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Summary 
The vast chemical space of emerging semiconductors, like metal halide perovskites, and their 

varied requirements for semiconductor applications have rendered trial-and-error 

environmentally unsustainable. In this work, we demonstrate RoboMapper, a materials 

acceleration platform (MAP), that achieves tenfold data intensification by formulating and 

palletizing semiconductors on a chip, thereby allowing high-throughput (HT) measurements to 

generate quantitative structure-property relationships (QSPRs) considerably more efficiently 

and sustainably. We leverage the RoboMapper to construct QSPR maps for the mixed ion FA1-

yCsyPb(I1-xBrx)3 halide perovskite in terms of structure, bandgap and photostability with respect 

to its composition. We identify wide bandgap alloys suitable for perovskite-Si hybrid tandem 

solar cells exhibiting a pure cubic perovskite phase with favorable defect chemistry while 

achieving superior stability at the target bandgap of ~1.7 eV. RoboMapper’s palletization 

strategy reduces environmental impacts of data generation in materials research by more than 

an order of magnitude, paving the way for sustainable data-driven materials research. 
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Introduction 
The proliferation of quantitative structure-property relationships (QSPRs) is revolutionizing 

the design of use-based compounds including pharmaceuticals and energy materials by 

providing pragmatic property predictions which dramatically accelerate the time frames of 

discovery.1-4 Such rapid and disruptive advancements have inspired the materials research 

community to adopt QSPR models to accelerate use-based material design, synthesis 

optimization, and discovery.5-7 However, the issues of experimental data sparsity and 

reproducibility continue to hamper the materials community’s adoption of rapidly emerging 

data science tools8,9 and are symptomatic of a wider problem: only a small fraction of data 

generated in research labs is communicated, a smaller fraction still is made available in 

databases,5,10 and what data is mined from the literature is often unreliable and/or lacks 

sufficient protocol details.11-14 Chemistry and biology have shown that adoption of automation, 

robotics and high-throughput (HT) infrastructures are proven pathways to successful 

digitization of experimental datasets.10,12,15,16-18 Moreover, the experience of these disciplines 

has shown that adoption of informatics and QSPR models can make data collection repetitive 

and labor intensive,16-18 which favors adoption of automation in materials research.19-31 

 

In recent years, the materials research community has seen the emergence of materials 

acceleration platforms (MAPs). MAPs automate repetitive materials research tasks, facilitate 

digitization of materials laboratory data, and have increasingly facilitated generation of QSPR 

models in chemical and materials research,22,29-35 in line with the Materials Genome Initiative 

2.0 strategic plan.36,37 MAPs automate data generation by emulating tasks performed in 

materials laboratories,24,38 such as formulation of precursors or feedstocks,19,23,25 processing or 

fabrication of compositionally and structurally diverse materials,22,27 and characterization of 

synthesized/processed materials.20,22,26,27 Additional design considerations for MAPs is the 

environmental impact and material research sustainably associated to generation of QSPR 

maps. While automation is a proven path toward reduction of labor intensive tasks, repeating 

wasteful and environmentally harmful practices is likely to exacerbate environmental problems 

associated to already wasteful practices.39-41 An opportunity therefore exists to design MAPs 

that establish QSPRs more sustainably by reducing waste, greenhouse gas emissions (GHGEs) 

and other environmental impact categories of experimental research. In addition to generating 

data with efficiency and reduced environmental impact, next-generation MAPs have the 

opportunity to overcome the lack of information-rich data characteristic of many MAPS which 

integrate a fixed number of characterization methods.19,20,26,27 We take the view that MAPs are 

ripe for innovation: they can be designed to generate information-rich data by enabling multi-

modal characterization that is automated and decentralized; the generated sample layouts can 

reduce operational steps of research, as well as energy, GHGEs, waste and time. Evaluating 
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environmental impacts of existing materials research workflows via methods, such as life cycle 

assessment (LCA),42,43 provides insights into the bottlenecks of state-of-the-art materials 

research and creates opportunities to reduce GHGEs and make design improvements that will 

maximize data intensity. Industrial palletization approaches have improved supply chain 

productivity and provide inspiration for challenging human-centric laboratory workflows by 

reducing operational steps by placing multiple materials on a common pallet or substrate to 

achieve considerable efficiency gains,44,45 reducing cost and energy.16,28,30 Recent advances in 

capillary printing46 combined with liquid handling19,23,25,27 make it possible to design MAPs 

that can robotically palletize materials by formulating materials on-the-fly and depositing 

miniaturized pixels on a common substrate, similar to how chemists and biologists parallelize 

samples in well plates.16 Pallets can thus be mapped efficiently via HT characterization 

methods to generate multi-modal QSPR models with reduced operational steps and material 

waste.  

 

A priority area of materials research that can benefit from rapid developments in MAPs is the 

area of metal halide perovskites (MHPs).19-21,23-27 MHPs are emerging semiconductors with 

compositionally tunable structure and properties and a very large design space.47,48 To date, 

over two thousand unique MHPs have been demonstrated or predicted, with orders of 

magnitude more compounds and alloys possible.10,49,50 MHP semiconductors have allowed 

single junction perovskite solar cells to match the power conversion efficiency (PCE) of 

monocrystalline Si photovoltaics close to 26%.51 However, a new challenge in this field is the 

development of new wide bandgap MHP alloy with a bandgap of 1.7 eV toward development 

of perovskite-Si hybrid tandem solar cells, which have recently achieved a PCE of 33.2%.51 A 

number of studies have shown that the bandgap tuning through the mixed halide alloying comes 

at the expense of light-induced halide segregation, which causes photodegradation of the 

material and device under illumination.52,53 Thus, compositional tuning with multi-component 

alloying (through mixing of both cations and halides) has been widely used to design the 

desired MHPs that exhibit thermodynamically stabilized perovskite phases and are 

photostable.54-59 It is therefore essential to develop multi-modal QSPR maps that relate the 

phase diagram, bandgap, and photostability to the composition of MHPs to zero in on ideal 

alloys.  

 

Here, we introduce the RoboMapper (Figure 1), a new concept in MAPs that palletizes 

materials on demand and uses decentralized HT characterization facilities to generate multi-

modal QSPR maps efficiently. The RoboMapper integrates on-the-fly formulation with micro-

printing and micro-coating of MHPs directly on a chip and accelerates QSPR mapping 14-fold 

compared to manual workflows and 9-fold compared to serial automation MAPs. We utilize 

the RoboMapper platform to construct a comprehensive phase diagram of the quaternary FA1-

yCsyPb(I1-xBrx)3 hybrid perovskite system using synchrotron-based HT wide angle X-ray 

scattering (HT-WAXS). We focus on a photovoltaic region of interest in the iodine-rich 

quadrant (FA and I rich phases with 0  x  0.35 and 0  y  0.45) to search for a pure cubic 

perovskite alloy exhibiting an ideal bandgap of ~1.7 eV target bandgap suitable for perovskite-

Si hybrid tandem solar cells. To do so, we construct QSPR models for bandgap and 
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photostability. Photostability is a powerful screening tool as demonstrated by recently 

developed diffusion-stability framework which relates material photostability to solar cell 

device hysteresis.60 Using the developed QSPRs, we predict new wide bandgap compounds 

and validate these results with spin-cast thin films with remarkable consistency, proving the 

reliability and fidelity of the platform and our model. The predicted ideal compound 

(FA0.775Cs0.225Pb(I0.749Br0.251)3) is translated to single junction p-i-n solar cells with PCE of 

19.20  0.45%, low hysteresis and far better photostability than other compounds evaluated 

within the QSPR map at 1.7 eV. We evaluate the scientific link between photostability and the 

vacancy concentration and show the ideal composition exhibits low halide vacancy 

concentration. This can explain why photo-induced halide segregation and photobleaching of 

the ideal compound were considerably slower. We evaluate the cost, energy requirements and 

environmental impact of this approach via LCA in contrast to manual labor and serial 

automation MAPs. The RoboMapper generates QSPR datasets with 1/50th the cost and 1/25th 

the energy of manual workflows even when excluding labor costs. Importantly, the 

palletization approach slashes environmental impact on ecosystems, human toxicity and 

GHGEs by 1/10th by reducing the electricity consumption of characterization and by reducing 

waste generation. Our palletization strategy paves the way for materials research to be 

accelerated while remaining sustainable by making MAPs considerably more data intensive 

and information-rich in their quest for QSPR models for material design.  

 

Results and discussion 

RoboMapper: Automated formulation and on-chip palletization 

Figure 1 illustrates the RoboMapper platform we have developed in-house and its workflow. 

The RoboMapper platform (Figure 1B and S1) is a compact, benchtop multi-robot platform 

consisting of an ink formulation bot based on liquid handling technology working in tandem 

with a dispensing bot consisting of a gantry-based hollow capillary that allows micro-printing 

and micro-coating with volumes ranging from 0.6 pL to 0.5 nL (See the SI part I for details). 

This coating approach builds upon the similarity between hollow capillary coating/printing and 

slot-die coating, which is the premier scalable manufacturing method used in solution-

processed semiconductors, including HMH materials, and the low material utilization rate of 

the process. In contrast, MAPs currently in use employ spin coating or drop casting on 

traditionally sized coating areas.22,27,31 The tedious substrate cleaning procedures and 

challenges in substate handling and storage limit the size of these campaigns to what manual 

workflows would typically achieve24,38 (see Figure S2 for details). The nature of spin-coating, 

which requires relatively large sample areas (> 1 cm2) to achieve uniformity and large ink 

volumes owing to >95% ink waste, also makes large QSPR datasets expensive and 

environmentally unsustainable to obtain, as will be discussed below. The RoboMapper’s home-

built user interface designs the palletization of materials (Figure 1A) by defining the boundaries 

of QSPR campaign in terms of materials composition and ink formulation, the layout of these 

compounds on the substrate, and their size and geometric patterns (dots, lines, patches, etc.) 

and spacings. A key design consideration of multi-modal characterization campaigns on 

material pallets is the necessity to meet the requirements of every intended characterization 

method. This includes measurement footprint and spatial resolution, as well as choice of 



5 

 

substrate (e.g., conducting vs insulating, optically transparent vs opaque, x-ray transparent, 

etc.).  

 

Given the spatial resolution of the RoboMapper, our robotic palletization approach can 

theoretically integrate up to 2,500 pixels/cm2 with an average size per pixel of 50 µm along a 

square lattice arrangement and a center-to-center spacing of 200 µm. This highlights that a very 

large number of materials and associated data can be encoded on a single pallet. This in turn 

requires spatially resolved analytical probes that can scan samples automatically to conduct 

HT characterization and construct QSPR maps. In this study, we conducted QSPR campaigns 

focused on optical characterizations performed on-site as well as off-site structural 

characterizations at NSLS II synchrotron to establish QSPR models of hybrid perovskite phase 

diagram, composition-dependent bandgap and photostability. For this study, we have palletized 

up to 150 compositions (and multiple copies thereof for verification of reproducibility). We 

conducted laboratory-based HT optical microscopy, HT micro-photoluminescence (HT-PL) 

spectroscopy mapping, as well as synchrotron-based HT-WAXS mapping. These experimental 

campaigns were conducted in a closed loop, where needed, to refine the dataset and validate 

QSPR models. The resulting information from these characterization techniques helped us 

create a high-fidelity data stack (Figure 1C) towards construction of QSPRs that link the 

bandgap and photostability of hybrid perovskites to their composition and crystalline phase.  

 

The RoboMapper workflow adapted to hybrid perovskites research is summarized in Figure 2. 

A library of AX and BX2 precursor salts in various solvents (Figure 2A) is used as stock 

solutions, together with blank solvents, to create mixtures resulting in hybrid perovskite ink 

formulations, including all 150 compositions that are evaluated in this study. The RoboMapper 

aspirates (Figure 2B i) the prescribed stoichiometric volume of stock precursor through its steel 

tube and carefully rinses itself prior to switching to another stock precursor. Once all 

components are aspirated, mixing is conducted (Figure 2B ii) directly in the tube by pulsing 

the liquid controllably several times resulting in the desired formulation. Once ready, the 

mixture is ready to be dispensed into the well plate (Figure 2B iii) at a designated position, the 

tube is flushed with pure solvent and the formulation bot prepares the next ink. The deposition 

bot moves in to immediately load the hollow capillary with the ready-made ink (Figure 2B iv) 

and approaches the substrate to deposit the ink at a designated location on one or more 

substrates according to a pre-determined pattern (Figure 2B v). The capillary is cleaned 

automatically (Figure 2B vi) before performing the next deposition. The cooperative workflow 

between the two bots should enable the seamless formulation and deposition of a large 

composition set of hybrid perovskite materials from their precursor and solvent libraries onto 

a single substrate. The substrate can be placed on a computer-controlled hotplate during 

deposition or moved to a hotplate to be annealed after all materials are deposited.  

 

As a basic proof of concept of this workflow, we demonstrate how MAPbBr3 is formulated and 

deposited in a step-by-step manner by the RoboMapper starting from MABr and PbBr2 

precursor salts in stock solutions (Video S1 and Figure S3A show). The entire process is 

completed within 8 minutes in a 30% humidity controlled dry lab. We demonstrate the 

versatility of the deposition head to satisfy the resolution and requirements for different HT-
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characterizations by creating different patterns of MAPbBr3, including dot arrays (50 µm 

diameter), lines (1.5 mm length), and square patches (500 by 500 µm) with 600 nm thickness 

(Figure 2C). The square patches are evaluated by UV-Vis absorption measurements, the lines 

are ideal for grazing incidence wide angle X-ray scattering (GIWAXS), whereas HT µPL 

(Figure S4A) and synchrotron-based HT WAXS measurements (Figure S4B) can be conducted 

on dot arrays. We confirm the resulting material is MAPbBr3 by comparing its bandgap to 

previous reports (Figure S3B),61,62 and its diffraction pattern to MAPbBr3 powders (Figure 

S3C). 

 

To demonstrate multi-material processing, we continuously formulate and deposit dot arrays 

of 5 commonly studied HMH compounds on the same substrate, namely the hybrid perovskites 

MAPbBr3, FAPbBr3, MAPbBr2.4Cl0.6, MAPbBr1.5Cl1.5 (mixed halide), and the Ruddlesden-

Popper layered perovskite (PEA)2PbBr4. Figure 2D shows optical and fluorescence 

micrographs of each material printed on the substate. Different emission colors for each 

material agree with previous reports based on material bandgaps.61,63 HT WAXS and µPL 

results revealing the structure and optical properties of the different compounds are plotted in 

Figure 2E. The (100) peak positions of MAPbBr3 (1.056 Å-1), MAPbBr2.4Cl0.6 (1.065 Å-1) 

MAPbBr1.5Cl1.5 (1.075 Å-1) and FAPbBr3 (1.042 Å-1) and the trends of (100) peak shift with 

cation and halide substitution/doping are in agreement with expectations.61,64,65 The absence of 

(00l) peaks in WAXS from (PEA)2PbBr4 can be explained by the transmission geometry of 

WAXS and the formation of the layered perovskite structure with quantum wells parallel to 

the substrate plane.66,67 Likewise, the emission peak positions of MAPbBr3 (538 nm), 

MAPbBr2.4Cl0.6 (515 nm), MAPbBr1.5Cl1.5 (482 nm), FAPbBr3 (550 nm) and (PEA)2PbBr4 (410 

nm) obtained from µPL measurements are consistent with the fluorescence color observed in 

Figure 2E and with prior reports for these materials.61,65,68 The structural and spectral results 

indicate compositional and phase purity indicative of success rinsing and cleaning protocols 

between successive ink formulations and depositions (see SI and Figure S5 for further details). 

These results highlight the proof of concept of the distributed RoboMapper workflow that can 

be expanded toward even more flexible and advanced implementations. 

 

Palletization benefits: Acceleration, sustainability and scalability to big data 

We evaluate the RoboMapper workflow’s benefits from the perspectives of experimental cost, 

energy consumption, environmental impacts and scalability to large datasets in comparison to 

manual research and existing MAPs built on serial automation, as depicted in Figure S2. To do 

so, we have applied the LCA methodology specified in the ISO 14040-14044 series by 

considering all aspects of sample preparation from cradle to grave. The functional unit selected 

to compare the three workflows is the experimental investigation of 500 mixed ion perovskite 

compositions, a relatively large dataset by current standards. The characterizations include 

optical microscopy, PL, XRD, and photostability evaluations. The details of LCA including 

definition of the system boundary (Figure S6), the full life cycle inventory (Table S1-S5) and 

the results (Table S6-S13) are presented and discussed in SI. We have broken down the total 

time needed to conduct tasks into smaller rate-determining steps (see pie charts in Figure 3A) 

during formulation, processing, and characterization, we are able to estimate the average time 
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for each step, from similar evaluations conducted in the literature24,27,31 as well as a decade of 

experience conducting such workflows in our lab.  

 

Time savings. Our analysis (Figure 3A) reveals the RoboMapper workflow and traditional 

MAPs save considerable time during ink formulation and sample preparation compared with 

the manual workflow because of the more efficient, continuous, and automated procedures 

done by robots. While both RoboMapper and current generation MAPs are comparable in 

sample preparation time, considerable time savings by the RoboMapper are observed when it 

comes to characterization, primarily thanks to reduction of the number of operational steps 

associated with sample loading, alignment, and calibration. These time savings are 

considerable when palletizing 500 compositions. As a result, it can take as little as 6 days for 

500 compositions palletized by the RoboMapper to be fully screened while the same task 

requires at least 54 days via serial automation and upwards of 84 days for manual workflow 

using full time labor. This constitutes a 9-fold acceleration in data generation for RoboMapper 

compared to existing MAP workflows and a 14-fold acceleration compared to manual 

experimentation (see inset of Figure 3D). 

 

Cost and energy savings. Besides time savings, we also evaluate the amount of waste, cost 

(excluding labor and equipment) and energy demand for all three workflows (Figure 3B). We 

find that automation in general reduces waste, cost and energy demand compared with the 

manual workflow. However, the palletization feature of the RoboMapper further reduces these 

categories by more than an order of magnitude thanks to micro-printing/coating capabilities. 

We estimate a sample dataset generated by RoboMapper workflow will only cost $0.34 and 

0.344 kWh, in contrast to $17.61 and 8.936 kWh for the manual workflow, and $2.82 and 6.284 

kWh for existing MAPs, respectively (Table S13). This leads to impressive saving ratios (see 

inset of Figure 3D) by the RoboMapper workflow, including 8 times cheaper and 18 times 

more energy efficient than existing MAPs and 52 times cheaper and 26 times more energy 

efficient than manual workflows. 

 

Environmental Impact. Figure 3C displays the environmental impacts of the three workflows 

on the selected five categories that are most concerning or dominant calculated by LCA from 

all impacts (Figure S7A). Clearly, the environmental categories related with toxicity are being 

affected the most for all three workflows. Nevertheless, the RoboMapper workflow reduces 

the freshwater ecotoxicity, marine ecotoxicity and human carcinogenic toxicity impact 

categories (0.11, 0.08, 0.05) by more than 24 times and 18 times compared with the manual 

workflow (2.69, 1.98, 1.20) and serial MAPs (2.04, 1.44, 0.91), respectively. Even more 

impressive, the RoboMapper workflow yields almost negligible effects on global warming and 

fossil resource scarcity, with a score of 0.0025 and 0.0075, respectively, which correspond to 

only 19.8 kg CO2 emitted and 7.3 kg of oil consumed, equivalently, compared with 536.4 kg 

CO2 and 224.8 kg oil for manual workflow, and 350.8 kg CO2 and 123.6 kg oil for serial MAPs 

(Figure S7B).  

Environmental impact of characterization. We further looked into what aspects of materials 

research contribute the most to each impact category by further sub-dividing the workflow into 

six categories and assessing their associated LCA: perovskite materials, solvents, supplies, 
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electricity consumption during material processing (electricity-P), electricity consumption 

during characterization (electricity-C), and waste, as summarized in Figure 3C and Figures S9-

13(A-D). Our analysis shows that electricity usage by materials characterization is by far the 

dominant factor across all impact categories for all three workflows, mainly because of the use 

of high-power instrumentation, such as XRD, lasers and solar simulators. Remarkably, HT 

characterization of palletized materials saves considerable time and reduces operational steps, 

including alignment and calibration which result in considerable reduction in electricity 

consumption. This in turn reduces the environmental impact of RoboMapper materials research 

quite dramatically.  

 

Waste reduction due to palletization. In the interest of evaluating the environmental impacts 

of the sample preparation method in terms of material utilization without characterization, we 

have analyzed the impacts excluding the characterization (Figure S8). As expected, the 

absolute and relative impacts of the three factors (perovskite materials, supplies and waste) 

decrease considerably compared to manual workflows (Figure S8 and Figure S9-13F) with 

adoption of serial MAPs (Figure S9-13G) and RoboMapper (Figure S9-13H), primarily 

because of reductions in material and supply utilization. However, for the MAPs with serial 

automated workflow, the consumption of solvents that primarily comes from the cleaning steps 

during sample preparation begins to play a big role, especially in global warming and fossil 

resource scarcity (Figure S9&13G) and the increased power consumption from the automated 

platform makes electricity the secondary contributor to the freshwater and marine ecotoxicity 

(Figure S14-15G). Only the RoboMapper benefits from miniaturization of materials quantities, 

where the influence of the perovskite materials, solvents, supplies and waste are comparably 

negligible along most categories (Figure S8).  As a result, the increased usage of electricity by 

the robots and instruments becomes a more significant factor although the total environmental 

impacts are still lower than MAPs and manual workflow (Figure S9-13E&H).  

 

Scalability toward big data. We have sought to evaluate the scaling differences among the 

three workflows to large datasets consisting of thousands of experiments in terms of required 

research time, energy demand, and cost. Figure 3D reveals the long-term benefits of 

palletization in materials research: the RoboMapper workflow can scale much more easily and 

effectively to large datasets than serial MAPs. For instance, completing a large dataset of 

10,000 experiments can take nearly 2.9 years with serial MAPs, requiring 60 MWh of energy 

and costing >$28,000 just in terms of materials and supplies. Compared to manual workflows, 

this requires considerably less time (4.6 years), energy (90 MWh), and costs considerably less 

($170,000). However, these savings pale in comparison to what can be achieved by the 

RoboMapper workflow which completes 10,000 experiments in 4 months, consumes just over 

3 MWh of energy and is estimated to cost $3,000. Overall, our analysis indicates tremendous 

benefits of the RoboMapper palletization approach in terms of efficiency, sustainability, and 

economy especially for generating medium to large materials datasets.  

Multi-modal QSPR mapping in metal halide perovskites 

For our main demonstration, we seek to map the double cation and double halide quaternary 

system FA1-yCsyPb(I1-xBrx)3 and preliminarily identify compounds which meet the 
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requirements for hybrid tandem photovoltaics with Si. This alloy is one of the most 

consequential mixed ion HMHs investigated to date as it contains the 

FA0.83Cs0.17Pb(I0.83Br0.17)3 (x=0.17, y=0.17) hybrid perovskite popularized in 

photovoltaics54,56,59 and and the inorganic perovskite CsPb(I1-xBrx)3 (x, y=1) desirable in light 

emission applications.69 However, the experimental phase diagram and phase boundaries for 

this alloy have not been established with sufficient detail,38,58 the boundaries of the single phase 

regions are not known, and QSPRs that relate these phases to their properties of relevance to 

photovoltaics are sparse or have not been established. Our search will focus initially on creating 

a coarse phase diagram, from which we will identify the boundaries of the iodine-rich single-

phase compound. In a subsequent round we will refine the phase boundary and map the 

bandgap and photostability in the region of interest to construct QSPRs. We will use the 

predictive power of QSPRs to identify new compositions which achieve the target bandgap of 

1.7 eV and rank them in terms of photostability. For the purposes of this study, all thermal 

processing (150C for 10 minutes) and measurement conditions (room temperature) are 

selected to resemble those of typical thin film preparation and characterization.58,64,70 This will 

ensure high fidelity with phases typically observed in thin film devices, however the reader is 

reminded that measured phase diagrams should be considered nonequilibrium. 

 

FA1-yCsyPb(I1-xBrx)3 quaternary phase diagram. To build the phase diagram of FA1-

yCsyPb(I1-xBrx)3, 61 individual compounds in the compositional space by varying x and y 

discretely from 0 to 1 were synthesized and palletized across one substrate spaced by 500 m 

(Figure S14 and Table S14). The palletized sample was packaged in nitrogen and shipped to 

the CMS beamline at NSLS II, where it was subject to HT WAXS mapping (Fig S4B).  

Phase identification begins with the 4 unary compounds at the corners. The circular average of 

the scattering patterns shown in Figure 4A are identified as those of the  phase FAPbI3 (cubic),  

 phase CsPbI3 (orthorhombic),  phase FAPbBr3 (cubic), and  phase CsPbBr3 (orthorhombic), 

respectively, matching our expectations and previous reports.38,61 To facilitate the analysis and 

categorization of phases present in the mixed phase domains later, we label as 1C the cubic  

phase that is FA- and I-rich, 1O the orthorhombic  phase that is Cs- and I-rich, 2C the cubic 

 phase that is as FA- and Br-rich, and 2O the orthorhombic  phase that is Cs- and Br-rich.  

In Figure 4B, we present the 4 binary subsets of the quaternary system (full range in Figure 

S15) showing structural trends with change of compositions along the four edges of the phase 

diagram. Using the labeling scheme, we see the (101) peaks of 1O phase shifting to higher q 

values with the increasing Br contents when x  0.4 for CsPb(I1-xBrx)3 due to the decreased X 

site radius with substitution of the small Br- ion with I- (Figure 4B i). At x=0.4, we observe the 

co-existence of both the (101) peak of 1O phase at q~0.7 Å-1 and the (101) peak of 2O phase 

at q~1.02 Å-1. With further increase of Br contents, the peaks belonging to the 1O phases 

disappear and a shifting towards higher q values of (101) peaks in 2O phases is observed. 

Similarly, substitution of FA+ with smaller Cs+ also results in the shift towards higher q values 

of (100) peak in 1C phases, as well as (101) and (102) peaks in 1O phases for FA1-yCsyPbI3 

(Figure 4B ii). Interestingly, when the 1O and 1C phases co-exist for 0.2  y  0.8, we observe 

a more obvious shift of peak positions in 1O phases, possibly because of more Cs+ doped into 

1O phases. Very similar transitions from 1C to 2C (FAPb(I1-xBrx)3), and 2C to 2O phase (FA1-
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yCsyPbBr3) are also observed in Figure 4B iii-iv. The complete phase diagram (Figure 4C) is 

built by analyzing the fingerprint peaks representing each phase for all the compositions 

(Figure S16). The circles with different colors indicate the phases of measured compositions. 

The phase boundaries are determined from the middle of two adjacent clusters of data points 

with different phases.  

 

In the absence of an actionable phase diagram like in Figure 4C, the community has tended to 

rely on basic calculations using the Goldschmidt tolerance factor, t, and octahedral factor, µ, 

to predict the formation of stable structures at room temperature.71-74 The predicted phase 

diagram for FA1-yCsyPb(I1-xBrx)3 is presented in Figure 4D for comparison (see supporting 

information for details). We estimate 0.464 < µ < 0.521 across the entire composition, which 

suggests that all compounds meet the minimum criterion for perovskite structure formation (µ > 

0.41).71-74  Meanwhile, 0.849 < t < 1.066 and therefore some compositions should be cubic (0.9 

< t < 1), while others are likely to be distorted orthorhombic perovskites (0.849 < t < 0.9). For 

t > 1, the A-site cations are too large to support the perovskite structure and a hexagonal 

structure is predicted to form instead.71-74 Evaluating the differences between our actual and 

computed phase diagrams, we find that the latter neither captures the mixed phase regions nor 

does it predict the specific phase boundaries accurately. This is not entirely surprising given 

the tolerance factor is designed to predict thermodynamically stable structures. Moreover, the 

correct ionic radii are difficult to measure or calculate and different values have been 

reported.71-74 This varies the tolerance factor values and affects the prediction of the actual 

structures. Thus, experimental phase diagrams are essential for practitioners of the field to 

understand the structure and phases of their materials and begin to establish structure-property 

relationships. 

 

QSPRs in a perovskite PV region of interest. Having obtained an initial coarse phase 

diagram, we now focus our attention on the FA- and I-rich region (0  x  0.35, 0  y  0.45) 

of interest to the PV community.54,56,59,75 We have refined the phase diagram (Figure 5A) with 

20 additional compositions palletized by the RoboMapper for HT WAXS evaluation (Figure 

S17 and Table S15). The close-up view of the phase diagram in the region of interest (Figure 

S18) shows the refined phase boundaries and reveal the compositions with a small amount of 

Cs (<25%) are ones most likely to form a solid solution giving rise to a single photoactive 

phase (1C phase), the so-called “black phase” desired in photovoltaic applications. For 

compositions with higher Cs and low Br contents, the 1O phase, also known as “yellow phase”, 

forms together with 1C, which is highly undesirable for photovoltaics. Increasing the amount 

of Cs requires higher Br contents to suppress the 1O phase formation. At low Cs concentration, 

all the compositions are within the single-phase region, for example at y=0.1, as illustrated in 

Figure 5B i and ii, the (100) peaks and the lattice constants change linearly with Br content. 

However, at higher Cs concentration, for example at y=0.3 as indicated in Figure 5B iii and iv, 

a sudden shift of the (100) peak position and a decrease of lattice constant are observed when 

crossing the phase boundary. This is associated to an incongruent inclusion of the added Cs 

and Br into the lattice of 1C phase owing to formation of a second phase (1O), whereas all the 

Cs and Br are incorporated into the single-phase solid solution within the 1C phase field. 
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To get a better overall understanding of the composition-structure relationship and derive our 

first QSPR, we have quantitatively analyzed the lattice constants of the 1C phase field obtained 

from the (100) peaks of all the compositions within the region. Figure 5C shows a 2D color 

map of the 1C lattice constant for the entire photovoltaic region of interest. A monotonic color 

evolution with varying Br and Cs contents and the linear contour lines (black dashed lines) 

within the 1C phase region highlights the evolution expected within the phase field. The color 

band in 5C deviates when crossing the phase boundary into the mixed phase region, as do the 

contour lines. The contour line within the 1C phase field is obtained by linearly fitting the 

lattice constant (Table S16) , a (R2=0.992). As a result, we obtain the QSPR of the 1C phase 

lattice constant with the Br (x) and Cs (y) contents for the 1C phase within the single-phase 

region, as expressed below: 

𝑎(Å) = 6.399 − 0.369𝑥 − 0.154𝑦      (1) 

The scatter plot in Figure S19B also demonstrates that the lattice constants of the 1C phase 

changing with Cs content for all the measured compositions follow the same general trend, 

where all the lattice constants of the compositions with pure 1C phase fall along the linear trend 

line (calculated with equation (1)) while those with mixed phases (in the red circles) are above 

the trend line.  

 

We turn our attention to the relationship between the bandgap and composition within the 

photovoltaic region of interest and seek to establish a QSPR within the single-phase region. To 

do so, the RoboMapper was used to palletize the wider region of interest near the 1C phase 

with 80 compositions (Figure S20 and Table S17) allowing HT-µPL mapping to evaluate the 

emission properties, including bandgap (Figure S22A). In general, we observe the expected 

blue shift of emission peaks with both increasing amount of Cs and Br, with a significantly 

stronger blueshift with addition of the latter. Figure 5E features two examples of the influences 

of varying Cs at fixed Br content (i) and varying Br with fixed Cs content (ii) on the PL spectra. 

We extract the bandgap by fitting emission spectra and establish a bandgap map across the 

composition region of interest (Figure 5D). The bandgap mapping of the composition space 

reveals the compositions which achieve the same bandgap within the 1C phase field by finely 

tuning the Br and Cs contents. Isolines indicating equal bandgap are established by surface 

fitting the bandgap map (Figure S22B) for both x and y (R2 = 0.952; Table S18) using Vegard’s 

model, which is a commonly used physics-based model for compound semiconductions.76,77 

We thus come up with a QSPR model fit to express the effects of Br (x) and Cs (y) contents on 

the bandgap of the quaternary system as expressed in equation (2): 

𝐸𝑔 = 1.54 + 0.412𝑥 + 0.0799𝑦 − 1.40 × 10−3𝑥2 

−2.16 × 10−3𝑦2 + 9.63 × 10−3𝑥𝑦       (2) 

The obtained QSPR model relating bandgap to composition is a valuable tool to identify 

eligible compositions achieving target bandgaps within the mapped composition space.  

 

Next, we seek to link the ambient photostability of FA1-yCsyPb(I1-xBrx)3 compounds within the 

same region of interest to evaluate the influence of the 1C phase composition and the presence 

of the phase boundary on photostability. To do so, a copy of the palletized samples in Fig. 5D 

was exposed to 1 sun in ambient air (30%RH) for a duration of 1h (Figure S23A), after which 
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the sample was mapped once again by µPL immediately thereafter. By comparing the 

normalized PL spectra before (Figure S22A) and after (Figure S23B) 1 sun exposure, we 

observed three categories of photodegradation (Figure 5F): single emission peak undergoes red 

shift (Type 1); double emission peaks form and undergo shift (Type 2); total loss of emission 

peaks (Type 3). We visualize the distribution of these three types of photodegradation behavior 

across the composition map (Figure S23C). Most compositions undergo Type 1 

photodegradation. To quantify the relative photostability of the compositions, we define an 

“instability score” which relates to spectral shifts (see SI for information). Figure 5G visualizes 

the composition-dependent photo-stability map based on the instability score. Our 

investigation reveals that photostability varies somewhat monotonously in certain regions 

while exhibiting islands of stability and instability. For instance, considering the location of 

the 1C phase boundary, it is noteworthy that the compositions within the 1C phase space are 

considerably more stable than those in the mixed phase region 1C+1O. Moreover, 

compositions exhibiting lowest stability tend to be in the mixed phase region with high Cs 

content and low Br content. We further validate the conclusions of the photo-stability map by 

performing time-dependent µPL on 4 additional representative compositions exhibiting 

different stability behaviors (See Figure S24 and S25 for details). The results are consistent 

with the photostability map and confirm its reliability. So far, we have demonstrated a multi-

dimensional data framework (Figure 5H) created by our RoboMapper workflow to reveal the 

QSPRs of the quaternary mixed ion FA1-yCsyPb(I1-xBrx)3 perovskites. 

 

Data-driven wide bandgap hybrid perovskite screening. To further validate our established 

QSPRs as well as demonstrate the practical use case, we predict 14 compositions (Table S19) 

achieving the same bandgap but with very different A-site and X-site compositions as per 

QSPR calculations (Figure 6A inset). For this case study we have selected ~1.70 eV which is 

the optimal bandgap for the top cell of perovskite/Si tandem solar cells. The RoboMapper was 

used to formulate and print these compositions for QSPR validation with µPL mapping. All 

the predicted materials have similar and overlapping PL spectra (Figure S26). The measured 

bandgaps achieve an average value of 1.710 eV with a narrow distribution of 0.007 eV (Figure 

6A), very close to the target/predicted 1.70 eV with only small deviations. To examine the 

transferability of the observed properties and correlations from RoboMapper samples to 

traditional thin films, we selected 7 compositions to make spin-coated thin films and compare 

the bandgap and photostability results with RoboMapper samples (Figure S27). Remarkably, 

we observe similar bandgap results for each composition among the RoboMapper samples and 

thin films (Figure S27) and the average bandgap for thin films is 1.707 eV with a standard 

deviation of 0.010 eV, almost the same as RoboMapper results (1.713  0.006 eV) (Figure 6B). 

Similarly, photostability of the compositions achieving ~1.7 eV for both RoboMapper and thin 

film samples show an identical general trend (Figure 6B inset) and a good match with the 

predicted stability (Figure S27A). The compositions with high Br content show intermediate 

instability scores with obvious red shifts of PL spectra, whereas the compositions with high Cs 

content exhibit high instability scores with double emission peaks formation. Only the 

compositions with ideal Br and Cs contents present low instability scores with very small shifts 

(Figure 6C and Figure S27C). It is worth mentioning that the discrepancy of the absolute value 

of the bandgap and instability score between the RoboMapper samples and the thin films may 
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come from the difference of morphology and grain size due to different processing methods 

and need further study in the future. 

 

To prove the relevance for device application, we fabricated the perovskite solar cells (PSCs) 

in inverted p-i-n architecture (Figure 6D) with three representative high Cs, ideal and high Br 

compositions that show the same bandgap but very different photo-stability (Figure 6C).  

Interestingly, we found the devices with ideal composition exhibit the best device performance 

and reproducibility with an average power conversion efficiency (PCE) of 19.20  0.45%, 

overperforming the high Br (17.75  0.59%) and high Cs (14.36  1.65%) devices (Figure 6E). 

The other device parameters like open circuit voltage (VOC), short circuit current density (JSC), 

and fill factor (FF) also present the same trend (Figure S28 and Table S20). The champion 

device for the ideal composition has a VOC of 1.18 V, a JSC of 21.54 mA/cm2, and an FF of 

78.83%, resulting in a PCE of 20.06% (Figure S29 and Table S21). We further monitored the 

PCE evolution of the three types of devices under 1 sun illumination at the open circuit 

condition within one hour (Figure 6F). As expected, the devices with ideal composition show 

the best photo-stability and can maintain 93.2  5.9% of their initial value, while the high Br 

devices drop to about a half (53.6  5.9%) and the high Cs devices only retain 23.2  2.4% of 

the initial PCE. These results are in great consistent with the prediction of our QSPR models. 

We also notice that the devices with ideal composition display almost negligible hysteresis 

compared with the other two compositions (Figure 6G and Figure S30). According to previous 

reports, it has been shown that the hysteresis is directly related to the migration of halide 

ions/vacancies60,78 while the halide migration and the halide vacancy density are also 

responsible for the photo-induced phase segregation53,79 and photodegradation.60,80,81 This is in 

good agreement with our observations and provides us a pathway to understand the reasons for 

the different performance and photostability of the three compositions. Thus, we 

experimentally measured the rate of superoxide generation using the dihydroethidium 

fluorescent probe (Figure S31), which has been shown the higher rate of superoxide generation 

is linked to the higher density of vacancies in the hybrid perovskites.60,80,81 As indicated in 

Figure 6H, we did find the ideal composition exhibits a significantly lower superoxide yield 

and generation rate, being reduced by almost 50% compared to the high Cs composition and 

by 30% compared to the high Br composition, providing evidence that the ideal composition 

has the lowest vacancy density. This conclusion is further verified by the different light-

induced degradation rates of the thin films of the three compositions in the presence of oxygen 

and moisture (Figure 6H inset and Figure S32). We found the high Cs thin film degraded very 

quickly and totally turned yellow after 7 hours when the high Br thin film began to show 

obvious color change, while the thin film with ideal composition could still maintain most of 

its black phases after 12 hours. These are consistent with our hypothesis that the low vacancy 

density in the ideal thin film can suppress the diffusion of halide ions and oxygen, which in 

turn limits the transport of halide ions to form iodide- and bromide-rich domain as well as 

slows down the rate of superoxide species formation, resulting in inhibited light-induced phase 

separation and a slow degradation rate (Figure 6I). 

 

Conclusions 
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In this work, we have developed a robotic platform-RoboMapper and demonstrated an end-to-

end miniaturized, automated workflow from on chip experimental design to ink formulation 

and micro-printing multi-materials on a single chip for high-throughput multi-modal 

characterization with a wide range of laboratory- and synchrotron-based microprobes. The 

unique RoboMapper workflow is shown by the life cycle assessment to be more eco-friendly 

than the manual and existing automated workflow by yielding significantly less environmental 

impact on ecosystems, human toxicity and GHGEs, and decreasing time, energy consumption 

and cost by 9 to 52 times. A state-of-the-art case study on a quaternary FA1-yCsyPb(I1-xBrx)3 

perovskite system proves the ability of RoboMapper to rapidly establish the quantitative 

structure-property relationships in a large and complex compositional space. The constructed 

quaternary phase diagram based on experimental results provided more accurate and practical 

guidance to the composition-structure relationship than theoretical predictions. The 

quantitative lattice constant, bandgap, and photo-stability maps focusing on the photovoltaic 

region of interest provide insights into the screening and prediction of compositions among a 

wide range of options for target applications. Using the developed QSPR models, we searched 

for the phase pure and photostable perovskite alloy exhibiting an ideal bandgap of ~1.7 eV 

suitable for perovskite-Si hybrid tandem solar cells. The predicted new wide bandgap 

compounds are validated with both RoboMapper samples and spin-cast thin films, matching 

the predictions with remarkable consistency, proving the reliability and fidelity of the platform 

and our model. The predicted ideal compound was translated to single junction p-i-n solar cells 

with a PCE of 19.20  0.45%, low hysteresis, and far better photostability than other 

compounds evaluated within the QSPR map at 1.7 eV. Furthermore, we evaluated the scientific 

link between photostability and the vacancy concentration and showed that the ideal 

composition exhibits low halide vacancy concentration, which can explain why photo-induced 

halide segregation and photobleaching of the ideal compound were considerably slower. This 

platform could also be applied to other solution processable materials such as organic 

semiconductors, quantum dots, and nanoparticles to pave the way towards the fully 

autonomous experimentation of ink-based semiconductor materials, ink formulations and 

(opto)electronic devices co-design with the guidance of artificial intelligence (AI). 

 

Experimental Procedures 

Resource availability 

 

Lead contact 
Further information and request for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Aram Amassian (aamassi@ncsu.edu). 

 

Materials availability  
This study did not generate new reagents. All the reagents used are commercially available as 

described in Materials subsection. 

 

Data and code availability  

mailto:aamassi@ncsu.edu
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All the data needed to evaluate the conclusions are available in the files in the Supplementary 

information section. All other data and the code related to this work are available upon 

reasonable request from the authors. 

 

Materials 
Formamidinium iodide (>99.99%), formamidinium bromide (>99.99%), methylammonium 

bromide (>99.99%), phenylethylammonium bromide (>99.99%) were purchased from 

GreatCell Solar. Cesium iodide (99.999%), cesium bromide (99.999%), lead iodide (99.999%), 

lead bromide (99.999%), lead chloride (99.999%), dimethylformamide (> 99.8%, anhydrous), 

dimethyl sulfoxide (>99.9%, anhydrous) were purchased from Sigma Aldrich. All the materials 

and solvents were used as received without further purification. 

 

Inks and RoboMapper sample preparation 
The Si/SiO2 substrates were pre-cleaned with soap, acetone, IPA and rinsed with DI water 

followed with nitrogen drying. 1 M FAI, FABr, CsI, PbI2, PbBr2 were dissolved in 

DMF/DMSO(4:1) as stock solutions and stirred in the nitrogen filled glove box overnight. 

0.5M CsPbBr3 was used as the stock solution directly by dissolving equal molar of CsBr and 

PbBr2 in pure DMSO due to the very low solubility of CsBr in the polar solvent. The different 

ink formulations were made automatically by the liquid handler through mixing certain 

volumes of the stock solutions controlled by the home-built LabVIEW software. After each 

ink was formed, it would be deposited in the 384 well plate in order. Then the inks were loaded 

into a 50 µm diameter hollow capillary and directly printed on the substrates by the dispensing 

robot. 0.5 V applied voltage and 0.5 s dispensing time were applied during the printing and the 

array has 300 µm center to center distance. All the experiments were conducted in a 30% 

humidity controlled dry lab at room temperature. After the printing was done, the samples were 

transferred to the glove box and annealed at 150 °C for 10 mins. 

 

Perovskite precursor solution and device fabrication 
To make FA1-yCsyPb(I1-xBrx)3 perovskite thin films, 1.4 M precursor solutions were prepared 

by weighing the stochiometric amount of FAI, CsI, FABr, PbBr2, and PbI2 in precleaned glass 

vials and dissolved into 800 μL DMF and 200 μL DMSO (4:1 volume ratio). After stirring for 

4 hours, fresh solutions were used to fabricate thin films and devices. For the device fabrication, 

ITO glasses were sonicated in a sequence of soap water, DI water, acetone, and IPA for 15 min, 

respectively. The N2-dried ITO glasses were transferred into glovebox after UV-ozone for 15 

min. 50 μL MeO-2PACz (0.5 mg mL-1) was spin-coated onto ITO substrates at 5000 rpm for 

30s and then being annealed at 100 ℃ for 10 min. After cooling for 5 min, 1.4 M wide-bandgap 

perovskite solution (with 30 mol % MACl additive) was spun coated at 5000 rpm for 30s with 

200 μL ethyl acetate antisolvent dripped onto the spinning substrates at 15s and was then 

annealed at 150 ℃ for 10 min. After cooling to room temperature, the substrates were 

transferred into the chamber of thermal evaporator. LiF (1 nm), C60 (25 nm), BCP (6 nm) and 

Ag (100 nm) were deposited in sequence to finish the device fabrication. 

 

Characterization and stability test of solar cell device 
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J-V characteristics were measured with a Keithley 2400 source meter under 100 mW cm-2 

illumination by the AM 1.5G solar simulator (Class 3A, Newport). The light intensity was 

calibrated by the KG5 silicon reference cell before the measurement. All the solar cell 

measurements were conducted in the nitrogen filled glove box (O2, H2O < 0.1 ppm) with a scan 

rate of 0.2 V s-1 (0.02 V voltage step and 100 ms delay time). The device area is 0.076 cm2 and 

is determined by the shadow mask during the thermal evaporation of contact. No mask/aperture 

is used during the solar cell testing. The photostability test was also performed in the glovebox 

with the home-built setup without any encapsulation. The light source consists of a white LED 

array (TX 100W LED Chip) and a 120° concentration lens. The light intensity is calibrated by 

the KG5 silicon reference cell and equivalent to 1 sun AM 1.5 G illumination. A fan is used to 

cool the sample and maintain the temperature around 30-35° under 1 sun illumination.  

 

High-throughput wide angle X-ray scattering measurement (HT-

WAXS) 
HT-WAXS was performed in the transmission geometry at the Complex Materials Scattering 

(11-BM CMS) beamline of National Synchrotron Light Source II (NSLS-II), Brookhaven 

National Lab. The double side polished Si substrate with high-throughput printed arrays was 

mounted on a motorized x-y translation stage. The x-ray beam with the wavelength of 0.918A, 

13.5k eV energy, perpendicularly penetrated through the printed samples. The x-ray beam size 

was set to 0.2x0.2mm in order to cover isolated printed grains.  The scattering signal was 

collected by an area detector, Pilatus 800K, placed 259mm away from the sample. The 

exposure time was 10s. All the measurements were done automatically with the python 

software controlling the automated sample translations and data collection. 

 

Steady-state and time-dependent micro photoluminescence 

measurement (µPL) 
The steady-state and time-dependent photoluminescence measurements were performed in a 

home-built µ-PL setup. For FA1-yCsyPb(I1-xBrx)3 compositions, 532 nm laser beam was focused 

to a ~50 μm spot to excite the whole individual pixel on the sample mounted on a x-y translation 

stage with the power of 20 µW. The reflected light was then collected with the same focusing 

lens and after passing through a 550 nm edge pass filter, the PL was spectrally resolved by a 

spectrometer (Acton SP2300i) and detected by a deep cooled CCD camera (PIXIS) with 2s 

exposure time. The Br and Cl based compositions are measured with the same setup, except 

that 400 nm laser beam and 450 nm long pass filter was used. The µPL spectrum of 2D 

perovskite PEA2PbBr4 were taken using an Edinburgh Instruments FS-920 photoluminescence 

spectrometer with 360 nm excitation. 

 

Time-dependent µPL was conducted by keep illuminating the pixel for 30 minutes with 532 

nm CW laser with adjusted power density close to 1 sun (~ 100 mW/cm2). The µPL spectra 

was collected every 1 min with LabView controlled program. 

 

Optical and fluorescence microscopy 



17 

 

Optical microscopy images were obtained on a Nikon Eclipse LV100POL microscope 

equipped with motorized XYZ stage with 20X-, 50X and 100X objectives via automated 

stitching controlled by the NIS-Elements software. The fluorescence images were excited with 

a solid-state white light source (SOLA SM II 365) and collected through a BV-2A long-pass 

filter cube. The exposure time was 100 ms. 

 

UV-visible spectroscopy 
The UV–vis transmittance measurements were performed using an F40-UVX (Filmetrics) for 

thin films. The home-built UV-vis set up modified from the Nikon Eclipse 80i microscope was 

used for material arrays and the spectra were collected with Ocean Insight flame UV-vis 

spectrometer. 

 

Superoxide generation 
Superoxide probe testing was performed by dissolving 1mg of Dihydroethidium probe 

(ThermoFisher) in 1ml of chlorobenzene. Sonication was used to facilitate the dissolution. 

Perovskite films were submerged into this solution. The film was illuminated with visible light 

source using 520 nm long pass optical filter. The solution was exposed to xenon lamp with 

approximate light intensity of ~10 mWcm−2 (~ 0.1 sun). Photoluminescence spectra were 

recorded using an excitation wavelength of 520nm and bandwidth of 10 on Edinburgh 

Instruments FLS920 spectrofluorometer. The excitation light source for the fluorimeter was a 

450 W Xe arc lamp equipped with a monochromator. 
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Figure Titles and Legends 
 

Figure 1. Schematic of the RoboMapper platform and workflow 

(A) Illustration of the experimental design of inks formulated from different AX, BX2 stock 

solutions and solvents and mapped on a chip. 

(B) Schematic of the RoboMapper micro-experimentation platform enabling automated ink 

formulation and micro-printing of a wide variety of solution-processable materials from a 

library of precursors onto a common substrate. The materials array is then subject to multi-

modal characterization and mapping using a wide range of laboratory- and synchrotron-based 

microprobes. 

(C) Demonstration of multi-layer data stacks linking the materials, structures and properties to 

establish the quantitative structure-property relationship (QSPR). 

 

Figure 2. Illustration of the RoboMapper platform for solution processing hybrid perovskite 

materials and multimodal micro-characterization  

(A) Precursor (AX, BX2) and solvent library used to formulate inks for different ABX3 and 

An+1BnX3n+1 metal halide perovskites. 

(B) Step by step illustration of the platform’s workflow from ink preparation (i-iii) to micro-

printing (iv-v) on a common substrate, as well as carefully optimized flushing (iii) and cleaning 

(vi) steps to eliminate cross-contamination while allowing reuse of syringe and capillary. 

(C) Photographs of (i) the dot array with 50 µm diameter of MAPbBr3 being printed; (ii) the 

line array consisting of 30 lines of FAPbBr3, MAPbBr3 and CsPbBr3 with 1.5 mm length; and 

(iii) the square patches of MAPbBr3 (500 by 500 µm) with 600 nm thickness printed using 

RoboMapper. Scale bars are 200 µm (i), 2mm (ii), 250µm (iii).  

(D) Optical microscopy (OM) and fluorescence OM (FOM) images with 50X magnification of 

multiple HMH compounds micro-printed by the RoboMapper on the same substrate; the scale 

bar is 20 µm. 

(E) High-throughput wide angle x-ray scattering patterns (HT-WAXS) and micro-

photoluminescence (HT-µPL) spectra of pixelated samples in (D) confirming the structure and 

optical properties of the pixels correspond to the compounds. 

 

Figure 3. Life cycle assessment on the manual, automated and RoboMapper workflow 

(A) Comparison of accumulated time to screen (formulate, process and characterize) 500 

individual formulations by the three workflows. Inset: Pie charts representing the fraction of 

time allocated to the most time-consuming steps in each workflow.  

(B) Comparison of total time, waste, cost and energy demand required for all three workflows 

to screen 500 perovskite formulations. Labor and capital costs are excluded. 

(C) Accumulated column plot of the normalized environmental impact of three workflows on 

global warming, freshwater ecotoxicity, marine ecotoxicity, human carcinogenic toxicity, and 

fossil resource scarcity in terms of perovskites, solvents, supplies, electricity of the process 

(electricity-P), electricity of the characterization (electricity-C) and waste. 

(D) Scaling of time, energy demand, and costs with the increasing number of experiments for 

the three workflow scenarios. The inset table shows the relative saving ratio in terms of time, 
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energy demand and cost when comparing the RoboMapper workflow with manual and 

automated workflows. 

 

Figure 4.  On-chip Robo-Mapping of quaternary phase diagrams: Demonstration of the FA1-

yCsyPb(I1-xBrx)3 mixed ion perovskite system’s non-equilibrium phase diagram 

(A) Circular average of WAXS patterns and phase identification of the unary compounds at 

the four vertices of the phase diagram: FAPbI3 (x=0, y=0) in the 1C (cubic) perovskite phase; 

CsPbI3 (x=0, y=1) in the 1O (orthorhombic) non-perovskite phase; FAPbBr3 (x=1, y=0) in the 

2C (cubic) perovskite phase; CsPbBr3 (x=1, y=1) in the 2O (orthorhombic) perovskite phase. 

(B) Structural evolution from WAXS measurements along the four edges of the FA1-yCsyPb(I1-

xBrx)3 phase diagram with a  x=y=0.2 step size, corresponding to four binary systems: 

CsPb(I1-xBrx)3 (y=1; i), FA1-yCsyPbI3 (x=0; ii), FAPb(I1-xBrx)3 (y=0; iii) and FA1-yCsyPbBr3 

(x=1; iv). 

(C) Quaternary phase diagram of the FA1-yCsyPb(I1-xBrx)3 system constructed from HT-WAXS 

measurements of 61 compositions. The substrate with all compounds was annealed at 150 ˚C 

for 10 mins and allowed to cool. HT-WAXS mapping was performed at room temperature in 

a vacuum. 

(D) Predicted phase diagram based on the Goldschmidt tolerance factor, TF, and Octahedral 

factor, OF. The compound is expected to be tetragonal or hexagonal when TF > 1; cubic when 

0.9 < TF < 1, and orthorhombic when TF < 0.9. All compositions are eligible to be perovskites 

as µ > 0.41. 

 

Figure 5.  Phase boundary refinement and optical analysis of a photovoltaic region of interest 

(A) Refined phase map of the 1C phase region consisting of 20 additional compositions (0 < x 

< 0.35; 0 < y < 0.45). 

(B) The evolutions of (100) peaks of the 1C phase with varying Br content (x) for low Cs 

(y=0.1) and high Cs (y=0.3) concentrations. At low Cs concentration, a monotonic increase of 

the q value and lattice parameter with increasing Br (x) indicate single phase solid-solution 

alloy, whereas at higher Cs content, the (100) peak and lattice constant variation with 

increasing amount of Br are not monotonous when crossing the phase boundary, which also 

corresponds with formation of an additional 1O phase (0.05 < x <0.2). 

(C) 2D color map of 1C phase lattice constant showing monotonous trend within the phase 

boundary and deviations outside the 1C single phase boundary. The black dashed contour lines 

are obtained by fitting all the lattice constants within the single-phase region linearly for both 

x and y (R2 = 0.992). The grey dashed line is the approximate phase boundary separating the 

single and double phase regions. 

(D) 2D color map of bandgaps extracted from µPL measurements for a sample set 

RoboMapped with 0.05 increments in x and y. The solid dots denote the actual compositions 

measured while the dashed contour lines denote equal bandgap compositions as obtained by 

fitting the global data with a quadratic function for both x and y according to Vegard’s law (R2 

= 0.952). The model therefore links the bandgap to x and y values corresponding to halide and 

cation composition.  

(E) Examples of the µPL spectra with fixed halide composition and changing cation 

composition (left, x=0.25, varying y) or fixed cation composition and varying halide (right, 
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y=0.1, varying x). 

(F) Photodegradation in air under 1 sun for 1 hour reveals three types of PL spectral changes, 

which we classify as type 1 (a single peak undergoes red shift), type 2 (formation of double 

peak), and type 3 (loss of PL signal). 

(G) A photo-stability map obtained by ascribing an instability score according to the peak 

wavelength shift values (∆) before and after exposure under 1 sun for 1 hour. For Type 1, ∆ 

is used directly as the instability score; for Type 2, since obvious photo-induced phase 

segregation can be observed, the maximum shift value ∆max was used in the equation 

0.46∗∆max + 43.6 to make sure the instability score distributed between 50 and 90; Type 3 was 

ascribed with a score of 100; the black dashed contour lines indicate the bandgaps while the 

grey dashed line is the approximate phase boundary separating the single 1C phase and 1C+1O 

phase regions. 

(H) The full data stacks from the morphology, phase, structure, bandgap and photostability 

mapping of FA1-yCsyPb(I1-xBrx)3 compounds, demonstrating the QSPRs.  

 

Figure 6. Screening of FA1-yCsyPb(I1-xBrx)3 wide bandgap hybrid perovskite alloy for device 

application 

(A) The measured bandgaps from µPL of 14 predicted compounds with ~ 1.7 eV bandgap 

showing a narrow distribution of 1.710  0.007 eV. The x axis indicates the specific 

compositions with Br percentage(x)/Cs percentage (y).  The inset shows the predicted bandgap 

map by our model and a total of 14 compositions with the same 1.7 eV bandgap extracted from 

the map. 

(B) Comparison of the statistical bandgap results from the same 7 compounds of RoboMapper 

samples (1.713  0.006 eV) and spin-coated thin film samples (1.707  0.010 eV). The inset 

shows the instability score of the 7 compounds of RoboMapper samples and spin-coated thin 

films.  

(C) The PL spectra of three representative compounds with high Br content 

(FA0.9Cs0.1Pb(I0.675Br0.325)3), ideal Br and Cs contents (FA0.775Cs0.225Pb(I0.749Br0.251)3) and high 

Cs content (FA0.575Cs0.425Pb(I0.796Br0.205)3) before and after photodegradation in air under 1 sun 

for 1 hour, showing the same bandgaps and very different photo-stability, consistent with the 

trend predicted by the photostability map.  

(D) Schematic of the inverted p-i-n perovskite solar cell device structure. BCP, bathocuproine.  

(E) The statistical power conversion efficiency results from 20 devices for each compound: 

high Cs (14.36  1.65%); ideal (19.20  0.45%); high Br (17.75  0.59%). 

(F) Evolution of the normalized PCE of three types of solar cells at the open circuit condition 

under 1 sun illumination at 35 °C in the nitrogen filled glove box within one hour. The error 

bars denote the standard deviation of the PCE from 3-9 cells.   

(G) Hysteresis indexes of the three types of devices extracted from the forward and reverse 

scans with 0.2 V/s scan rate.   

(H) Normalized PL intensity of the probe solution (0.01 mg/ml of dihydroethidium in 

chlorobenzene) as a function of perovskite films aging time under continuous light illumination 

(0.1 sun) and constant oxygen flow at 620 nm, representing the yield of superoxide generation. 
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The inset shows the images of three films under 1 sun illumination in ambient air, indicating 

the different photo-degradation behavior. 

(I) Schematic of the influence of vacancy density on the photostability of mixed halide 

perovskites. The higher density of vacancies promotes the halide ion migration and leads to 

faster photo-induced halide segregation by forming I-rich (red square region) and Br-Rich 

(green square) domains. Also, more vacancies are favorable for oxygen ingress into the volume 

of grains and causes a higher superoxide formation rate, resulting in faster photobleaching rate 

of the perovskite. 

 

Supplemental Video Titles and Legends 
 

Video S1. The demonstration of the RoboMapper platform automatic workflow with MAPbBr3 

as an example including ink formulation, mixing, on-chip printing and cleaning.  


