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Abstract: Dynamic planning of water infrastructure requires identifying signals for adaptation, including measures of system performance
linked to vulnerabilities. However, it remains a challenge to detect projected changes in performance outside the envelope of natural vari-
ability, and to identify whether such detections can be attributed to one or more uncertain drivers. This study investigated these questions
using a combination of ensemble simulation, nonparametric tests, and variance decomposition, which were demonstrated for a case study of
the Sacramento–San Joaquin River Basin, California. We trained a logistic regression classifier to predict future detections given observed
trends in performance over time. The scenario ensemble includes coupled climate and land-use change through the end of the century,
evaluated using a multireservoir simulation model to determine changes in water supply reliability and flooding metrics relative to the his-
torical period (1951–2000). The results show that the reliability metric is far more likely to exhibit a significant change within the century,
with the most severe scenarios tending to be detected earlier, reflecting long-term trends. Changes in flooding often are not detected due to
natural variability despite severe events in some scenarios. We found that the variance in detection times is attributable largely to the choice
of climate model, and also to the emissions scenario and its interaction with the choice of climate model. Finally, in the prediction model for
both cases, reliability and flooding, the model learns to associate more-recent observations of system performance with nonstationarity
detection. These findings underscore the importance of differentiating between long-term change and natural variability in identifying signals
for adaptation. DOI: 10.1061/JWRMD5.WRENG-6184. © 2024 American Society of Civil Engineers.

Introduction

Water resources planning is challenged by cascading uncertainty
in multiple factors, including future greenhouse gas emissions,
climate model structure, downscaling, hydrologic modeling, and
land use (Wilby and Dessai 2010). In response, there are two main
approaches to long-term water resources decision support: robust
planning, and dynamic planning. The goal of robust planning is to
identify vulnerabilities under uncertainty and select actions with
adequate performance across a wide range of plausible scenarios
(Hinkel and Bisaro 2016; Walker et al. 2013; Weaver et al. 2013).
However, the choice of static planning alternatives may lead to
overinvestment, especially regarding irreversible infrastructure de-
cisions (Borgomeo et al. 2018). In contrast, dynamic adaptation
planning involves gradual investments in which decisions are made
in response to new information over time (Fletcher et al. 2019;
Haasnoot et al. 2013; Hui et al. 2018). The design of dynamic
policies requires mapping indicators to actions, which can involve
optimizing the sequence, timing, and threshold values assigned to
observations and projections (Herman et al. 2020). Planning frame-
works utilizing adaptive planning have been applied successfully
to a variety of applications, including dynamic adaptive policy
pathways (Haasnoot et al. 2013) and engineering options analysis
(de Neufville and Smet 2019). Such approaches are appropriate for

many applications that involve planning under uncertainty; some
examples include planning flood mitigation infrastructure using
indicators of sea level rise (Woodward et al. 2014) or event levels
(Kwakkel et al. 2015), or planning for water supply infrastructure
adaptation and operations with reservoir storage as an indicator
(Mortazavi-Naeini et al. 2015). The present study focused on
the detection of potential indicators as statistical changepoints,
rather than on the mapping of these indicators to actions.

The choice and design of indicators is critical to an adaptive
management strategy. Multiple strategies exist for identifying and
designing indicators, including scenario discovery (Bryant and
Lempert 2010; Groves et al. 2015; Lempert and Groves 2010)
and multiobjective optimization of fixed or flexible policy struc-
tures (Cohen and Herman 2021; Hamarat et al. 2014; Kwakkel
et al. 2015; Quinn et al. 2017; Zeff et al. 2016). Robinson and
Herman (2019) proposed indicators based on a threshold classi-
fication method for future water supply vulnerabilities, which be-
comes more accurate at a multidecadal timescale. Ideally, indicators
are linked to tipping points in system performance or predictions of
future vulnerability, and are able to separate signals from noise and
natural variability (Haasnoot et al. 2013; Hegerl and Zwiers 2011).
However, this is a difficult problem for climate adaptation, because
noise and natural variability may mask trends of key indicator
variables (Bass et al. 2022; Siler et al. 2019).

The adaptation signals identified in these studies generally have
not considered whether their timing is caused by nonstationary sys-
tem performance reflecting long-term change rather than natural
variability. This has been investigated indirectly through robustness
testing, i.e., ensuring that adaptive policies continue to perform
well in other samples of scenarios outside the training set (Cohen
and Herman 2021). It also is possible to optimize policies directly
to search for plans that are both dynamic and robust (Kwakkel
et al. 2015). However, these approaches have not yet investigated
whether and when nonstationary performance will be detected
in projections of future climate and land use. Numerous studies
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have addressed nonstationary trends in hydroclimatic variables;
Slater et al. (2021) provided a review. Detection methods typically
include regression methods such as ordinary least squares (Hecht
and Vogel 2020; Papalexiou and Montanari 2019), nonparametric
methods such as the Mann–Kendall test (Westra et al. 2013; Wilby
2006; Ziegler et al. 2005), and parametric methods in which dis-
tribution parameters vary with time (Katz 2013; Prosdocimi et al.
2015). Some studies using parametric methods have found that
detection times depend on structural uncertainty in the choice of
distribution (Ceres et al. 2017; Lee et al. 2017). However, the de-
tection of nonstationary change in engineering system objectives to
inform adaptation signals remains an open question. Some nonsta-
tionarity in hydroclimate can be buffered by existing infrastructure
and operations, and would not necessarily result in a significant
change to system performance.

The detection of nonstationary system performance must be
attributed to one or more uncertain drivers to gain further insight
into appropriate adaptation planning. For example, if uncertainty
is attributable to natural variability, adaptation should be flexible
and focused on the short term (e.g., operational changes such as
hedging water supply); if uncertainty is attributable to climate
uncertainty, adaptation should be robust to long-term change
(Whateley and Brown 2016). Hawkins and Sutton (2009) devel-
oped an ANOVA approach to decompose variance in mean global
temperature due to internal variability, model variability, and radi-
ative forcing uncertainty. This methodology has been adapted to
other hydroclimatic variables, such as precipitation (Greve et al.
2018) and drought risk (Orlowsky and Seneviratne 2013). In the
water resources field, Whateley and Brown (2016) analyzed the
sensitivity of uncertainties in decision-relevant water resources
objectives such as water supply reliability and vulnerability using
a similar approach. Additionally, the sampling of natural variability
may be strengthened by large ensemble climate projections (Lehner
et al. 2020). For example, Steinschneider et al. (2023) used en-
semble projections to conduct variance decomposition via global
sensitivity analysis to understand model suitability in climate risk
assessments.

Finally, dynamic adaptation benefits from signals that identify
changes in system performance before they occur. These signals
may be drawn from a combination of observed hydroclimate and
system performance, and can be used to reduce uncertainty in fu-
ture scenarios and trigger adaptation based on this updated projec-
tion. Multiple studies have used Bayesian statistics of observed
hydroclimatic variables to improve estimates of future trends
(Smith et al. 2009; Tebaldi et al. 2005). Furthermore, in the context
of dynamic adaptation planning, studies have shown the impor-
tance of proactive monitoring and timely action in response (van
Ginkel et al. 2022; Haasnoot et al. 2018). This emphasizes the need
to detect signals ahead of time, especially for cases in which adap-
tations that occur too early or too late are highly costly (Raso et al.
2019). It has been found that there is potential to detect future water
supply vulnerability in advance using machine learning (Robinson
et al. 2020), although without distinguishing between outcomes
that occur within the distribution of historical variability and those
that reflect nonstationary trends.

This study addressed indicators of nonstationarity as statistical
changepoints—specifically, identifying tipping points as times in
which current statistical properties of objective time series have
shifted compared to the historical distribution. We approached this
using a nonparametric statistical testing procedure that evolves with
time, i.e., over a sliding window of a fixed size. This study analyzed
whether and when detections of nonstationary reservoir system
performance will occur in ensembles of climate and land-use pro-
jections, and decomposed the uncertainty in detection time to these

drivers of change. We additionally investigated the ability to predict
future detections based on recently observed performance objec-
tives. Two metrics for water supply reliability and flood volume
were tested using a series of nonparametric significance tests
against the historical baseline. Sources of uncertainty in the detec-
tion time then were attributed to three uncertain drivers: the emis-
sions scenario, land-use scenario, and climate model uncertainty
using global sensitivity analysis. Finally, a logistic regression
model was trained to predict future detections, in order to support
dynamic adaptation planning through the design of early warning
signals for nonstationary system performance. As mentioned pre-
viously, the optimization of actions conditioned on the detection of
nonstationary performance was outside the scope of this study, and
is left for future work. Instead, we focused on the behavior of
detecting nonstationary changes on the projection data set, includ-
ing analyzing how frequently detections occur, decomposing the
sources of uncertainty in detections, and evaluating the possibility
of predicting detections in advance.

Methods

Case Study and Scenario Data

Historical and future water supply and flooding objectives were
simulated in a daily-timestep model of eight reservoirs in the
Sacramento–San Joaquin River Basin (SSJRB) system in Northern
California (Fig. 1). This case study is well suited to studying flood
risk and water supply objectives because the system aims to bal-
ance both flood releases downstream of the reservoirs and water
supply, in particular, exports pumped from the Sacramento–San
Joaquin River Delta. Reservoir operating policies are fit empirically
based on median observed data and adjusted for current conditions.
This structure promotes parsimony and consistency among how
each reservoir is operated within the model.

In all, the model consists of 43 parameters (5 parameters de-
scribe release policies for each of the 8 reservoirs, 2 parameters
describe hydrological gains, and 1 parameter describes water

Fig. 1. Map of the SSJRB system.
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supply exports pumped from the Sacramento–San Joaquin Delta)
that are calibrated to historical observations using differential evo-
lution (Storn and Price 1997). A previous version of the model
served as the case study for uncertainty decomposition methods
and was found to have sufficient accuracy in the broader context
of climate uncertainty (Steinschneider et al. 2023). Water supply
releases are given by Eq. (1), which represents a hedging rule
for reservoir releases

RiðtÞ
Ri;mðtÞ

¼
�

SiðtÞ
Si;mðtÞ

�
x0 ∀ i ∈ f0; 1; : : : ; 8g ð1Þ

where i denotes one of the eight reservoirs; R = release; S = storage;
x0 is a fitted parameter; and subscript m denotes median observed
value for that day of the water year. The release from Eq. (1) then is
modified to include flood control releases if the day of the water
year is between parameters ½x1; x2� and the storage exceeds a
threshold, SiðtÞ > x4Si;mðtÞ. This obtains Eq. (2), which consists
of a simplified seasonal flood pool rule

RiðtÞ 0 ¼ RiðtÞ þ x3ðSiðtÞ − x4Si;mðtÞÞ ∀ i ∈ f0; 1; : : : ; 8g ð2Þ

where fx1; : : : x4g are fitted parameters.
Hydrologic gains into the Delta, GobsðtÞ, are defined by Eq. (3),

which captures any additional tributary inflows into the system that
were not modeled explicitly. Eq. (4) describes how GobsðtÞ is esti-
mated using observed data, which we denote GðtÞ

GobsðtÞ ≔ DinðtÞ −
X
i

RiðtÞ ð3Þ

GðtÞ ¼ GmðtÞ
�X

i

SiðtÞ
Ki

�
x5 þ x6

X
i

QiðtÞ ð4Þ

where Din = Delta inflows; K = reservoir capacity; Q = reservoir
inflows that are modeled explicitly; and x5 and x6 are fitted param-
eters. The first term in Eq. (4) adjusts the median gains for general
hydrologic conditions, and the second term assumes that additional
reservoir inflows are correlated with modeled inflows.

Finally, water supply exports pumped from the Delta are given
by Eq. (5), which also consists of a hedging rule similar to Eq. (1)

PðtÞ ¼ DinðtÞpmðtÞ
�X

i

SiðtÞ
Ki

�
x7 ð5Þ

where pm = median percentage of inflow pumped on that day of the
water year, and x7 is a fitted parameter. Except for Eq. (2), which is
formally defined in USACE control manuals, the other operating
rules are empirical and are fit to historical data with reasonable ac-
curacy, as shown by Steinschneider et al. (2023). Steinschneider
et al. (2023) also provided more detail about the model definition.

Streamflow inputs from the CMIP5 Climate and Hydrology
Projections (Brekke et al. 2014) are input into the reservoir system
model, containing a total of 97 climate scenarios generated from 4
Representative Concentration Pathways (RCPs) (2.6, 4.5, 6.0, and
8.5) and an ensemble of 31 General Circulation Models (GCMs).
Furthermore, 36 different land-use scenarios (LULCs), including
those from the USGS LUCAS model (Sleeter and Wilson
2017), the US Department of Energy GCAM model (West and
Le Page 2014), and the USGS FORE-SCE model (Sohl et al.
2014), are used to estimate changes in water demand using esti-
mates of crop water intensity (Mall and Herman 2019) and urban
water demand (Christian-Smith et al. 2012). Reservoir releases then
are adjusted using a demand multiplier estimated from the water
demand projections relative to the historical baseline (Mall and

Herman 2019; Robinson et al. 2020). Together these form an en-
semble of 3,492 climate and land-use scenarios. Finally, system
objectives are calculated on an annual timestep through the end
of the century using these simulation results. Water supply reliabil-
ity is calculated as the ratio of Delta pumping to the median his-
torical pumping, which is a proxy for export demand from the
SSJRB reservoirs, and is capped at 100%. The flooding objective
is the summed total release exceeding the safe downstream release
capacity for each reservoir. These models were used to determine
the historical (1951–2000) and projected future (through 2100)
distribution of system performance. The projections here reflect fu-
ture performance predictions if the system is operated in the same
way after the policies in Eqs. (1)–(5) are fit to historical releases.
Specifically, the reservoir operating policy is not dynamic to
changes in performance; if a detection of nonstationarity is a good
indicator variable, it potentially could serve as a trigger to change
the operating policy. This choice aligns with our focus on the de-
tections of nonstationarity themselves, and not on dynamic reser-
voir operations.

Nonparametric Significance Detection

To detect significant trends in the projected future objectives versus
the historical distribution (1951–2000), one-sided nonparametric
Mann–Whitney U tests were conducted sequentially on a sliding
window of fixed length through time on the annual projections, un-
til the end of the simulation period. The one-sided tests capture
decreasing system performance (i.e., an increase in the flood ob-
jective, or a decrease in the reliability objective). A window size
of 30 years was chosen to obtain an adequate sample size for
hypothesis testing while maintaining the ability to detect changes
during the planning horizon. The threshold for detection was set at
p ¼ 0.05. Detection may occur either due to nonstationarity arising
from processes that drive long-term change, or through natural
variability that is sampled incompletely in the historical window.
Differentiating a detection between these two causes is important
to inform the design of adaptation signals.

The Mann–Whitney U tests make the assumptions of serial
independence between annual observations. This assumption may
hold for the inflow timeseries, but may be violated in this study by
sequences of projected water supply reliability or flood volume
because an autocorrelative structure is likely to arise due to year-
to-year carryover storage. Yue and Wang (2002) found that a
prewhitening procedure can effectively remove the effects of serial
correlation from the Mann–Whitney U test. Thus, to account for
the effect of serial correlation, we preprocess the reliability and
flooding projections using a similar prewhitening process. In early
experiments that were conducted without correcting for autocorre-
lation, we found that detections of nonstationarity for reliability
scenarios generally occurred earlier than when a correction was ap-
plied. This confirms the findings of Yue and Wang, who concluded
that the presence of positive autocorrelation can create false pos-
itives when using the Mann–Whitney U test. Figs. S2 and S3 in
the Supplemental Materials show the autocorrelation functions of
the reliability and flooding metrics before and after applying the
correction.

For each year of each scenario in the ensemble, we record the
p-value reflecting whether a detection occurs for each objective.
Additionally, scenarios that never detect a significant change in
the projection horizon are deemed no-detect scenarios, in which
detection may occur after the end of the simulation period, given
ongoing long-term changes in forcing. If a scenario is dominated by
extreme events and high natural variability, a detection may occur
but may return to the original distribution after the period of

© ASCE 04024004-3 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2024, 150(4): 04024004 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

M
at

th
ew

 C
he

n 
on

 0
1/

29
/2

4.
 C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.

http://ascelibrary.org/doi/10.1061/JWRMD5.WRENG-6184#supplMaterial
http://ascelibrary.org/doi/10.1061/JWRMD5.WRENG-6184#supplMaterial


high natural variability has passed through the detection window.
The flood volume objective may be especially vulnerable to this;
thus it is important to analyze how the p-values evolve with time in
order to gauge such behavior.

We also compute the fraction of scenarios in the ensemble with a
significant detection for each year in the timeseries. That is, if each
plausible realization of the projected future is equally likely to oc-
cur, the detection rate represents an idealized measure of detection
probability with time, although the model ensemble does not re-
present the full set of all possible futures.

Attribution and Uncertainty Decomposition

We aggregate the detection results using two metrics: the detection
rate across the ensemble at the end of the century, and the year
of first detection in each scenario. These metrics change based
on the choice of GCM, RCP, and LULC scenario. To understand
the relative influence of each, we first analyze the distribution of the
metrics conditioned on the scenario factors. For the year of first
detection in the 3,492 individual scenarios, descriptive statistics,
including the median, standard deviation, and sample size are ag-
gregated by GCM, RCP, and LULC. Additionally, scenarios incur-
ring a significant detection are mapped to their projected objective
severity at the end of the century. This step identifies whether a
relationship exists between when a detection occurs and the se-
verity of the scenario, particularly to assess cases in which severe
scenarios are not detected.

Next, we conduct a global sensitivity analysis to attribute vari-
ance in the timing of first detection to the choice of GCM, RCP, and
LULC scenario. The first-, second-, and total-order global sensitiv-
ity of first detection years to these input variables was computed
using Sobol sensitivity analysis, providing a measure of how much
variability in results is driven by each parameter both independently
and through interactions with other parameters (Sobol 2001). An
example decomposition of the variance in the year of first detection
Y for k ¼ 3 inputs is

VarðYÞ ¼
Xk
i¼1

Vi þ
Xk
i<j

Vijþ · · · þV1;2;3; : : : ;k ð6Þ

First- and total-order Sobol sensitivity indices, S, are expressed
in Eqs. (7) and (8), respectively, where V∼i indicates the variance
contribution of all terms except input i. The Sobol analysis is

performed using the open-source SALib software version 1.4.5
package (Herman and Usher 2017)

Si ¼
Vi

VarðYÞ ∀ i ∈ f1; 2 : : : kg ð7Þ

STi ¼ 1 − V∼i
VarðYÞ ∀ i ∈ f1; 2 : : : kg ð8Þ

Early Warning of Detection

Logistic regression classifiers were trained to predict the probabil-
ity of a detection of significant change in system performance be-
tween the present year, t�, and a lead time t� þ L—in other words,
to predict if p ≤ 0.05 for any time before L years into the future
based on observed objective values up to t�, i.e., the positive target
class represents a detection occurring, and the negative target
class represents no detections within the next L years. The input
covariates include the standardized mean and standard deviation
of objective values for each decade of available historical data
up to t�. The open-source library scikit-learn was used train the
model parameters, and by default implemented L2-regularization
(Pedregosa et al. 2011). To compare the behavior between models
consistently, we assume a probability threshold of 0.5 (i.e., choos-
ing the class with the higher predicted probability), although de-
pending on the objectives a different sensitivity and specificity
trade-off can be achieved in practice. A total of 75% of scenarios
in the ensemble were selected randomly to train the model, and the
remaining 25% were used to test model performance. Different
models were trained for multiple combinations of L ranging from
10 to 40 years and t� from 2001 to 2051. To assess model inter-
pretability, trained model coefficients were studied to identify
trends in which input features most strongly influence the proba-
bility of detection.

Results

Simulation Model Projections

Fig. 2 shows the 30-year moving average of modeled system ob-
jectives, water supply reliability, and upstream flood volume for all
scenarios. For reliability, it is apparent that the mean of all scenarios

Fig. 2. 30-year moving averages of ensemble projections of water supply reliability and cumulative flood volume for 3,492 GCM, RCP, and LULC
scenarios compared with the historical range.
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is decreasing, although variability increases substantially with time.
For flood volume, the mean of all scenarios remains relatively con-
stant, although variability also is increasing with time. Furthermore,
it is clear that many scenarios fall well outside of the range of
30-year rolling means from the historical period of the projections,
which indicates the potential for significant detections.

Fig. 2 also shows the mean of observed objectives for the
20 years of available data (i.e., simulation results using observed
hydrology). Although observed water supply reliability is reason-
ably within the range of model projections over the historical
period, observed upstream flood volumes are below the range. This
indicates that the recent observed period was unusually dry, and/or
that the scenario modeling chain contains a wet bias for the flood
volume objective. Significance testing within each scenario is de-
termined relative to its own historical period, and should not be
affected by this bias. However, this result shows that the models
and their coupled forcings may capture the observed distribution
of objectives poorly despite high variability between scenarios,
especially for extreme events.

Significance Detection

Fig. 3 shows the timeseries of p-values from the Mann–Whitney
test for a subset of 50 scenarios—25 with and 25 without a detec-
tion. Of the scenarios with a detection, we visualized those that
exhibited their first detection before 2060 to visualize detection
behavior after the initial detection. For water supply reliability,
most scenarios with a detection have homogenous detections that
generally continue to occur after the first year. Additionally, despite
some noise, p-values generally are decreasing before the first de-
tection. This is indicative of detections of long-term change, rather
than of short-term detections of natural variability. However, even if
the trend for reliability is more monotonic than for flooding, there is
still a component of detections due to natural variability. This is
evident from the scenarios that do not remain significant after
2060, after the first detection has occurred. The selected no-detect
scenarios in Fig. 3 do not have a clear trend in terms of p-values.

In contrast, p-values for the flooding objective do not follow a
clear trend and have substantial noise. This is the case for the
samples of scenarios both with and without a detection. This is
evidence for detections driven by periods of natural variability,

which then reverse as the detection window advances. False
positive detections also may occur due to the Type 1 error of the
statistical test, which was controlled to be under 5%. Additional
experiments using expanding windows instead of rolling windows
led to largely the same results: detections are infrequent and noisy
for the flooding objective. Overall, these results highlight the
impact of natural variability as the primary driver for detecting
significant changes in the flooding objective. Conversely, reliability
detections generally are more indicative of long-term change,
although noisy detections due to natural variability also occur.

Fig. 4 shows the detection rates among the full simulation en-
semble. The reliability objective had far greater detection rates than
the flood volume objective. For reliability, 73.2% of scenarios had a
detection at the end of the projection period, whereas only 12.9% of
scenarios for flood volume had a significant change. Additionally,
detections increased steadily throughout the projection for both
reliability and flooding, even for the flooding objective in a small
fraction of scenarios, although detections were rare due to natural
variability.

Fig. 5 shows the distributions of the first year of detection. For
reliability, the distribution of first detection years included 14.6%
no-detects (not shown). The distribution was roughly symmetric,
with the median detection occurring in 2058. For flood volume,
the distribution included 65.1% no-detects, because the majority
of flooding scenarios did not detect a significant change in the
projection period. The distribution was more evenly distributed
throughout the century, consistent with the influence of natural
variability on this objective.

Fig. 6 shows the relationship between the first detection year
and the projected objective severity at the end of the simulation
period for the same scenario. For reliability, earlier detection years
have a wide range of possible outcomes, but later detections occur
predominantly for less severe scenarios. Thus, severe scenarios are
more likely to be detected earlier, and are not likely to go unde-
tected. This is confirmed by the distribution of reliability for
no-detect scenarios, which are centered on high values. For flood
volume, there is little relationship between detection year and
severity, although the most severe scenarios in the ensemble were
detected at some point during the century. As indicated previously,
most scenarios have no detection, and these objectives are concen-
trated on lower values.

Fig. 3. Mann–Whitney U-test p-values. A total of 25 scenarios exhibiting detection and 25 no-detect scenarios were selected randomly. Scenarios
exhibiting detection were chosen from those that first detected a change before 2060 in order to visualize behavior after the initial detection.
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Uncertainty Decomposition

Detection rates at the end of the projection period (2098) are sorted
by choice of GCM, RCP, and LULC (Fig. 7). The results for GCM
and LULC are shown as histograms, whereas for the four RCPs the

individual detection rates are shown as a bar plot. For reliability, the
GCM contributes the most to the variability in detection rates, be-
cause there are GCMs with both near-zero and near-100% detection
rates; the majority are above 60%. Additionally, all RCPs and

Fig. 5. Distributions of first detection years for reliability and flood volume for all scenarios. No-detect scenarios are not shown (509 for reliability
and 2,275 for flood volume).

Fig. 4. Annual detection rates of significant detections out of the entire ensemble for the reliability objective and flood volume.

Fig. 6. Detection year versus reliability and flood volume at the end of the projection period. ND = no-detect scenarios.
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LULCs have detection rates greater than 50%. In other words, at
least 50% of scenarios containing any given RCP or LULC will
detect a significant change at the end of the projection period.
The variability is attributable mostly to GCM choice, for which
detection rates generally are high but have much greater variance
overall. Interestingly, detection rates also increase under more se-
vere RCPs. For flood volume, detection rates are consistently low
(20% or less) and do not vary much with the choice of RCP or
LULC scenario. The variability in detection rates is driven pri-
marily by GCM choice, for which detection rates mostly are
low, but with several high outliers.

In addition, when first detection years are sorted by GCM, RCP,
and LULC, it is apparent that GCM drives most of the variability in
the median. The first detections occur throughout the century for
both the water supply and flooding objectives. However, for the
flooding objective 10 of 31 GCMs did not detect a significant
change in the projection period. For LULC, the median exhibits
a much smaller range, although standard deviations can be some-
what larger than from the GCM aggregates in some cases. This is
centered on about the year 2059 for water supply and the year 2047
for flooding (Fig. S1 in the Supplemental Materials). Additional
histograms are plotted separately in Fig. 8 for the RCP aggregates.
For water supply, the median appears to be somewhat increasing
with increasing RCP, and there appear to be more RCP8.5 detec-
tions later in the century than in the other RCPs. This suggests that
there are cases of RCP8.5 scenarios that are less severe until later in
the century, given the result that less severe scenarios tend to be
detected later. This is consistent with previous results, because
water supply reliability for RCP8.5 generally is less severe than
for the other RCPs until midcentury (Fig. 9). This pattern does
not occur in the flooding objective, which did not exhibit obvious
trends.

The Sobol sensitivity analysis confirms the finding that GCM
contributes to the greatest variability in the detection year, followed
by the second-order interaction between the GCM and RCP

(Tables 1–4). For total-order sensitivity, the choice of GCM con-
tributes Sobol sensitivity indexes of 0.971 and 1.012 for reliability
and flood volume, respectively. The RCP, which represents the ef-
fects of climate change, is next in importance, but only through its
interaction with GCM choice. The total-order sensitivity for RCP is
0.537 and 0.304, respectively, for the reliability and flood volume
objectives, whereas the second-order interaction scores with GCM
are 0.497 and 0.297. The RCP has essentially no first-order con-
tribution for reliability and flood volume (GCM is notably higher in
both). Bootstrapped 95% confidence intervals for the sensitivity in-
dices are reasonably small, suggesting a sufficient sample size for
convergence.

Early Warning of Detection

Finally, we investigated whether the nonstationarity detections can
be predicted in advance from observed system performance. Fig. 10
shows the true positive rate (sensitivity), true negative rate (speci-
ficity), and area under the receiver operating characteristic curve
(AUC) scores for logistic regression classifiers trained on varying
combinations of starting time t� and lead time L. Overall, we found
high AUC scores for both objectives, suggesting that the models
have high predictive ability in general. For water supply reliability,
sensitivity increases for larger t� values, especially at longer lead
times. This suggests that the classifiers are more accurate at dis-
cerning detections within a long time window, but are less accurate
at determining the precise timing of a detection. For the flood vol-
ume objective, the sensitivity is noticeably lower than the specific-
ity of the models, except at short lead times. Additionally, the
specificity is close to 100%. This is consistent with the prior results
indicating that detections in upstream flood volume are driven
largely by natural variability and may not be predictable from re-
cent observations. At short lead times, the model likely has
learned to associate extreme events in the near term with detections,
whereas in the absence of such events, the model may have learned

Fig. 7. Distribution of relative detection counts at the end of the projection period (2098) sorted by GCM, RCP, and LULC for reliability and flood
volume. The results for GCM and LULC are shown as histograms, in which each observation represents the detection rate, or fraction of scenarios
with detection, within one GCM or LULC. RCP results are shown individually in a bar plot with each RCP labelled.
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Fig. 9. Objective severity separated by RCP. Shaded bands indicate �1 standard deviation.

Fig. 8. Histograms of first detection years sorted by RCP for both the water supply reliability and flood volume objectives. Each observation in the
histogram represents a scenario with a respective RCP.

Table 1. First- and total-order Sobol sensitivity analysis of year of first
detection for water supply reliability

Variable ST ST_conf S1 S1_conf

RCP 0.537 0.050 0.008 0.064
GCM 0.971 0.092 0.392 0.082
LULC 0.107 0.024 0.043 0.026

Note: ST = total-order sensitivity; ST_conf = half-width of 95% confidence
interval (CI) for total order sensitivity; S1 = first-order sensitivity; and
S1_conf = half-width of 95% CI for first order sensitivity. Confidence
intervals are the half-width of the bootstrapped 95% CI.

Table 2. Second-order (interaction) Sobol sensitivity analysis of year of
first detection for water supply reliability

Variable pairs S2 S2_conf

RCP, GCM 0.497 0.087
RCP, LULC −0.008 0.083
GCM, LULC 0.002 0.095

Note: S2 = second-order (interaction) sensitivity; and S2_conf = half-width
of 95% CI for second order sensitivity. Confidence intervals are the half-
width of the bootstrapped 95% CI. Negative values are statistically zero.

Table 4. Second-order (interaction) Sobol sensitivity analysis of year of
first detection for upstream flood volume

Variable pairs S2 S2_conf

RCP, GCM 0.297 0.058
RCP, LULC −0.035 0.054
GCM, LULC 0.002 0.086

Note: S2 = second-order (interaction) sensitivity; and S2_conf = half-width
of 95% CI for second order sensitivity. Confidence intervals are the half-
width of the bootstrapped 95% CI. Negative values are statistically zero.

Table 3. First- and total-order Sobol sensitivity analysis of year of first
detection for upstream flood volume

Variable ST ST_conf S1 S1_conf

RCP 0.304 0.035 0.001 0.045
GCM 1.012 0.066 0.674 0.084
LULC 0.005 0.005 −0.003 0.004

Note: ST = total-order sensitivity; ST_conf = half-width of 95% confidence
interval (CI) for total order sensitivity; S1 = first-order sensitivity; and
S1_conf = half-width of 95% CI for first order sensitivity. Confidence
intervals are the half-width of the bootstrapped 95% CI. Negative values
are statistically zero.
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to predict the negative class with near-perfect accuracy. In addition,
flooding detections occur much less frequently in the data set, so
true negatives are an easier prediction task in general.

Fig. 11 shows trends in trained model coefficients for a selected
prediction year, t� ¼ 2051, in order to understand which input ob-
servations are driving the early warning signals. For water supply
reliability, coefficients in the near term are notably negative for the
last 2 decades, and generally are positive before 2030. This indi-
cates that a scenario with high reliability later in the projection
period is less likely to be classified as a detection. Conversely, high
reliability earlier in the projection increases the probability of de-
tection. The coefficients of the standard deviation features have less
of a trend and are less interpretable. For flood volume, coefficients
for mean features tend to trend upward, and tend to be consistently
positive in the near term. As a result, a plausible hypothesis is that
detection probability is higher when the historical floods are less
extreme, such as when the historical period undersamples the true
natural variability, and following a recent large flood event. This is
consistent with the finding that detections for the flooding objective
are dominated by natural variability instead of long-term change.
The coefficients for the standard deviation features do not have a
clear trend.

Discussion and Conclusion

This study contributes a method to analyze whether and when de-
tections of nonstationary reservoir system performance will occur,
to support adaptive planning in the context of uncertain ensemble
projections. We propose three key findings
1. The ability to detect nonstationarity strongly depends on the per-

formance objective. This indicates that multiple adaptation
indicators may be needed for multiobjective reservoir manage-
ment problems (Quinn et al. 2017). Specifically, we find that
water supply reliability is far more likely to detect change within
the century, driven by long-term change, compared with the

flooding objective, for which detections are dominated by natu-
ral variability. This finding most likely holds beyond this case
study, because the difficulty of detecting nonstationarity in ex-
treme events has been recognized widely (e.g., Bass et al. 2022;
Siler et al. 2019). In addition, the scenarios with the most severe
changes in system performance are detectable earlier in the
period.

2. The variance in detection time is attributable mostly to the
choice of GCM, including its interaction with the emissions sce-
nario. The GCM factor also embeds natural variability, because
the scenario ensemble used in this experiment contained only
one realization per GCM; this could be augmented in future
work by large-ensemble scenarios containing many realizations
(Lehner et al. 2020). Model uncertainty suggests a high poten-
tial for dynamic learning as new observations become available.
The scenario ensemble also did not include hydrologic un-
certainty or endogenous feedbacks in reservoir management,
both of which could affect the scale of the climate uncertainty
(e.g., Anghileri et al. 2018; Broderick et al. 2019).

3. A logistic regression model trained to predict future detections
had mixed results. Early warning predictions for both water sup-
ply and flood objectives performed well overall, although for
reliability it is difficult to predict the exact timing of the future
detection within the designated window because the model true
positive rate in the near term is comparatively low. In contrast,
for the flooding objective, it is difficult to predict detections
at longer lead times, because the model tends to have a lower
true positive rate for longer lead times. This underscores natural
variability as the main driver for flooding detection. This result
expands prior work on early warning signals for adaptation
(e.g., Raso et al. 2019; Robinson et al. 2020) by considering
the detection of nonstationarity as the target variable in the
classification.
These results are applicable directly to inform adaptive plan-

ning. Detection of nonstationary reliability, or early warning signals

Fig. 10. True positive and true negative scores for logistic regression classifier according to the time of prediction, t� and the lead time L.
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thereof, would be more reliable indicators to trigger action because
they imply long-term change and are less influenced by natural
variability. In contrast, the flooding objective, and its lack of de-
tection, indicates difficulty in separating long-term trends from
natural variability. However, this does not preclude the success
of dynamic adaptation, especially if adaptation focuses more on
flexible decisions that are reversible when the future unfolds differ-
ently than expected (Fletcher et al. 2019). Similarly, these results
highlight the importance of differentiating natural variability and
long-term change when making irreversible infrastructure deci-
sions, because such decisions may incur high regret (Borgomeo
et al. 2018). There also may be cases in which successful adapta-
tions are not restricted to long-term change; for example, when
collecting more observations of natural variability over time leads
to revised estimates of extreme event magnitudes.

Several opportunities for future work remain. First, indicators
also could be developed by applying the same detection method-
ology to hydroclimate variables, for example as Haasnoot et al.
(2018) proposed for precipitation. In this case, a difference in de-
tection time may occur relative to the engineering system objec-
tives. This also may help to map the occurrence of detections to
their physical drivers. Second, nonstationary system behavior also
will be driven by endogenous changes to reservoir operations,
water demand, and the feedback between them, which could either
mitigate or amplify the challenges caused by climate change (Jafino

et al. 2019). Finally, nonstationarity detections and/or early warn-
ing signals can be used as indicator variables in policy search meth-
ods for dynamic adaptation to climate change (Cohen and Herman
2021). Their information content can be compared with other
indicators that do not necessarily reflect nonstationarity; although
statistical significance is not a requirement to trigger adaptation,
there may be potential to limit false positives and improve perfor-
mance for out-of-sample scenarios. Given the substantial uncer-
tainty in climate and land-use scenarios, this study provides a
method to understand the potential for learning about dynamic
changes in reservoir system performance, and the timing of adap-
tations needed to maintain robustness in the long term.

Data Availability Statement

All code corresponding to methods and figure generation are avail-
able at the repository https://github.com/Matt2371/climate_detection.
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