

Next, define the quadratic polynomial

P (r) = det
(
H(2s,k)

)
r2 −

∣∣∣det
(
F (2s,k)

)∣∣∣ r + det
(
S(2s,k)

)
,

which has a positive leading coefficient. From (23) we know that P (ρk) ≥ 0 and from 
(24) we know that ρk is larger than the smallest root of P . This implies that ρk is larger 
than the largest root of P and the result follows. !

We can apply Corollary 13 with s = 0 and k = 1 to the closed-walks measure of a 
graph G, leveraging the fact that φ0 = n, φ1 = 0, φ2 is twice the number of edges, and 
φ3 is three times the number of triangles in G, as follows.

Corollary 14. For a graph G with n vertices, e edges and T triangles, we have that

ρ ≥ 3T
4e +

√(3T
4e

)2
+ e

n
.

Similarly, because φ(i)
0 = 1, φ(i)

1 = 0, φ(i)
2 is the degree of vertex i, and φ(i)

3 is twice 
the number of triangles touching vertex i, we can apply Corollary 13 to the closed-walks 
measure for vertex i.

Corollary 15. Denoting by di the degree of vertex i and Ti the number of triangles touching 
vertex i, we have

ρ ≥ max
i∈1,...,n

Ti +
√
T 2
i + d3

i

di
.
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Notice how Corollary 15 implies

ρ ≥
T∆ +

√
T 2

∆ + ∆3

∆ ≥
√

∆,

where ∆ is the maximum of the vertex degrees in G and T∆ is the maximum triangle 
count amongst vertices with degree ∆, improving the bound in (5).

4. Upper bounds on the spectral radius

In this section, we make use of Theorems 6 and 7 to derive upper bounds on ρ. (See 
Table 2.) In particular, if ζ(x) is a spectral measure defined as ζ(x) :=

∑n
i=1 ziδ(x − λi)

with moment sequence {m0, m1, . . . }, then {m0−ρ0, m1−ρ1, . . . } is the moment sequence 
of the measure 

∑n
i=2 ziδ(x − λi) whose support is also contained in [−ρ, ρ]. A direct 

application of Hamburger’s Theorem thus yields the following result:

Lemma 16. Let m be the sequence of moments of a measure µ(x) =
∑n

i=1 αiδ(x − λi)
supported on the spectrum of G, and define the infinite-dimensional Hankel matrix P
given by:

P :=

⎡

⎢⎢⎢⎢⎣

1 ρ ρ2 . . .

ρ ρ2 ρ3 . . .

ρ2 ρ3 ρ4 . . .
...

...
... . . .

⎤

⎥⎥⎥⎥⎦
.

Hence, for any finite J ⊂ N0,

HJ (m) − α1PJ ≽ 0,

where HJ (m) is a submatrix of Hn defined in (10).

Proof. We simply note that the matrix HJ (m) − α1P is the Hankel matrix containing 
the moments of the measure 

∑n
i=2 αiδ(x −λi). The result follows directly from Theorem 6

and Sylvester’s criterion. !

Corollary 17. Let m be the sequence of moments of a measure µ(x) =
∑n

i=1 αiδ(x − λi)
supported on the spectrum of

ρ2k ≤ m2k
α1

.

Proof. For J = {k}, Lemma 16 implies

m2k − α1ρ
2k ≥ 0.
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Table 2
Upper bounds on the spectral radius ρ, where mk is the k-th moment of a measure µ(x) = ∑n

i=1 αiδ(x − λi) supported on the spectrum 
of G. The number of k-walks, closed k-walks and closed k-walks from node i are denoted by wk, φk and φ(i)

k , respectively. We write ω(G), 
c1 and xi for the clique number of G, the fundamental weight of A, and the i-th component of the leading eigenvector of A, respectively.

General bound Corollaries Moment 
sequence

Reference

ρ2k ≤
m2k

α1
ρ2k ≤ φ2k closed walks Corollary 17

ρ2k ≤
w2k

c1
all

ρ2k+1 ≤
(
1 −

1
ω(G)

)
w2k [7] walks

ρ2k ≤
φ2k

2
closed walks 
(bipartite G)

Corollary 20

ρ2k ≤
φ(i)

2k
2

closed walks 
from node i
(bipartite G)

ρk ≤
mk +

√(
m0

α1
− 1

)
(m0m2k − m2

k)

m0
ρ ≤

√( 1
x2
i

− 1
)
di [15] closed walks 

from node i
Corollary 19

ρ ≤
max

r
r

s.t m2kr + m2k+1 − 2α1r
2k+1 = 0

ρ ≤
max

r
r

s.t w2kr + w2k+1 − 2c1r2k+1 = 0
walks Corollary 23

ρ ≤
max

r
r

s.t w2kr + w2k+1 − 2 ω(G)
ω(G) − 1

r2k+2 = 0 walks Corollary 24
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This finishes the proof. !

Applying this corollary to the measures µG , µ
(i)
G and νG , we obtain three different 

hierarchies of bounds. For example, applying Corollary 17 to the measure νG , which has 
moments m = {ws}∞s=0, we obtain the bound

ρ2k ≤ w2k
c1

, (25)

where c1 = (
∑n

i=1 ui1)2 is the fundamental weight. One can show that the bound (6)
proved by Nikiforov [7] is a corollary of (25), albeit only for even exponents. In particular, 
multiplying on both sides of (25) by ρ and using Wilf’s inequality (7), we obtain

ρ2k+1 ≤ ρ
w2k
c1

≤
(

1 − 1
ω(G)

)
c1

w2k
c1

=
(

1 − 1
ω(G)

)
w2k,

where the last quantity is the upper bound in (6).
Using Lemma 16 with larger principal submatrices, we can improve these upper 

bounds further. The following upper bound is obtained by analyzing the case of 
J = {0, k}.

Corollary 18. Let m be the sequence of moments of a measure µ(x) =
∑n

i=1 αiδ(x − λi)
supported on the spectrum of G. Then, for any k ∈ N

ρk ≤
mk +

√(
m0
α1

− 1
)

(m0m2k −m2
k)

m0
. (26)

Furthermore, this bound is tighter than the one in Corollary 17.

Proof. Applying Lemma 16 with J = {0, k}, we conclude that det(HJ (m) −α1PJ ) ≥ 0, 
which simplifies to the following expression:

−m0ρ
2k + 2mkρ

k + 1
α1

(
(m0 − α1)m2k −m2

k

)
≥ 0.

Making the substitution y = ρk, we obtain the following quadratic inequality

−m0y
2 + 2mky + 1

α1

(
(m0 − α1)m2k −m2

k

)
≥ 0.

The quadratic on the left-hand side has a negative leading coefficient, which implies it is 
negative whenever y is larger than its largest root, which is given by the right hand side 
of (26). After substituting back ρk, the result follows. To see that this bound improves 
the one in Corollary 17, note that Corollaries 17 and 11 imply
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m2k ≥ α1ρ
2k ≥ α1

m4k
m2k

=⇒ m4k ≤ 1
α1

m2
2k

=⇒ m0m4k −m2
2k ≤

(
m0
α1

− 1
)
m2

2k.

Hence, we can use (26) to obtain

ρ2k ≤
m2k +

√(
m0
α1

− 1
)

(m0m4k −m2
2k)

m0

≤
m2k +

√(
m0
α1

− 1
)(

m0
α1

− 1
)
m2

2k

m0
= m2k

α1
. !

As with previous results, we can obtain concrete bounds from this result by substitut-
ing α1 and mk by either (i) 1 and φk, (ii) c(i)1 and φ(i)

k , or (iii) c1 and wk, respectively. 
For example, we can apply Corollary 18 to the closed-walks measure for node i, µ(i)

G , 
using J = {0, 1}. Since φ0(i) = 1 and φ1(i) = 0, we obtain the upper bound in the 
following Corollary.

Corollary 19. For a graph G

ρ2 ≤
( 1
ci1

− 1
)
φ2(i) =

( 1
x2
i

− 1
)
di, for all i ∈ {1, . . . , n}, (27)

where di is the degree of vertex i and xi is the i-th component of the leading eigenvector 
of A.

Notice that inequality (27) can be written as

xi ≤
1√

1 + ρ2

di

,

which was first proven by Cioabă and Gregory in [15]. Our method provides an alternative 
proof. Furthermore, in the case of bipartite graphs, we can refine Corollary 19 as follows.

Corollary 20. For a bipartite graph G and k ∈ N0, we have

ρ2k ≤ φ2k
2 , (28)

ρ2k ≤
φ(i)

2k
2u2

i1
. (29)
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Proof. Notice that, since the eigenvalue spectrum of a bipartite graph is symmetric, 
we have that φ2k =

∑⌈n/2⌉
ℓ=1 2λ2k

ℓ . The upper bound given by (28) then follows by a 
straightforward application of Corollary 17 to the measure 

∑⌈n/2⌉
ℓ=1 2δ

(
x− λ2

ℓ

)
.

A similar application can be done for closed-walks from node i. It is easy to see that

φ(i)
2k =

⌈n/2⌉∑

ℓ=1

(
u2
iℓ + u2

i,n−ℓ

)
λ2k
ℓ . (30)

In what follows, we prove that u2
iℓ = u2

i,n−ℓ using the eigenvector-eigenvalue identity
[22]. We prove the equality for the case of odd n and note that for even n there is 
an analogous proof. Let M{−i} be the submatrix of A obtained by deleting row i and 
column i, and let γ1 ≥ γ2 ≥ · · · ≥ γn−1 be the eigenvalues of M{−i}. Because M{−i} is 
the adjacency matrix of the graph obtained by deleting node i, which is also bipartite, 
its spectrum is also symmetric. From the eigenvector-eigenvalue identity we have:

u2
i,ℓ

n∏

j=1;j ̸=ℓ

(λℓ − λj) =
n−1∏

j=1
(λℓ − γj). (31)

Using the symmetry of the spectrum of M{−i}, the right hand side of (31) can be rewritten 
as

n−1∏

j=1
(λℓ − γj) =

⌊n/2⌋∏

j=1

(
λ2
ℓ − γ2

j

)
. (32)

Similarly, the symmetry of the spectrum of A implies λn−ℓ = −λℓ and λ⌈n/2⌉ = 0. Thus, 
the left hand side of (31) can be rewritten as

u2
i,ℓ

n∏

j=1;j ̸=ℓ

(λℓ − λj) = u2
i,ℓ (2λℓ)λℓ

⌊n/2⌋∏

j=1
j ̸=ℓ,n−ℓ

(
λ2
ℓ − λ2

j

)
, (33)

where the factor 2λℓ on the right corresponds to the term (λℓ − λn−ℓ) of the product on 
the left, the factor λℓ corresponds to the term 

(
λℓ − λ⌈n/2⌉

)
of the product on the left, and 

the third factor is the product of the pairs of remaining eigenvalues, multiplying each fac-
tor (λℓ − λj) with the corresponding factor (λℓ + λj). Because (2λℓ)λℓ = (−2λℓ) (−λℓ), 
it becomes clear that solving for u2

iℓ in (31) yields the same result as solving for u2
i,n−ℓ.

Hence, we can conclude from (30) that

φ(i)
2k =

⌈n/2⌉∑

ℓ=1
2u2

iℓλ
2k
ℓ .

Thus, the upper bound (29) follows from applying Corollary 17 to the measure ∑⌈n/2⌉
ℓ=1 2u2

iℓδ
(
x− λ2

ℓ

)
. !
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A more general version of Corollary 18, for general undirected graphs, is given in the 
following theorem.

Theorem 21. Let m be the sequence of moments of a measure µ(x) =
∑n

i=1 αiδ(x − λi)
supported on the spectrum of G. Define the infinite dimensional Hankel matrix R given 
by

R :=

⎡

⎢⎢⎢⎢⎣

1 r r2 . . .

r r2 r3 . . .

r2 r3 r4 . . .
...

...
... . . .

⎤

⎥⎥⎥⎥⎦
.

Let J = {j1, . . . , js} and J ′ = {j1, . . . , js−1} for j1 < j2 < · · · < js ∈ N0, such that 
HJ ′(m) ≻ 0. Then, the largest root r∗ of the polynomial:

Q(r) := det (HJ (m) − α1RJ ) ,

is an upper bound on the spectral radius.

Proof. We will prove that Q(r) has a negative leading coefficient equal to
−α1 det (H(m)J ′). It is well known (see for example [23]) that if A ∈ Rn×n and u,v are 
vectors in Rn then

det(A + uvᵀ) = det(A) + vᵀ adj(A)u, (34)

where adj(A) is the cofactor matrix of A. Let r :=
(
rj1−1, . . . , rjs−1). We note that

−α1RJ =
(
α1

(
rj1−1, . . . , rjs−1))ᵀ (−

(
rj1−1, . . . , rjs−1)) = (α1r)(−r)ᵀ.

Using (34), we obtain

det(HJ (m) − α1RJ ) = det(HJ (m)) − α1rᵀ adj(HJ (m))r.

It follows that the leading coefficient of Q(r) is −α det(HJ ′) < 0. By Lemma 16 we have 
Q(ρ) ≥ 0 and, therefore, ρ ≤ r∗. !

Lemma 16 was proved applying Hamburger’s Theorem to the moment sequence {ms−
α1rs}∞s=0. We can also apply Stieltjes’ Theorem to the same moment sequence to obtain 
a different hierarchy of upper bounds. This is stated in the following theorem.

Theorem 22. Let m be the sequence of moments of a measure µ(x) =
∑n

i=1 αiδ(x − λi)
supported on the spectrum of G. Then, for any J ∈ N0,
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ρ (HJ (m) − αPJ ) + (SJ (m) − α1ρPJ ) ≽ 0,

where H(m) and S(m) are the Hankel matrices of moments defined in Theorems 6 and 
7, respectively.

Proof. Recall from Lemma 16 that the sequence {ms − α1ρs}∞s=0 corresponds to the 
moment sequence of a measure whose support is contained in [−ρ, ρ] and, therefore, the 
result follows from Theorem 7. !

Theorem 22 can be used to obtain bounds that improve on those of Corollary 17, as 
shown below.

Corollary 23. Let m be the sequence of moments of a measure µ(x) =
∑n

i=1 αiδ(x − λi)
supported on the spectrum of G. Then, the largest root r∗ of the following polynomial:

Q(r) := m2kr + m2k+1 − 2α1r
2k+1,

is an upper bound on the spectral radius. Furthermore, this bound is tighter than the 
bound in Corollary 17.

Proof. Applying Theorem 22 with J = {k}, we obtain

ρ [m2k] + [m2k+1] − 2α1ρ
[
ρ2k] ≽ 0 =⇒ ρm2k + m2k+1 − 2α1ρ

2k+1 ≥ 0,

and, thus, Q(ρ) ≥ 0. Since the leading coefficient of Q(r) is negative, it follows that 
ρ ≤ r∗. The upper bound in Corollary 17 can be written as (m2k/α1)1/2k, hence, proving 
that r∗ is a tighter bound amounts to proving r∗ ≤ (m2k/α1)1/2k. We first prove that 
r∗ is the unique root of Q(r) in the region defined by

r ≥
(

m2k
2α1(2k + 1)

)1/2k
. (35)

This is indeed the case, because the derivative of Q(r), given by Q′(r) = m2k − 2(2k +
1)α1r2k, is negative in the interval defined in (35). Also, note that

(
m2k
α1

)1/2k
≥

(
m2k

2α1(2k + 1)

)1/2k
.

Therefore, it suffices to show that

Q

((
m2k
α1

)1/2k)
≤ 0.

To this end, we evaluate and obtain
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Q

(( 1
α1

m2k

)1/2k)
≤ 0

⇐⇒
( 1
α1

m2k

)1/2k
m2k + m2k+1 − 2α1

(( 1
α1

m2k

)1/2k)2k+1

≤ 0

⇐⇒
( 1
α1

m2k

)1/2k
m2k + m2k+1 − 2m2k

( 1
α1

m2k

)1/2k
≤ 0

⇐⇒ m2k+1
m2k

≤
( 1
α1

m2k

)1/2k
,

where the last inequality is true since the left-hand side is a lower bound of ρ by Corol-
lary 11, and the right hand side is an upper bound of ρ by Corollary 17. This finishes 
the proof. !

The implicit bound in Corollary 23, when applied to the moment sequence m =
{ws}∞s=0, provides an improvement on the bound given in Corollary 11. Using inequality 
(7), we can also obtain a bound in terms of the clique number instead of the fundamental 
weight, which also improves on (2), as we show below.

Corollary 24. The largest root r∗ of the following polynomial:

Q(r) := m2kr + m2k+1 − 2 ω(G)
ω(G) − 1r

2k+2,

is an upper bound on the spectral radius. Furthermore, this bound is an improvement on 
(6).

Proof. The proof is very similar to that of Corollary 23. Using (7), we have that

ρw2k + w2k+1 −
ω(G)

ω(G) − 1ρ
2k+1 ≥ ρw2k + w2k+1 − 2α1ρ

2k+1 ≥ 0.

We omit the details to avoid repetitions. !
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