

1 **WIND-TUNNEL TESTING OF LOW- AND MID-RISE BUILDINGS UNDER**
2 **HETEROGENEOUS UPWIND TERRAINS**

3 Nasrollah Alinejad^a, Sejin Kim^b, Sungmoon Jung^{c*}

5 ^a Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310,
6 USA (Email: nolinejad@fsu.edu)

7 ^b Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA (Email:
8 sejinki@umich.edu)

9 ^c Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310,
10 USA (*Corresponding author's Email: sjung@eng.famu.fsu.edu)

11

12 **Abstract**

13 An extensive series of wind tunnel experiments were conducted in the Boundary Layer Wind
14 Tunnel (BLWT) Experimental Facility (EF) at the University of Florida (UF) to investigate the
15 effect of heterogenous terrain on wind flow and pressure distributions on building surfaces. Many
16 studies have already been performed on the effect of upwind terrain on wind characteristics and
17 wind loads on buildings. Previous tests in wind tunnels were mainly designed for uniform upwind
18 terrain or simple 2D roughness changes (e.g., smooth-to-rough change or vice versa). Using the
19 wind tunnel facility at the UF, we were able to perform an extensive series of tests on
20 heterogeneous upwind terrains. The first part of the testing was focused on wind characteristics by
21 measuring the three components of wind velocity when wind flow passed over different complex
22 upwind terrains. The second part of the testing was intended to obtain the aerodynamic loads of
23 wind over complex terrains on low-rise and mid-rise building models. The data and metadata are

24 publicly available on the DesignSafe-CI repository under the DOI of 10.17603/Ds2-6hg9-R131.
25 Researchers and practicing engineers can use the collected data to understand the effect of
26 heterogeneous upwind terrain better.

27 **Keywords:** Wind tunnel, Heterogeneous terrain, Low-rise building model, Mid-rise building
28 model

29

30 **1. Introduction**

31 Many of the previous wind tunnel tests for low- and mid-rise buildings were carried out under
32 simplified upwind terrain conditions due to the difficulties of the simulating generic heterogeneous
33 terrain setup in the wind tunnel. Uniform terrain, namely open or suburban areas, was commonly
34 adopted for the terrain setup (Fernández-Cabán & Masters, 2020; Sabareesh et al., 2013; Zisis &
35 Stathopoulos, 2010; Wang & Stathopoulos, 2006). Some researchers tried to simulate nonuniform
36 upwind terrain, however, the effort was limited to 2D roughness changes in which the upwind
37 terrain had multiple step changes parallel to the wind flow while remaining uniform in the
38 perpendicular direction of the flow (Deaves, 1981; Wang and Stathopoulos, 2007). Considering
39 the significant effect of the upwind terrain on pressure distributions on buildings (Chen et al., 2018;
40 Lim et al., 2014), these simplified setups have inherent limitations to simulate realistic wind and
41 pressure distribution at the building position, emphasizing the necessity of exploring the effect of
42 various heterogeneous terrain in the wind tunnel. Balderrama et al. (2012) stated that the field
43 records show positive non-Gaussian wind speed distribution, which increases the possibility of
44 extreme values. However, the possibility of observing a non-Gaussian trend is low under uniform
45 simulation of upwind terrain in the wind tunnel. Relying on uniform upwind terrain will have a
46 significant inaccuracy in peak factor analysis. Moreover, the uniform simulation of upwind terrain

47 will produce an equilibrium state in the upcoming flow, while in the real world, the equilibrium
48 state does not hold when the upwind terrain is complex.

49 An extensive series of wind tunnel tests were performed to investigate the effect of generic
50 heterogeneous upwind terrain on wind loads on buildings. In the first phase, wind speed
51 distributions at the end of the upwind terrain patch were measured for 180 different heterogeneous
52 upwind terrains. In the second phase, two building models, low-rise and mid-rise models, were
53 placed in front of the roughness elements and the pressure on the models was measured using a
54 scanivalve pressure scanning system. The following sections briefly explain the wind tunnel
55 facilities, building models used for testing and upwind terrain configurations. In sections 5 and 6,
56 the data collection and validation for wind speed measurement and wind pressure measurement
57 are discussed. Section 7 shows how the data and metadata files are organized and can be accessed
58 through the DesignSafe-CI repository.

59

60 **2. Testing Facilities and Instruments**

61 **2.1. Wind-Tunnel Specification**

62 The Boundary Layer Wind Tunnel (BLWT) Experimental Facility (EF) at the University of Florida
63 (UF) was used in this study. The schematic profile of BLWT is shown in Figure 1. The BLWT
64 upwind fetch, called Terraformer, consisted of 18×62 cubic roughness elements. Each roughness
65 element had a plan area of $5 \text{ cm} \times 10 \text{ cm}$. The height of roughness elements varied from 0 to 16
66 cm with the aid of an actuator beneath every one of them. The spacing between roughness elements
67 was 30 cm, and they were arranged in a staggered fashion. The dimension of upwind fetch was
68 $18.6 \text{ m} \times 6.1 \text{ m}$, which was in front of a turntable where the building model will be located. The

69 multi-fan Flow Field Modulator (FFM) was mounted in front of the fan bank to control the wind
70 pattern in the BLWT.

71 **2.2. Instrumentation**

72 In this project, two categories of testing, wind speed measurement and wind pressure
73 measurement, were conducted. Three Turbulent Flow Cobra Probes measure the longitudinal,
74 transverse and vertical components of wind velocity. For the wind speed profile, the probes were
75 located at the end of Terraformer ($x = +29.5$ m). For most profile testing, the probes were located
76 at $y = 0.00$ m. However, for 10 cases, the gantry system which holds the probes was moved laterally
77 to $y = \pm 0.3$ m and ± 0.6 m, because unlike uniform simulation of upwind terrain, the wind
78 characteristic of nonuniform terrain would not be the same in different lateral locations. The
79 vertical location of the probes varies from 0.01 m up to 1.505 m above the ground level. The
80 sampling rate was 1250 Hz for this part of the testing.

81 For the pressure measurement, a 625 Hz Scannivalve ZOC33 pressure scanning system located
82 under the turntable center as well as the Cobre Probes instrumentation, were used. Two building
83 models- which will be described in section 3- were placed at the center of the turntable at $x = 31.5$
84 m. To avoid any disturbance in the flow, the probes were moved to $x = 30$ m, $y = 0.5$ m and $z =$
85 eave height of the models for obtaining the reference velocity.

86

87 **3. Building Models**

88 **3.1. Low-rise Model**

89 The low-rise model was created after Texas Tech University (TTU) building (Cheung et al., 1997;
90 Levitan & Mehta, 1992). The model scale was 1:50 for wind-tunnel testing. The justification for
91 model scale can be found in Kopp et al. (2005). The full-scale dimensions of the TTU building are
92 13.7 m (length) by 9.1 m (width) and 4 m (height), which leads to 27.45 cm by 18.25 cm by 8 cm

93 in model scale. The model roof has a 2% slope and 216 pressure taps were connected to the walls
94 and roof of the model to obtain the high-resolution pressure distribution. The low-rise model is
95 shown in

96 Figure 2, and the pressure taps layout is shown in Figure 3.

97 **3.2. Mid-rise Model**

98 The mid-rise model was created after a typical mid-rise building. The model scale was 1:100 for
99 wind-tunnel testing. The full-scale dimensions of the mid-rise building are 60 m (length) \times 30 m
100 (width) \times 50 m (height). The building model has a flat roof and 512 pressure taps were connected
101 to it. The mid-rise model is shown in Figure 4. The pressure taps layout is shown in Figure 5.

102

103 **4. Terrain**

104 In this study, 50 heterogeneous sites were selected to be simulated in the BLWT. These sites were
105 selected in a way that they were as diverse as possible. These 50 sites were selected among 2116
106 real-world images, where these 2116 sites were clustered into 50 classes using the k-means
107 algorithm based on the mean and standard deviation of roughness lengths. Ten more sites that
108 experienced the passage of hurricanes were added to the testing. The location and direction of
109 selected sites are summarized in Table 1.

110 Since the Terraformer has 62×18 roughness elements with 0.30 m spacing, we considered an
111 upwind area of $62 \times 0.3 \text{ m} \times 100$ (1/scale factor) = 1860 m by $18 \times 0.3 \text{ m} \times 100$ (1/scale factor) =
112 540 m. Similarly, for the 1:50 scale factor, we used an upwind area of 930 m \times 270 m. These sites
113 had different land coverage and different roughness changes. Some examples of the selected sites
114 are shown in Figure 6. To convert the land coverage to roughness length, each image was converted
115 to a z_0 map based on Table 2. For sites 1 to 5, we produced three different z_0 maps for each site
116 using the maximum, average and minimum z_0 values in last column of Table 2. For sites 6 to 50,

117 one z_0 map was created based on the average z_0 value. For the 10 sites that were selected based on
118 past hurricanes, two different z_0 maps for each site using the maximum and minimum z_0 values
119 were produced. Also, one uniform case was considered for these 10 sites. Then, Eq. 1 (Macdonald
120 et al., 1998) was utilized to obtain the height of roughness elements. For all cases, the wide edge
121 of roughness elements faced the flow in BLWT.

122

$$\frac{z_0}{H} = \left(1 - \frac{d}{H}\right) \exp \left[- \left\{ 0.5 \frac{C_D}{\kappa^2} \left(1 - \frac{d}{H}\right)^{-0.5} \right\} \right] \quad (1)$$

123 where H is the height of the roughness elements, C_D is the drag coefficient, which is equal to 1.2
124 based on the face of a cube over shear flow (Macdonald et al., 1998), κ is von Kármán's constant,
125 and $\frac{d}{H} = 1 + \Phi^{-\lambda}(\lambda - 1)$, where λ is the total plane area of the whole array of obstacles over the
126 total area of upwind fetch, which is equal to 0.0555 in the UF's BLWT, and Φ is a constant
127 parameter equal to 4.43 for staggered configuration of roughness elements (Fernández-Cabán and
128 Masters 2017).

129

130 **5. Wind Speed Testing Data Presentations**

131 **5.1. Wind Profile for 1:50 Geometric Scale**

132 For wind speed testing, 90 cases were simulated in the BLWT with a 1:50 geometric scale. The
133 name and details of each case are summarized in Table 3. CSV files in the specified path were
134 introduced to the BLWT to simulate the upwind terrain. Each cell in the CSV files is the height of
135 the roughness elements in centimeters. CSV files in set A corresponded to the 10 sites that
136 experienced past hurricanes and sets B, C, and D corresponded to the 50 heterogeneous sites in the
137 1:50 geometric scale. The duration of testing for sets A, B, and C was 45 seconds, while for set D,
138 it was 360 seconds. In set C, the Cobra probes were moved laterally to measure the wind velocity

139 at five different lateral locations. The naming of CSV files in Table 3 follows the site IDs in Table
140 1. The Max, Min, and Avg configurations refer to maximum, minimum, and average z_0 values in
141 Table 2, respectively. As mentioned earlier, for sites 6 to 50, only the Avg configuration was tested.

142 **5.2. Wind Profile for 1:100 Geometric Scale**

143 Same as the previous section, 90 cases were simulated in the BLWT with a 1:100 geometric scale.
144 The name and details of each case are summarized in Table 4. CSV files in the sets A to D
145 corresponded to the same sites as the previous section but in a 1:100 geometric scale. The duration
146 of testing for sets A, B, and C was the same as the previous section, but for set D, it was 240
147 seconds. The naming convention in Table 4 is the same as in Table 3, but here the scale is 1:100.

148 **5.3. Validation of Wind Speed Measurements**

149 To validate the wind speed measurement, the wind speed profile and turbulence intensity for 10
150 different nonuniform cases were compared with two different uniform cases from Alinejad et al.,
151 (2023) with $H = 33$ and 109 mm and wide edge orientation of roughness elements, as shown in
152 Figures 8 and 9. The results shows that nonuniform cases were bounded between two uniform
153 cases with $z_0 = 0.08$ m for $H = 33$ mm and $z_0 = 1.02$ m for $H = 109$ mm.

154 Also, the wind speed power spectra of 3 cases in the wind tunnel are plotted in Figure 10. The
155 small grey dots show the power spectra from the longitudinal wind speed measurement in the wind
156 tunnel using Pwelch function and the solid thin black curve is the bin average of power spectra.
157 The solid thick line is the empirical model described by Eq.2 (ESDU, 1974).

158
$$\frac{nS_{uu}}{\sigma_u^2} = \frac{4f}{(1 + 70.8f^2)^{5/6}} \quad (2)$$

159 where n is the frequency in Hertz, S_{uu} is the power spectrum for the longitudinal turbulence
160 component, σ_u is the standard deviation of the longitudinal velocity component and $f = nL_{ux}/U_z$ in
161 which L_{ux} is the longitudinal integral length scale.

162 The power spectra plots show a good match between the ESDU model (Eq.3) and wind tunnel
163 results. However, the fluctuation of power spectra is too much and needs to be further investigated.
164 The effective z_0 was estimated after the testing for both 1:50 and 1:100 scales using the log-law
165 method described in Catarelli et al. (2020) and Fernández-Cabán & Masters (2017), which is
166 shown in Figure 11. The longitudinal length scale is plotted in Figure 12 for cases in sets B, C, and
167 D with 1:100 and 1:50 scales at 10 m height. The average longitudinal integral length scale at 10
168 m height was 1.038 m in the 1:100 scale (103.8 m in full scale) and 1.314 m in the 1:50 scale (65.7
169 m in full scale). To compare the wind tunnel integral length scale with the field measurements, the
170 results of field measurements from Tieleman (2003) show that at 10 m height, the longitudinal
171 length scale under slightly steady night time condition was 51 m and under unstable day time
172 condition was 190 m. Detailed analysis of wind speed measurements is available in An et al.,
173 (2023).

174

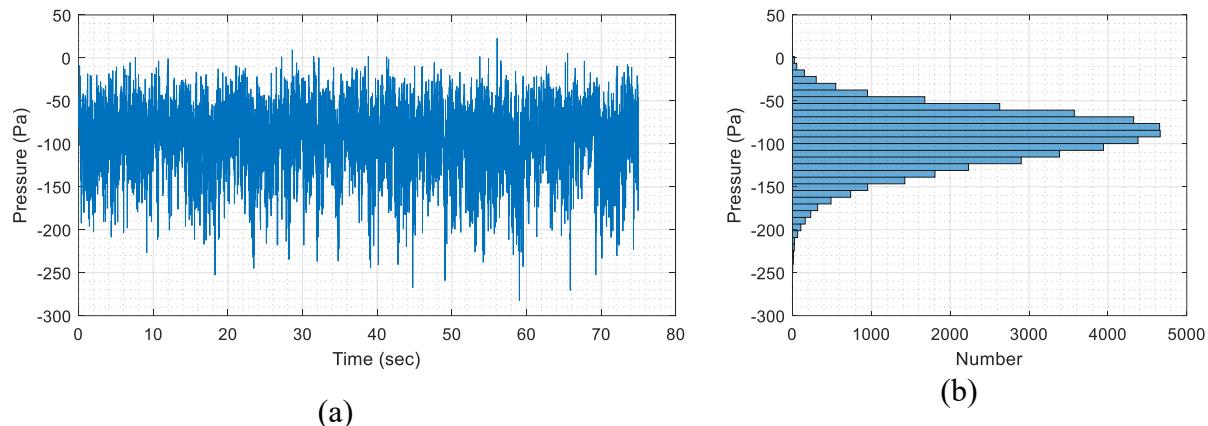
175 **6. Wind Pressure Testing Data Presentations**

176 **6.1. Wind Pressure Coefficients for Low-rise Building Model**

177 To obtain the pressure on the low-rise building model, 60 generic heterogeneous upwind terrain
178 configurations were simulated in the BLWT. The reference velocity for each case was measured
179 at the model's eave height (7.9 cm). Due to the model's symmetry, the wind angle of attack altered
180 from 0 to 90 degrees with a 15-degree increment. More details on this part of the experiment are
181 in Table 5. The duration of data collection for upwind terrain configurations in sets B and C was
182 75 seconds, and for set D was 360 seconds. The channel and module (ZOC) numbers for 216 taps
183 are provided in the Matlab pressure files under 'TapData' structure array. The name of the pressure
184 tap in the 'TapData' should match the name in the Matlab data file. For example, module (ZOC)

185 number 2, channel number 39 refers to tap 401 located on surface number 6 at x= -32.25 mm, y =
186 -103.75 mm, and z = 80.48 mm. In the Matlab pressure data file, 'ZOC 2, Channel 39' was stored
187 in column 49 of 'Headers.' Therefore, the differential pressure data for this tap can be accessed in
188 column 49 of 'PressDyn' structure array. The variables in the Matlab files that stored the pressure
189 data and metadata are described in Table 6. The accessibility of the Matlab files mentioned here is
190 described in section 7. Note that the pressure data in 'Pressraw' array is the total uncorrected
191 pressure, in 'PressTotal' array is the total corrected pressure and in 'PressDyn' array is the
192 differential corrected pressure.

193 **6.2. Wind Pressure Coefficients for Mid-rise Building Model**


194 60 generic heterogeneous upwind terrain configurations with the 1:100 scale were simulated in the
195 BLWT in front of the mid-rise building model for pressure testing. The reference velocity for each
196 case was measured at the model's roof height (50 cm). The duration of data collection for upwind
197 terrain configurations in sets B and C was 45 seconds, and for set D was 240 seconds. More details
198 on this part of the experiment are in Table 7.

199 **6.3. Validation of Wind Pressure Measurements**

200 Here, we plotted the mean pressure coefficient distribution on the low-rise building roof in Figure
201 13. Figure 13a shows the result of testing by Fernández-Cabán & Masters (2018) on the same low-
202 rise building under uniform upwind terrains. The height of roughness elements (H) was 60 mm
203 with wide edge configuration and the angle of attack is 0 degree in Figure 13a. Figure 13b shows
204 the mean pressure coefficient distribution on the roof of the low-rise model for the site03-Avg
205 case. Note that since the results of uniform cases were low-pass filtered with a cut-off frequency
206 of 300 Hz, we applied the same filter in Figure 13 to the nonuniform terrain to plot the pressure
207 coefficients. We observed that both cases had the same pattern of pressure distributions. However,
208 there was between a 20 and 50 % increase in the mean pressure coefficient when the nonuniform

209 upwind terrain was tested which can be related to the nonuniform simulation of upwind terrain and
210 non-equilibrium state of the wind flow.

211

212 Figure 14 shows the time history and histogram of the corrected differential pressure ('PressDyn'
213 array) on the tap number 401 located on the low-rise model's roof ($x = -32.25$ mm and $y = -103.75$
214 mm) where the average pressure is -94.9 Pa with standard deviation of 32.7, skewness of -0.51
215 and kurtosis of 3.5.

216 The results of testing on TTU building model on uniform upwind terrains (Fernández-Cabán &
217 Masters, 2018a) for the ridge of the roof and the same results from BLWT tests were plotted in
218 Figure 15, which shows a good match in general. We plotted 2 different uniform cases from
219 Fernández-Cabán & Masters's (2018a) dataset, wide edge uniform configuration of roughness
220 elements with 10 mm and 100 mm heights. Both tests were performed on the exact same model
221 with 1:50 scale. However, the duration of tests on uniform cases was 120 seconds. The simple
222 worst method (Gavanski & Uematsu, 2014) was used in the peak pressure analysis in Figure 15.
223 To further discuss the pressure distribution, we plotted the minimum of mean pressure coefficients
224 (absolute maximum of C_p -mean) along the ridge of the roof for the low-rise model in Figure 16.

225 In Figure 16, the nonuniform cases are all 60 cases in Table 5 and the uniform cases are 17 uniform
226 cases with $H= 0$ mm up to 160 cm from Fernández-Cabán & Masters's (2018) dataset with wide
227 edge uniform configuration of roughness when the angle of attack was zero. It's apparent from
228 Figure 16 that the pressure coefficient is related to the turbulence intensity. Here, we observed that
229 in the nonuniform cases with small turbulence intensity ($I_u < 0.15$), the minimum of pressure
230 coefficients along the ridge was close to uniform cases. However, in larger turbulence intensity
231 regions ($I_u > 0.2$), with the same I_u , nonuniform cases produced larger suction than uniform ones,
232 and differences between nonuniform and uniform cases increased with the increase in turbulence
233 intensity.

234 Figure 17 shows the mean pressure coefficient distribution on the mid-rise building for site 15 with
235 90 degrees angle of attack. Note that in the low-rise model, all pressure taps in module 6 had a
236 malfunction for the following sites: site 1-Max, angle of attack 90; site 2-Avg, angles of attack 0,
237 30 and 90; site 2-Min, angle of attack 30; site 3-Max, angle of attack 60 and 75; site 3-Min, angle
238 of attack 90; site 5-min, angle of attack 0 and 15; site 17-Avg, angle of attack 75; site 23-Avg,
239 angle of attack 75; site 30-Avg, angle of attack 45; site 32-Avg, angle of attack 30; site 38-Avg,
240 angle of attack 45, 60, 75 and 90; site 40-Avg, angle of attack 60; and site 47-Avg, angle of attack
241 30. Also, note that in the mid-rise model, 14 pressure taps out of 512 taps had a malfunction and
242 should be excluded from the results. These malfunctioned taps are module 1, channels 57 to 64;
243 module 5, channels 54, 55, 62 and 64; and module 8, channels 54 and 55.

244

245 **7. Data Organization**

246 Figure 18 shows how the data and metadata files can be accessed through the DesignSafe-CI
247 repository. The data files were stored in three folders, the 'EVT01' folder stored the wind speed

248 measurement files, and the ‘EVT02’ and ‘EVT03’ folders stored the wind pressure measurement
249 files for low-rise and mid-rise building models, respectively. In the ‘EVT01’ folder, there are two
250 subfolders with 180 folders in each referring to wind speed MATLAB data files and photos of the
251 Terraformer named after the first column of Table 3 and Table 4. There are three subfolders in
252 the ‘EVT02’ and ‘EVT03’ folders. The ‘Cobra Probe’ folder stores the reference velocity
253 measurements. The ‘Scanivalve’ folder stores the pressure measurements where the pressure data
254 MATLAB files were named after Table 5 or Table 7 (low-rise or mid-rise) following the angle of
255 attack. The photos of building models in front of the Terraformer are stored in the ‘Photos’ folder.
256 The input CSV files for two different scales are stored in the ‘Terrain configuration’ folder. The
257 pressure taps layout, coordination, and names are also stored in the two excel files in the
258 ‘Documents’ folder.

259

260 **8. Discussion and Conclusion**

261 This study aimed to first provide an experimental dataset of wind speed measurement for 180
262 upwind terrain configurations in the BLWT at UF NEHRI-EF. The upwind terrain dataset consists
263 of 50 real-world generic heterogeneous terrains which had different land coverage combinations
264 and 10 upwind terrains that experienced the passage of hurricanes. This part of the experiment can
265 be used to investigate the effect of upwind terrain on wind characteristics such as wind profile and
266 turbulence intensity. The results can be compared to the previous models, such as Deaves and
267 Harris model (Cook, 1997; Deaves, 1980, 1981) and the model proposed by Wang & Stathopoulos
268 (2007) and to propose a model to predict the wind profile for different combinations of land
269 coverages.

270 The second objective of this study was to provide an accessible dataset to investigate further the
271 effect of heterogeneous upwind terrain on wind loads on two different building models. The
272 upwind terrain configuration simulated in the BLWT consists of 50 real-world generic
273 heterogeneous terrains. The results can be used to develop a neural network model that can predict
274 the pressure distribution given the characteristics of upwind terrain and wind flow as well as
275 validate the numerical models such as CFD models.

276 It is important to mention that there is a roughness change between the model and the first raw of
277 roughness elements (2 m gap) since the turntable in front of the Terraformer would not allow the
278 roughness elements to be there. Also, this study did not consider any surrounding buildings near
279 the installed building models. The dimension of the upwind Terrain simulated in the wind tunnel
280 was limited to the dimension of upwind fetch (Terraformer), which was 1860 m × 540 m in 1:100
281 scale and 930 m × 270 m in 1:50 scale. Moreover, the scaling issue and Reynolds number and their
282 effects on the pressure loading can be further assessed.

283

284 **Data Availability**

285 The data and metadata are publicly available on the DesignSafe-CI repository under the DOI of
286 10.17603/Ds2-6hg9-R131.

287

288 **Acknowledgments**

289 This material is based upon work supported by the National Science Foundation under Grant No.
290 CMMI-1856205. Any opinions, findings, and conclusions or recommendations expressed in this

291 material are those of the authors and do not necessarily reflect the views of the National Science
292 Foundation.

293

294 **References**

295 Alinejad, N., Jung, S., Kakareko, G., & Fernández-Cábán, P. L. (2023). Wind-Tunnel Reproduction of Nonuniform
296 Terrains Using Local Roughness Zones. *Boundary-Layer Meteorology*, 188(3), 463–484.
297 <https://doi.org/10.1007/s10546-023-00822-0>

298 An, L.-S., Alinejad, N., Kim, S., & Jung, S. (2023). Experimental study on wind characteristics and prediction of
299 mean wind profile over complex heterogeneous terrain. *Building and Environment*, 110719.
300 <https://doi.org/10.1016/j.buildenv.2023.110719>

301 Balderrama, J. A., Masters, F. J., & Gurley, K. R. (2012). Peak factor estimation in hurricane surface winds. *Journal*
302 *of Wind Engineering and Industrial Aerodynamics*, 102, 1–13. <https://doi.org/10.1016/j.jweia.2011.12.003>

303 Catarelli, R. A., Fernández-Cabán, P. L., Masters, F. J., Bridge, J. A., Gurley, K. R., & Matyas, C. J. (2020).
304 Automated terrain generation for precise atmospheric boundary layer simulation in the wind tunnel. *Journal of*
305 *Wind Engineering and Industrial Aerodynamics*, 207, 104276. <https://doi.org/10.1016/j.jweia.2020.104276>

306 Chen, B., Shang, L., Qin, M., Chen, X., & Yang, Q. (2018). Wind interference effects of high-rise building on low-
307 rise building with flat roof. *Journal of Wind Engineering and Industrial Aerodynamics*, 183(March), 88–113.
308 <https://doi.org/10.1016/j.jweia.2018.10.019>

309 Cheung, J. C. K., Holmes, J. D., Melbourne, W. H., Lakshmanan, N., & Bowditch, P. (1997). Pressures on a scale
310 model of the Texas Tech Building. *Journal of Wind Engineering and Industrial Aerodynamics*, 69–71, 529–
311 538. [https://doi.org/10.1016/S0167-6105\(97\)00183-9](https://doi.org/10.1016/S0167-6105(97)00183-9)

312 Cook, N. J. (1997). The Deaves and Harris ABL Model Applied To Heterogeneous Terrain. *Journal of Wind*
313 *Engineering and Industrial Aerodynamics*, 66, 197–214.

314 Davenport, A. G. (1960). Wind loads on structures. In *National research council, canads, division of building*
315 *research*.

316 Deaves, D. M. (1980). Computations of wind flow over two-dimensional hills and embankments. *Journal of Wind*
317 *Engineering and Industrial Aerodynamics*, 6(1–2), 89–111. [https://doi.org/10.1016/0167-6105\(80\)90024-0](https://doi.org/10.1016/0167-6105(80)90024-0)

318 Deaves, D. M. (1981). Computations of wind flow over changes in surface roughness. *Journal of Wind Engineering*
319 *and Industrial Aerodynamics*, 7(1), 65–94. [https://doi.org/10.1016/0167-6105\(81\)90068-4](https://doi.org/10.1016/0167-6105(81)90068-4)

320 ESDU. (1974). Characteristics of atmospheric turbulence near the ground. Part I: definitions and general
321 information. *Engineering Sciences Data Unit, Itm. No. 7*(London, UK).

322 Fernández-Cabán, P.L., & Masters, F. J. (2017). Near surface wind longitudinal velocity positively skews with
323 increasing aerodynamic roughness length. *Journal of Wind Engineering and Industrial Aerodynamics*, 169,
324 94–105. <https://doi.org/10.1016/j.jweia.2017.06.007>

325 Fernández-Cabán, Pedro L., & Masters, F. J. (2018). Behavior of Hurricane Wind and Wind-Driven Rain in the
326 Coastal Suburban Roughness Sublayer. *DesignSafe-CI*. <https://doi.org/10.17603/DS2110K>

327 Fernández-Cabán, Pedro L., & Masters, F. J. (2020). Experiments in a Large Boundary Layer Wind Tunnel:
328 Upstream Terrain Effects on Surface Pressures Acting on a Low-Rise Structure. *Journal of Structural*
329 *Engineering*, 146(8), 04720002. [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0002690](https://doi.org/10.1061/(ASCE)ST.1943-541X.0002690)

330 Gavanski, E., & Uematsu, Y. (2014). Local wind pressures acting on walls of low-rise buildings and comparisons to
331 the Japanese and US wind loading provisions. *Journal of Wind Engineering and Industrial Aerodynamics*,
332 132, 77–91. <https://doi.org/10.1016/j.jweia.2014.06.020>

333 He, Y. C., Chan, P. W., & Li, Q. S. (2017). Estimation of roughness length at Hong Kong International Airport via
334 different micrometeorological methods. *Journal of Wind Engineering and Industrial Aerodynamics*,
335 171(September), 121–136. <https://doi.org/10.1016/j.jweia.2017.09.019>

336 Kopp, G. A., Surry, D., & Mans, C. (2005). Wind effects of parapets on low buildings: Part 1. Basic aerodynamics
337 and local loads. *Journal of Wind Engineering and Industrial Aerodynamics*, 93(11), 817–841.
338 <https://doi.org/10.1016/j.jweia.2005.08.006>

339 Levitan, M. L., & Mehta, K. C. (1992). Texas Tech field experiments for wind loads part 1: building and pressure
340 measuring system. *Journal of Wind Engineering and Industrial Aerodynamics*, 43(1–3), 1565–1576.
341 [https://doi.org/10.1016/0167-6105\(92\)90372-H](https://doi.org/10.1016/0167-6105(92)90372-H)

342 Lim, H. C., Tsukamoto, K., Ohba, M., & Mizutani, K. (2014). Study on the surface pressure distribution of cubes in
343 cross-wind arrays. *Journal of Wind Engineering and Industrial Aerodynamics*, 133, 18–26.
344 <https://doi.org/10.1016/j.jweia.2014.07.009>

345 Macdonald, R. ., Griffiths, R. ., & Hall, D. . (1998). An improved method for the estimation of surface roughness of
346 obstacle arrays. *Atmospheric Environment*, 32(11), 1857–1864. [https://doi.org/10.1016/S1352-2310\(97\)00403-2](https://doi.org/10.1016/S1352-2310(97)00403-2)

348 Sabareesh, G.R., Matsui, M., & Tamura, Y. (2013). Characteristics of internal pressures and net local roof wind
349 forces on a building exposed to a tornado-like vortex. *Journal of Wind Engineering and Industrial
350 Aerodynamics*, 112, 52–57. <https://doi.org/10.1016/j.jweia.2012.11.005>

351 Tieleman, H. W. (2003). Wind tunnel simulation of wind loading on low-rise structures: a review. *Journal of Wind
352 Engineering and Industrial Aerodynamics*, 91(12–15), 1627–1649.
353 <https://doi.org/10.1016/j.jweia.2003.09.021>

354 Vihma, T., & Savijärvi, H. (1991). On the effective roughness length for heterogeneous terrain. *Quarterly Journal of
355 the Royal Meteorological Society*, 117(498), 399–407. <https://doi.org/10.1002/qj.49711749808>

356 Wang, K., & Stathopoulos, T. (2007). Exposure model for wind loading of buildings. *Journal of Wind Engineering
357 and Industrial Aerodynamics*, 95(9–11), 1511–1525. <https://doi.org/10.1016/j.jweia.2007.02.016>

358 Wang, Kai, & Stathopoulos, T. (2006). The impact of exposure on wind loading of low buildings. *Proceedings of
359 the Structures Congress and Exposition, 2006*, 9. [https://doi.org/10.1061/40889\(201\)9](https://doi.org/10.1061/40889(201)9)

360 Wiernga, J. (1993). Representative roughness parameters for homogeneous terrain. *Boundary-Layer Meteorology*,
361 63(4), 323–363. <https://doi.org/10.1007/BF00705357>

362 Zisis, I., & Stathopoulos, T. (2010). Wind loads on low-rise buildings: Upstream exposure effect. *7th Asia-Pacific
363 Conf. on Wind Engineering*.

364

365

366

367

368

369

370

371

372

373

374

375

376 **Tables**

377 Table 1: Information on selected sites to be tested in the BLWT

Site ID	Latitude	Longitude	Direction from magnetic north	Site ID	Latitude	Longitude	Direction from magnetic north
1	30.68526	-88.0254	0	31	38.06936	-75.5499	90
2	27.6763	-97.2861	270	32	41.20402	-73.0934	90
3	43.18735	-77.6305	90	33	36.0522	-86.8092	270
4	30.41956	-84.318	0	34	34.44947	-77.5262	90
5	44.24718	-72.5886	90	35	41.38552	-71.494	180
6	41.7158	-73.9159	180	36	37.67902	-75.6308	90
7	38.06936	-75.5499	180	37	38.72918	-90.4551	90
8	33.67731	-79.0314	0	38	25.41191	-80.4964	270
9	30.22528	-92.0613	90	39	31.59068	-83.2424	0
10	41.02429	-73.6259	90	40	43.62806	-72.5149	270
11	31.06005	-81.4208	0	41	34.93197	-81.0286	270
12	33.89831	-78.4307	270	42	40.76147	-73.4698	0
13	38.45491	-75.058	90	43	37.79596	-80.2998	180
14	42.87553	-71.9509	270	44	40.6656	-73.9868	90
15	36.76553	-76.3582	90	45	30.2068	-93.2414	180
16	30.4202	-81.5567	90	46	37.6916	-75.7141	0
17	38.20711	-75.6946	0	47	39.05953	-84.6102	90
18	35.67342	-105.911	90	48	38.72754	-75.2634	0
19	39.90773	-75.1917	0	49	30.28072	-87.5809	270
20	31.20489	-85.4051	180	50	44.32527	-69.7537	0
21	30.50375	-89.6601	270	SandyT3-d60	39.3208	-74.5953	60
22	39.8525	-88.906	0	MatthewT3FL-d170	28.1937	-80.6056	200
23	30.26644	-89.415	0	IrmaT2-d250	26.3304	-81.7791	250
24	34.81752	-82.4157	180	IsaacT2-d170	29.5385	-89.7751	170

25	36.75083	-96.0075	270	IsaacT2-d25	29.5385	-89.7751	25
26	41.33751	-71.7566	180	ArthurT2-d35	35.2322	-75.6215	35
27	37.73784	-88.946	90	ArthurT2-d80	35.2322	-75.6215	80
28	37.96214	-91.7524	0	ArthurT2-d155	35.2322	-75.6215	155
29	31.07034	-81.4076	180	HarveyT2-d200	35.2322	-75.6215	200
30	32.9042	-79.9706	0	HarveyT3-d80	28.6119	-96.6252	80

378

379 Table 2: Terrain classifications and z_0 range (z_0 range is based on Davenport 1960; Vihma and Savijärvi 1991;
 380 Wieringa 1993; Wang and Stathopoulos 2007; He et al., 2017)

Terrain description	z_0 range (m)
Water (river, sea, lake, etc.)	0.0001-0.0005
Featureless Land	0.001-0.005
Road	0.0024-0.03
Short Grass	0.001-0.03
Low-rise Building	0.3-0.7
Mid-rise Building	0.5-1.5
Forest	1- 2.3

381

382 Table 3: Details of testing for wind speed profile with 1:50 scale

Profile name	CSV file path	CSV file name	Cobra probes' location(s)
0030301S0001	Low-Rise\set A	SandyT3-d60-Nonuniform-Max-50	X= 2950 cm, Y= 0.00
0030301S0002	Low-Rise\set A	SandyT3-d60-Nonuniform-Min-50	X= 2950 cm, Y= 0.00
0030301S0003	Low-Rise\set A	SandyT3-d60-Uniform-Min-50	X= 2950 cm, Y= 0.00
0030301S0004	Low-Rise\set A	MatthewT3FL-d170-Nonuniform-Max-50	X= 2950 cm, Y= 0.00
0030301S0005	Low-Rise\set A	MatthewT3FL- d170-Nonuniform-Min-50	X= 2950 cm, Y= 0.00
0030301S0006	Low-Rise\set A	MatthewT3FL- d170-Uniform-Min-50	X= 2950 cm, Y= 0.00
0030301S0007	Low-Rise\set A	IrmaT2-d250-Nonuniform-Max-50	X= 2950 cm, Y= 0.00
0030301S0008	Low-Rise\set A	IrmaT2-d250-Nonuniform-Min-50	X= 2950 cm, Y= 0.00
0030301S0009	Low-Rise\set A	IrmaT2-d250-Uniform-Min-50	X= 2950 cm, Y= 0.00
0030301S0010	Low-Rise\set A	IsaacT2-d170-Nonuniform-Max-50	X= 2950 cm, Y= 0.00
0030301S0011	Low-Rise\set A	IsaacT2-d170-Nonuniform-Min-50	X= 2950 cm, Y= 0.00
0030301S0012	Low-Rise\set A	IsaacT2-d170-Uniform-Min-50	X= 2950 cm, Y= 0.00
0030301S0013	Low-Rise\set A	IsaacT2-d25-Nonuniform-Max-50	X= 2950 cm, Y= 0.00
0030301S0014	Low-Rise\set A	IsaacT2-d25-Nonuniform-Min-50	X= 2950 cm, Y= 0.00
0030301S0015	Low-Rise\set A	IsaacT2-d25-Uniform-Min-50	X= 2950 cm, Y= 0.00
0030301S0016	Low-Rise\set A	ArthurT2-d35-Nonuniform-Max-50	X= 2950 cm, Y= 0.00
0030301S0017	Low-Rise\set A	ArthurT2-d35-Nonuniform-Min-50	X= 2950 cm, Y= 0.00
0030301S0018	Low-Rise\set A	ArthurT2-d35-Uniform-Min-50	X= 2950 cm, Y= 0.00
0030301S0019	Low-Rise\set A	ArthurT2-d80-Nonuniform-Max-50	X= 2950 cm, Y= 0.00
0030301S0020	Low-Rise\set A	ArthurT2-d80-Nonuniform-Min-50	X= 2950 cm, Y= 0.00
0030301S0021	Low-Rise\set A	ArthurT2-d80-Uniform-Min-50	X= 2950 cm, Y= 0.00
0030301S0022	Low-Rise\set A	ArthurT2-d155-Nonuniform-Max-50	X= 2950 cm, Y= 0.00
0030301S0023	Low-Rise\set A	ArthurT2-d155-Nonuniform-Min-50	X= 2950 cm, Y= 0.00
0030301S0024	Low-Rise\set A	ArthurT2-d155-Uniform-Min-50	X= 2950 cm, Y= 0.00
0030301S0025	Low-Rise\set A	HarveyT2-d200-Nonuniform-Max-50	X= 2950 cm, Y= 0.00
0030301S0026	Low-Rise\set A	HarveyT2-d200-Nonuniform-Min-50	X= 2950 cm, Y= 0.00
0030301S0027	Low-Rise\set A	HarveyT2-d200 -Uniform-Min-50	X= 2950 cm, Y= 0.00

0030301S0028	Low-Rise\set A	HarveyT3-d80-Nonuniform-Max-50	X= 2950 cm, Y= 0.00
0030301S0029	Low-Rise\set A	HarveyT3-d80-Nonuniform-Min-50	X= 2950 cm, Y= 0.00
0030301S0030	Low-Rise\set A	HarveyT3-d80-Uniform-Min-50	X= 2950 cm, Y= 0.00
0030301S0031	Low-Rise\set B	Low-Site01-Avg	X= 2950 cm, Y= 0.00
0030301S0032	Low-Rise\set B	Low-Site01-Max	X= 2950 cm, Y= 0.00
0030301S0033	Low-Rise\set B	Low-Site01-Min	X= 2950 cm, Y= 0.00
0030301S0034	Low-Rise\set B	Low-Site02-Avg	X= 2950 cm, Y= 0.00
0030301S0035	Low-Rise\set B	Low-Site02-Max	X= 2950 cm, Y= 0.00
0030301S0036	Low-Rise\set B	Low-Site02-Min	X= 2950 cm, Y= 0.00
0030301S0037	Low-Rise\set B	Low-Site03-Avg	X= 2950 cm, Y= 0.00
0030301S0038	Low-Rise\set B	Low-Site03-Max	X= 2950 cm, Y= 0.00
0030301S0039	Low-Rise\set B	Low-Site03-Min	X= 2950 cm, Y= 0.00
0030301S0040	Low-Rise\set B	Low-Site04-Avg	X= 2950 cm, Y= 0.00
0030301S0041	Low-Rise\set B	Low-Site04-Max	X= 2950 cm, Y= 0.00
0030301S0042	Low-Rise\set B	Low-Site04-Min	X= 2950 cm, Y= 0.00
0030301S0043	Low-Rise\set B	Low-Site05-Avg	X= 2950 cm, Y= 0.00
0030301S0044	Low-Rise\set B	Low-Site05-Max	X= 2950 cm, Y= 0.00
0030301S0045	Low-Rise\set B	Low-Site05-Min	X= 2950 cm, Y= 0.00
0030301S0046	Low-Rise\set B	Low-Site06	X= 2950 cm, Y= 0.00
to 0030301S0075		to Low-Site35	
0030301S0076	Low-Rise\set C	Low-Site36 to Low-Site45	X= 2950 cm, Y= [0.00, ±30, ±60 cm]
0030301S0086	Low-Rise\set D	Low-Site46 to Low-Site50	X= 2950 cm, Y= 0.00

383

384 Table 4: Details of testing for wind speed profile with 1:100 scale

Profile name	CSV file path	CSV file name	Cobra probes' location(s)
0030301S0091	Mid-Rise\set A	SandyT3-d60-Nonuniform-Max-100	X= 2950 cm, Y= 0.00
0030301S0092	Mid-Rise\set A	SandyT3-d60-Nonuniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0093	Mid-Rise\set A	SandyT3-d60-Uniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0094	Mid-Rise\set A	MatthewT3FL-d170-Nonuniform-Max-100	X= 2950 cm, Y= 0.00
0030301S0095	Mid-Rise\set A	MatthewT3FL-d170-Nonuniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0096	Mid-Rise\set A	MatthewT3FL-d170-Uniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0097	Mid-Rise\set A	IrmaT2-d250-Nonuniform-Max-100	X= 2950 cm, Y= 0.00
0030301S0098	Mid-Rise\set A	IrmaT2-d250-Nonuniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0099	Mid-Rise\set A	IrmaT2-d250-Uniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0100	Mid-Rise\set A	IsaacT2-d170-Nonuniform-Max-100	X= 2950 cm, Y= 0.00
0030301S0101	Mid-Rise\set A	IsaacT2-d170-Nonuniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0102	Mid-Rise\set A	IsaacT2-d170-Uniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0103	Mid-Rise\set A	IsaacT2-d25-Nonuniform-Max-100	X= 2950 cm, Y= 0.00
0030301S0104	Mid-Rise\set A	IsaacT2-d25-Nonuniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0105	Mid-Rise\set A	IsaacT2-d25-Uniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0106	Mid-Rise\set A	ArthurT2-d35-Nonuniform-Max-100	X= 2950 cm, Y= 0.00
0030301S0107	Mid-Rise\set A	ArthurT2-d35-Nonuniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0108	Mid-Rise\set A	ArthurT2-d35-Uniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0109	Mid-Rise\set A	ArthurT2-d80-Nonuniform-Max-100	X= 2950 cm, Y= 0.00
0030301S0110	Mid-Rise\set A	ArthurT2-d80-Nonuniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0111	Mid-Rise\set A	ArthurT2-d80-Uniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0112	Mid-Rise\set A	ArthurT2-d155-Nonuniform-Max-100	X= 2950 cm, Y= 0.00

0030301S0113	Mid-Rise\set A	ArthurT2-d155-Nonuniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0114	Mid-Rise\set A	ArthurT2-d155-Uniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0115	Mid-Rise\set A	HarveyT2-d200-Nonuniform-Max-100	X= 2950 cm, Y= 0.00
0030301S0116	Mid-Rise\set A	HarveyT2-d200-Nonuniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0117	Mid-Rise\set A	HarveyT2-d200 -Uniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0118	Mid-Rise\set A	HarveyT3-d80-Nonuniform-Max-100	X= 2950 cm, Y= 0.00
0030301S0119	Mid-Rise\set A	HarveyT3-d80-Nonuniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0120	Mid-Rise\set A	HarveyT3-d80-Uniform-Min-100	X= 2950 cm, Y= 0.00
0030301S0121	Mid-Rise\set B	Mid-Site01-Avg	X= 2950 cm, Y= 0.00
0030301S0122	Mid-Rise\set B	Mid-Site01-Max	X= 2950 cm, Y= 0.00
0030301S0123	Mid-Rise\set B	Mid-Site01-Min	X= 2950 cm, Y= 0.00
0030301S0124	Mid-Rise\set B	Mid-Site02-Avg	X= 2950 cm, Y= 0.00
0030301S0125	Mid-Rise\set B	Mid-Site02-Max	X= 2950 cm, Y= 0.00
0030301S0126	Mid-Rise\set B	Mid-Site02-Min	X= 2950 cm, Y= 0.00
0030301S0127	Mid-Rise\set B	Mid-Site03-Avg	X= 2950 cm, Y= 0.00
0030301S0128	Mid-Rise\set B	Mid-Site03-Max	X= 2950 cm, Y= 0.00
0030301S0129	Mid-Rise\set B	Mid-Site03-Min	X= 2950 cm, Y= 0.00
0030301S0130	Mid-Rise\set B	Mid-Site04-Avg	X= 2950 cm, Y= 0.00
0030301S0131	Mid-Rise\set B	Mid-Site04-Max	X= 2950 cm, Y= 0.00
0030301S0132	Mid-Rise\set B	Mid-Site04-Min	X= 2950 cm, Y= 0.00
0030301S0133	Mid-Rise\set B	Mid-Site05-Avg	X= 2950 cm, Y= 0.00
0030301S0134	Mid-Rise\set B	Mid-Site05-Max	X= 2950 cm, Y= 0.00
0030301S0135	Mid-Rise\set B	Mid-Site05-Min	X= 2950 cm, Y= 0.00
0030301S0136 to 0030301S0165	Mid-Rise\set B	Mid-Site06 to Mid-Site35	X= 2950 cm, Y= 0.00
0030301S0166 to 0030301S0175	Mid-Rise\set C	Mid-Site36 to Mid-Site45	X= 2950 cm, Y= [0.00, ±30, ±60 cm]
0030301S0176 to 0030301S0180	Mid-Rise\set D	Mid-Site46 to Mid-Site50	X= 2950 cm, Y= 0.00

385

386 Table 5: Details of wind pressure testing for low-rise model

Pressure name	CSV file path	File name	Reference velocity measurement point	Angle
0030302S0001	Low-Rise\set B	Low-Site01-Avg	X= 3000 cm, Y= 50 cm, Z= eave height	0:15:90
0030302S0002	Low-Rise\set B	Low-Site01-Max	X= 3000 cm, Y= 50 cm, Z= eave height	0:15:90
0030302S0003	Low-Rise\set B	Low-Site01-Min	X= 3000 cm, Y= 50 cm, Z= eave height	0:15:90
0030302S0004	Low-Rise\set B	Low-Site02-Avg	X= 3000 cm, Y= 50 cm, Z= eave height	0:15:90
0030302S0005	Low-Rise\set B	Low-Site02-Max	X= 3000 cm, Y= 50 cm, Z= eave height	0:15:90
0030302S0006	Low-Rise\set B	Low-Site02-Min	X= 3000 cm, Y= 50 cm, Z= eave height	0:15:90
0030302S0007	Low-Rise\set B	Low-Site03-Avg	X= 3000 cm, Y= 50 cm, Z= eave height	0:15:90
0030302S0008	Low-Rise\set B	Low-Site03-Max	X= 3000 cm, Y= 50 cm, Z= eave height	0:15:90
0030302S0009	Low-Rise\set B	Low-Site03-Min	X= 3000 cm, Y= 50 cm, Z= eave height	0:15:90
0030302S0010	Low-Rise\set B	Low-Site04-Avg	X= 3000 cm, Y= 50 cm, Z= eave height	0:15:90
0030302S0011	Low-Rise\set B	Low-Site04-Max	X= 3000 cm, Y= 50 cm, Z= eave height	0:15:90
0030302S0012	Low-Rise\set B	Low-Site04-Min	X= 3000 cm, Y= 50 cm, Z= eave height	0:15:90
0030302S0013	Low-Rise\set B	Low-Site05-Avg	X= 3000 cm, Y= 50 cm, Z= eave height	0:15:90
0030302S0014	Low-Rise\set B	Low-Site05-Max	X= 3000 cm, Y= 50 cm, Z= eave height	0:15:90
0030302S0015	Low-Rise\set B	Low-Site05-Min	X= 3000 cm, Y= 50 cm, Z= eave height	0:15:90
0030302S0016 to	Low-Rise\set B	Low-Site06 to	X= 3000 cm, Y= 50 cm, Z= eave height	0:15:90

0030302S0045		Low-Site35		
0030302S0046 to 0030302S0056	Low-Rise\set C	Low-Site36 to Low-Site45	X= 3000 cm, Y= 50 cm, Z= eave height	0:15:90
0030302S0056 to 0030302S0060	Low-Rise\set D	Low-Site46 to Low-Site50	X= 3000 cm, Y= 50 cm, Z= eave height	0:15:90

387

388 Table 6: Pressure data file variables

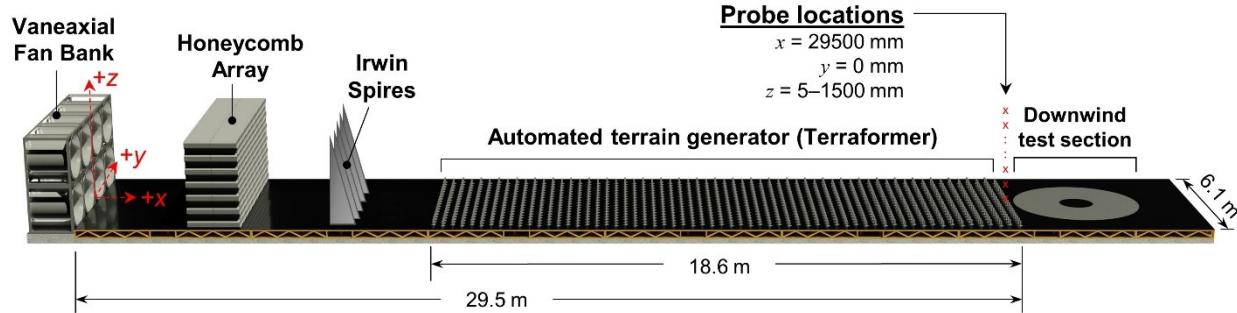
Matlab variables	Description
Scanivalve.TimeSeries.Headers	Zoc number and channel number
Scanivalve.TimeSeries.Time	Elapsed time (sec)
Scanivalve.TimeSeries.SampleRate	Sample rate (Hz)
Scanivalve.TimeSeries.PressRaw	Total pressure measured by the Scanivalve system, uncorrected (Pa)
Scanivalve.TimeSeries.Press Total	Total pressure corrected for tubing response (Pa)
Scanivalve.TimeSeries.PressDyn	Differential pressure corrected for tubing response (Pa)
Scanivalve.Reference.Ps	Reference (static) pressure (Pa)
Scanivalve.Reference.U	Mean reference longitudinal wind velocity (m/s)
Scanivalve.Reference.rho	Air density (kg/m ³)
Scanivalve.Tube.ind	Integer indicating which tube path corresponds to each tap
Scanivalve.Tube.L	Segment length (mm)
Scanivalve.Tube.D	Segment inner diameter (mm)
Scanivalve.Tube.V_trans	Segment transducer volume (mm ³)
Scanivalve.TapData (X, Y and Z columns)	Coordinates (X, Y, Z) of pressure taps (mm)
Scanivalve.TapData (ZOC33L column)	Length of ZOC connector external tubulation (mm)
Scanivalve.TapData (ZOC33D column)	Inner diameter of ZOC connector external tubulation (mm)
Scanivalve.TapData (TubeL column)	Length of tube between ZOC connector and model tubulation (mm)
Scanivalve.TapData (TubeID column)	Inner diameter of tube between ZOC connector and model tubulation (mm)
Scanivalve.TapData (TubulationL column)	Length of model tubulation (mm)
Scanivalve.TapData (TubulationID column)	Inner diameter of model tubulation (mm)

389

390 Table 7: Details of wind pressure testing for mid-rise model

Pressure name	CSV file path	File name	Reference velocity measurement point	Angle
0030303S0001	Mid-Rise\set B	Mid-Site01-Avg	X= 3000 cm, Y= 50 cm, Z= roof height	0:15:90
0030303S0002	Mid-Rise\set B	Mid-Site01-Max	X= 3000 cm, Y= 50 cm, Z= roof height	0:15:90
0030303S0003	Mid-Rise\set B	Mid-Site01-Min	X= 3000 cm, Y= 50 cm, Z= roof height	0:15:90
0030303S0004	Mid-Rise\set B	Mid-Site02-Avg	X= 3000 cm, Y= 50 cm, Z= roof height	0:15:90
0030303S0005	Mid-Rise\set B	Mid-Site02-Max	X= 3000 cm, Y= 50 cm, Z= roof height	0:15:90
0030303S0006	Mid-Rise\set B	Mid-Site02-Min	X= 3000 cm, Y= 50 cm, Z= roof height	0:15:90
0030303S0007	Mid-Rise\set B	Mid-Site03-Avg	X= 3000 cm, Y= 50 cm, Z= roof height	0:15:90
0030303S0008	Mid-Rise\set B	Mid-Site03-Max	X= 3000 cm, Y= 50 cm, Z= roof height	0:15:90
0030303S0009	Mid-Rise\set B	Mid-Site03-Min	X= 3000 cm, Y= 50 cm, Z= roof height	0:15:90
0030303S0010	Mid-Rise\set B	Mid-Site04-Avg	X= 3000 cm, Y= 50 cm, Z= roof height	0:15:90
0030303S0011	Mid-Rise\set B	Mid-Site04-Max	X= 3000 cm, Y= 50 cm, Z= roof height	0:15:90
0030303S0012	Mid-Rise\set B	Mid-Site04-Min	X= 3000 cm, Y= 50 cm, Z= roof height	0:15:90
0030303S0013	Mid-Rise\set B	Mid-Site05-Avg	X= 3000 cm, Y= 50 cm, Z= roof height	0:15:90
0030303S0014	Mid-Rise\set B	Mid-Site05-Max	X= 3000 cm, Y= 50 cm, Z= roof height	0:15:90

0030303S0015	Mid-Rise\set B	Mid-Site05-Min	X= 3000 cm, Y= 50 cm, Z= roof height	0:15:90
0030303S0016 to 0030303S0045	Mid-Rise\set B	Mid-Site06 to Mid-Site35	X= 3000 cm, Y= 50 cm, Z= roof height	0:15:90
0030303S0046 to 0030303S0056	Mid-Rise\set C	Mid-Site36 to Mid-Site45	X= 3000 cm, Y= 50 cm, Z= roof height	0:15:90
0030303S0056 to 0030303S0060	Mid-Rise\set D	Mid-Site46 to Mid-Site50	X= 3000 cm, Y= 50 cm, Z= roof height	0:15:90


391

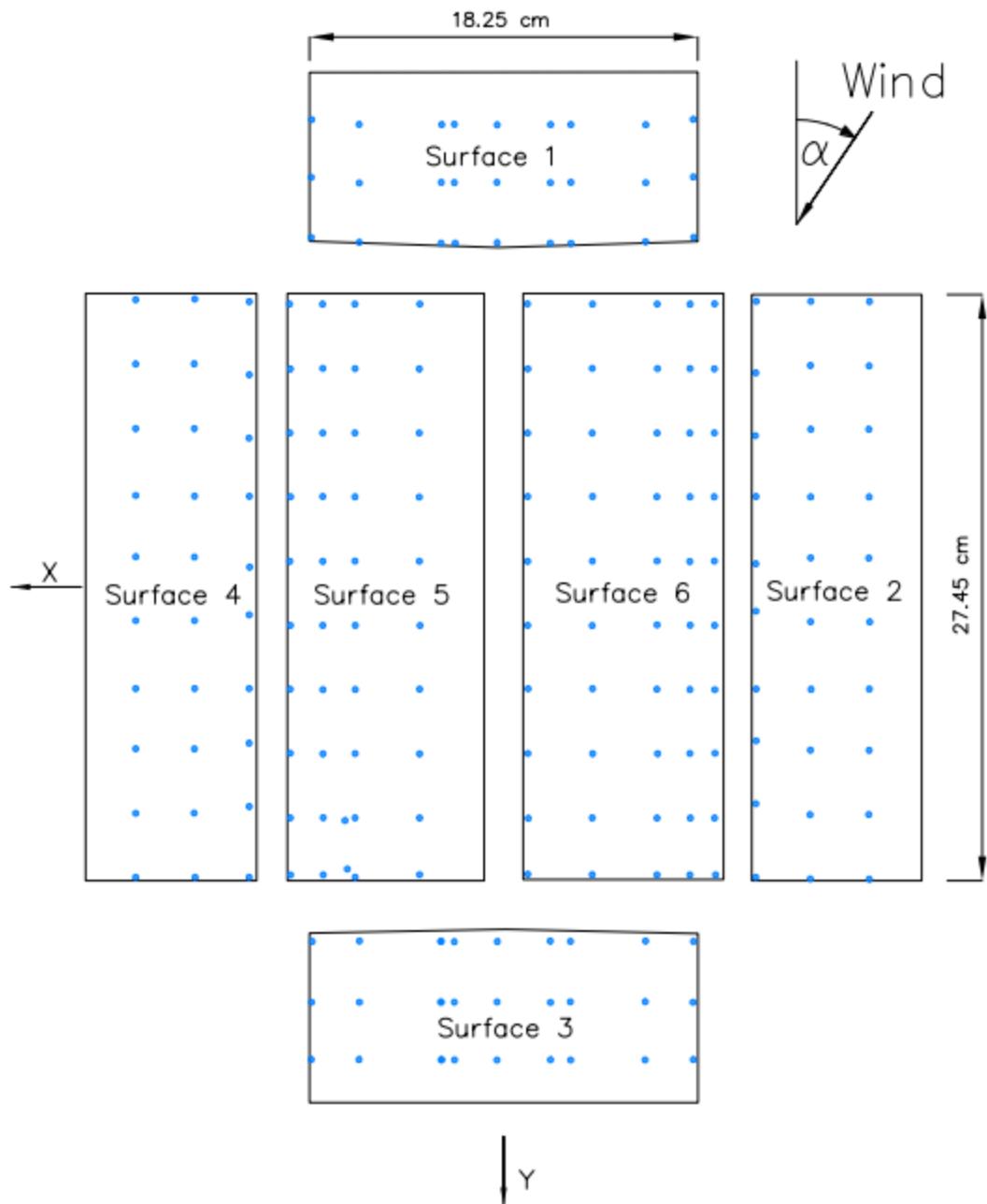
392

393

394

395 Figures Caption

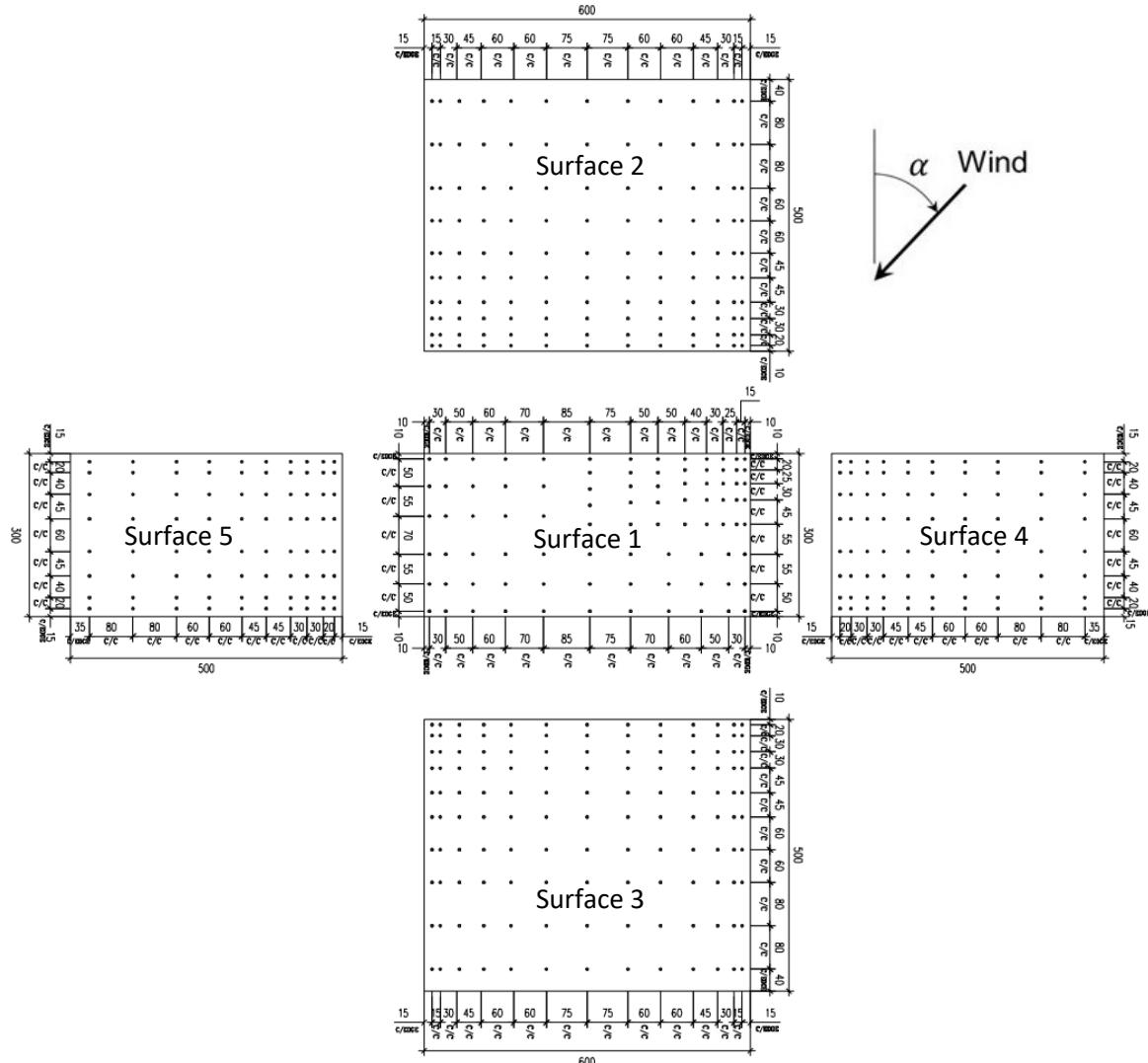
396


397 Figure 1: Schematic BLWT profile

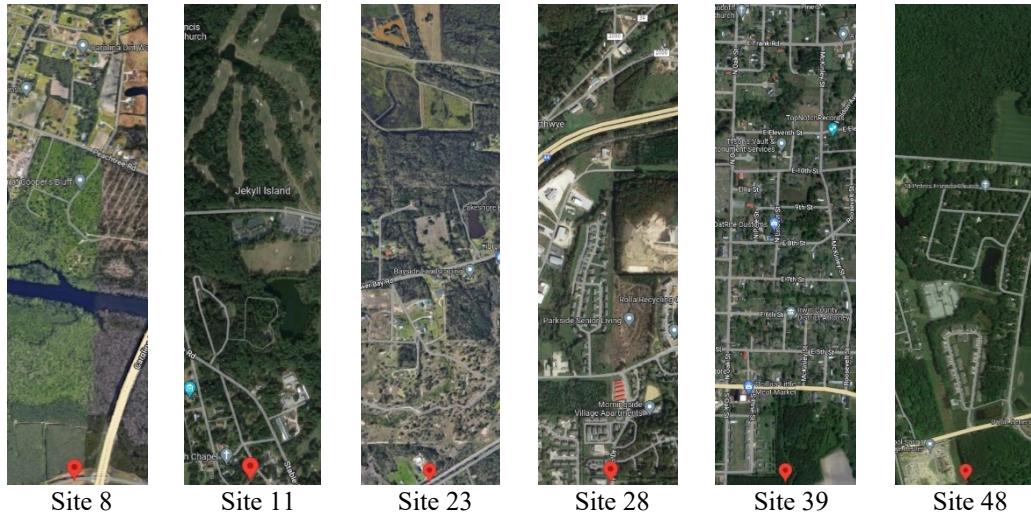
398

399

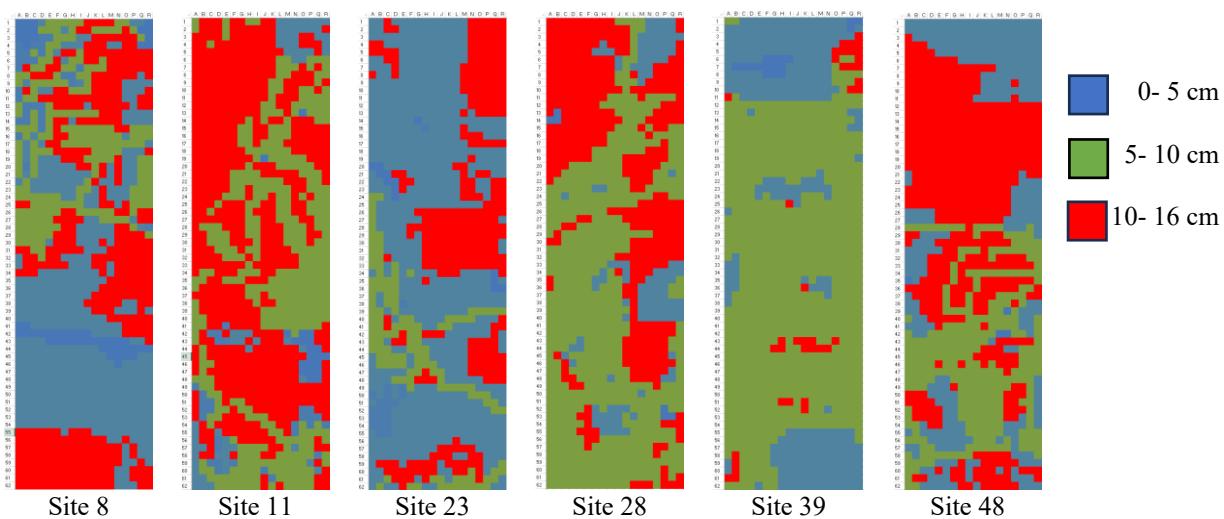
400 Figure 2: The low-rise model with pressure taps installed


402

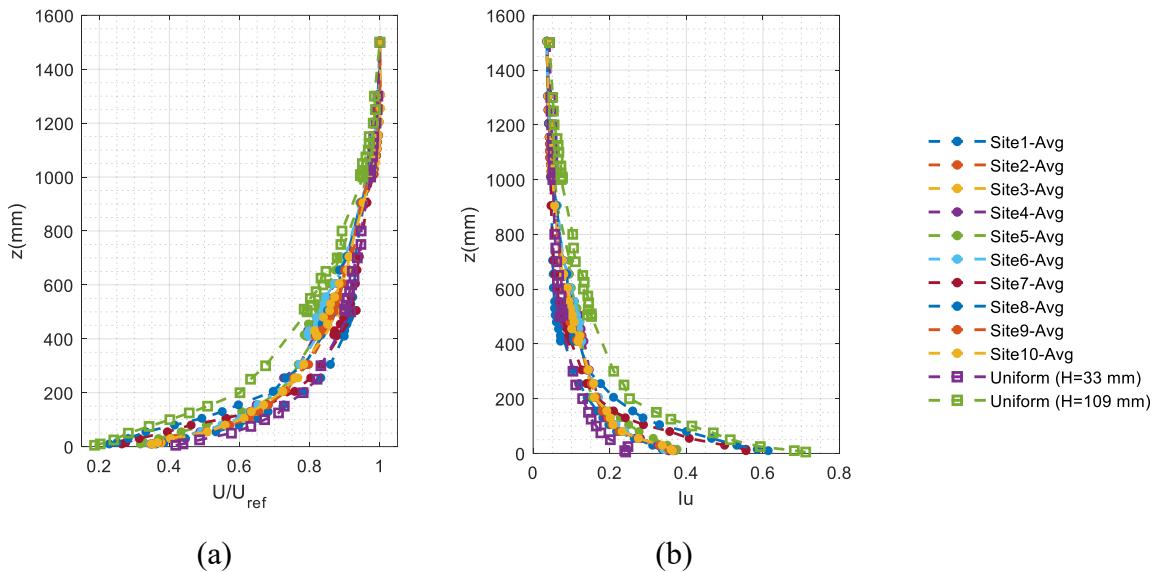
403 Figure 3: Pressure taps layout of the low-rise model.
404


405

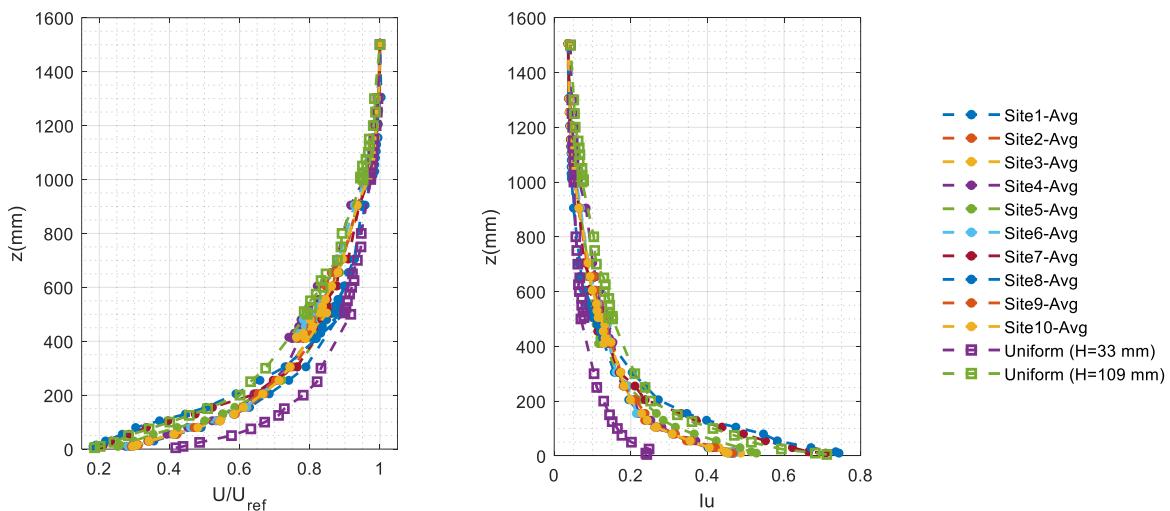
406 Figure 4: The mid-rise model with pressure taps installed.
407


408

409 Figure 5: Pressure taps layout of the mid-rise model (Units: mm)
410



Maps Data: Google, Imagery ©2024 Airbus, CNES / Airbus, Maxar Technologies, U.S. Geological Survey,
 USDA/FPAC/GEO, Map data ©2024


411 Figure 6: Aerial images of Sites 8, 11, 23, 28, 39, and 48. The location mark at the bottom of the figures shows
 412 the measurement location in the wind tunnel and the wind flows from top to bottom. (Map data from Google,
 413 Imagery © 2024 Airbus, CNES/ Airbus, Maxar Technologies, U.S. Geological Survey, USDA/FPAC/GEO, Map
 414 data ©2024)
 415

416 Figure 7: Roughness elements height in the BLWT for Sites 8, 11, 23, 28, 39, and 48.
 417

418
419 Figure 8: a) Normalized wind speed profiles of ten nonuniform sites compared with two uniform cases b)
420 Turbulence intensities of ten nonuniform sites compared with two uniform cases. The scale of upwind terrains
421 was 1:100 and the y-axis is in the BLWT scale.

422
423 Figure 9: a) Normalized wind speed profiles of ten nonuniform sites compared with two uniform cases b)
424 Turbulence intensities of ten nonuniform sites compared with two uniform cases. The scale of upwind terrains
425 was 1:50 and the y-axis is in the BLWT scale.

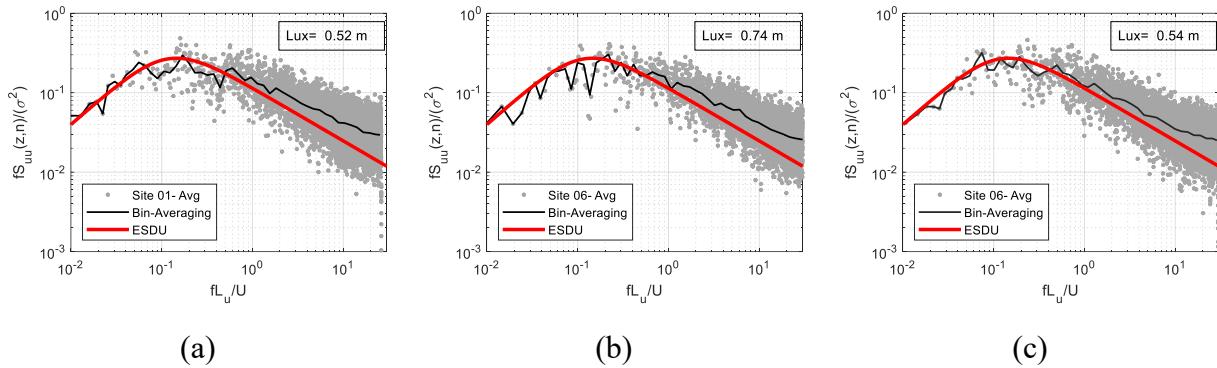
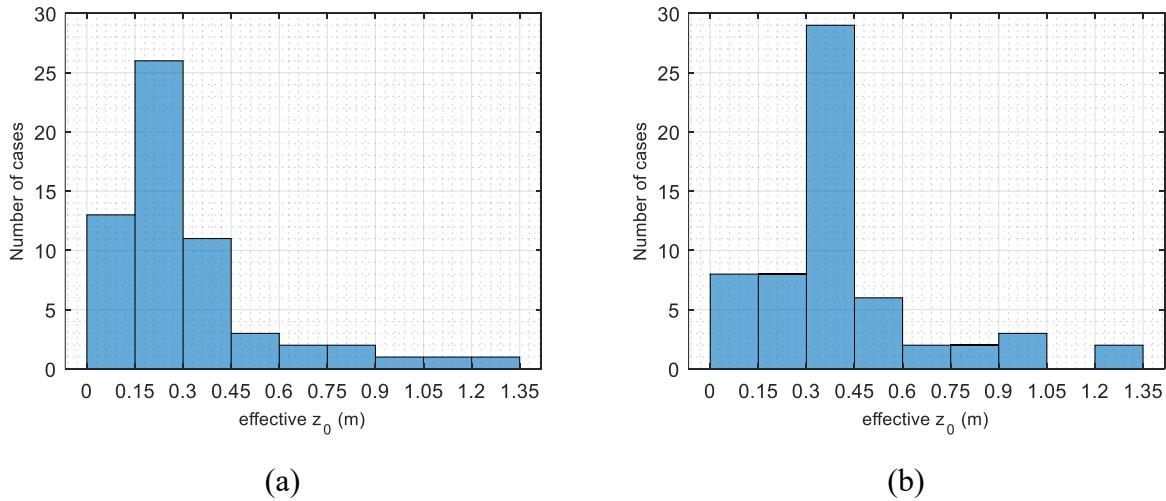
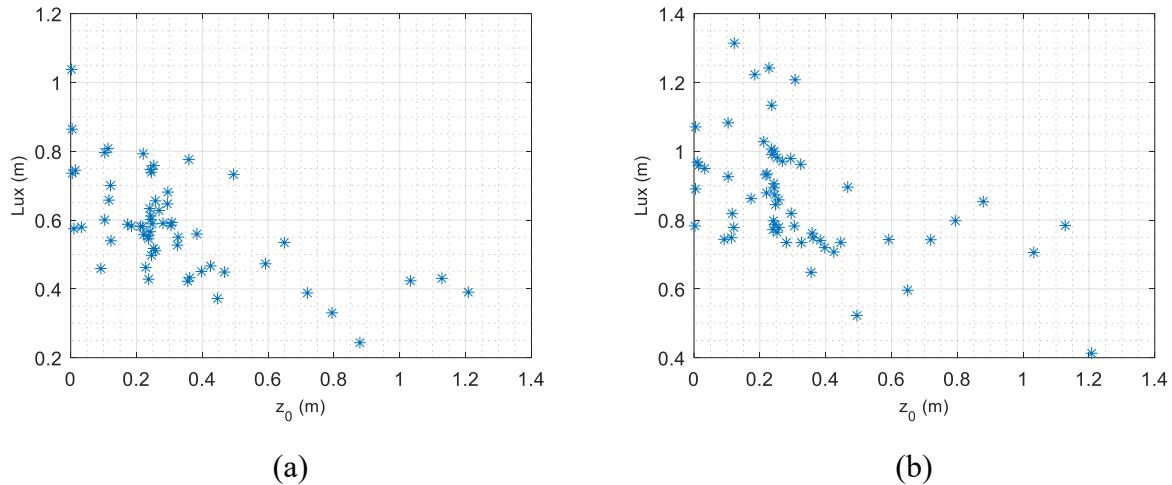
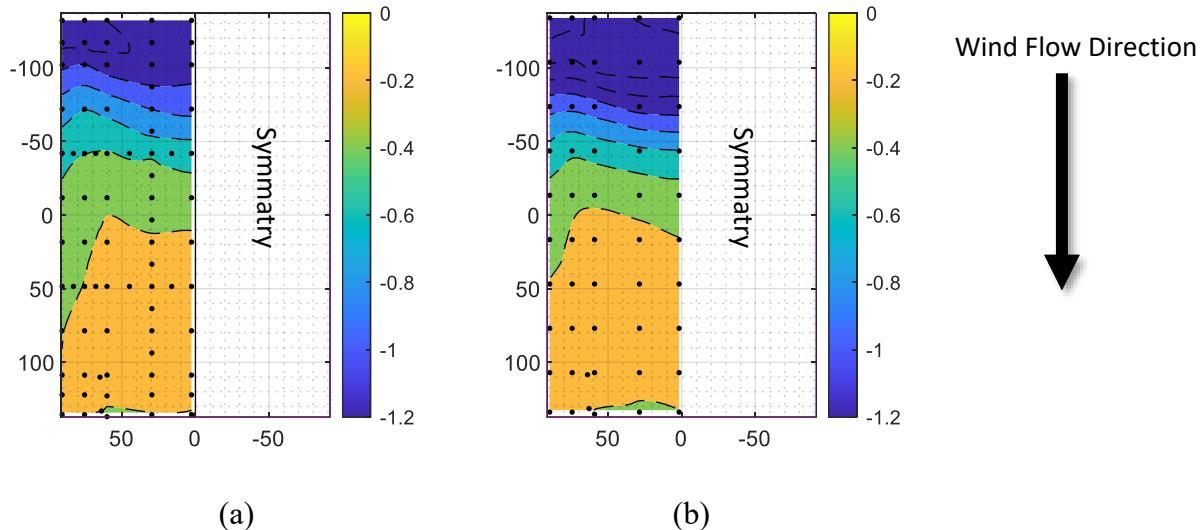


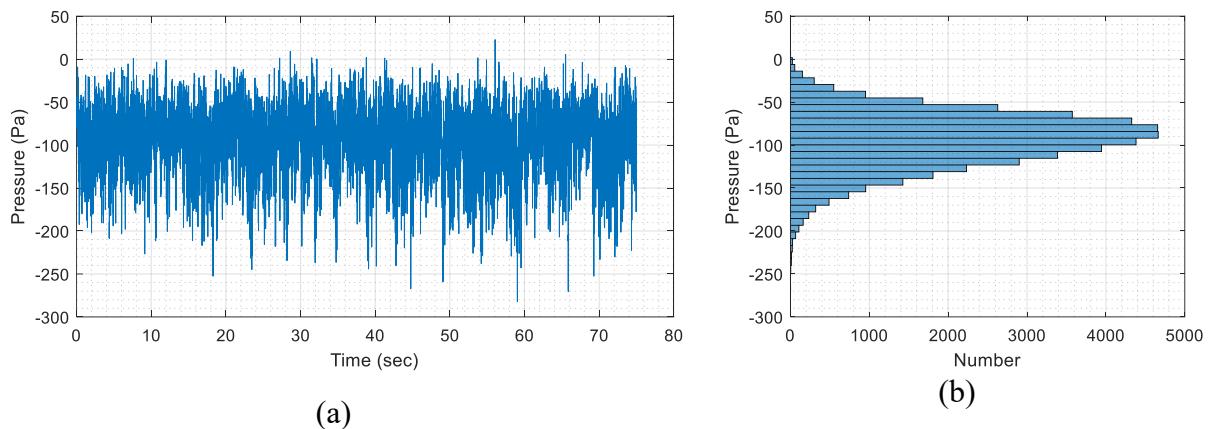
Figure 10: Wind speed power spectra at 10 m full scale height for a) site 01- Avg case with 1:100 scale, b) site 06- Avg case with 1:100 scale, c) SandyT3-d60- Max case with 1:100 scale

426
427
428

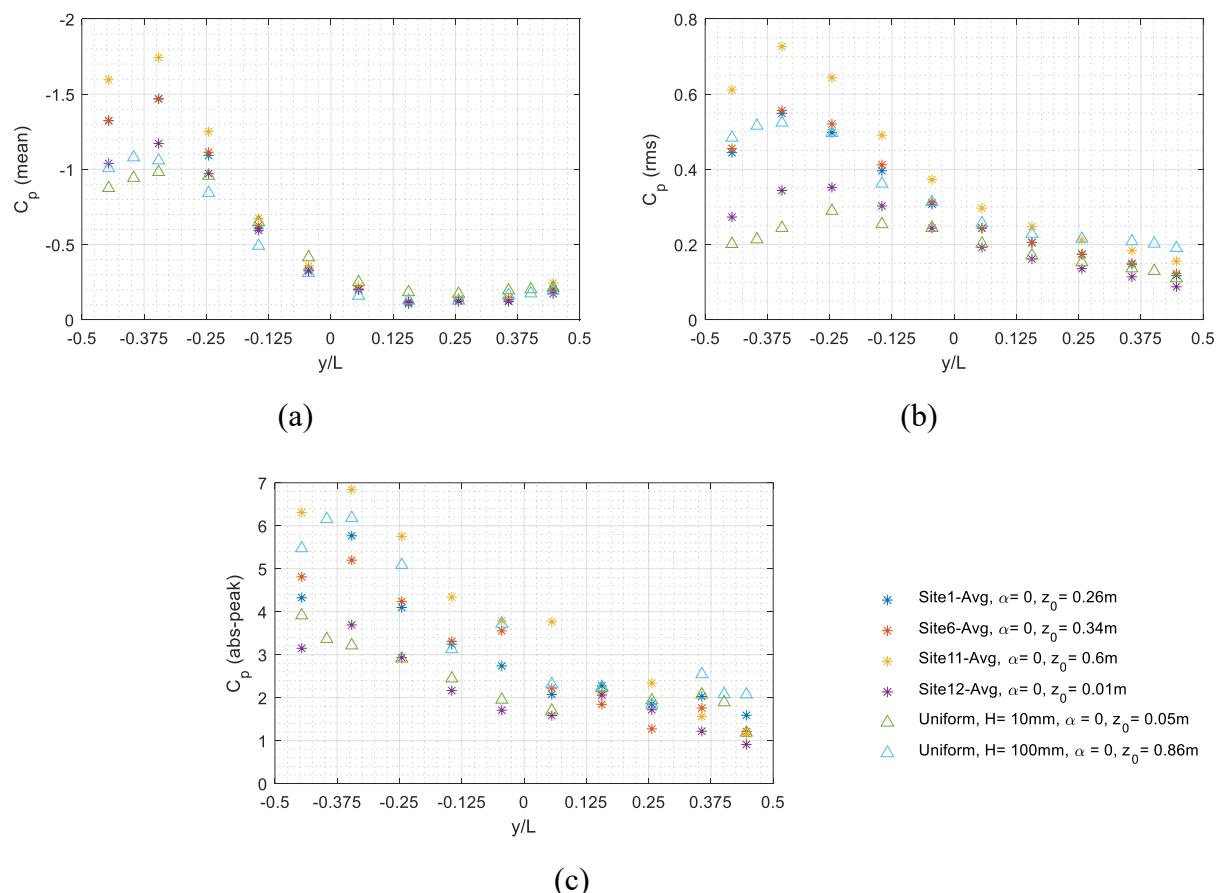




Figure 11: Effective z_0 estimated from wind tunnel measurement for cases in sets B, C and D with a) 1:100 scale and b) 1:50 scale

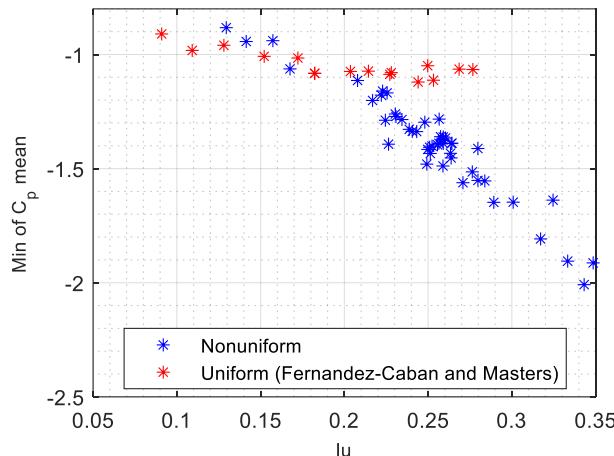
429
430
431


432 Figure 12: Longitudinal integral length scale at 10 m full scale height vs. effective z_0 estimated from wind tunnel
433 measurement for cases in sets B, C and D with a) 1:100 scale and b) 1:50 scale

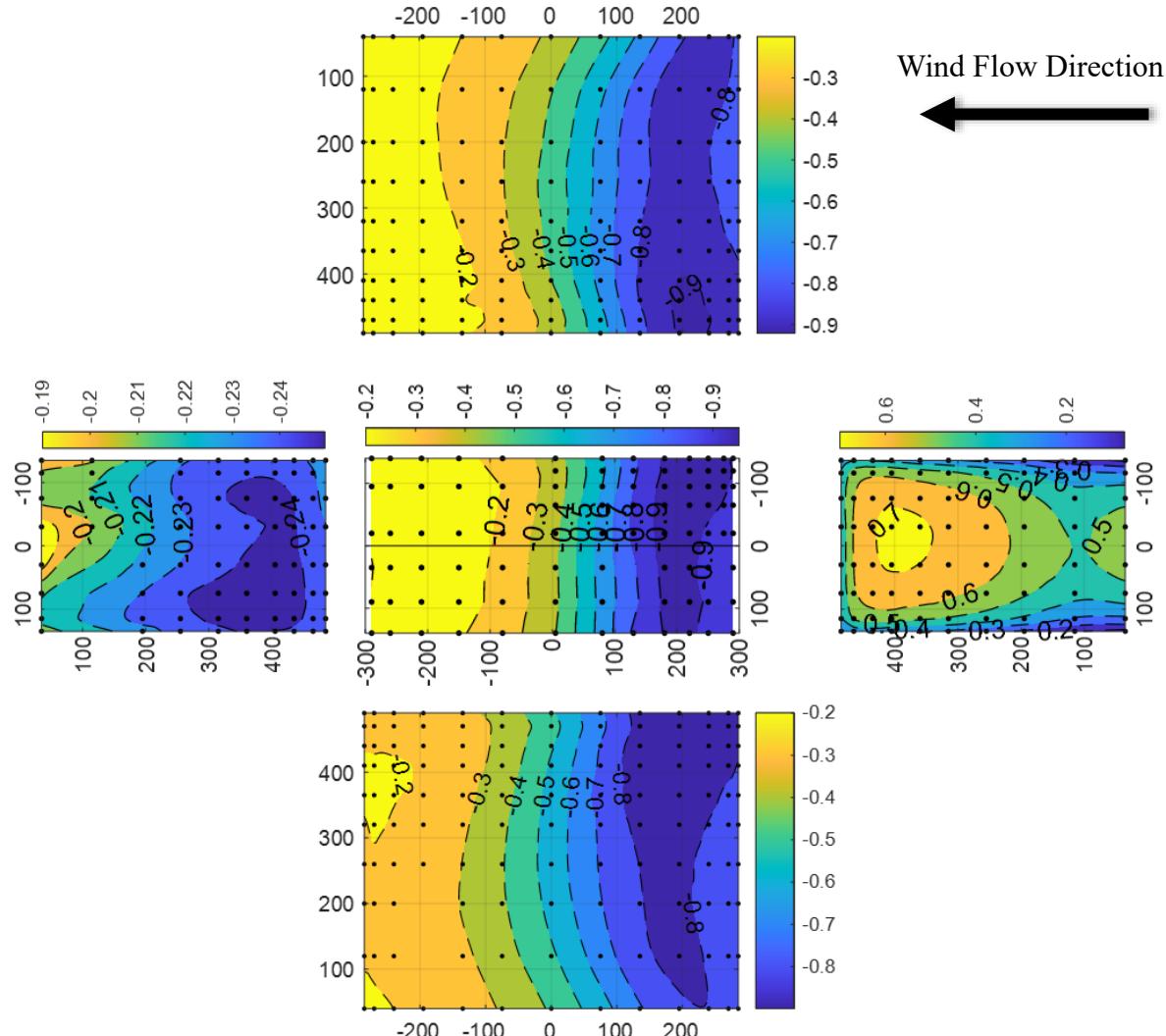
434



435 Figure 13: Mean pressure coefficient distribution on the low-rise model roof with 0-degree wind angle of attack
436 for a) uniform case with roughness height of 6 cm and $z_0 = 0.3$ m and b) site03-Avg case (pressure file name =
437 0030302S0007-000) with $z_0 = 0.32$ m


438

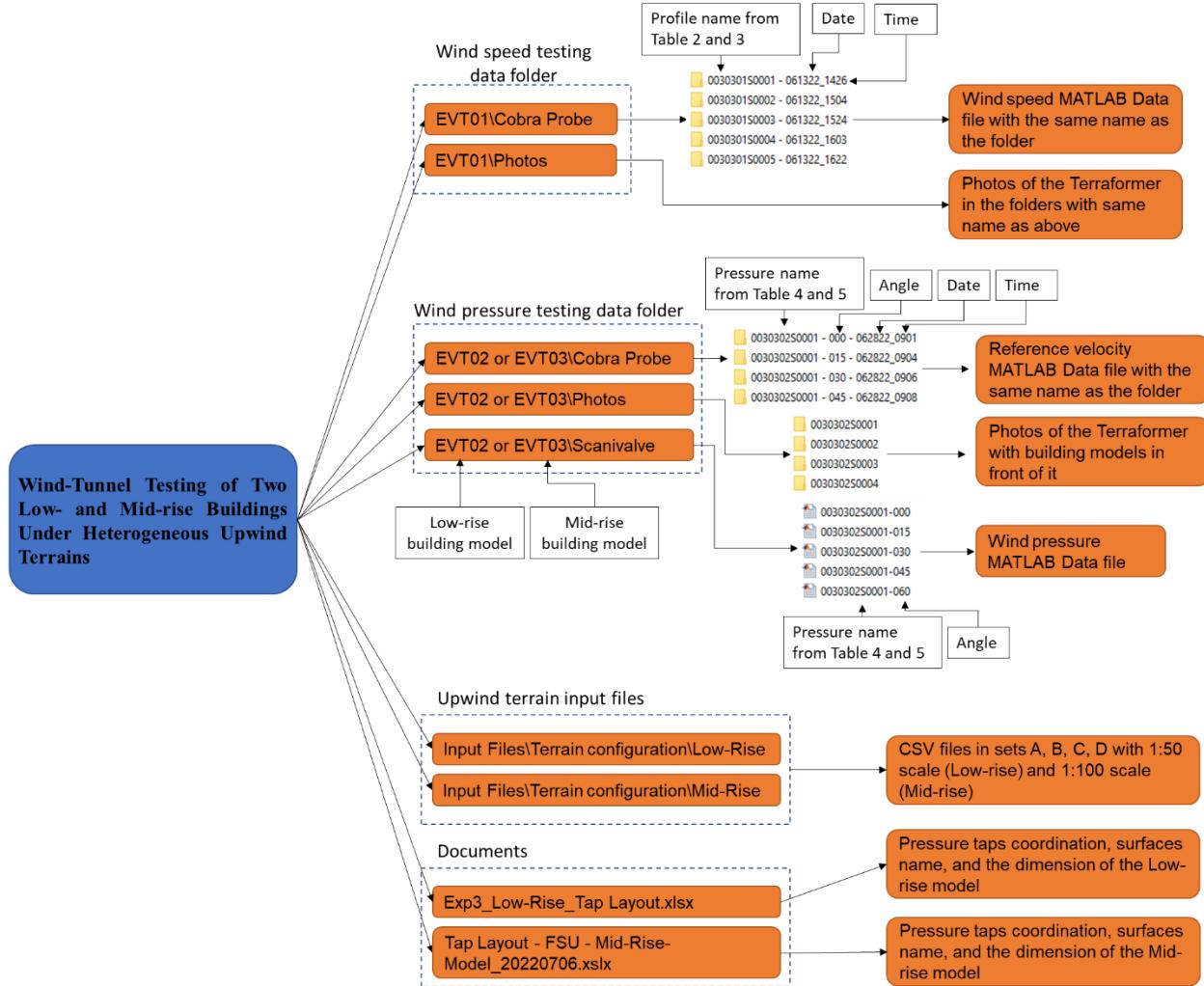
439
440 Figure 14: a) Pressure time series and b) histogram of pressure tap number 401 (see ‘Scanivalve.TapData’ array
441 in the Matlab files to locate the tap) on low-rise model for site 1- Avg with 15-degree wind angle of attack
442 (pressure file name = 0030302S0001-015)



443
444 Figure 15: Mean, root mean square (rms) and absolute peak (abs-peak) pressure coefficients along the ridge of
445 the low-rise building model for 0-degree wind angle of attack with low-pass filtered data (model scale=1:50)

446

447 Figure 16: Minimum of mean pressure coefficient along the ridge of the low-rise building model for 0-degree
448 wind angle of attack with low-pass filtered data (model scale=1:50) vs. turbulence intensity at eave height
449



450

451 Figure 17: Mean pressure coefficient distribution on the mid-rise model with 90-degree angle of attack for
452 site15-Avg case (pressure file name = 0030303S0025-090)

453

454

455

456 Figure 18: Wind speed and wind pressure data and metadata files organization on the DesignSafe-CI repository