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Summary

The vast chemical space of emerging semiconductors, like metal halide perovskites, and their
varied requirements for semiconductor applications have rendered trial-and-error
environmentally unsustainable. In this work, we demonstrate RoboMapper, a materials
acceleration platform (MAP), that achieves tenfold data intensification by formulating and
palletizing semiconductors on a chip, thereby allowing high-throughput (HT) measurements to
generate quantitative structure-property relationships (QSPRs) considerably more efficiently
and sustainably. We leverage the RoboMapper to construct QSPR maps for the mixed ion FA .
yCsyPb(I1-xBrx); halide perovskite in terms of structure, bandgap and photostability with respect
to its composition. We identify wide bandgap alloys suitable for perovskite-Si hybrid tandem
solar cells exhibiting a pure cubic perovskite phase with favorable defect chemistry while
achieving superior stability at the target bandgap of ~1.7 eV. RoboMapper’s palletization
strategy reduces environmental impacts of data generation in materials research by more than
an order of magnitude, paving the way for sustainable data-driven materials research.
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Introduction

The proliferation of quantitative structure-property relationships (QSPRs) is revolutionizing
the design of use-based compounds including pharmaceuticals and energy materials by
providing pragmatic property predictions which dramatically accelerate the time frames of
discovery.! Such rapid and disruptive advancements have inspired the materials research
community to adopt QSPR models to accelerate use-based material design, synthesis
optimization, and discovery.>’ However, the issues of experimental data sparsity and
reproducibility continue to hamper the materials community’s adoption of rapidly emerging
data science tools®® and are symptomatic of a wider problem: only a small fraction of data
generated in research labs is communicated, a smaller fraction still is made available in
databases,”!’ and what data is mined from the literature is often unreliable and/or lacks
sufficient protocol details.!!''* Chemistry and biology have shown that adoption of automation,
robotics and high-throughput (HT) infrastructures are proven pathways to successful
digitization of experimental datasets.!®!%!31618 Moreover, the experience of these disciplines
has shown that adoption of informatics and QSPR models can make data collection repetitive
and labor intensive,'®!® which favors adoption of automation in materials research.!®-3!

In recent years, the materials research community has seen the emergence of materials
acceleration platforms (MAPs). MAPs automate repetitive materials research tasks, facilitate
digitization of materials laboratory data, and have increasingly facilitated generation of QSPR
models in chemical and materials research,???** in line with the Materials Genome Initiative
2.0 strategic plan.’>’” MAPs automate data generation by emulating tasks performed in
materials laboratories,?**® such as formulation of precursors or feedstocks,'***? processing or
fabrication of compositionally and structurally diverse materials,?>?” and characterization of
synthesized/processed materials.?>?>2%27 Additional design considerations for MAPs is the
environmental impact and material research sustainably associated to generation of QSPR
maps. While automation is a proven path toward reduction of labor intensive tasks, repeating
wasteful and environmentally harmful practices is likely to exacerbate environmental problems
associated to already wasteful practices.>**! An opportunity therefore exists to design MAPs
that establish QSPRs more sustainably by reducing waste, greenhouse gas emissions (GHGEs)
and other environmental impact categories of experimental research. In addition to generating
data with efficiency and reduced environmental impact, next-generation MAPs have the
opportunity to overcome the lack of information-rich data characteristic of many MAPS which
integrate a fixed number of characterization methods.!*>**%*” We take the view that MAPs are
ripe for innovation: they can be designed to generate information-rich data by enabling multi-
modal characterization that is automated and decentralized; the generated sample layouts can
reduce operational steps of research, as well as energy, GHGEs, waste and time. Evaluating
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environmental impacts of existing materials research workflows via methods, such as life cycle
assessment (LCA),*** provides insights into the bottlenecks of state-of-the-art materials
research and creates opportunities to reduce GHGEs and make design improvements that will
maximize data intensity. Industrial palletization approaches have improved supply chain
productivity and provide inspiration for challenging human-centric laboratory workflows by
reducing operational steps by placing multiple materials on a common pallet or substrate to
achieve considerable efficiency gains,**** reducing cost and energy.!®*3* Recent advances in
capillary printing*® combined with liquid handling'®?*°%” make it possible to design MAPs
that can robotically palletize materials by formulating materials on-the-fly and depositing
miniaturized pixels on a common substrate, similar to how chemists and biologists parallelize
samples in well plates.'® Pallets can thus be mapped efficiently via HT characterization
methods to generate multi-modal QSPR models with reduced operational steps and material
waste.

A priority area of materials research that can benefit from rapid developments in MAPs is the
area of metal halide perovskites (MHPs).!?-2!2>-27 MHPs are emerging semiconductors with
compositionally tunable structure and properties and a very large design space.*’*® To date,
over two thousand unique MHPs have been demonstrated or predicted, with orders of
magnitude more compounds and alloys possible.!®*-** MHP semiconductors have allowed
single junction perovskite solar cells to match the power conversion efficiency (PCE) of
monocrystalline Si photovoltaics close to 26%.°! However, a new challenge in this field is the
development of new wide bandgap MHP alloy with a bandgap of ~1.7 eV toward development
of perovskite-Si hybrid tandem solar cells, which have recently achieved a PCE of 33.2%.°' A
number of studies have shown that the bandgap tuning through the mixed halide alloying comes
at the expense of light-induced halide segregation, which causes photodegradation of the
material and device under illumination.>>>* Thus, compositional tuning with multi-component
alloying (through mixing of both cations and halides) has been widely used to design the
desired MHPs that exhibit thermodynamically stabilized perovskite phases and are
photostable.*>° It is therefore essential to develop multi-modal QSPR maps that relate the
phase diagram, bandgap, and photostability to the composition of MHPs to zero in on ideal
alloys.

Here, we introduce the RoboMapper (Figure 1), a new concept in MAPs that palletizes
materials on demand and uses decentralized HT characterization facilities to generate multi-
modal QSPR maps efficiently. The RoboMapper integrates on-the-fly formulation with micro-
printing and micro-coating of MHPs directly on a chip and accelerates QSPR mapping 14-fold
compared to manual workflows and 9-fold compared to serial automation MAPs. We utilize
the RoboMapper platform to construct a comprehensive phase diagram of the quaternary FA ;.
yCsyPb(I1xBrx); hybrid perovskite system using synchrotron-based HT wide angle X-ray
scattering (HT-WAXS). We focus on a photovoltaic region of interest in the iodine-rich
quadrant (FA and I rich phases with 0 < x < 0.35 and 0 <y < 0.45) to search for a pure cubic
perovskite alloy exhibiting an ideal bandgap of ~1.7 eV target bandgap suitable for perovskite-
Si hybrid tandem solar cells. To do so, we construct QSPR models for bandgap and



photostability. Photostability is a powerful screening tool as demonstrated by recently
developed diffusion-stability framework which relates material photostability to solar cell
device hysteresis.®® Using the developed QSPRs, we predict new wide bandgap compounds
and validate these results with spin-cast thin films with remarkable consistency, proving the
reliability and fidelity of the platform and our model. The predicted ideal compound
(FA0.775Cs0.225Pb(l0.749Bro.251)3) is translated to single junction p-i-n solar cells with PCE of
19.20 £ 0.45%, low hysteresis and far better photostability than other compounds evaluated
within the QSPR map at 1.7 eV. We evaluate the scientific link between photostability and the
vacancy concentration and show the ideal composition exhibits low halide vacancy
concentration. This can explain why photo-induced halide segregation and photobleaching of
the ideal compound were considerably slower. We evaluate the cost, energy requirements and
environmental impact of this approach via LCA in contrast to manual labor and serial
automation MAPs. The RoboMapper generates QSPR datasets with 1/50'" the cost and 1/25%
the energy of manual workflows even when excluding labor costs. Importantly, the
palletization approach slashes environmental impact on ecosystems, human toxicity and
GHGEs by 1/10" by reducing the electricity consumption of characterization and by reducing
waste generation. Our palletization strategy paves the way for materials research to be
accelerated while remaining sustainable by making MAPs considerably more data intensive
and information-rich in their quest for QSPR models for material design.

Results and discussion
RoboMapper: Automated formulation and on-chip palletization

Figure 1 illustrates the RoboMapper platform we have developed in-house and its workflow.
The RoboMapper platform (Figure 1B and S1) is a compact, benchtop multi-robot platform
consisting of an ink formulation bot based on liquid handling technology working in tandem
with a dispensing bot consisting of a gantry-based hollow capillary that allows micro-printing
and micro-coating with volumes ranging from 0.6 pL to 0.5 nL (See the SI part I for details).
This coating approach builds upon the similarity between hollow capillary coating/printing and
slot-die coating, which is the premier scalable manufacturing method used in solution-
processed semiconductors, including HMH materials, and the low material utilization rate of
the process. In contrast, MAPs currently in use employ spin coating or drop casting on
traditionally sized coating areas.’>?’! The tedious substrate cleaning procedures and
challenges in substate handling and storage limit the size of these campaigns to what manual
workflows would typically achieve?*® (see Figure S2 for details). The nature of spin-coating,
which requires relatively large sample areas (> 1 cm?) to achieve uniformity and large ink
volumes owing to >95% ink waste, also makes large QSPR datasets expensive and
environmentally unsustainable to obtain, as will be discussed below. The RoboMapper’s home-
built user interface designs the palletization of materials (Figure 1A) by defining the boundaries
of QSPR campaign in terms of materials composition and ink formulation, the layout of these
compounds on the substrate, and their size and geometric patterns (dots, lines, patches, etc.)
and spacings. A key design consideration of multi-modal characterization campaigns on
material pallets is the necessity to meet the requirements of every intended characterization
method. This includes measurement footprint and spatial resolution, as well as choice of
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substrate (e.g., conducting vs insulating, optically transparent vs opaque, x-ray transparent,
etc.).

Given the spatial resolution of the RoboMapper, our robotic palletization approach can
theoretically integrate up to 2,500 pixels/cm? with an average size per pixel of 50 um along a
square lattice arrangement and a center-to-center spacing of 200 um. This highlights that a very
large number of materials and associated data can be encoded on a single pallet. This in turn
requires spatially resolved analytical probes that can scan samples automatically to conduct
HT characterization and construct QSPR maps. In this study, we conducted QSPR campaigns
focused on optical characterizations performed on-site as well as off-site structural
characterizations at NSLS II synchrotron to establish QSPR models of hybrid perovskite phase
diagram, composition-dependent bandgap and photostability. For this study, we have palletized
up to 150 compositions (and multiple copies thereof for verification of reproducibility). We
conducted laboratory-based HT optical microscopy, HT micro-photoluminescence (HT-uPL)
spectroscopy mapping, as well as synchrotron-based HT-WAXS mapping. These experimental
campaigns were conducted in a closed loop, where needed, to refine the dataset and validate
QSPR models. The resulting information from these characterization techniques helped us
create a high-fidelity data stack (Figure 1C) towards construction of QSPRs that link the
bandgap and photostability of hybrid perovskites to their composition and crystalline phase.

The RoboMapper workflow adapted to hybrid perovskites research is summarized in Figure 2.
A library of AX and BX precursor salts in various solvents (Figure 2A) is used as stock
solutions, together with blank solvents, to create mixtures resulting in hybrid perovskite ink
formulations, including all 150 compositions that are evaluated in this study. The RoboMapper
aspirates (Figure 2B 1) the prescribed stoichiometric volume of stock precursor through its steel
tube and carefully rinses itself prior to switching to another stock precursor. Once all
components are aspirated, mixing is conducted (Figure 2B ii) directly in the tube by pulsing
the liquid controllably several times resulting in the desired formulation. Once ready, the
mixture is ready to be dispensed into the well plate (Figure 2B iii) at a designated position, the
tube is flushed with pure solvent and the formulation bot prepares the next ink. The deposition
bot moves in to immediately load the hollow capillary with the ready-made ink (Figure 2B iv)
and approaches the substrate to deposit the ink at a designated location on one or more
substrates according to a pre-determined pattern (Figure 2B v). The capillary is cleaned
automatically (Figure 2B vi) before performing the next deposition. The cooperative workflow
between the two bots should enable the seamless formulation and deposition of a large
composition set of hybrid perovskite materials from their precursor and solvent libraries onto
a single substrate. The substrate can be placed on a computer-controlled hotplate during
deposition or moved to a hotplate to be annealed after all materials are deposited.

As a basic proof of concept of this workflow, we demonstrate how MAPbBr3 is formulated and
deposited in a step-by-step manner by the RoboMapper starting from MABr and PbBr2
precursor salts in stock solutions (Video S1 and Figure S3A show). The entire process is
completed within 8 minutes in a 30% humidity controlled dry lab. We demonstrate the
versatility of the deposition head to satisfy the resolution and requirements for different HT-
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characterizations by creating different patterns of MAPbBr3, including dot arrays (50 um
diameter), lines (1.5 mm length), and square patches (500 by 500 um) with 600 nm thickness
(Figure 2C). The square patches are evaluated by UV-Vis absorption measurements, the lines
are ideal for grazing incidence wide angle X-ray scattering (GIWAXS), whereas HT uPL
(Figure S4A) and synchrotron-based HT WAXS measurements (Figure S4B) can be conducted
on dot arrays. We confirm the resulting material is MAPbBr3; by comparing its bandgap to
previous reports (Figure S3B),*"*%2 and its diffraction pattern to MAPbBr3; powders (Figure
S3C).

To demonstrate multi-material processing, we continuously formulate and deposit dot arrays
of 5 commonly studied HMH compounds on the same substrate, namely the hybrid perovskites
MAPbBI’3, FAPbBI’3, MAPbBI‘zAClo,f,, MAPbBI’],sCl],s (mixed halide), and the Ruddlesden-
Popper layered perovskite (PEA);PbBrs. Figure 2D shows optical and fluorescence
micrographs of each material printed on the substate. Different emission colors for each
material agree with previous reports based on material bandgaps.’**> HT WAXS and pPL
results revealing the structure and optical properties of the different compounds are plotted in
Figure 2E. The (100) peak positions of MAPbBr3 (1.056 A™'), MAPbBr,4Clos (1.065 A1)
MAPbBr; 5Cly 5 (1.075 A') and FAPbBr; (1.042 A!) and the trends of (100) peak shift with
cation and halide substitution/doping are in agreement with expectations.®!#%> The absence of
(00/) peaks in WAXS from (PEA)>PbBr4 can be explained by the transmission geometry of
WAXS and the formation of the layered perovskite structure with quantum wells parallel to
the substrate plane.®®®” Likewise, the emission peak positions of MAPbBr; (538 nm),
MAPbBBr2.4Clos (515 nm), MAPbBr1 5Cly.5 (482 nm), FAPbBr3 (550 nm) and (PEA)>PbBr4 (410
nm) obtained from pPL measurements are consistent with the fluorescence color observed in
Figure 2E and with prior reports for these materials.’!6%® The structural and spectral results
indicate compositional and phase purity indicative of success rinsing and cleaning protocols
between successive ink formulations and depositions (see SI and Figure S5 for further details).
These results highlight the proof of concept of the distributed RoboMapper workflow that can
be expanded toward even more flexible and advanced implementations.

Palletization benefits: Acceleration, sustainability and scalability to big data

We evaluate the RoboMapper workflow’s benefits from the perspectives of experimental cost,
energy consumption, environmental impacts and scalability to large datasets in comparison to
manual research and existing MAPs built on serial automation, as depicted in Figure S2. To do
so, we have applied the LCA methodology specified in the ISO 14040-14044 series by
considering all aspects of sample preparation from cradle to grave. The functional unit selected
to compare the three workflows is the experimental investigation of 500 mixed ion perovskite
compositions, a relatively large dataset by current standards. The characterizations include
optical microscopy, PL, XRD, and photostability evaluations. The details of LCA including
definition of the system boundary (Figure S6), the full life cycle inventory (Table S1-S5) and
the results (Table S6-S13) are presented and discussed in SI. We have broken down the total
time needed to conduct tasks into smaller rate-determining steps (see pie charts in Figure 3A)
during formulation, processing, and characterization, we are able to estimate the average time



24,27,31

for each step, from similar evaluations conducted in the literature as well as a decade of

experience conducting such workflows in our lab.

Time savings. Our analysis (Figure 3A) reveals the RoboMapper workflow and traditional
MAPs save considerable time during ink formulation and sample preparation compared with
the manual workflow because of the more efficient, continuous, and automated procedures
done by robots. While both RoboMapper and current generation MAPs are comparable in
sample preparation time, considerable time savings by the RoboMapper are observed when it
comes to characterization, primarily thanks to reduction of the number of operational steps
associated with sample loading, alignment, and calibration. These time savings are
considerable when palletizing 500 compositions. As a result, it can take as little as 6 days for
500 compositions palletized by the RoboMapper to be fully screened while the same task
requires at least 54 days via serial automation and upwards of 84 days for manual workflow
using full time labor. This constitutes a 9-fold acceleration in data generation for RoboMapper
compared to existing MAP workflows and a 14-fold acceleration compared to manual
experimentation (see inset of Figure 3D).

Cost and energy savings. Besides time savings, we also evaluate the amount of waste, cost
(excluding labor and equipment) and energy demand for all three workflows (Figure 3B). We
find that automation in general reduces waste, cost and energy demand compared with the
manual workflow. However, the palletization feature of the RoboMapper further reduces these
categories by more than an order of magnitude thanks to micro-printing/coating capabilities.
We estimate a sample dataset generated by RoboMapper workflow will only cost $0.34 and
0.344 kWh, in contrast to $17.61 and 8.936 kWh for the manual workflow, and $2.82 and 6.284
kWh for existing MAPs, respectively (Table S13). This leads to impressive saving ratios (see
inset of Figure 3D) by the RoboMapper workflow, including 8 times cheaper and 18 times
more energy efficient than existing MAPs and 52 times cheaper and 26 times more energy
efficient than manual workflows.

Environmental Impact. Figure 3C displays the environmental impacts of the three workflows
on the selected five categories that are most concerning or dominant calculated by LCA from
all impacts (Figure S7A). Clearly, the environmental categories related with toxicity are being
affected the most for all three workflows. Nevertheless, the RoboMapper workflow reduces
the freshwater ecotoxicity, marine ecotoxicity and human carcinogenic toxicity impact
categories (0.11, 0.08, 0.05) by more than 24 times and 18 times compared with the manual
workflow (2.69, 1.98, 1.20) and serial MAPs (2.04, 1.44, 0.91), respectively. Even more
impressive, the RoboMapper workflow yields almost negligible effects on global warming and
fossil resource scarcity, with a score of 0.0025 and 0.0075, respectively, which correspond to
only 19.8 kg CO emitted and 7.3 kg of oil consumed, equivalently, compared with 536.4 kg
CO7 and 224.8 kg oil for manual workflow, and 350.8 kg CO; and 123.6 kg oil for serial MAPs
(Figure S7B).

Environmental impact of characterization. We further looked into what aspects of materials
research contribute the most to each impact category by further sub-dividing the workflow into
six categories and assessing their associated LCA: perovskite materials, solvents, supplies,
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electricity consumption during material processing (electricity-P), electricity consumption
during characterization (electricity-C), and waste, as summarized in Figure 3C and Figures S9-
13(A-D). Our analysis shows that electricity usage by materials characterization is by far the
dominant factor across all impact categories for all three workflows, mainly because of the use
of high-power instrumentation, such as XRD, lasers and solar simulators. Remarkably, HT
characterization of palletized materials saves considerable time and reduces operational steps,
including alignment and calibration which result in considerable reduction in electricity
consumption. This in turn reduces the environmental impact of RoboMapper materials research
quite dramatically.

Waste reduction due to palletization. In the interest of evaluating the environmental impacts
of the sample preparation method in terms of material utilization without characterization, we
have analyzed the impacts excluding the characterization (Figure S8). As expected, the
absolute and relative impacts of the three factors (perovskite materials, supplies and waste)
decrease considerably compared to manual workflows (Figure S8 and Figure S9-13F) with
adoption of serial MAPs (Figure S9-13G) and RoboMapper (Figure S9-13H), primarily
because of reductions in material and supply utilization. However, for the MAPs with serial
automated workflow, the consumption of solvents that primarily comes from the cleaning steps
during sample preparation begins to play a big role, especially in global warming and fossil
resource scarcity (Figure S9&13G) and the increased power consumption from the automated
platform makes electricity the secondary contributor to the freshwater and marine ecotoxicity
(Figure S14-15G). Only the RoboMapper benefits from miniaturization of materials quantities,
where the influence of the perovskite materials, solvents, supplies and waste are comparably
negligible along most categories (Figure S8). As a result, the increased usage of electricity by
the robots and instruments becomes a more significant factor although the total environmental
impacts are still lower than MAPs and manual workflow (Figure S9-13E&H).

Scalability toward big data. We have sought to evaluate the scaling differences among the
three workflows to large datasets consisting of thousands of experiments in terms of required
research time, energy demand, and cost. Figure 3D reveals the long-term benefits of
palletization in materials research: the RoboMapper workflow can scale much more easily and
effectively to large datasets than serial MAPs. For instance, completing a large dataset of
10,000 experiments can take nearly 2.9 years with serial MAPs, requiring 60 MWh of energy
and costing >$28,000 just in terms of materials and supplies. Compared to manual workflows,
this requires considerably less time (4.6 years), energy (90 MWh), and costs considerably less
($170,000). However, these savings pale in comparison to what can be achieved by the
RoboMapper workflow which completes 10,000 experiments in 4 months, consumes just over
3 MWh of energy and is estimated to cost $3,000. Overall, our analysis indicates tremendous
benefits of the RoboMapper palletization approach in terms of efficiency, sustainability, and
economy especially for generating medium to large materials datasets.

Multi-modal QSPR mapping in metal halide perovskites

For our main demonstration, we seek to map the double cation and double halide quaternary
system FA1yCsyPb(I1.xBrx); and preliminarily identify compounds which meet the



requirements for hybrid tandem photovoltaics with Si. This alloy is one of the most
consequential mixed ion HMHs investigated to date as it contains the
FA083Cs0.17Pb(Io83Bro.17)3  (x=0.17, y=0.17) hybrid perovskite popularized in
photovoltaics®*3%> and and the inorganic perovskite CsPb(1i.xBrx)s (x, y=1) desirable in light
emission applications.®® However, the experimental phase diagram and phase boundaries for
this alloy have not been established with sufficient detail,>®*® the boundaries of the single phase
regions are not known, and QSPRs that relate these phases to their properties of relevance to
photovoltaics are sparse or have not been established. Our search will focus initially on creating
a coarse phase diagram, from which we will identify the boundaries of the iodine-rich single-
phase compound. In a subsequent round we will refine the phase boundary and map the
bandgap and photostability in the region of interest to construct QSPRs. We will use the
predictive power of QSPRs to identify new compositions which achieve the target bandgap of
1.7 eV and rank them in terms of photostability. For the purposes of this study, all thermal
processing (150°C for 10 minutes) and measurement conditions (room temperature) are
selected to resemble those of typical thin film preparation and characterization.’®%*7" This will
ensure high fidelity with phases typically observed in thin film devices, however the reader is
reminded that measured phase diagrams should be considered nonequilibrium.

FA1yCsyPb(I1xBrx); quaternary phase diagram. To build the phase diagram of FA;.
yCsyPb(I1xBrx)3, 61 individual compounds in the compositional space by varying x and y
discretely from 0 to 1 were synthesized and palletized across one substrate spaced by 500 um
(Figure S14 and Table S14). The palletized sample was packaged in nitrogen and shipped to
the CMS beamline at NSLS II, where it was subject to HT WAXS mapping (Fig S4B).

Phase identification begins with the 4 unary compounds at the corners. The circular average of
the scattering patterns shown in Figure 4A are identified as those of the o phase FAPbI; (cubic),
0 phase CsPbl3 (orthorhombic), a phase FAPbBr3 (cubic), and y phase CsPbBr3 (orthorhombic),
respectively, matching our expectations and previous reports.>®$! To facilitate the analysis and
categorization of phases present in the mixed phase domains later, we label as 1C the cubic a
phase that is FA- and I-rich, 10 the orthorhombic 6 phase that is Cs- and I-rich, 2C the cubic
o phase that is as FA- and Br-rich, and 20 the orthorhombic y phase that is Cs- and Br-rich.
In Figure 4B, we present the 4 binary subsets of the quaternary system (full range in Figure
S15) showing structural trends with change of compositions along the four edges of the phase
diagram. Using the labeling scheme, we see the (101) peaks of 10 phase shifting to higher q
values with the increasing Br contents when x < 0.4 for CsPb(I1-xBrx)3 due to the decreased X
site radius with substitution of the small Br” ion with I (Figure 4B 1). At x=0.4, we observe the
co-existence of both the (101) peak of 10 phase at q~0.7 A™! and the (101) peak of 20 phase
at q~1.02 Al. With further increase of Br contents, the peaks belonging to the 10 phases
disappear and a shifting towards higher q values of (101) peaks in 20 phases is observed.
Similarly, substitution of FA™ with smaller Cs" also results in the shift towards higher q values
of (100) peak in 1C phases, as well as (101) and (102) peaks in 10 phases for FA|yCsyPbl;
(Figure 4B ii). Interestingly, when the 10 and 1C phases co-exist for 0.2 <y < 0.8, we observe
a more obvious shift of peak positions in 10 phases, possibly because of more Cs* doped into
10 phases. Very similar transitions from 1C to 2C (FAPb(I1xBrx)3), and 2C to 20 phase (FA .-

9



yCsyPbBr3) are also observed in Figure 4B iii-iv. The complete phase diagram (Figure 4C) is
built by analyzing the fingerprint peaks representing each phase for all the compositions
(Figure S16). The circles with different colors indicate the phases of measured compositions.
The phase boundaries are determined from the middle of two adjacent clusters of data points
with different phases.

In the absence of an actionable phase diagram like in Figure 4C, the community has tended to
rely on basic calculations using the Goldschmidt tolerance factor, ¢, and octahedral factor, u,
to predict the formation of stable structures at room temperature.”'””* The predicted phase
diagram for FA,CsyPb(l1.xBrx); is presented in Figure 4D for comparison (see supporting
information for details). We estimate 0.464 < p < 0.521 across the entire composition, which
suggests that all compounds meet the minimum criterion for perovskite structure formation (p >
0.41).”""* Meanwhile, 0.849 < ¢ < 1.066 and therefore some compositions should be cubic (0.9
<t <1), while others are likely to be distorted orthorhombic perovskites (0.849 <¢<0.9). For
t > 1, the A-site cations are too large to support the perovskite structure and a hexagonal
structure is predicted to form instead.”!””* Evaluating the differences between our actual and
computed phase diagrams, we find that the latter neither captures the mixed phase regions nor
does it predict the specific phase boundaries accurately. This is not entirely surprising given
the tolerance factor is designed to predict thermodynamically stable structures. Moreover, the
correct ionic radii are difficult to measure or calculate and different values have been
reported.”!””* This varies the tolerance factor values and affects the prediction of the actual
structures. Thus, experimental phase diagrams are essential for practitioners of the field to
understand the structure and phases of their materials and begin to establish structure-property
relationships.

QSPRs in a perovskite PV region of interest. Having obtained an initial coarse phase
diagram, we now focus our attention on the FA- and I-rich region (0 <x < 0.35, 0 <y < 0.45)
of interest to the PV community.>**%%7> We have refined the phase diagram (Figure 5A) with
20 additional compositions palletized by the RoboMapper for HT WAXS evaluation (Figure
S17 and Table S15). The close-up view of the phase diagram in the region of interest (Figure
S18) shows the refined phase boundaries and reveal the compositions with a small amount of
Cs (<25%) are ones most likely to form a solid solution giving rise to a single photoactive
phase (1C phase), the so-called “black phase” desired in photovoltaic applications. For
compositions with higher Cs and low Br contents, the 10 phase, also known as “yellow phase”,
forms together with 1C, which is highly undesirable for photovoltaics. Increasing the amount
of Cs requires higher Br contents to suppress the 10 phase formation. At low Cs concentration,
all the compositions are within the single-phase region, for example at y=0.1, as illustrated in
Figure 5B 1 and i1, the (100) peaks and the lattice constants change linearly with Br content.
However, at higher Cs concentration, for example at y=0.3 as indicated in Figure 5B iii and iv,
a sudden shift of the (100) peak position and a decrease of lattice constant are observed when
crossing the phase boundary. This is associated to an incongruent inclusion of the added Cs
and Br into the lattice of 1C phase owing to formation of a second phase (10), whereas all the
Cs and Br are incorporated into the single-phase solid solution within the 1C phase field.

10



To get a better overall understanding of the composition-structure relationship and derive our
first QSPR, we have quantitatively analyzed the lattice constants of the 1C phase field obtained
from the (100) peaks of all the compositions within the region. Figure 5C shows a 2D color
map of the 1C lattice constant for the entire photovoltaic region of interest. A monotonic color
evolution with varying Br and Cs contents and the linear contour lines (black dashed lines)
within the 1C phase region highlights the evolution expected within the phase field. The color
band in 5C deviates when crossing the phase boundary into the mixed phase region, as do the
contour lines. The contour line within the 1C phase field is obtained by linearly fitting the
lattice constant (Table S16) , a (R?=0.992). As a result, we obtain the QSPR of the 1C phase
lattice constant with the Br (x) and Cs (y) contents for the 1C phase within the single-phase
region, as expressed below:
a(A) = 6399 —0.369x — 0.154y (1)

The scatter plot in Figure S19B also demonstrates that the lattice constants of the 1C phase
changing with Cs content for all the measured compositions follow the same general trend,
where all the lattice constants of the compositions with pure 1C phase fall along the linear trend
line (calculated with equation (1)) while those with mixed phases (in the red circles) are above
the trend line.

We turn our attention to the relationship between the bandgap and composition within the
photovoltaic region of interest and seek to establish a QSPR within the single-phase region. To
do so, the RoboMapper was used to palletize the wider region of interest near the 1C phase
with 80 compositions (Figure S20 and Table S17) allowing HT-pPL mapping to evaluate the
emission properties, including bandgap (Figure S22A). In general, we observe the expected
blue shift of emission peaks with both increasing amount of Cs and Br, with a significantly
stronger blueshift with addition of the latter. Figure SE features two examples of the influences
of varying Cs at fixed Br content (1) and varying Br with fixed Cs content (i1) on the PL spectra.
We extract the bandgap by fitting emission spectra and establish a bandgap map across the
composition region of interest (Figure 5D). The bandgap mapping of the composition space
reveals the compositions which achieve the same bandgap within the 1C phase field by finely
tuning the Br and Cs contents. Isolines indicating equal bandgap are established by surface
fitting the bandgap map (Figure S22B) for both x and y (R*= 0.952; Table S18) using Vegard’s
model, which is a commonly used physics-based model for compound semiconductions.”®’”
We thus come up with a QSPR model fit to express the effects of Br (x) and Cs (y) contents on
the bandgap of the quaternary system as expressed in equation (2):
E; = 1.54 + 0.412x + 0.0799y — 1.40 x 1073x?

—2.16 X 1073y2 +9.63 x 107 3xy  (2)
The obtained QSPR model relating bandgap to composition is a valuable tool to identify
eligible compositions achieving target bandgaps within the mapped composition space.

Next, we seek to link the ambient photostability of FA1yCsyPb(I1.xBrx); compounds within the
same region of interest to evaluate the influence of the 1C phase composition and the presence
of the phase boundary on photostability. To do so, a copy of the palletized samples in Fig. 5D
was exposed to 1 sun in ambient air (30%RH) for a duration of 1h (Figure S23A), after which
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the sample was mapped once again by uPL immediately thereafter. By comparing the
normalized PL spectra before (Figure S22A) and after (Figure S23B) 1 sun exposure, we
observed three categories of photodegradation (Figure 5F): single emission peak undergoes red
shift (Type 1); double emission peaks form and undergo shift (Type 2); total loss of emission
peaks (Type 3). We visualize the distribution of these three types of photodegradation behavior
across the composition map (Figure S23C). Most compositions undergo Type 1
photodegradation. To quantify the relative photostability of the compositions, we define an
“instability score” which relates to spectral shifts (see SI for information). Figure 5G visualizes
the composition-dependent photo-stability map based on the instability score. Our
investigation reveals that photostability varies somewhat monotonously in certain regions
while exhibiting islands of stability and instability. For instance, considering the location of
the 1C phase boundary, it is noteworthy that the compositions within the 1C phase space are
considerably more stable than those in the mixed phase region 1C+10. Moreover,
compositions exhibiting lowest stability tend to be in the mixed phase region with high Cs
content and low Br content. We further validate the conclusions of the photo-stability map by
performing time-dependent pPL on 4 additional representative compositions exhibiting
different stability behaviors (See Figure S24 and S25 for details). The results are consistent
with the photostability map and confirm its reliability. So far, we have demonstrated a multi-
dimensional data framework (Figure SH) created by our RoboMapper workflow to reveal the
QSPRs of the quaternary mixed ion FA1.yCsyPb(I;xBrx)3 perovskites.

Data-driven wide bandgap hybrid perovskite screening. To further validate our established
QSPRs as well as demonstrate the practical use case, we predict 14 compositions (Table S19)
achieving the same bandgap but with very different A-site and X-site compositions as per
QSPR calculations (Figure 6A inset). For this case study we have selected ~1.70 eV which is
the optimal bandgap for the top cell of perovskite/Si tandem solar cells. The RoboMapper was
used to formulate and print these compositions for QSPR validation with pPL mapping. All
the predicted materials have similar and overlapping PL spectra (Figure S26). The measured
bandgaps achieve an average value of 1.710 eV with a narrow distribution of 0.007 eV (Figure
6A), very close to the target/predicted 1.70 eV with only small deviations. To examine the
transferability of the observed properties and correlations from RoboMapper samples to
traditional thin films, we selected 7 compositions to make spin-coated thin films and compare
the bandgap and photostability results with RoboMapper samples (Figure S27). Remarkably,
we observe similar bandgap results for each composition among the RoboMapper samples and
thin films (Figure S27) and the average bandgap for thin films is 1.707 eV with a standard
deviation of 0.010 eV, almost the same as RoboMapper results (1.713 £ 0.006 eV) (Figure 6B).
Similarly, photostability of the compositions achieving ~1.7 eV for both RoboMapper and thin
film samples show an identical general trend (Figure 6B inset) and a good match with the
predicted stability (Figure S27A). The compositions with high Br content show intermediate
instability scores with obvious red shifts of PL spectra, whereas the compositions with high Cs
content exhibit high instability scores with double emission peaks formation. Only the
compositions with ideal Br and Cs contents present low instability scores with very small shifts
(Figure 6C and Figure S27C). It is worth mentioning that the discrepancy of the absolute value
of the bandgap and instability score between the RoboMapper samples and the thin films may
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come from the difference of morphology and grain size due to different processing methods
and need further study in the future.

To prove the relevance for device application, we fabricated the perovskite solar cells (PSCs)
in inverted p-i-n architecture (Figure 6D) with three representative high Cs, ideal and high Br
compositions that show the same bandgap but very different photo-stability (Figure 6C).
Interestingly, we found the devices with ideal composition exhibit the best device performance
and reproducibility with an average power conversion efficiency (PCE) of 19.20 £ 0.45%,
overperforming the high Br (17.75 £ 0.59%) and high Cs (14.36 £ 1.65%) devices (Figure 6E).
The other device parameters like open circuit voltage (Voc), short circuit current density (Jsc),
and fill factor (FF) also present the same trend (Figure S28 and Table S20). The champion
device for the ideal composition has a Voc of 1.18 V, a Jsc of 21.54 mA/cm?, and an FF of
78.83%, resulting in a PCE of 20.06% (Figure S29 and Table S21). We further monitored the
PCE evolution of the three types of devices under 1 sun illumination at the open circuit
condition within one hour (Figure 6F). As expected, the devices with ideal composition show
the best photo-stability and can maintain 93.2 £+ 5.9% of their initial value, while the high Br
devices drop to about a half (53.6 £ 5.9%) and the high Cs devices only retain 23.2 + 2.4% of
the initial PCE. These results are in great consistent with the prediction of our QSPR models.
We also notice that the devices with ideal composition display almost negligible hysteresis
compared with the other two compositions (Figure 6G and Figure S30). According to previous
reports, it has been shown that the hysteresis is directly related to the migration of halide
ions/vacancies®”’® while the halide migration and the halide vacancy density are also
responsible for the photo-induced phase segregation®”’ and photodegradation.5®3%8! This is in
good agreement with our observations and provides us a pathway to understand the reasons for
the different performance and photostability of the three compositions. Thus, we
experimentally measured the rate of superoxide generation using the dihydroethidium
fluorescent probe (Figure S31), which has been shown the higher rate of superoxide generation
is linked to the higher density of vacancies in the hybrid perovskites.®*%%8! As indicated in
Figure 6H, we did find the ideal composition exhibits a significantly lower superoxide yield
and generation rate, being reduced by almost 50% compared to the high Cs composition and
by 30% compared to the high Br composition, providing evidence that the ideal composition
has the lowest vacancy density. This conclusion is further verified by the different light-
induced degradation rates of the thin films of the three compositions in the presence of oxygen
and moisture (Figure 6H inset and Figure S32). We found the high Cs thin film degraded very
quickly and totally turned yellow after 7 hours when the high Br thin film began to show
obvious color change, while the thin film with ideal composition could still maintain most of
its black phases after 12 hours. These are consistent with our hypothesis that the low vacancy
density in the ideal thin film can suppress the diffusion of halide ions and oxygen, which in
turn limits the transport of halide ions to form iodide- and bromide-rich domain as well as
slows down the rate of superoxide species formation, resulting in inhibited light-induced phase
separation and a slow degradation rate (Figure 6I).

Conclusions
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In this work, we have developed a robotic platform-RoboMapper and demonstrated an end-to-
end miniaturized, automated workflow from on chip experimental design to ink formulation
and micro-printing multi-materials on a single chip for high-throughput multi-modal
characterization with a wide range of laboratory- and synchrotron-based microprobes. The
unique RoboMapper workflow is shown by the life cycle assessment to be more eco-friendly
than the manual and existing automated workflow by yielding significantly less environmental
impact on ecosystems, human toxicity and GHGEs, and decreasing time, energy consumption
and cost by 9 to 52 times. A state-of-the-art case study on a quaternary FAyCsyPb(Ii-xBrx)3
perovskite system proves the ability of RoboMapper to rapidly establish the quantitative
structure-property relationships in a large and complex compositional space. The constructed
quaternary phase diagram based on experimental results provided more accurate and practical
guidance to the composition-structure relationship than theoretical predictions. The
quantitative lattice constant, bandgap, and photo-stability maps focusing on the photovoltaic
region of interest provide insights into the screening and prediction of compositions among a
wide range of options for target applications. Using the developed QSPR models, we searched
for the phase pure and photostable perovskite alloy exhibiting an ideal bandgap of ~1.7 eV
suitable for perovskite-Si hybrid tandem solar cells. The predicted new wide bandgap
compounds are validated with both RoboMapper samples and spin-cast thin films, matching
the predictions with remarkable consistency, proving the reliability and fidelity of the platform
and our model. The predicted ideal compound was translated to single junction p-i-n solar cells
with a PCE of 19.20 + 0.45%, low hysteresis, and far better photostability than other
compounds evaluated within the QSPR map at 1.7 eV. Furthermore, we evaluated the scientific
link between photostability and the vacancy concentration and showed that the ideal
composition exhibits low halide vacancy concentration, which can explain why photo-induced
halide segregation and photobleaching of the ideal compound were considerably slower. This
platform could also be applied to other solution processable materials such as organic
semiconductors, quantum dots, and nanoparticles to pave the way towards the fully
autonomous experimentation of ink-based semiconductor materials, ink formulations and
(opto)electronic devices co-design with the guidance of artificial intelligence (AI).

Experimental Procedures
Resource availability

Lead contact

Further information and request for resources and reagents should be directed to and will be
fulfilled by the lead contact, Aram Amassian (aamassi(@ncsu.edu).

Materials availability
This study did not generate new reagents. All the reagents used are commercially available as
described in Materials subsection.

Data and code availability
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All the data needed to evaluate the conclusions are available in the files in the Supplementary
information section. All other data and the code related to this work are available upon
reasonable request from the authors.

Materials

Formamidinium iodide (>99.99%), formamidinium bromide (>99.99%), methylammonium
bromide (>99.99%), phenylethylammonium bromide (>99.99%) were purchased from
GreatCell Solar. Cesium iodide (99.999%), cesium bromide (99.999%), lead iodide (99.999%),
lead bromide (99.999%), lead chloride (99.999%), dimethylformamide (> 99.8%, anhydrous),
dimethyl sulfoxide (>99.9%, anhydrous) were purchased from Sigma Aldrich. All the materials
and solvents were used as received without further purification.

Inks and RoboMapper sample preparation

The Si/Si0; substrates were pre-cleaned with soap, acetone, IPA and rinsed with DI water
followed with nitrogen drying. 1 M FAI, FABr, Csl, Pbl,, PbBr, were dissolved in
DMF/DMSO(4:1) as stock solutions and stirred in the nitrogen filled glove box overnight.
0.5M CsPbBr3 was used as the stock solution directly by dissolving equal molar of CsBr and
PbBr2 in pure DMSO due to the very low solubility of CsBr in the polar solvent. The different
ink formulations were made automatically by the liquid handler through mixing certain
volumes of the stock solutions controlled by the home-built LabVIEW software. After each
ink was formed, it would be deposited in the 384 well plate in order. Then the inks were loaded
into a 50 pm diameter hollow capillary and directly printed on the substrates by the dispensing
robot. 0.5 V applied voltage and 0.5 s dispensing time were applied during the printing and the
array has 300 um center to center distance. All the experiments were conducted in a 30%
humidity controlled dry lab at room temperature. After the printing was done, the samples were
transferred to the glove box and annealed at 150 °C for 10 mins.

Perovskite precursor solution and device fabrication

To make FA1yCsyPb(I1.xBrx)3 perovskite thin films, 1.4 M precursor solutions were prepared
by weighing the stochiometric amount of FAI, Csl, FABr, PbBr2, and Pbl; in precleaned glass
vials and dissolved into 800 uL DMF and 200 pL DMSO (4:1 volume ratio). After stirring for
4 hours, fresh solutions were used to fabricate thin films and devices. For the device fabrication,
ITO glasses were sonicated in a sequence of soap water, DI water, acetone, and IPA for 15 min,
respectively. The No-dried ITO glasses were transferred into glovebox after UV-ozone for 15
min. 50 pL MeO-2PACz (0.5 mg mL™) was spin-coated onto ITO substrates at 5000 rpm for
30s and then being annealed at 100 °C for 10 min. After cooling for 5 min, 1.4 M wide-bandgap
perovskite solution (with 30 mol % MACI additive) was spun coated at 5000 rpm for 30s with
200 pL ethyl acetate antisolvent dripped onto the spinning substrates at 15s and was then
annealed at 150 °C for 10 min. After cooling to room temperature, the substrates were
transferred into the chamber of thermal evaporator. LiF (1 nm), Ceo (25 nm), BCP (6 nm) and
Ag (100 nm) were deposited in sequence to finish the device fabrication.

Characterization and stability test of solar cell device
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J-V characteristics were measured with a Keithley 2400 source meter under 100 mW cm
illumination by the AM 1.5G solar simulator (Class 3A, Newport). The light intensity was
calibrated by the KGS5 silicon reference cell before the measurement. All the solar cell
measurements were conducted in the nitrogen filled glove box (O2, H2O <0.1 ppm) with a scan
rate of 0.2 V s (0.02 V voltage step and 100 ms delay time). The device area is 0.076 cm? and
is determined by the shadow mask during the thermal evaporation of contact. No mask/aperture
is used during the solar cell testing. The photostability test was also performed in the glovebox
with the home-built setup without any encapsulation. The light source consists of a white LED
array (TX 100W LED Chip) and a 120° concentration lens. The light intensity is calibrated by
the KGS5 silicon reference cell and equivalent to 1 sun AM 1.5 G illumination. A fan is used to
cool the sample and maintain the temperature around 30-35° under 1 sun illumination.

High-throughput wide angle X-ray scattering measurement (HT-
WAXS)

HT-WAXS was performed in the transmission geometry at the Complex Materials Scattering
(11-BM CMS) beamline of National Synchrotron Light Source II (NSLS-II), Brookhaven
National Lab. The double side polished Si substrate with high-throughput printed arrays was
mounted on a motorized x-y translation stage. The x-ray beam with the wavelength of 0.918A,
13.5k eV energy, perpendicularly penetrated through the printed samples. The x-ray beam size
was set to 0.2x0.2mm in order to cover isolated printed grains. The scattering signal was
collected by an area detector, Pilatus 800K, placed 259mm away from the sample. The
exposure time was 10s. All the measurements were done automatically with the python
software controlling the automated sample translations and data collection.

Steady-state and  time-dependent micro  photoluminescence

measurement (LPL)

The steady-state and time-dependent photoluminescence measurements were performed in a
home-built pu-PL setup. For FA1.yCsyPb(I1-xBrx)3 compositions, 532 nm laser beam was focused
to a~50 um spot to excite the whole individual pixel on the sample mounted on a x-y translation
stage with the power of 20 uW. The reflected light was then collected with the same focusing
lens and after passing through a 550 nm edge pass filter, the PL was spectrally resolved by a
spectrometer (Acton SP23001) and detected by a deep cooled CCD camera (PIXIS) with 2s
exposure time. The Br and Cl based compositions are measured with the same setup, except
that 400 nm laser beam and 450 nm long pass filter was used. The pPL spectrum of 2D
perovskite PEA>PbBrs were taken using an Edinburgh Instruments FS-920 photoluminescence
spectrometer with 360 nm excitation.

Time-dependent uPL was conducted by keep illuminating the pixel for 30 minutes with 532

nm CW laser with adjusted power density close to 1 sun (~ 100 mW/cm?). The uPL spectra
was collected every 1 min with LabView controlled program.

Optical and fluorescence microscopy
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Optical microscopy images were obtained on a Nikon Eclipse LV100POL microscope
equipped with motorized XYZ stage with 20X-, 50X and 100X objectives via automated
stitching controlled by the NIS-Elements software. The fluorescence images were excited with
a solid-state white light source (SOLA SM II 365) and collected through a BV-2A long-pass
filter cube. The exposure time was 100 ms.

UV-visible spectroscopy

The UV-vis transmittance measurements were performed using an F40-UVX (Filmetrics) for
thin films. The home-built UV-vis set up modified from the Nikon Eclipse 80i microscope was
used for material arrays and the spectra were collected with Ocean Insight flame UV-vis
spectrometer.

Superoxide generation

Superoxide probe testing was performed by dissolving Img of Dihydroethidium probe
(ThermoFisher) in Iml of chlorobenzene. Sonication was used to facilitate the dissolution.
Perovskite films were submerged into this solution. The film was illuminated with visible light
source using 520 nm long pass optical filter. The solution was exposed to xenon lamp with
approximate light intensity of ~10 mWem 2 (~ 0.1 sun). Photoluminescence spectra were
recorded using an excitation wavelength of 520nm and bandwidth of 10 on Edinburgh
Instruments FLS920 spectrofluorometer. The excitation light source for the fluorimeter was a
450 W Xe arc lamp equipped with a monochromator.
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Figure Titles and Legends

Figure 1. Schematic of the RoboMapper platform and workflow

(A) Illustration of the experimental design of inks formulated from different AX, BX> stock
solutions and solvents and mapped on a chip.

(B) Schematic of the RoboMapper micro-experimentation platform enabling automated ink
formulation and micro-printing of a wide variety of solution-processable materials from a
library of precursors onto a common substrate. The materials array is then subject to multi-
modal characterization and mapping using a wide range of laboratory- and synchrotron-based
microprobes.

(C) Demonstration of multi-layer data stacks linking the materials, structures and properties to
establish the quantitative structure-property relationship (QSPR).

Figure 2. Illustration of the RoboMapper platform for solution processing hybrid perovskite
materials and multimodal micro-characterization

(A) Precursor (AX, BX>) and solvent library used to formulate inks for different ABX3 and
An+1BnX3n+1 metal halide perovskites.

(B) Step by step illustration of the platform’s workflow from ink preparation (i-iii) to micro-
printing (iv-v) on a common substrate, as well as carefully optimized flushing (iii) and cleaning
(vi) steps to eliminate cross-contamination while allowing reuse of syringe and capillary.

(C) Photographs of (i) the dot array with 50 pm diameter of MAPbBr3 being printed; (ii) the
line array consisting of 30 lines of FAPbBr3;, MAPbBr3; and CsPbBr; with 1.5 mm length; and
(i11) the square patches of MAPbBr3; (500 by 500 um) with 600 nm thickness printed using
RoboMapper. Scale bars are 200 pm (i), 2mm (ii), 250um (iii).

(D) Optical microscopy (OM) and fluorescence OM (FOM) images with 50X magnification of
multiple HMH compounds micro-printed by the RoboMapper on the same substrate; the scale
bar is 20 pm.

(E) High-throughput wide angle x-ray scattering patterns (HT-WAXS) and micro-
photoluminescence (HT-uPL) spectra of pixelated samples in (D) confirming the structure and
optical properties of the pixels correspond to the compounds.

Figure 3. Life cycle assessment on the manual, automated and RoboMapper workflow

(A) Comparison of accumulated time to screen (formulate, process and characterize) 500
individual formulations by the three workflows. Inset: Pie charts representing the fraction of
time allocated to the most time-consuming steps in each workflow.

(B) Comparison of total time, waste, cost and energy demand required for all three workflows
to screen 500 perovskite formulations. Labor and capital costs are excluded.

(C) Accumulated column plot of the normalized environmental impact of three workflows on
global warming, freshwater ecotoxicity, marine ecotoxicity, human carcinogenic toxicity, and
fossil resource scarcity in terms of perovskites, solvents, supplies, electricity of the process
(electricity-P), electricity of the characterization (electricity-C) and waste.

(D) Scaling of time, energy demand, and costs with the increasing number of experiments for
the three workflow scenarios. The inset table shows the relative saving ratio in terms of time,
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energy demand and cost when comparing the RoboMapper workflow with manual and
automated workflows.

Figure 4. On-chip Robo-Mapping of quaternary phase diagrams: Demonstration of the FA .
yCsyPb(I1xBrx)3; mixed ion perovskite system’s non-equilibrium phase diagram

(A) Circular average of WAXS patterns and phase identification of the unary compounds at
the four vertices of the phase diagram: FAPbI3 (x=0, y=0) in the 1C (cubic) perovskite phase;
CsPblz (x=0, y=1) in the 10 (orthorhombic) non-perovskite phase; FAPbBr3 (x=1, y=0) in the
2C (cubic) perovskite phase; CsPbBr3 (x=1, y=1) in the 20 (orthorhombic) perovskite phase.
(B) Structural evolution from WAXS measurements along the four edges of the FAyCsyPb(I;-
xBrx)3 phase diagram with a Ax=Ay=0.2 step size, corresponding to four binary systems:
CsPb(I1xBrx)s (y=1; 1), FA1yCsyPbl3 (x=0; ii), FAPb(I1-xBrx)s (y=0; iii) and FAyCsyPbBr3
(x=1; iv).

(C) Quaternary phase diagram of the FA.yCsyPb(I;xBrx)3 system constructed from HT-WAXS
measurements of 61 compositions. The substrate with all compounds was annealed at 150 °C
for 10 mins and allowed to cool. HT-WAXS mapping was performed at room temperature in
a vacuum.

(D) Predicted phase diagram based on the Goldschmidt tolerance factor, 7F, and Octahedral
factor, OF. The compound is expected to be tetragonal or hexagonal when 7F > 1; cubic when
0.9 < TF <1, and orthorhombic when TF < 0.9. All compositions are eligible to be perovskites
as u>041.

Figure 5. Phase boundary refinement and optical analysis of a photovoltaic region of interest
(A) Refined phase map of the 1C phase region consisting of 20 additional compositions (0 < x
<0.35; 0 <y <0.45).

(B) The evolutions of (100) peaks of the 1C phase with varying Br content (x) for low Cs
(y=0.1) and high Cs (y=0.3) concentrations. At low Cs concentration, a monotonic increase of
the q value and lattice parameter with increasing Br (x) indicate single phase solid-solution
alloy, whereas at higher Cs content, the (100) peak and lattice constant variation with
increasing amount of Br are not monotonous when crossing the phase boundary, which also
corresponds with formation of an additional 10 phase (0.05 < x <0.2).

(C) 2D color map of 1C phase lattice constant showing monotonous trend within the phase
boundary and deviations outside the 1C single phase boundary. The black dashed contour lines
are obtained by fitting all the lattice constants within the single-phase region linearly for both
x and y (R?=0.992). The grey dashed line is the approximate phase boundary separating the
single and double phase regions.

(D) 2D color map of bandgaps extracted from pPL measurements for a sample set
RoboMapped with 0.05 increments in x and y. The solid dots denote the actual compositions
measured while the dashed contour lines denote equal bandgap compositions as obtained by
fitting the global data with a quadratic function for both x and y according to Vegard’s law (R?
=0.952). The model therefore links the bandgap to x and y values corresponding to halide and
cation composition.

(E) Examples of the pPL spectra with fixed halide composition and changing cation
composition (left, x=0.25, varying y) or fixed cation composition and varying halide (right,
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y=0.1, varying x).

(F) Photodegradation in air under 1 sun for 1 hour reveals three types of PL spectral changes,
which we classify as type 1 (a single peak undergoes red shift), type 2 (formation of double
peak), and type 3 (loss of PL signal).

(G) A photo-stability map obtained by ascribing an instability score according to the peak
wavelength shift values (AL) before and after exposure under 1 sun for 1 hour. For Type 1, AL
is used directly as the instability score; for Type 2, since obvious photo-induced phase
segregation can be observed, the maximum shift value Almax Was used in the equation
0.46*Almax + 43.6 to make sure the instability score distributed between 50 and 90; Type 3 was
ascribed with a score of 100; the black dashed contour lines indicate the bandgaps while the
grey dashed line is the approximate phase boundary separating the single 1C phase and 1C+10
phase regions.

(H) The full data stacks from the morphology, phase, structure, bandgap and photostability
mapping of FA1yCsyPb(I1-xBrx); compounds, demonstrating the QSPRs.

Figure 6. Screening of FA1.yCsyPb(I1xBrx); wide bandgap hybrid perovskite alloy for device
application

(A) The measured bandgaps from pPL of 14 predicted compounds with ~ 1.7 eV bandgap
showing a narrow distribution of 1.710 £ 0.007 eV. The x axis indicates the specific
compositions with Br percentage(x)/Cs percentage (y). The inset shows the predicted bandgap
map by our model and a total of 14 compositions with the same 1.7 eV bandgap extracted from
the map.

(B) Comparison of the statistical bandgap results from the same 7 compounds of RoboMapper
samples (1.713 £ 0.006 eV) and spin-coated thin film samples (1.707 £ 0.010 eV). The inset
shows the instability score of the 7 compounds of RoboMapper samples and spin-coated thin
films.

(C) The PL spectra of three representative compounds with high Br content
(FA0.9Cs0.1Pb(l0.675Bro.325)3), ideal Br and Cs contents (FAo.775Cs0.225Pb(l0.749Bro.251)3) and high
Cs content (FAo.575Cs0.425Pb(I0.796Br0.205)3) before and after photodegradation in air under 1 sun
for 1 hour, showing the same bandgaps and very different photo-stability, consistent with the
trend predicted by the photostability map.

(D) Schematic of the inverted p-i-n perovskite solar cell device structure. BCP, bathocuproine.
(E) The statistical power conversion efficiency results from 20 devices for each compound:
high Cs (14.36 + 1.65%); ideal (19.20 + 0.45%); high Br (17.75 £ 0.59%).

(F) Evolution of the normalized PCE of three types of solar cells at the open circuit condition
under 1 sun illumination at 35 °C in the nitrogen filled glove box within one hour. The error
bars denote the standard deviation of the PCE from 3-9 cells.

(G) Hysteresis indexes of the three types of devices extracted from the forward and reverse
scans with 0.2 V/s scan rate.

(H) Normalized PL intensity of the probe solution (0.01 mg/ml of dihydroethidium in
chlorobenzene) as a function of perovskite films aging time under continuous light illumination
(0.1 sun) and constant oxygen flow at 620 nm, representing the yield of superoxide generation.
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The inset shows the images of three films under 1 sun illumination in ambient air, indicating
the different photo-degradation behavior.

(I) Schematic of the influence of vacancy density on the photostability of mixed halide
perovskites. The higher density of vacancies promotes the halide ion migration and leads to
faster photo-induced halide segregation by forming I-rich (red square region) and Br-Rich
(green square) domains. Also, more vacancies are favorable for oxygen ingress into the volume
of grains and causes a higher superoxide formation rate, resulting in faster photobleaching rate
of the perovskite.

Supplemental Video Titles and Legends

Video S1. The demonstration of the RoboMapper platform automatic workflow with MAPbBr3
as an example including ink formulation, mixing, on-chip printing and cleaning.
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