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Abstract 

An analytical model is presented for light scattering associated with heat transport near a cell membrane 
that divides a complex system into two topologically distinct half spaces. Our analysis is motivated by 
experiments on Vibrational Photothermal microscopy which have not only demonstrated remarkably high 
contrast and resolution, but also are capable of providing label-free local information of heat transport in 
complex morphologies.  In the first-Born approximation, the derived Green’s function leads to the 
reconstruction of a full 3D image with photothermal contrast obtained using both amplitude and phase 
detection of periodic excitations. We show that important fundamental parameters including the Kapitza 
length and Kapitza resistance can be derived from experiments. Our goal is to spur additional 
experimental studies with high frequency modulation and heterodyne detection in order to make contact 
with recent theoretical molecular dynamics calculations of thermal transport properties in membrane 
systems. 
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1. Introduction 

Photothermal microscopy involves a general principle that has been observed for millennia, namely that 
thermal modulation can influence the scattering of light. A fascinating history of experiments dating back 
to the nineteenth century1 led to ingenious innovations. After the invention of the laser the prospects of 
methods for generating contrast and imaging were enhanced, but the method was largely ignored by the 
microscopy community until the start of the new millennium when a series of remarkable papers2,3  
demonstrated stunning contrast competitive with fluorescence label-based methods with a signal-to-
noise sufficient to detect single molecules4,5. Extensions of the method to the mid-infrared region of the 
electromagnetic spectrum enabled by the development of Quantum Cascade Lasers6 and enhanced 
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heterodyne detection methods7,8,9,10, have matured to the point of super-resolution down to hundreds of 
nanometers11,9,10 and detecting features as small as 50 nm8. Other advances include imaging of living cells9 
and single viruses12,13, as well as performing ultrafast widefield chemical imaging14,15 , quantitative phase 
imaging16,17, improved imaging quality via fluorescence detection18 and photothermal dynamic imaging 
with nanosecond resolution19. The interplay between elastic scattering of the probe beam and the 
absorbing pump beam is well understood at least in the context of linear spectroscopy. There is also the 
regime of non-linear photothermal methods6,7,20 that should be noted and that remains a less explored 
field where localized phase transitions and the formation of nanobubbles play a critical role in increased 
signal and resolution. Photothermal microscopy based methods can provide not only contrast originating 
from induced absorption and chemical composition but also information regarding thermal transport 
properties21 that do not require any incorporation of a temperature sensing probe. Contrast from varying 
thermal diffusion properties has been demonstrated using Vibrational Infrared Photothermal and Phase 
Signal (VIPPS) methodology22 and other ultrafast chemical imaging methods including nanosecond MHz 
digitization and match filtering19. The ability to map heat diffusion can have applications in various fields 
including semiconductor transport23, thermal transport in plasmonic nanoparticle-solvent systems, and  
in reduced dimensional systems, including quasi 1D systems like biological fibrils and 2D systems like 
graphene.  

There is a lot of interest and discussion regarding heat diffusion processes in biological systems across 
membranes and down to the intracellular level24,25. The importance of understanding non-equilibrium 
heat transport in cells presents the need for both theoretical studies as well as experimental work. New 
theoretical arguments for entropy and energy associated with metabolic processes at the single cell level 
have been presented as well as new experimental methods based on nanodiamonds for local 
thermometry26,27 as well as fluorescent markers28. All this can spur further theoretical models informed 
by molecular dynamics29,30. However, the question of heat and energy transport across cell membranes 
has not been studied as closely, especially in terms of increased thermal resistivity. Partly this may have 
been because most works have been quasi-equilibrium studies at a fixed temperature. Various theoretical 
studies on the thermal properties of polymer chains31,32, the Kapitza length of protein-water33 interfaces 
and lipid bilayers30,34 have been proposed, with transport exponents suggesting a role for underlying 
fractal transport geometries, with  predictions of thermal property values that suggest an increased 
thermal resistivity across such boundaries compared to water. Experimental work with upcoming 
nanothermometry on lipid bilayers35 also provides some support for this idea. Other studies suggest that 
the presence of transmembrane proteins can cause membrane perturbations36 which should impact the 
thermal properties as well. Even though increased membrane resistivity has been suggested in the past37 
in photothermal work, there has been little experimental or theoretical work to demonstrate the effect 
from the lens of photothermal measurements, especially in the realm of mid-infrared.  On the theoretical 
front, there has been considerable recent interest in non-Fourier heat conduction models since the 
pioneering work of Tzou38  exemplified by dual-phase lag models in heterogeneous tissue, taking 
convective and memory effects into account. A critical review of lagging heat models summarizes the 
progress made39.  How to best relate dual-phase lag model and enhanced continuum models to Molecular 
Dynamics Simulation estimates of the Kapitza length in membrane lipid-water systems remains an 
unsolved open question.  

Previous experimental work using VIPPS microscopy has shown high contrast from membrane boundaries 
based on the phase signal measured in lock-in detection22. Similar lock-in detection of amplitude and 
phase signals has been demonstrated in photothermal radiometry for high frequency measurements of 
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Kapitza resistance in titanium coatings40. Legrand et al24 have developed a thermo-acoustic method using 
both phase and amplitude thermal images to map thermal properties and effusivity of single cells, 
reporting a cell effusivity of 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≈ 2.6 × 103W ⋅ m−2K−1s1/2 . Nano-sized cell membranes act as 
thermal barriers, and VIPPS offers a combination of chemical imaging and thermal diffusion 
characterization that paves the way towards label-free imaging of cell models and tissues and the 
transport of heat.  

It is this broader emerging context of studying how thermal resistivity can enhance contrast in 
photothermal imaging that our paper addresses. In this work a tractable analytical model is presented 
along with finite difference time domain simulations of heat transfer across such barriers. Our goal is to 
suggest that photothermal heterodyne detection can be further expanded to provide information about 
thermal transport across cell membranes and heterogeneous material boundaries. In addition our 
simulations aim to motivate new experimental work that can enable detection of nano-size membranes 
as well as validate recent calculations of the Kapitza length in cell membranes. A very interesting question 
worthy of study in its own right is whether such an enhanced contrast will also persist in regimes different 
from the one studied in this paper, where non-Fourier bioheat models are applicable.39  

 

2. Model 

As a representative numerical model system, an infinite plane cell membrane in the 𝑥𝑥𝑥𝑥 plane with 
two different regions in which heat propagates diffusively was chosen (Figure 1). The medium on both 
sides of the cell membrane can vary, and accordingly we allow the diffusion constants on the two sides of 
the membrane to be different. The cell membrane itself has a thermal resistance. Periodic heating pulses 
are applied to a localized region on one side of the cell membrane, and the temperature in the vicinity of 
this region is raised as a result. The infinite plane approximation for the cell membrane should be valid if 
the region where heating occurs, and the distance of this region from the membrane, is small compared 
to the local radius of curvature of the membrane. An extension to a spherical membrane in 3D is also 
presented that validates the infinite plane approximation.  

Validity of the Diffusive transport model: The model described below is the simplest standard heat 
transfer model, and has been widely used in prior literature. Such models have limitations in applications 
to bioheat transfer in heterogeneous tissue and other semiconductor systems, highlighted in recent 
reviews and papers on non-Fourier mechanisms of heat transport, as convective and hydrodynamic 
effects are not included in simple diffusive models. There are two necessary conditions on space and time: 
(i) the mean free path must be smaller than the length scale over which the temperature varies by an 
experimentally measurable value; (ii) the mean time between collisions must be shorter than the time 
scale over which the temperature varies by an experimentally measurable value. As we show in the SI, in 
liquid water the mean free path from kinetic theory and MD simulations is  ⟨𝜆𝜆mfp⟩ ≃ 0.2 nm and the mean 
time between collisions is ⟨𝜏𝜏coll⟩ ≃ 10−14s.   In the photothermal experiments using a Quantum Cascade 
Laser system, the mid-IR pulse widths are around hundreds of ns, with a repetition rate of the QCL of 100 
MHz or less. All the length scales in our system are ~ 10 nm or larger. Thus both the necessary conditions 
are comfortably satisfied for our analytical model as well as the simulations, justifying the neglect of 
hydrodynamic effects.  
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In addition, there can be convective effects, which are of importance in bioheat tissue models41 
with blood perfusion. In the particular system we study here, convective effects are negligible. The Peclet 
number is Pe ≪ 1 indicating that advective transport in negligible and diffusive transport dominates. In 
MD simulations too, on the length scales studied in various ensembles convection near lipid boundaries 
30 42 is not considered. 

 

Figure 1: Illustration of a single absorber distanced 30 nm from a cell membrane model of lipid bilayers containing 
transmembrane proteins located at z = 0. 

2.1. Sinusoidal Heating:  

For the analytical model, we start with the fundamentals and first consider the heat equation for 
the case when the heating occurs at a point, and varies sinusoidally with time: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷+∇2𝑇𝑇 + 𝛿𝛿(𝑧𝑧 − 𝑎𝑎)𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖            𝑧𝑧 > 0                           

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷−∇2𝑇𝑇                                                         𝑧𝑧 <  0             (1) 

Here 𝑇𝑇(𝐫𝐫, 𝑡𝑡) is the temperature. 𝐷𝐷+ is the thermal diffusion constant and 𝐶𝐶+ is the specific heat 
for 𝑧𝑧 > 0 with 𝐷𝐷− being the thermal diffusion constant and 𝐶𝐶− the specific heat for  𝑧𝑧 < 0. The excess 
energy density above the thermal equilibrium density in the two regions is then equal to 𝐶𝐶±𝑇𝑇  so that the 
associated heat current is equal to 𝐶𝐶±𝐷𝐷±𝛻𝛻𝛻𝛻 . Accordingly, the matching condition across the 𝑧𝑧 = 0 
interfacial plane is  

𝐷𝐷+𝐶𝐶+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�𝑧𝑧=0+ 

= 𝐷𝐷−𝐶𝐶−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�𝑧𝑧=0− 

=
1
𝜌𝜌

[𝑇𝑇(𝑧𝑧 = 0+)− 𝑇𝑇(𝑧𝑧 = 0−)]      (2) 
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where 𝜌𝜌 is the thermal resistance per unit area. The parameter 𝐿𝐿𝐾𝐾+ ≡ 𝜌𝜌𝐷𝐷+𝐶𝐶+ with units of length is called 
the Kapitza length associated with the boundary with the 𝑧𝑧 > 0 region. 

𝑇𝑇(𝐫𝐫, 𝑡𝑡) = 𝑇𝑇𝜔𝜔(𝐫𝐫)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖       (3) 

The two equations in Eq.(1) are equivalent to 

(−𝑖𝑖𝑖𝑖 − 𝐷𝐷+∇2)𝑇𝑇𝜔𝜔(𝐫𝐫) = 𝛿𝛿(𝑧𝑧 − 𝑎𝑎)𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)            𝑧𝑧 > 0                           

(−𝑖𝑖𝑖𝑖 − 𝐷𝐷−∇2)𝑇𝑇𝜔𝜔(𝐫𝐫) = 0                                             𝑧𝑧 <  0                     (4) 

Fourier transforming the temperature in the 𝑥𝑥𝑥𝑥 plane 

𝑇𝑇𝜔𝜔(𝐫𝐫) = �𝑇𝑇𝜔𝜔(𝐪𝐪⊥, 𝑧𝑧)𝑒𝑒𝑖𝑖𝐪𝐪⊥⋅𝐫𝐫
𝑑𝑑2𝑞𝑞⊥
4𝜋𝜋2

      (5) 

we obtain  

(𝐷𝐷+𝑞𝑞⊥2 − 𝑖𝑖𝑖𝑖)𝑇𝑇𝜔𝜔(𝐪𝐪⊥, 𝑧𝑧) − 𝐷𝐷+
𝜕𝜕2𝑇𝑇𝜔𝜔(𝐪𝐪⊥, 𝑧𝑧)

𝜕𝜕𝑧𝑧2
= 𝛿𝛿(𝑧𝑧 − 𝑎𝑎)           𝑧𝑧 > 0                           

(𝐷𝐷−𝑞𝑞⊥2 − 𝑖𝑖𝑖𝑖)𝑇𝑇𝜔𝜔(𝐪𝐪⊥, 𝑧𝑧) −  𝐷𝐷−
𝜕𝜕2𝑇𝑇𝜔𝜔(𝐪𝐪⊥, 𝑧𝑧)

𝜕𝜕𝑧𝑧2
= 0                     𝑧𝑧 <  0             (6) 

with Eq.(2) unchanged except for the fact that 𝑇𝑇(𝐫𝐫, 𝑡𝑡) has been replaced by 𝑇𝑇𝜔𝜔(𝐪𝐪⊥, 𝑧𝑧)  This is a standard 
one-dimensional Green's function problem; 𝐪𝐪⊥  can be treated as a parameter, and suppressed as an 
argument of 𝑇𝑇𝜔𝜔(𝐪𝐪⊥, 𝑧𝑧)  to make the notation more compact in the following. 

The solution to the equation is of the form 

𝑇𝑇𝜔𝜔(𝑧𝑧 < 0) = 𝐴𝐴𝑒𝑒𝜅𝜅−𝑧𝑧                                                            

𝑇𝑇𝜔𝜔(𝑧𝑧 > 0) = 𝐹𝐹𝑒𝑒−𝜅𝜅+𝑧𝑧 +
1

2𝐷𝐷+𝜅𝜅+
𝑒𝑒−𝜅𝜅+|𝑧𝑧−𝑎𝑎|             (7) 

where  

𝜅𝜅± = �𝑞𝑞⊥2 −
𝑖𝑖𝑖𝑖
𝐷𝐷± 

                      (8) 

with the square root chosen to have a positive real part. The second term in 𝑇𝑇𝜔𝜔(𝑧𝑧 > 0) is what one would 
have obtained without the boundary at 𝑧𝑧 = 0 while the other terms in Eq.(7) are ‘image' terms for 𝑧𝑧 < 0 
and 𝑧𝑧 > 0. 

Now applying the boundary conditions at 𝑧𝑧 = 0, 

𝜅𝜅−𝐶𝐶−𝐷𝐷−𝐴𝐴 = −𝜅𝜅+𝐶𝐶+𝐷𝐷+𝐹𝐹 +
1
2
𝐶𝐶+𝑒𝑒−𝜅𝜅+𝑎𝑎                                                             

𝜅𝜅−𝐶𝐶−𝐷𝐷−𝐴𝐴 =
1
𝜌𝜌
�

1
2𝐷𝐷+𝜅𝜅+

𝑒𝑒−𝜅𝜅+𝑎𝑎 + 𝐹𝐹 − 𝐴𝐴�                      (9) 

from which 
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𝐴𝐴 = (𝜅𝜅−𝐶𝐶−𝐷𝐷−𝜅𝜅+𝐶𝐶+𝐷𝐷+𝜌𝜌 + 𝜅𝜅+𝐶𝐶+𝐷𝐷+ + 𝜅𝜅−𝐶𝐶−𝐷𝐷−)−1𝐶𝐶+𝑒𝑒−𝜅𝜅+𝑎𝑎                                                            

𝐹𝐹 =
1
2
𝐴𝐴 �𝜅𝜅−𝐶𝐶−𝐷𝐷−𝜌𝜌 + 1 −

𝜅𝜅−𝐶𝐶−𝐷𝐷−
𝜅𝜅+𝐶𝐶+𝐷𝐷+

�                      (10) 

Thus all the parameters in Eq.(7) have been determined. 

 

2.2. Space time temperature profile pulse response 

If heat is applied sinusoidally, one can obtain 𝑇𝑇(𝐪𝐪⊥, 𝑧𝑧, 𝑡𝑡) from 𝑇𝑇𝜔𝜔(𝐪𝐪⊥, 𝑧𝑧) by multiplying a factor of 
𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖. If heat is applied as a series of equally spaced pulses instead of as a sinusoidal function of time, the 
first equation in Eq.(1) is changed while the second remains the same 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷+𝛻𝛻2𝑇𝑇 + 𝛿𝛿(𝑧𝑧 − 𝑎𝑎)𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦) � 𝛿𝛿(𝑡𝑡 − 𝑛𝑛𝑛𝑛)

+∞

𝑛𝑛=−∞

           𝑧𝑧 > 0                           

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷−𝛻𝛻2𝑇𝑇                                                         𝑧𝑧 <  0             (11) 

where 𝜏𝜏  is the interval between the pulses. The time dependence of the last term can be 
expressed in terms of its harmonic components as a frequency comb  

∑ 𝛿𝛿(𝑡𝑡 − 𝑛𝑛𝑛𝑛)+∞
𝑛𝑛=−∞

= 1
𝜏𝜏
∑ 𝑒𝑒−𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋/𝜏𝜏+∞
𝑛𝑛=−∞

    (12) 

and we can use Eq.(1) for each harmonic component separately in linear response. If 𝜏𝜏 → 0 only the 𝑚𝑚 =
0  zero-frequency part of the temperature profile survives, since 2𝜋𝜋𝜋𝜋

𝜏𝜏
→ ∞ for any 𝑚𝑚 ≠ 0,i.e. 𝜅𝜅± →∞. 

There is a localized temperature variation near the source, out to a thermal distance 𝜅𝜅+−1 ∼ √𝜏𝜏 .  (The 
zero-frequency part of the temperature profile has an infinite amplitude, but that is only because the 
average rate of heat injection implied by Eq.(12) is infinite; if a factor of 𝜏𝜏 is introduced on both sides to 
prevent this, the resultant temperature profile has a finite amplitude.)  

In the other limit, when 𝜏𝜏 →∞  the heating due to a pulse dissipates completely before the next 
pulse is applied. The right hand side of Eq.(12) is replaced with a Fourier integral, 
(2𝜋𝜋)−1 ∫ exp(−𝑖𝑖𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑  and the answer obtained from Eq.(1) can be integrated over time. 

3. Numerical simulations 

In order to visualize the effect of a membrane on the heat propagation in more detail, we 
performed temperature simulations using an open source, MATLAB integrated three dimensional Monte 
Carlo Light Transport Solver with Heat Diffusion and Tissue Damage43. Although this is an expansive tool 
with many modules, the heat propagation module in a three-dimensional geometry was modified to 
match the scenario of a point source with a fixed distance away from a thin two-dimensional layer. The 
thermal properties of the surrounding medium 1 are set to those of water while the properties of the thin 
layer (medium 2) are set to those commonly cited for lipid bilayers. The point source is visualized as a 20 
nm absorber (medium 3), as seen in Fig. 1, with similar thermal properties as water. The simulation 
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parameters are listed in Table 1. Defining the thermal diffusivity as  𝐷𝐷 = 𝜅𝜅
𝜌𝜌𝜌𝜌𝜌𝜌

 , where κ represents the 

thermal conductivity, ρ the density and Cv the volumetric heat capacity, where the latter value in lipid 
bilayers is roughly half that of pure water. Considering the presence of transmembrane proteins, the 
diffusivity is expected to have a 2.6 fold decrease due to an increased heat capacity31. A comparison 
between lipid bilayers with and without transmembrane proteins is presented in the Supplementary 
material, and in the main text we will focus on pure lipid bilayers.  

 Thermal 
conductivity κ 

(W ∙ m−1 ∙ K−1) 

Volumetric Heat 
Capacity Cv 

(J ∙ m−3 ∙ K−1) 

Density ρ 

(g ∙ m−3) 

Thermal 
diffusivity D 

(m2 ∙ s−1) 

Absorption 
coefficient 
(cm−1) 

Medium 1 - 
Water 

0.6 4.2 ∙ 10−6 1 ∙ 10−6 14.2 ∙ 10−8 0  

Medium 2 – 
Lipid Bilayer 

0.25                30,35  2.7 ∙ 10−6    44,45  1 ∙ 10−6           30  7 ∙ 10−8 0  

Medium 3 - 
Absorber 

0.6 4.2 ∙ 10−6 1 ∙ 10−6 14.2 ∙ 10−8  3∙ 103 

Table 1: Thermal properties for the three media (water, lipid bilayer, absorber) in the simulation cuboid 

The absorber is centered at coordinates (X, Y, Z) = (0, 0, 470 nm) while the membrane layer is set 
to have a thickness of 12 nm from Z = 500 - 512 nm (simulated cuboid in X from -500 to +500 nm with 10 
nm steps, -500 to +500 nm with 10 nm steps in Y and from 0 to +1 µm with 2nm steps for Z). In order to 
simulate a point source scenario, the absorber is the only medium with a significant non-zero absorption 
coefficient set at 3000 cm-1, corresponding to standard values for water absorption in the mid-infrared 
regime. The point absorber is modeled by an artificial 20 nm beam focused at (0, 0, 470 nm), that matches 
the absorber diameter. The illumination is modulated in time with a fixed 5% duty cycle and a pulse peak 
power of 0.2 mW. It should be noted that the scaling of power is a linear system and thus different pulse 
peak power and beam intensity combinations are not expected to affect the rate of heat propagation. 
Also, because the power was kept low in both the simulation and experiments22, tissue damage is not a 
concern.  

Figure 2 illustrates the temperature profiles at the end of the pulse in Figs. 2 (a), (d), (g) and (i) for 
different pulse durations for 500 ns, 50 ns, 5 ns and 0.5 ns. An abrupt change in slope is noticeable for the 
edge of the membrane at 500 nm for frequencies of 100 kHz, 1 MHz, 10 MHz and 100 MHz, corresponding 
to periods of 10 µs, 1 µs, 100 ns and 10 ns. Since an increase in frequency is associated with a shorter 
pulse duration, this results in a narrower temperature profile. Thus, at the highest frequency of 100 MHz, 
there is a smaller temperature rise ΔT at the membrane. In the Born approximation, the observed 
photothermal image is related to the temperature profile via Eq (13), and is related to the gradient of the 
dielectric constant or equivalently the gradient of the refractive index, as shown in Figures 2 (b), (e), (h) 
and (k) for 100 kHz, 1 MHz, 10 MHz and 100 MHz, respectively. By performing a Fourier Transform analysis, 
the frequency content of the signal at each specific pixel can be retrieved and the Fourier amplitude and 
phase signal for each pixel can be extracted, corresponding to the experimental lock-in detection.  
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Phase information can be a more sensitive probe than the amplitude to detect thermal gradients 
in membrane interfaces 22. The corresponding phase images are shown in the third column of Figures 2 
(c), (f), (i) and (l) for 100 kHz, 1 MHz, 10 MHz and 100 MHz, respectively (Fig S2). Here, the contrast from 

the heat propagation is enhanced at higher frequencies. The phase is defined as 𝜙𝜙 = tan−1 �Im(𝐹𝐹𝜔𝜔)
Re(𝐹𝐹𝜔𝜔)

�  , 

where 𝐹𝐹𝜔𝜔 corresponds to the complex Fourier Transform. Thus it does not depend on the strength of ΔT 
but rather on the relative contribution of the in-phase and out-of-phase signal contributions. The phase 
value presents itself as a mechanism for detecting time delays that can originate either from heat 
propagation in the medium or by a change in the inherent material thermal diffusivity.  
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Figure 2: Temperature profiles at the time of maximum temperature rise corresponding to pulse durations of 500 
ns, 50 ns, 5 ns and 0.5 ns are shown for repetition rates of (a) 100 kHz, (d) 1 MHz, (g) 10 MHz and (j) 100 MHz 
respectively, with slope changes detected at the membrane edge of z=500 nm. Amplitude images based on Fourier 
analysis are shown in the second column for (b) 100 kHz, (e) 1 MHz, (h) 10 MHz and (k) 100 MHz. Phase images from 
Fourier analysis are shown in the third column for (c) 100 kHz, (f) 1 MHz, (i) 10MHz and (l) 100 MHz where an 
enhanced contrast from membrane interface is noticeable with increasing frequency.   

In order to study the effect of the membrane presence in heat propagation in more detail, the 
linescans across the amplitude (A) and phase (Φ) images in Figures 3 (a) and (b) are shown for all the 
simulated frequencies. The linescans are located at x =0 and the range for z is set from 488 to 524 nm. In 
Figure 3 (a), a change in slope is observed at the membrane edges at 500 nm as well as 512 nm. We can 
quantify the change in slope by performing a linear fit at the membrane region and a similar fit at the 
water regions between 488 and 500 nm (which we will refer to as Water A) and between 512 and 524 nm 
(which we will refer to as Water B). The values of the slopes are summarized in Table 1. Overall we report 
an overall decrease of the amplitude slope dA/dz at the membrane region with increasing frequencies 
from -17.9 µm-1 to -7.9 µm-1 , corresponding to frequencies of 100 kHz and 100 MHz, respectively. It should 
be noted that the difference in dA/dz between the membrane and water regions is more pronounced 
when membrane is compared to water B than water A. When investigating the equivalent dΦ/dz values, 
an opposite trend is observed at which the slopes at the membrane are increasing with higher frequencies 
from -1.24 rad/µm to 68.5 rad/µm (Table 2). These results indicate stronger phase changes due to the 
presence of the membrane interface, providing an increased sensitivity compared to the amplitude 
profiles.  

 dA/dz 
(µm-1) 

Water A 

dA/dz  
(µm-1) 

Membrane 

dA/dz  
(µm-1) 

Water B 

dΦ/dz 
(rad/µm) 

Water A 

dΦ/dz 
(rad/µm) 

Membrane 

dΦ/dz 
(rad/µm) 

Water B 

100 kHz -16.4 -17.9 -4.4 -0.47 -1.24 -0.74 

  1 MHz -16.3 -17.7 -4.3 -2.3 -5.75 -3.57 

 10 MHz -15.5 -16.1 -3.6 -9.8 -21.2 -15.7 

100 MHz 11 -7.9 -1 -41.6 -68.5 -68.2 

 

Table 2: Slopes of linear fits at the three different regions defined as Water A (488-500 nm), Membrane (500-512 
nm) and Water B (512-524 nm) for both Amplitude (dA/dz) as well as Phase (dΦ/dz). Each row corresponds to a 
different frequency, including 100 kHz, 1 MHz, 10 MHz and 100 MHz.  

The Kapitza length 𝐿𝐿𝐾𝐾 is defined as the equivalent length of the fluid that would have the same 
thermal resistance as the membrane.  To calculate  𝐿𝐿𝐾𝐾 the membrane is first approximated as having zero 
width so that the temperature drop across it appears as a discontinuity (see Figure 3(c)).  The linear fit of 
the temperature profile in the region Water B (dA/dzwater-B ) is extrapolated backwards until it matches the 
temperature on the A-side of the membrane as shown in Fig 3(c ). The length needed to achieve this is 
the Kapitza length 𝐿𝐿𝐾𝐾 which is also called the thermal resistance length.  The frequency dependence of Lk 

is shown in Figure 3 (d) for both the numerical results (open circles) as well as the analytical model (solid 



 10 

circles) based on Equation 7. For the latter analytical values, the thermal resistance ρ was defined as the 

𝜌𝜌 = 𝑑𝑑𝑚𝑚
𝜅𝜅𝑚𝑚

, where dm corresponds to the membrane thickness of 12 nm, and κm to the thermal conductivity 

of lipid bilayers of 0.25 W ∙ m−1 ∙ K−1 , giving a thermal resistance of 48 · 10-9 m2 ∙ K · W−1  or an 
equivalent thermal conductance of 20 MW ⋅ m−2 ⋅ K−1. Overall, as seen in Figure 3 (d), a 1.5 to 1.9 fold 
increase from 100 kHz to 100 MHz is reported, with Lk increasing from 41.5 nm to 79.1 nm and 45 nm to 
67.5 nm corresponding to numerical and analytical values. The increase of Lk with higher frequency 
indicates a higher sensitivity on thermal resistance effects at the membrane interface when modulating 
at higher frequency. However as mentioned earlier, the narrower temperature profile inherent to 100 
MHz naturally results in lower signal in the vicinity of the membrane which can inhibit detection. Thus, 
we suggest that it is more beneficial to investigate the phase component as it is insensitive to intensity 
variations and can provide higher contrast as demonstrated in Figure 2. The frequency dependence of the 
phase difference at 𝑧𝑧 = 500 nm with and without the membrane is shown in Figure 3 (e). A substantial 
increase is seen when the frequency is increased from 100 kHz to 100 MHz. We also present in the 
Supplementary Material enhanced phase contrast at 100 MHz when comparing the presence of different 
resistive interfaces, specifically a pure lipid bilayer, with a lipid bilayer containing transmembrane proteins.  

 

Figure 3: Linescans from amplitude (a) and phase (b) images at 100 kHz (circle), 1 MHz (triangle), 10 MHz (square) 
and 100 MHz (star), between 488 and 524 nm, from the numerical results. The membrane region is highlighted in 
dark yellow between 500 and 512 nm.  (c) Schematic illustrating the Kapitza length (Lk). (d) The frequency 
dependence of  Lk from the analytical model (solid red circles) and from the numerical simulation (open red circles) 
is shown. (e) Frequency dependence of the phase difference Φm − Φ0 at z=500 nm for the analytical model (solid 
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red circles) and from the numerical simulation (open circles). Φm  is the phase observed in the presence of the 
membrane, whereas Φ0 is the reference phase in the absence of the membrane. 

Our results show that as the modulation frequency rises, the sensitivity of the phase gradient 
increases, consistent with the analytical model. Molecular Dynamics simulations and thermoreflectance 
studies show that the Kapitza resistance associated with bilayer membranes  𝑅𝑅𝐾𝐾 ≡

1
𝐺𝐺

  with a thermal 
conductance in the range 𝑜𝑜𝑜𝑜 𝐺𝐺 ∼ 150 − 250 MW ⋅ m−2 ⋅ K−1  46,47,48   corresponds to a Kapitza length for 
hydrophilic surface in the 3-6 nm range. Thermoreflectance measurements reported previously require 
heating of a gold-coated substrate in contact with the membrane. Such a geometry is impossible in a cell 
membrane. Our results show for the first time how label-free photothermal methods with sufficiently 
high modulation frequency can probe the presence of interfacial membrane resistance. Recent 
nanosecond-scale measurements19  and high frequency widefield setups15 have demonstrated the 
feasibility of high frequency experiments with high harmonic demodulation in the MHz regime. Thus, the 
use of high-speed electronics and post processing can potentially in the future enable a direct 
experimental measurement of the Kapitza length and Kapitza resistance utilizing the sensitivity of higher 
frequency components.  

 

4. Discussion  

The expressions we have obtained so far have been for 𝑇𝑇𝜔𝜔(𝐪𝐪⊥, 𝑧𝑧)  and 𝑇𝑇(𝐪𝐪⊥, 𝑧𝑧, 𝑡𝑡) . It is 
straightforward to perform an inverse Fourier transform on these functions to obtain 𝑇𝑇(𝐫𝐫, 𝑡𝑡). However, if 
the temperature profile is measured using elastic light scattering as in photothermal microscopy, the 
change in the local dielectric constant 𝛿𝛿𝛿𝛿(𝐫𝐫, 𝑡𝑡) that results from the temperature increase  𝑇𝑇(𝐫𝐫, 𝑡𝑡) is small 
and linearly proportional to 𝑇𝑇(𝐫𝐫, 𝑡𝑡) with  𝛿𝛿𝛿𝛿(𝐫𝐫, 𝑡𝑡) ∝ 𝑇𝑇(𝐫𝐫, 𝑡𝑡). The Born approximation can then be used. 
Then the differential scattering cross section as a function of direction is given by 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑘𝑘4

(4𝜋𝜋𝜀𝜀0)2 ��𝑑𝑑𝐫𝐫 exp[𝑖𝑖(𝐤𝐤in − 𝐤𝐤𝑜𝑜𝑜𝑜𝑜𝑜) ⋅ 𝐫𝐫]𝐞𝐞out∗ ⋅ 𝐞𝐞in 𝛿𝛿𝛿𝛿(𝐫𝐫, 𝑡𝑡) �
2

    (13) 

where 𝐞𝐞out,𝐞𝐞in are the polarization vectors and 𝐤𝐤out,𝐤𝐤𝐢𝐢n are wavevectors respectively for the incoming 
light and the scattered light. (Here we have assumed that the time dependence of the temperature is 
sufficiently slow that we do not need to use the retarded time in  𝛿𝛿𝛿𝛿(𝐫𝐫, 𝑡𝑡).) Thus we see that the scattering 
cross section effectively measures the temperature profile 𝑇𝑇(𝐪𝐪, 𝑡𝑡)  with 𝐪𝐪 = 𝐤𝐤out − 𝐤𝐤in .  Instead of 
obtaining 𝑇𝑇(𝐫𝐫, 𝑡𝑡)  from 𝑇𝑇(𝐪𝐪⊥, 𝑧𝑧, 𝑡𝑡)   we have to Fourier transform in the 𝑧𝑧 -direction, too, to obtain 
𝑇𝑇𝐪𝐪(𝐪𝐪⊥,𝑞𝑞𝑧𝑧, 𝑡𝑡) = 𝑇𝑇(𝐪𝐪, 𝑡𝑡), where 𝐪𝐪 = 𝐪𝐪⊥ + 𝑞𝑞𝑧𝑧𝐳𝐳�.  As the direction in which the scattering cross section is 
measured is varied, the magnitude and the direction of 𝐪𝐪 = 𝐤𝐤out − 𝐤𝐤in change. As the angle 𝛼𝛼  between 
the normal to the membrane and 𝐤𝐤out − 𝐤𝐤in  is varied, 𝑞𝑞𝑧𝑧 = 𝑞𝑞 cos𝛼𝛼 and |𝐪𝐪⊥| = 𝑞𝑞 sin𝛼𝛼 both change. The 
formulation here has the advantage of directly relating the photothermal image to the temperature 
profile.  

For sinusoidal forcing, with the temperature profile obtained in Section 2.1 (Eq 7-10), we obtain 

𝑇𝑇𝜔𝜔(𝐪𝐪) =
𝐴𝐴

𝜅𝜅— 𝑖𝑖𝑞𝑞𝑧𝑧
+

𝐹𝐹
𝜅𝜅+ + 𝑖𝑖𝑞𝑞𝑧𝑧

+
1

2𝐷𝐷+𝜅𝜅+
�
𝑒𝑒−𝑖𝑖𝑞𝑞𝑧𝑧𝑎𝑎

𝜅𝜅+ + 𝑖𝑖𝑞𝑞𝑧𝑧
+
𝑒𝑒−𝑖𝑖𝑞𝑞𝑧𝑧𝑎𝑎 − 𝑒𝑒−𝜅𝜅+𝑎𝑎

𝜅𝜅+ − 𝑖𝑖𝑞𝑞𝑧𝑧
�     (14) 
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When the media on the two sides of the membrane are the same, e.g. both aqueous, the calculations 
simplify considerably. Since 𝐶𝐶+ = 𝐶𝐶− ≡ 𝐶𝐶  and 𝐷𝐷+ = 𝐷𝐷− ≡ 𝐷𝐷  from Eq (8) we get  𝜅𝜅+ = 𝜅𝜅− ≡ 𝜅𝜅 . The 
Kapitza length for the membrane is the same on either side of the membrane: 𝐿𝐿𝐾𝐾 = 𝜌𝜌𝜌𝜌𝜌𝜌. Eq (1) then 
reduces to  

𝐴𝐴 =
1
𝐷𝐷𝐷𝐷

⋅
1

2 + 𝜅𝜅𝐿𝐿𝐾𝐾
𝑒𝑒−𝜅𝜅𝜅𝜅        

𝐹𝐹 =
1
2
𝐴𝐴𝐿𝐿𝐾𝐾𝜅𝜅                     (15) 

Eq (14) for 𝑇𝑇𝜔𝜔(𝐪𝐪) now reduces to  

𝑇𝑇𝜔𝜔(𝐪𝐪) = 1
𝐷𝐷(𝜅𝜅2+𝑞𝑞𝑧𝑧2)

�𝑒𝑒−𝑖𝑖𝑞𝑞𝑧𝑧𝑎𝑎 − 𝑖𝑖 𝐿𝐿𝐾𝐾𝑞𝑞𝑧𝑧
2+𝜅𝜅𝐿𝐿𝐾𝐾

𝑒𝑒−𝜅𝜅𝜅𝜅�  (16) 

For the second term to be comparable to the first, and also sensitive to the Kapitza length 𝐿𝐿𝐾𝐾, we need 
that 𝑞𝑞𝑧𝑧𝐿𝐿𝐾𝐾 should not be too small (compared to 1), and 𝜅𝜅𝐿𝐿𝐾𝐾 and 𝜅𝜅𝜅𝜅 should not be too large. (Formally, 
the condition on 𝜅𝜅𝜅𝜅 is a condition on Re[𝜅𝜅]𝑎𝑎, but we see that this does not make a difference.)  If the 
Kapitza length 𝐿𝐿𝐾𝐾  is approximately 10 nm, and 𝑎𝑎  is approximately 100 nm, then |𝜅𝜅𝜅𝜅| > |𝜅𝜅𝐿𝐿𝐾𝐾| . The 
conditions to be satisfied are that |𝜅𝜅|𝑎𝑎 should not be too large, while 𝐿𝐿𝐾𝐾𝑞𝑞𝑧𝑧  should not be too small.   

With a probe wavelength 𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1550 nm  and with 𝑞𝑞 = |𝐤𝐤out − 𝐤𝐤in| = 2𝑘𝑘 sin 𝜃𝜃
2

  in the elastic 

scattering regime, we have 𝑞𝑞 ≈ 0.007 nm−1 for 𝜃𝜃 ≈ 2𝜋𝜋
3

.    Now 𝜅𝜅2 = 𝑞𝑞⊥2 − 𝑖𝑖𝑖𝑖/𝐷𝐷 where 𝜔𝜔 = 2𝜋𝜋𝜋𝜋 is the 
pump laser forcing frequency that ranges in experiments from  ∼ 100 kHz  to the MHz  range. With 𝐷𝐷 =
1.4 × 10−7 m2 ⋅ s−1  if 𝑞𝑞⊥ ≈ 𝑞𝑞𝑧𝑧 ≈ 𝑞𝑞/√2  we see that 𝑞𝑞⊥2 ≈ 2.5 × 10−5 nm−2 . At a pump modulation 
frequency of 100 kHz  𝜔𝜔

𝐷𝐷
≈ 4.5 × 10−6nm−2  and 𝑞𝑞⊥2 is much larger than  𝜔𝜔

𝐷𝐷
. Therefore 𝜅𝜅 ≈ Re[𝜅𝜅] = 𝑞𝑞⊥ . 

Under these conditions, the second term 𝐿𝐿𝐾𝐾𝑞𝑞𝑧𝑧
2+𝜅𝜅𝐿𝐿𝐾𝐾

𝑒𝑒−𝜅𝜅𝜅𝜅 ≈ 0.015 compared to the first. The strength of the 

signal can be increased further if 𝑞𝑞 is increased by increasing 𝑘𝑘 or 𝜃𝜃 as long as the orientation of the 
membrane is such that 𝑞𝑞𝑧𝑧 ≫ 𝑞𝑞⊥. (Recall that 𝑞𝑞𝑧𝑧 is the component of 𝐪𝐪 normal to the membrane and 𝑞𝑞⊥ 
is the component in the plane of the membrane.) As an example, for a shorter wavelength probe 𝜆𝜆 =
530 nm, keeping the same angle 𝜃𝜃 ≈ 2𝜋𝜋

3
 and with an angle between 𝐪𝐪 and the membrane normal of 

about 15∘ , the ratio of the second term to the first term increases to 0.058, readily detectable with 
sensitive phase lock methods. 

Ge et al 46 have reported measurements at optical wavelengths that are sensitive to such small length 
scales associated with the Kapitza length.  We remark that in the Thermoreflectance measurements of Ge 
et al, the membrane was in contact with a large metallic substrate, with an effective 𝑎𝑎 ≤ 1 nm. In living 
cells, it is difficult to place a large substrate in contact. Our work shows that if an absorbing nanoparticle 
is placed close to the membrane, the prospects for measuring the Kapitza length in a membrane vesicle 
become much more promising even with relatively long wavelength probes.  

  

 

5.  Extension to 3D: Spherical Membrane  
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If the cell is small, it is not a reasonable approximation to treat the cell membrane as an infinite 
plane. Another case that can be solved analytically is that of a spherical membrane. We assume that the 
heating source is outside the sphere instead of inside it, and that the heating is sinusoidal. (It is easy to 
extend the discussion here to cover the case when the heating source is pulsed and is inside the sphere.) 
Without loss of generality, we assume that the heating source is on the 𝑧𝑧 axis, i.e. at 𝜃𝜃 = 0 in spherical 
polar coordinates. 

We express the temperature as 𝑇𝑇(𝑟𝑟,𝜃𝜃, 𝑡𝑡) = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 ∑ 𝑅𝑅𝑙𝑙(𝑟𝑟)𝑃𝑃𝑙𝑙(cos𝜃𝜃)𝑙𝑙   and write the  𝛿𝛿-function in 
Eq.(1) as  

𝛿𝛿(𝑧𝑧 − 𝑎𝑎)𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦) = �
2𝑙𝑙 + 1
4𝜋𝜋𝑟𝑟2

𝛿𝛿(𝑟𝑟 − 𝑎𝑎)𝑃𝑃𝑙𝑙(cos𝜃𝜃) 
𝑙𝑙

   Eq (14) 

Eqs(1) are then equivalent to  

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑟𝑟2
𝑑𝑑𝑅𝑅𝑙𝑙
𝑑𝑑𝑑𝑑

+ �
𝑖𝑖𝑖𝑖
𝐷𝐷+

𝑟𝑟2 − 𝑙𝑙(𝑙𝑙 + 1)� 𝑅𝑅𝑙𝑙(𝑟𝑟) = −
2𝑙𝑙 + 1

4𝜋𝜋
𝛿𝛿(𝑟𝑟 − 𝑎𝑎)            𝑟𝑟 > 𝑟𝑟0                           

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑟𝑟2
𝑑𝑑𝑅𝑅𝑙𝑙
𝑑𝑑𝑑𝑑

+ �
𝑖𝑖𝑖𝑖
𝐷𝐷−

𝑟𝑟2 − 𝑙𝑙(𝑙𝑙 + 1)� 𝑅𝑅𝑙𝑙(𝑟𝑟) = 0           𝑟𝑟 < 𝑟𝑟0                                                                 (15) 

where 𝑟𝑟0   is the radius of the sphere.  The distance between the heating source and the 
membrane is now equal to 𝑎𝑎 −  𝑟𝑟0 instead of 𝑎𝑎; we could replace 𝑎𝑎 with 𝑎𝑎 +  𝑟𝑟0 to keep the same distance 
that we had for an infinite flat membrane, at the expense of cluttering the formulas for the spherical case.  

The solution to these equations is of the form  

𝑅𝑅𝑙𝑙(𝑟𝑟) = �

𝐴𝐴1𝑗𝑗𝑙𝑙(𝛼𝛼−𝑟𝑟)       𝑟𝑟 < 𝑟𝑟0
𝐴𝐴2𝑗𝑗𝑙𝑙(𝛼𝛼+𝑟𝑟) + 𝐴𝐴3ℎ𝑙𝑙

(1)(𝛼𝛼+𝑟𝑟)   𝑟𝑟0 <   𝑟𝑟 < 𝑎𝑎

𝐴𝐴4ℎ𝑙𝑙
(1)(𝛼𝛼+𝑟𝑟)       𝑎𝑎 < 𝑟𝑟

    Eq(16) 

where  

𝛼𝛼± = (1 + 𝑖𝑖)�
𝜔𝜔

2𝐷𝐷±
     Eq (17) 

We have chosen the solution that is not divergent at  𝑟𝑟 = 0,  and is outward propagating (together 
with an exponential decay) as 𝑟𝑟 →∞. 

Matching solutions at 𝑟𝑟 = 0, and 𝑟𝑟 = 𝑎𝑎, we have 

 

𝐴𝐴2𝑗𝑗𝑙𝑙(𝛼𝛼+𝑎𝑎) + 𝐴𝐴3ℎ𝑙𝑙
(1)(𝛼𝛼+𝑎𝑎)  = 𝐴𝐴4ℎ𝑙𝑙

(1)(𝛼𝛼+𝑎𝑎)                                                      

          𝐴𝐴2𝑗𝑗𝑙𝑙′(𝛼𝛼+𝑎𝑎) + 𝐴𝐴3ℎ𝑙𝑙
(1)′(𝛼𝛼+𝑎𝑎)  = 𝐴𝐴4ℎ𝑙𝑙

(1)′(𝛼𝛼+𝑎𝑎) +
(2𝑙𝑙 + 1)
4𝜋𝜋𝛼𝛼+𝑎𝑎2

                                       

𝐷𝐷+𝐶𝐶+𝛼𝛼+ �𝐴𝐴2𝑗𝑗𝑙𝑙′(𝛼𝛼+𝑟𝑟0) + 𝐴𝐴3ℎ𝑙𝑙
(1)′(𝛼𝛼+𝑟𝑟0)� =  𝐷𝐷−𝐶𝐶−𝛼𝛼−𝐴𝐴1𝑗𝑗𝑙𝑙′(𝛼𝛼−𝑟𝑟0)                                                         
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1
𝜌𝜌 �
𝐴𝐴2𝑗𝑗𝑙𝑙(𝛼𝛼+𝑟𝑟0) + 𝐴𝐴3ℎ𝑙𝑙

(1)(𝛼𝛼+𝑟𝑟0) − 𝐴𝐴1𝑗𝑗𝑙𝑙(𝛼𝛼−𝑟𝑟0)� = 𝐷𝐷−𝐶𝐶−𝛼𝛼−𝐴𝐴1𝑗𝑗𝑙𝑙′(𝛼𝛼−𝑟𝑟0)            Eq (18)                                        

These equations can be solved numerically for any value of 𝑙𝑙 if physical quantities such as 𝜔𝜔,𝐷𝐷± 
are known. When the radius of the sphere is large or equivalently in the small curvature limit, the 
asymptotic behavior of the spherical Bessel functions give results are identical to Eq (9-10), providing 
support for the infinite plane approximation. The analytical approach here provides derived Green 
functions in a Spherical geometry. Fourier transforming the solution provides a full 3D image in the first 
Born approximation.   

 

Conclusion 

The analytical model for light scattering in the far field in the first-Born approximation provides insight 
into thermal transport near a cell membrane that divides a complex system into two topologically distinct 
half spaces. The derived Green function leads to the reconstruction of a full 3D image with photothermal 
contrast obtained using both amplitude and phase detection of periodic excitations. Important 
fundamental parameters including the Kapitza length and Kapitza resistance can be derived from 
experiments with sufficiently high frequency modulation. Our work provides motivation for   additional 
experimental studies at high frequency modulation and heterodyne detection and spur between the 
thermal imaging community and theoretical molecular dynamics simulations community, with a view to 
under the Kapitza parameters and related thermal transport properties in lipid membrane systems. 
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