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Abstract

Membrane proteins play crucial roles in various cellular processes, and their interactions with other pro-
teins in and on the membrane are essential for their proper functioning. While an increasing number of
structures of more membrane proteins are being determined, the available structure data is still sparse.
To gain insights into the mechanisms of membrane protein complexes, computational docking methods
are necessary due to the challenge of experimental determination. Here, we introduce Mem-LZerD, a
rigid-body membrane docking algorithm designed to take advantage of modern membrane modeling
and protein docking techniques to facilitate the docking of membrane protein complexes. Mem-LZerD
is based on the LZerD protein docking algorithm, which has been constantly among the top servers in
many rounds of CAPRI protein docking assessment. By employing a combination of geometric hashing,
newly constrained by the predicted membrane height and tilt angle, and model scoring accounting for the
energy of membrane insertion, we demonstrate the capability of Mem-LZerD to model diverse membrane
protein–protein complexes. Mem-LZerD successfully performed unbound docking on 13 of 21 (61.9%)
transmembrane complexes in an established benchmark, more than shown by previous approaches. It
was additionally tested on new datasets of 44 transmembrane complexes and 92 peripheral membrane
protein complexes, of which it successfully modeled 35 (79.5%) and 15 (16.3%) complexes respectively.
When non-blind orientations of peripheral targets were included, the number of successes increased to 54
(58.7%). We further demonstrate that Mem-LZerD produces complex models which are suitable for
molecular dynamics simulation. Mem-LZerD is made available at https://lzerd.kiharalab.org.

� 2024 Elsevier Ltd. All rights reserved.
Introduction

Protein-protein interactions are fundamental to
many biological processes in living cells.
Membrane proteins play an essential role in many
of these processes, where they act as gateways
of cellular signaling pathways, pumps, and more,
td. All rights reserved.
facilitating selective transport processes across
membranes. To understand the detailed
mechanisms of these processes, modeling the 3D
structures of their associated protein complexes is
a critical step. While protein complex structures
are steadily being determined by experiment and
deposited in the Protein Data Bank (PDB),1,2
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experiments are still expensive and a substantial
human and instrument time investment, assuming
the proteins at hand are compatible with the meth-
ods available.3 Moreover, structures of protein com-
plexes are often extremely difficult to determine by
experiments, even without the involvement of a
membrane. Thus, when a protein complex structure
has not yet been experimentally determined, com-
putational tools can be used to construct atomic
models.4 A protein docking program can take com-
ponent proteins, called subunits, as input and
assemble them into models of the protein complex.
Many general protein docking methods and special-
ized versions thereof have been publicly released,
such as ZDOCK,5 HADDOCK,6 ClusPro,7

RosettaDock,8 HEX,9 SwarmDock,10 and
ATTRACT.11 Even protein structure prediction
methods like AlphaFold12 have been tweaked to
be able to output multimeric structures.13 The
rigid-body docking method LZerD14–17 in particular
has been consistently ranked highly in the server
category in CAPRI,18,19 the blind communitywide
assessment of protein docking methods.
The fact that proteins in vivo are not generally

interacting in isolation in a uniform environment is
often confounding to computational modeling of
complexes. Even with state-of-the-art modeling
techniques, existing docking methods struggle to
rigorously handle environments other than a
uniform aqueous environment.20,21 Membranes
create an environment where hydrophobic surfaces
are not as energetically incentivized to be buried in
the protein–protein interface, since such surfaces
may competitively interact with themembrane itself.
For example, in the transmembrane halorhodopsin
protein family as found in halobacteria, which is
included in the benchmark of Mem-LZerD, the pro-
tein–protein interface is not especially rich in
hydrophobic amino acids relative to the remainder
of themolecular surface, much of which participates
in the protein-lipid interface.22 Highlighting the utility
of docking methods, a halorhodopsin structure for
Halobacterium salinarium was available in 2000,
but no structure for Natronomonas pharaonic was
available until 2009.23 Homology-based methods
can be used to model the subunits, and a docking
method can then be used to explore the space of
interaction poses. Other proteins do not wholly
embed in themembrane, but instead pass only part-
way through or interact only with themembrane sur-
face. These peripheral membrane proteins are
likewise important and are implicated for example
in sensitivity to membrane composition.24 These
broad categories of membrane protein break down
further into classes with substantial mechanistic dif-
ferences, from the purely a-helical transmembrane
regions most commonly considered by computa-
tional methods, transmembrane b-barrels, to
peripheral membrane proteins attaching to the
membrane with amphipathic helices25 or with
hydrophobic loops.26 Transience in certain interac-
2

tions between these proteins can render them diffi-
cult to directly consider in vitro,27 but more
accessible via computational modeling.28 It is then
clear that techniques capable of modeling interac-
tions involvingmembranes have the potential to elu-
cidate many cellular processes in many biological
contexts. Detailed mechanistic understanding of
membrane protein complexes currently represents
a major knowledge gap in molecular biology and
is the subject of much active investigation.29 Recent
studies have shown that protein structure prediction
methods can enable combinatorial modeling of
putative interactions among, for example, the cyto-
chrome c maturation system I proteins of E. coli.28

Several computational techniques have been
developed which predict the modes of interaction
of proteins in a membrane environment. In the
case of G-protein coupled receptors (GPCRs),
highly specialized approaches have been
developed and applied to model their
oligomerization.30–33 For more general proteins,
MPDock, part of the RosettaMP software collec-
tion, takes a specification of membrane chemistry
and dimensions to model the assembly of trans-
membrane complexes from bound experimental
structures.34 In their benchmark, the bound sub-
units were pulled apart, repacked according to
the algorithm of Rosetta, and then pulled back
together. Memdock carries out rigid-body docking
of a-helical membrane proteins by constraining
their orientation, before a finer-grained refinement
procedure, and makes the assumption that the
whole-input center of mass roughly coincides with
the membrane midplane.35,36 JabberDock for
membrane proteins represents the subunits with
a volume map incorporating dynamics information
from an expensive 70 nanosecond molecular
dynamics simulation and uses particle swarm opti-
mization techniques to explore the pose space,
which required strict constraints on the pose
space.37 In summary, MPDock requires bound
native structures as input and requires manual
processing, Memdock was only tested on
a-helical proteins and requires assumptions about
the membrane location, and is further unable to
include soluble regions of proteins in the modeling,
and JabberDock requires substantial molecular
dynamics calculations and is limited to exploring
a tight region of the search space the precludes
tolerance for misorientation. These existing analy-
ses require orientations taken from bound complex
structures, rather than orientations predicted sepa-
rately for each subunit. In the context of blind mod-
eling, however, the precise orientations which
individual subunits take on upon binding are not
known. A method for blind membrane docking
should predict the membrane orientations of the
input subunits and have a docking search space
which is narrow enough to exclude prediction
errors, but broad enough to tolerate reasonable
errors in orientation predictions.
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Mem-LZerD, which we developed in this work, is
based on the LZerD rigid-body docking method
and its extensions.14–17,38–40 LZerD uses a soft sur-
face representation of the protein subunits based on
geometric hashing41 and 3D Zernike descriptors
(3DZDs),42–47 which allows for fast generation of
docking poses without considering side-chain
repacking. The geometric hashing procedure origi-
nally used internally by regular LZerD also admits
more site-specific orientation and translation restric-
tions. Mem-LZerD targets any transmembrane pro-
tein complexes, as well as peripheral membrane
proteins. The geometric hashing data structure
used by Mem-LZerD is newly augmented with the
positioning of each sample point relative to
the membrane generated by the Positioning of Pro-
teins in Membranes (PPM) algorithm,48,49 as well as
the angular orientation in the same membrane.
Pruning the search space in this way, skipping
infeasible poses, yielded a running time 74 times
faster on average compared to regular LZerD with-
out search space or model constraints. This
speedup highlights that for membrane proteins,
most of the calculation time in regular LZerD is
spent on infeasible poses, e.g. those which are
sideways or entirely outside the membrane, which
then contaminates the output model ranking.
Mem-LZerD yielded acceptable models in the

CAPRI criteria within the top 10 models for 13 of
21 (61.9%) unbound docking targets of the
Memdock benchmark set, which is a greater
fraction than successfully modeled by existing
methods Memdock or JabberDock. Previous
studies used knowledge of the ground truth
(i.e. correct) subunit orientations, taken as those
found in the OPM database, rather than predicting
them as in the Mem-LZerD protocol. When
assuming the ground truth orientations, Mem-
LZerD successfully modeled 14 of 21 targets
(66.7%). On our separate transmembrane protein
benchmark set, Mem-LZerD successfully modeled
35 of the 44 (79.5%) unbound benchmark docking
targets, while on a preoriented peripheral
membrane protein benchmark set, Mem-LZerD
successfully modeled 54 of 92 (58.7%). Mem-
LZerD has been incorporated into the LZerD
webserver, available at https://lzerd.kiharalab.org.
We further show that the protocol pipeline of the
Orientations of Proteins in Membranes/Positioning
of Proteins in Membranes (OPM/PPM) suite,48

Mem-LZerD, and CHARMM-GUI50 can produce
ready-for-simulation files of sampled binding poses
in explicit lipid membranes.

Results and discussion

Overview of Mem-LZerD

The docking procedure of Mem-LZerD follows the
observation that presence of a lipid membrane
restricts the poses two proteins may take on when
they assemble into a complex. Mem-LZerD builds
3

assembled complex models by independently
orienting input proteins using PPM,48 then applying
a geometric hashing-based procedure adapted
from LZerD with augmentations that allow pruning
the search space to sample membrane-bound
poses, before a final clustering and scoring proce-
dure yield the final outputs The overall procedure
of Mem-LZerD is diagrammed in Figure 1a.
The first step is to orient both the receptor and

ligand protein subunits separately in the
membrane using PPM, which minimizes its
computed free energy of transfer between the
aqueous and membrane environments. PPM has
been tested on thousands of membrane proteins
and validated against hundreds of experimental
results.48 PPM, however, does not in general gener-
ate precisely the orientations the subunits take on in
their bound states, but the search and sampling pro-
cedure of Mem-LZerD is sufficiently tolerant that
such precision is not necessary. Transmembrane
proteins are immersed in the membrane and there-
fore more clearly restrained by it, while peripheral
membrane proteins merely interact with the mem-
brane surface and are less clearly restrained.
In the next stage, Mem-LZerD searches the pose

space using the LZerD algorithm while accounting
for the restricted pose space using an augmented
data structure. Unlike the data structures used in
original LZerD, the newly augmented geometric
hashing in Mem-LZerD facilitates restricting the
search space without the expense of running the
full pipeline and post-filtering the output. Docking
poses were restricted in terms of two parameters,
the difference of the heights of two subunit sample
points relative to the membrane and the tilt angles
between the two subunits as illustrated in
Figure 1b. These simple criteria facilitate efficient
search of the pose space without wasting time
calculating intermediate scores for infeasible poses.
In Figure 2a and b, the distributions of the height

difference and the tilt angle of docked models for
cytochrome c oxidase subunit 1 and subunit 3
(PDB 1M56 chains A and C) are shown. In
Figure 2a, docking was performed with predicted
orientations, while correct orientations of the
subunits were used in Figure 2b. Both panels
clearly illustrate that models of at least acceptable
CAPRI quality tend to be found closer to the
origin, i.e. docking conformations with a small
height difference and tilt angle difference,
regardless of whether the basis of the constraints
used is a blind or non-blind orientation. In
Figure 2c, to select optimal cutoff values for the
height and tilt angle differences, an exhaustive
parameter sweep was carried out for height
difference cutoffs of 4 �A, 8 �A, and 12 �A and tilt
difference cutoffs of 0.2 radians, 0.4 radians, and
0.8 radians on the training set of 20 nonredundant
transmembrane protein complexes taken from the
OPM database.49 For this sweep, predicted subunit
orientations were used. For each combination of

https://lzerd.kiharalab.org


Figure 1. Illustration of Mem-LZerD. (a) Overall flow of the Mem-LZerD method. (b) Tilt constraint used by Mem-
LZerD. The black and grey arrows represent the axes of the receptor and the ligand subunits that are perpendicular to
the membrane planes as oriented by PPM, while h is the tilt angle between those axes. The red and blue boundaries
represent the inner and outer membrane surfaces. The black arrow is perpendicular to the membrane, which
indicates that the receptor is placed in the membrane in the orientation predicted by PPM. On the other hand, the gray
angle for the ligand subunit, is tilted in the figure, which indicates that the docked pose of the ligand is tilted from the
predicted orientation by PPM. (c) The height constraint used by Mem-LZerD. The black dots represent points on the
molecular surfaces of the receptor and ligand subunits sampled by the initial stages of LZerD. A black dot is defined
as the middle point between the two sampled surface points used to define the docked pose of the subunits. Each
surface point has a height value relative to the membrane midplane, and thus a pose using the two surface points is
assigned with a height which is the greater of the heights of the two surface points that define the orientation. The
height difference of the two black dots, Dh, is used to prune the docking search.
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parameters, the average enrichment factor (EF)
and recall were calculated. The enrichment factor
is defined as the ratio of the fraction of acceptable
models in the docking output after height and tilt
constraints are applied relative to the fraction of all
acceptable models in the entire pool of docking
decoys. Recall is defined as the fraction of accept-
able models remaining after the height difference
and the tilt angle constraints are applied relative to
the entire set of acceptable models. As shown in
Figure 2c, a combination of 8 �A height and 0.4
radian tilt differences exhibits the highest EF value
4

before a dramatic loss of recall is observed: these
settings resulted in an EF of 20.3 and a recall of
0.27, while the next-highest EF of 33.1 dropped
the recall to 0.06. The highest EF of 135.7 would
have yielded a recall of only 0.18. These cutoffs also
agree with those found in existing literature,
although the height referred to in such past work
has been the subunit centroid height and not a prop-
erty of the molecular surface.36 Thus, while the for-
mulation of height in Mem-LZerD differs
substantially from that in existing methods, this
parallel illustrates that Mem-LZerD heights can



Figure 2. Height difference and tilt angles of docking decoys. Deviation from ideal membrane spatial positioning
and orientation using (a) blindly oriented and (b) preoriented docking inputs for PDB 1M56, as included in the usual
top 50,000 models from LZerD. Red: incorrect quality models. Cyan: acceptable quality models. Blue: medium
models. The docking of 1M56 did not yield any high-quality models. (c) The average enrichment factor (blue) and
recall (orange) of 20 targets using different combinations of height difference and tilt angle cutoff values using
predicted subunit orientations.
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generally be interpreted using the same under-
standing as of centroid heights. Supplemental
Video S1 illustrates the difference between the
decoy poses sampled by this procedure and the
original LZerD search for an intramembrane aspar-
tate protease complex (PDB 4HYG), using the final
chosen constraint cutoffs of 8 �A and 0.4 radians.
Using this formulation of constraints, many clearly
impossible models, including many sideways or
totally dis-immersed poses, which are sampled by
LZerD are not sampled by Mem-LZerD. In this
way, both the running time of the sampling and
the number of raw unclustered decoys were
reduced by a factor of 74 on average across our
benchmark set. In the case of the decoy distribu-
tions shown for target 1M56 in Figure 2ab, the num-
bers of models were reduced by factors of 66 and
69 for blind and preoriented docking, respectively.
5

Docking results on the Memdock bound and
unbound dataset

Mem-LZerDwas trained on a nonredundant set of
20 transmembrane protein complexes and
benchmarked on nonredundant sets of 21 and 44
transmembrane protein complexes originally used
by Memdock36 and newly constructed for Mem-
LZerD, respectively, as described in Methods.
Mem-LZerD was additionally benchmarked on a
nonredundant set of 92 peripheral membrane pro-
tein complexes. The main evaluation results are
summarized in Tables 1 and Table 2, covering the
existing benchmark set36 and our new benchmark
set, respectively. Modeling for a target was consid-
ered successful if one of more of the top 10 output
models was of at least acceptable CAPRI quality.
According to the standard CAPRI criteria, a model



Table 1 Docking performance of the 21 individual targets of the Memdock benchmark set. RFH is the rank of the first CAPRI-acceptable model generated, if any, for a given
target. RFH must exist and be at most 10 for modeling to be considered successful. n/a indicates that there was no unbound model modeled for a target in the published
study. X indicates that there no docked models of at least acceptable quality in the analyzed output; for Mem-LZerD, this is limited to 50,000, the pre-clustering model cutoff;
for Memdock, this is limited to the top 100 models. We considered only the top 10 models from either method in our evaluation, but scored model ranks worse than 10 are
shown here for completeness in parentheses. The I-RMSD columns list the best interface RMSD among the top 10 models. Separate preoriented docking outcomes are not
show for regular LZerD runs since the original LZerD pipeline does not consider input model orientation. a These evaluations of Memdock and JabberDock from the paper
first describing their use for membrane docking used premade orientations from OPM, which are orientations of the full bound complexes rather than the subunits
independently. The Mem-LZerD unbound benchmark otherwise shown is fully unbound docking, with membrane orientations calculated by PPM separately for each subunit
without regard to the full complex. However, here we additionally show Mem-LZerD results when using ground truth orientations as in the original Memdock and JabberDock
studies.

Target Bound Unbound Blind Unbound Preoriented a

Mem-LZerD Mem-LZerD Memdock LZerD Mem-LZerD Mem-LZerD LZerD Mem-LZerD Mem-LZerD Memdock JabberDock

I-RMSD (�A) RFH RFH RFH I-RMSD (�A) RFH RFH I-RMSD (�A) RFH RFH RFH

1e12_A_C 0.6 6 (28) (268) 10.2 (80) (97) 3.5 10 (57) 2

1m0l_A_C 2.2 1 (74) (1429) 11.4 (28) (709) 4.9 (17) (49) 7

1m56_A_C 1.1 1 2 (97) 1.2 1 (17) 2 2 (11) X

1q90_B_S 2.3 2 1 (2661) 2.7 1 (1106) 1.9 1 1 5

1rc2_A_B 1.2 2 2 (74) 0.8 1 (61) 0.9 1 n/a n/a

1rwt_A_C 12.8 (56) (25) (19150) 5.8 (1181) (19985) 19.2 (775) n/a n/a

1u7g_A_C 0.6 2 2 2 1.1 2 (38) 1.3 2 n/a n/a

1zoy_C_D 3.5 1 1 (155) 3.8 10 (615) 3 1 1 (159)

2a65_A_B 5.6 (24) 4 9 4.4 5 (331) 10.8 (11) n/a n/a

2f2b_A_C 3.1 1 1 (145) 3.1 1 (49) 3.2 2 n/a n/a

2qjy_A_D 0.7 2 X (1749) 1.1 2 (2821) 4.3 4 1 3

3chx_B_J 11.7 (6745) X (1005) 14.8 X X 17.2 X X 8

3dh4_A_B 1.6 7 3 (557) 4.6 (13) (318) 2.1 5 n/a n/a

3h5m_A_B 0.7 1 1 (114) 3.8 1 (375) 3.7 1 n/a n/a

3hfx_A_B 14 (382) 6 (13054) 17.3 (969) (11843) 19.3 (236) n/a n/a

3kly_A_B 0.4 1 1 (165) 1.9 1 (366) 2 4 1 5

3m73_A_K 0.8 1 1 (2635) 0.8 4 (2651) 0.9 1 n/a n/a

3oe0_A_B 10.8 (119) X (2222) 17.3 X X 13.5 X (45) X

3rvy_A_B 1.3 1 5 (226) 2 4 (129) 2.1 1 X X

3tui_A_B 1 1 1 (233) 1.7 1 (365) 1.6 1 n/a n/a

4dkl_A_B 2.2 1 4 (395) 16.4 X X 18.1 X X 1

Total Successes: 16 15 2 13 0 14 4 7

(76.2%) (71.4%) (9.5%) (61.9%) (0.0%) (66.7%) (19.0%) (33.3%)
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Table 2 Docking performance of the 44 individual targets of the Mem-LZerD transmembrane protein benchmark test set.
Parentheses indicate that no models of at least CAPRI-acceptable quality were ranked within the top 10. The columns
list the best of each measure among the top 10 models.

Bound Unbound Regular LZerD Unbound

Target I-RMSD (�A) L-RMSD (�A) f nat I-RMSD (�A) L-RMSD (�A) f nat I-RMSD (�A) L-RMSD (�A) f nat

1a0s 1.0 2.3 0.78 (16.9) (27.8) 0.00 (36.69) (68.60) (0.00)

1kqf 1.6 2.7 0.46 2.5 5.1 0.22 (16.29) (33.42) (0.00)

1p7b 1.3 2.9 0.62 4.6 8.1 0.12 (17.28) (32.12) (0.02)

2yvx (23.1) (38.9) (0.00) 1.5 2.5 0.52 (28.46) (60.53) (0.00)

3a7k 1.4 3.2 0.51 2.0 3.6 0.54 (22.47) (33.77) (0.00)

3b4r 1.7 2.7 0.53 2.3 5.4 0.49 (16.74) (33.69) (0.00)

3b8n (22.3) (44.1) (0.00) (48.9) (59.8) 0.00 (47.60) (51.36) (0.00)

3pjz 2.0 4.8 0.44 2.2 3.6 0.46 (16.98) (35.79) (0.00)

3qnq 1.6 3.7 0.42 1.3 2.6 0.63 1.29 2.57 0.63

3ux4 1.4 3.3 0.63 2.3 5.1 0.51 (14.75) (28.60) (0.00)

4ezc 1.8 3.7 0.39 1.4 2.0 0.64 (15.83) (32.30) (0.00)

4hkr 1.7 3.1 0.39 (11.2) (12.2) (0.10) (17.99) (28.63) (0.00)

4hyg 2.8 5.6 0.46 5.0 6.5 0.51 (24.17) (58.72) (0.00)

4o6m 0.6 1.9 0.85 1.1 2.6 0.70 1.06 3.76 0.70

4p6v 0.9 2.0 0.84 2.5 3.8 0.64 (20.67) (43.74) (0.00)

4pl0 (16.9) (32.6) (0.00) (21.8) (36.3) (0.00) (30.87) (57.20) (0.00)

4r1i 0.7 1.3 0.80 1.2 2.6 0.78 1.17 2.59 0.78

4ri2 2.5 4.8 0.40 4.8 6.4 0.26 (13.04) (23.82) (0.03)

4rp8 2.1 4.1 0.58 2.2 4.0 0.55 (23.41) (56.31) (0.00)

4wd8 4.2 8.9 0.24 4.6 9.0 0.18 1.96 3.88 0.51

5a1s 0.8 1.4 0.83 2.3 4.5 0.79 2.32 4.54 0.79

5aex 0.5 1.1 0.94 (13.2) (21.5) (0.02) (36.06) (68.22) (0.00)

5i6c 1.9 5.8 0.33 2.9 3.9 0.44 (21.19) (56.41) (0.00)

5j4i 0.8 1.8 0.75 3.4 4.7 0.48 (21.82) (61.91) (0.00)

5o65 0.9 1.9 0.91 1.9 3.4 0.44 (22.93) (40.19) (0.00)

5sv9 2.2 4.2 0.44 4.7 6.8 0.23 (23.02) (42.10) (0.00)

6c96 (4.6) (12.2) (0.16) (6.9) (11.6) (0.02) (38.81) (93.12) (0.00)

6hcp 2.1 6.7 0.48 (40.9) (43.2) (0.00) (39.88) (70.88) (0.00)

6k1h 2.9 5.9 0.36 2.0 2.7 0.43 (28.77) (61.40) (0.00)

6 l85 0.9 2.7 0.90 3.2 4.0 0.43 (7.84) (13.92) (0.01)

6n1g 0.6 1.4 0.84 2.7 6.1 0.38 (20.73) (49.61) (0.00)

6o58 (20.8) (67.3) (0.00) (23.2) (46.6) (0.00) (24.87) (53.92) (0.00)

6rko 0.8 1.8 0.72 4.8 8.3 0.49 (4.77) (10.08) (0.49)

6rvx 2.1 6.0 0.45 3.8 7.3 0.22 (33.71) (60.68) (0.00)

6vgc 2.8 5.6 0.28 3.6 12.8 0.41 (21.14) (33.60) (0.00)

6xjh 1.3 1.9 0.59 3.8 6.0 0.22 (17.85) (34.48) (0.00)

6y7f 1.3 5.7 0.63 3.3 14.0 0.38 (13.83) (49.53) (0.00)

6ys8 (9.1) (20.0) (0.01) (14.7) (24.5) (0.00) (15.03) (30.88) (0.00)

7ck6 2.9 9.6 0.24 1.9 6.0 0.37 (16.94) (40.07) (0.00)

7cxr 2.6 5.9 0.45 2.8 5.1 0.52 2.82 5.11 0.31

7czb 2.0 6.4 0.68 3.3 7.4 0.56 (27.62) (58.81) (0.00)

7jk8 1.8 3.7 0.69 3.5 5.1 0.28 (16.30) (32.98) (0.00)

7lhv 1.0 2.4 0.67 5.3 9.8 0.35 (33.22) (72.68) (0.00)

7oqz 1.5 3.2 0.38 2.4 3.9 0.40 (13.53) (23.66) (0.05)

Total successes: 38 (86.3%) 35 (79.5%) 6 (13.6%)
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is acceptable if it has a fraction of native contacts
(f nat) of at least 0.1 and either an interface RMSD
(I-RMSD) of at most 4.0�A or an L-RMSD of at most
10.0 �A.18,21,51,52 A rank-of-first-hit (RFH) value (as
shown in Table 1) that is as high as 10 is considered
a success for the given method on the given target.
To examine the precision of docking using Mem-

LZerD versus past rigid-body methods, we
compared the performance of Mem-LZerD against
the Memdock benchmark set,36 as shown in
7

Table 1. The Memdock algorithm is designed
specifically for a-helical transmembrane proteins,
rather than general membrane proteins which may
be b-barrels or not transmembrane at all. Thus,
we compare using Memdock’s original benchmark
set of 21 a-helical transmembrane complexes.
Memdock achieved a success rate of 71.4% (15
out of 21 cases) for bound docking, while Mem-
LZerD achieved a success rate of 76.2% (16 out
of 21 cases; Table 1, Bound column group). On this
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same benchmark, the baseline LZerD pipeline,
which does not consider membrane constraints,
succeeded on no targets for unbound docking and
2 of 21 (9.5%) targets for bound docking. Trans-
membrane docking targets were thus shown to lar-
gely require specialized methods, and Mem-LZerD
achieved a higher success rate than such existing
specialized methods.
For unbound docking on the Memdock

benchmark (Table 1, Unbound Blind and Unbound
Preoriented column groups), results from past
docking experiments using both Memdock and
JabberDock were available, and we evaluated the
unbound docking performance of Mem-LZerD
against these. Here, Mem-LZerD achieved an
overall success rate of 61.9% (Table 1, Unbound
Blind column group), while Memdock and
JabberDock achieved 19.0% and 33.3%
respectively overall (Table 1, Unbound
Preoriented column group). The Unbound
Preoriented column group, compares unbound
docking performance when knowledge of the
ground truth subunit orientations is assumed.
Here, we calculated preoriented unbound input
models by superimposing them individually to their
native complex structures as oriented in OPM.
The preoriented Mem-LZerD success rate was
then 66.7% (14 out of 21) overall. Mem-LZerD
thus overall outperformed the 33.3% success rate
of JabberDock on preoriented inputs, despite
requiring no expensive molecular dynamics
simulation, while still performing well on targets
with only predicted orientations.

Docking results on the new transmembrane
protein dataset

On the additional transmembrane benchmark
unbound test set (Table 2), which included both
a-helical and non-a-helical transmembrane
proteins such as b-barrels, 35 of 44 targets
(79.5%) were modeled by Mem-LZerD to at least
acceptable CAPRI quality. This is broadly
consistent with the performance demonstrated by
Mem-LZerD on the smaller Memdock benchmark,
which only included pairs of a-helical
transmembane protein chains with an interface
immersed in the membrane. Although this new
benchmark includes full complexes rather than
just pairs of chains and thus might be expected to
offer increased opportunities to establish surface
complementarity at the protein–protein interface,
unconstrained rigid-body docking is not generally
able to model these targets. Regular LZerD was
only able to model 6 out of 44 (13.6%) targets in
this benchmark to at least acceptable CAPRI
quality. As indicated by the resulting low or zero
f nat values shown in the Regular LZerD Unbound
column group of Table 2, the membrane
environment severely interferes with recognition of
the protein–protein interface. For example, in the
case of the zinc metalloprotease mjS2P (PDB
8

3B4R), discussed in detail in Case Study 1,
regular docking missed the interface entirely, while
Mem-LZerD yielded a model of acceptable CAPRI
quality. Mem-LZerD is of course dependent on the
accuracy of its predicted subunit orientations, and
this is reflected in the result for the bacterial
magnesium transporter MgtE (PDB: 2YVX), where
unbound docking succeeded but bound docking
did not. In the absence of the full complex
structure, PPM did not orient the subunits within
the tilt angle cutoff used by Mem-LZerD. Thus,
while acceptable poses were sampled in the full
LZerD search, they were not emitted by Mem-
LZerD as they all violated the tilt angle constraint.
On the other hand, PPM oriented the unbound
subunit structures appropriately. PPM, while a
capable prediction method, is not explicitly
designed to yield bound-state orientations from
unbound-state structures. Thus, future
developments of membrane docking should
include an orientation prediction method designed
for that purpose.

Docking results on the peripheral membrane
protein dataset

On the peripheral benchmark unbound test set
(Supplementary Table S1), 15 of 92 targets
(16.3%) were modeled to at least acceptable
CAPRI quality within the top 10 models. This
success rate is substantially lower than what was
observed for transmembrane docking (61.9% in
Table 1), as might be expected from the intuition
that peripheral membrane proteins should be
more difficult to orient to the membrane, especially
when the subunits are oriented individually.
Indeed, an unconstrained docking search sampled
poses of at least acceptable CAPRI quality for 75
of 92 peripheral targets (81.5%) out of around 3
million total decoys typically for each target, as
shown in the LZerD Sampling column of
Supplementary Table S1. Among the sampled
decoys generated, the standard LZerD pipeline
was able to rank poses of at least acceptable
CAPRI quality in the top 10 for 53 of 92 targets
(57.6%), which is substantially higher than the
16.3% by Mem-LZerD, demonstrating that
methods designed for soluble proteins are better
at selecting good peripheral complex poses than
the state-of-the-art PPM is at orienting the
subunits. Figure 3 illustrates the particular
challenges involved in docking peripheral
membrane proteins. Figure 3a compares the
modeling performance of regular LZerD to that of
Mem-LZerD with predicted orientations, in terms
of I-RMSD. For 59 out of 92 cases (64.1%),
regular LZerD yielded a better (smaller) I-RMSD.
Figure 3b and c show the Mem-LZerD output

model quality for peripheral complexes as
compared to transmembrane complexes in terms
of the I-RMSD and L-RMSD CAPRI measures,
respectively. While the distribution of each



Figure 3. Comparison of peripheral membrane protein docking outcomes. (a) I-RMSD of Mem-LZerD using
predicted orientations vs regular LZerD. Green: targets where Mem-LZerD was able to generate models of at least
acceptable CAPRI quality in the top 10 when using predicted subunit orientations. Red: targets where Mem-LZerD
failed to generate models of at least acceptable CAPRI quality in the top 10 when using predicted orientations. (b) I-
RMSD best in top-10 distribution for transmembrane complexes vs peripheral membrane complexes. The triangle-
dashed lines mark the CAPRI acceptable threshold for each metric, with the triangles pointing toward the acceptable
side. (c) The same as (a), but for L-RMSD. (d) Performance of Mem-LZerD on peripheral membrane proteins using
predicted versus ground truth membrane orientations. X-axis: the best I-RMSD among the top 10 models yielded by
the Mem-LZerD pipeline when using the blind PPM subunit orientations. Y-axis: the best I-RMSD among the top 10
models yielded by the Mem-LZerD pipeline when using ground truth subunit orientations by superimposing to the
oriented OPM complex. Green: targets where Mem-LZerD was able to generate models of at least acceptable CAPRI
quality in the top 10 when using ground truth orientations. Red: targets where Mem-LZerD failed to generate models
of at least acceptable CAPRI quality in the top 10 when using ground truth orientations.
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measure peaks within the CAPRI cutoffs of 4�A and
10 �A, respectively, for transmembrane complexes
cases, this is not the case for the peripheral
complex targets. For the peripheral targets, the
quality distributions peak far outside the
corresponding acceptability thresholds.
9

A comparison in terms of the remaining CAPRI
measure, f nat, is shown in Supplementary
Figure S1. To investigate what effect
improvements to the subunit orientation
predictions could have on the accuracy of the
docking predictions, we recomputed the peripheral
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membrane protein targets using their bound
orientations by superimposing the unbound
subunits into the native structure taken from the
OPM database, in the same way as in the
transmembrane comparison (Figure 3d). I-RMSD
improved when using bound (ground truth)
orientations from OPM for 69 out of 92 cases
(75.0%). With the bound orientations, models of at
least acceptable CAPRI quality were built for
59.3% of cases within the top 10 (green dots in
Figure 3d), while only 16.3% yielded acceptable
models within the top 10 when using predicted
subunit orientations by PPM. Since peripheral
membrane proteins are by definition not immersed
in the membrane, they are physically closer to
soluble proteins than transmembrane proteins.
This disparity confirmed that most of the
peripheral targets are not sufficiently well oriented
by PPM to dock using this method of constraining
the search space. Supplementary Table S1
reflects this comparison in the Unbound Blind
Mem-LZerD and Unbound Preoriented Mem-
LZerD column groups. Future expansions of PPM
or the inclusion of additional information from
experiments which provide accurate orientation
information, have the potential to change the
outcome of peripheral complex docking from likely
unsuccessful to likely successful.

Case study 1: Zinc metalloprotease mjS2P
(PDB 3B4R)

Highlighted in Figure 4a is the zinc
metalloprotease mjS2P complex from
Methanocaldococcus jannaschii, a protease
capable of cleaving proteins in the lipid membrane
environment.53 This complex is a key part of signal-
ing by regulated intramembrane proteolysis, a sig-
naling mechanism which has been established as
conserved from bacteria to humans.54 While this
target was not tested in the Memdock or Jab-
berDock studies, a run of AlphaFold as a substitute
failed to model this complex, generating a model of
incorrect CAPRI quality with an I-RMSD of 19.1 �A,
and L-RMSD of 43.2 �A, and an f nat of 0.01, shown
in the right of Figure 4a. Although this model looks
passably folded, it does not appear to even contain
an appropriate transmembrane axis for the full com-
plex. Indeed, the proper transmembrane axes of the
two subunits are roughly perpendicular in this
model, rather than roughly parallel. Mem-LZerD
on the other hand was able to generate a model
of acceptable CAPRI quality with an I-RMSD of
2.3 �A, and L-RMSD of 5.4 �A, and an f nat of 0.49,
shown in the left of Figure 4a. While the orange
deviation lines show that the regions away from
the protein–protein interface are not as precisely
modeled, the interface residues are properly
located. The backbone deviations away from the
interface are largely parallel to the plane of the
membrane and do not entail substantial dis-
immersion. The inclusion by Mem-LZerD of
10
reversed orientations was key to the successful
modeling of this target, as otherwise Mem-LZerD
would have only yielded incorrect models. Remark-
ably, all the top 10 models were of acceptable qual-
ity. If we consider all the models generated, there
were 48 acceptable or better models.
Case study 2: Elongation of very long chain
fatty acids protein 7 (PDB 6Y7F)

The next case study, shown in Figure 4b, is the
human ELOVL7 elongase complex, which is
responsible for catalyzing the fatty acid elongation
cycle55 and is involved in a variety of serious genetic
diseases in humans.56–58 In the ELOVL7 homod-
imer observed by experiment, the substrate binds
deep in a narrow tunnel formed by the structure of
one subunit. The substrate binding site is not
directly formed by the protein–protein interaction
interface. The active site and interaction surface of
this enzyme were noted to not be well-conserved
in 2020 when its PDB entry 6Y7F was deposited,
and modern template search techniques such as
HHpred,59 using database PDB_mmCI-
F70_17_Apr, found no hits other than PDB 6Y7F
itself. While this target was not tested in the Mem-
dock or JabberDock studies, a run of AlphaFold
as a substitute failed to model this complex, gener-
ating a model of incorrect CAPRI quality with an I-
RMSD of 20.2 �A, and L-RMSD of 35.0 �A, and an
f nat of 0.00, shown in the right of Figure 4b. While
the experimentalists observed the complex in a
head-to-tail dimer both in crystal and in solution,
AlphaFold instead generated head-to-head dimer
models; in other words, AlphaFold placed one of
the subunits upside down relative to the native com-
plex structure, as indicated by the orange deviation
lines. Mem-LZerD on the other hand was able to
generate a model of acceptable CAPRI quality with
an I-RMSD of 3.3�A, and L-RMSD of 14.0�A, and an
f nat of 0.38, shown in the left of Figure 4b. The inclu-
sion by Mem-LZerD of reversed orientations was
key to the successful modeling of this target as well,
as otherwise Mem-LZerD would have only yielded
incorrect models. Among the top 10, three models
were of acceptable quality, while 10 acceptable
models were generated in the entire model pool.
Case study 3: Cytochrome-c oxidase (PDB
1M56)

The next example (Figure 4c) is a cytochrome-c
oxidase complex from Cereibacter sphaeroides, a
transmembrane enzyme found in the inner
mitochondrial and cell membranes of bacteria.60

For this target, both Memdock and JabberDock
failed to retrieve a model of acceptable CAPRI qual-
ity in unbound docking, yielding only models of
incorrect CAPRI quality within the top 10 models.
Mem-LZerD on the other hand was able to generate
a two models of mediumCAPRI quality, one with an
I-RMSD of 1.5 �A, and L-RMSD of 2.4 �A, and
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an f nat of 0.71, and another with an I-RMSD of 1.2�A,
and L-RMSDof 1.9�A, and an f nat of 0.84. These two
models thus both exceeded the criteria for accept-
ability. Among the top 10, Mem-LZerD generated
threemodels of acceptable or medium quality, while
31 models of acceptable or medium quality were
generated in the entire model pool. For this target,
AlphaFold was also able to generate a model of
high quality, with an I-RMSD of 1.0 �A, an L-RMSD
of 1.3 �A, and an f nat of 0.90.
Case study 4: Prostaglandin G/H synthase 2
(PDB 1CX2)

The last two examples are from the peripheral
membrane protein dataset. Figure 4d shows a
murine prostaglandin G/H synthase 2 (PTGS2)
homodimer complex, a peripheral membrane
enzyme in the nuclear and endoplasmic reticulum
membranes of mice.61 PTGS2 is involved in inflam-
matory response pathways, and interactions with
homologous human proteins are the molecular
basis of many non-steroidal anti-inflammatory
drugs (NSAIDs).62,63 PTGS2 binds to membranes
peripherally via a helical amphipathic domain,64

which the protein–protein interface of PTGS2 does
not include.65 For this target, Mem-LZerD using pre-
dicted orientations from PPM was able to produce a
model of acceptable CAPRI quality with an I-RMSD
of 3.2 �A, and L-RMSD of 6.4�A, and an f nat of 0.26.
31 models of acceptable or medium quality were
generated in total. With the correct orientation infor-
mation taken from the full-complex orientation from
OPM, Mem-LZerD yielded a model of medium
CAPRI quality with an I-RMSD of 1.7 �A, an L-
RMSD of 2.7 �A, and an f nat of 0.51. AlphaFold
yielded a model of high quality with an I-RMSD of
0.8 �A, an L-RMSD of 1.2 �A, and an f nat of 0.90.
3

Figure 4. Example modeling of membrane protein compl
native ligand binding pose. Brown: the membrane locations c
when the other is superimposed. (a) Zinc metalloprotease
(green) with an I-RMSD of 2.3 �A, an L-RMSD of 5.4 �A, and
with an I-RMSD of 19.1 �A, and L-RMSD of 43.2 �A, and an
protein 7 (PDB: 6Y7F). Left: Mem-LZerD yielded a model (gr
an f nat of 0.38. Right: AlphaFold yielded a model (cyan) with
of 0.00. (c) Poses of medium CAPRI quality generated by Me
first hit, an I-RMSD of 1.5�A, an L-RMSD of 2.4�A, and an f na
L-RMSD of 1.9 �A, and an f nat of 0.84. Orange: displacement
and maximum of 3.6 �A. (d) Prostaglandin G/H synthase 2 (P
CAPRI quality (green) with an I-RMSD of 3.2 �A, an L-RMSD
truth subunit orientations yielded a model of medium CAPR
2.7 �A, and an f nat of 0.51. Blind and doped model displac
Pancreatic triacylglycerol lipase/colipase complex (PDB 1LPA
RMSD of 10.7 �A, and L-RMSD of 18.4 �A, and an f nat of 0.
orientations yielded a model of acceptable CAPRI quality (cy
f nat of 0.54.
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Case study 5: Pancreatic triacylglycerol lipase
with colipase (PDB 1LPA)

The last case study (Figure 4e) is a human
pancreatic triacylglycerol lipase (PTL), a
peripheral membrane protein involved in the
metabolism of fats,66,67 complexed with a porcine
colipase (CLPS), shown in magenta in Figure 4e,
a cofactor which facilitates membrane anchoring.68

Due to the presence of amphipathic bile salts in the
physiological environment of PTL, the smaller
CLPS is required as a cofactor to facilitate a binding
mode with the catalytic site of PTL in sufficiently
close contact with the membrane68 to facilitate its
function.66,67 For this target, Mem-LZerD using
inputs blindly oriented by PPM was unable to pro-
duce a model of acceptable CAPRI quality, with
the best of the top-10 models only reaching an
I-RMSD of 10.7 �A, and L-RMSD of 18.4 �A, and an
f nat of 0.02, as shown in the left of Figure 4e. In this
incorrect model, CLPSwas placed at essentially the
correct binding site, but is rotated about an axis
roughly parallel to the membrane, completely dis-
rupting the modeling of the native protein–protein
interface. The blind orientation predictions of the
subunits by PPM did not properly characterize the
feasible region of docking poses for this target.
When regular LZerD without constraints was used,
we found that a correct binding pose with an
I-RMSD of 3.7 �A was sampled, but it was not
selected by the scoring function within top-10 mod-
els, instead yielding an even worse an I-RMSD of
22.3 �A, an L-RMSD of 51.8 �A, and an f nat of 0.00
within the top 10. However, if we consider the entire
model pool, there were 19 models of acceptable or
medium quality. When instead modeling using the
full-complex orientation from OPM, Mem-LZerD
yielded a model of medium CAPRI quality with an
I-RMSD of 3.7 �A, an L-RMSD of 5.0 �A, and an f nat
exes. Gray: the native receptor structure. Magenta: the
alculated by PPM. Orange: Ca deviations of one subunit
mjS2P (PDB: 3B4R). Left: Mem-LZerD yielded a model
an f nat of 0.49. Right: AlphaFold yielded a model (cyan)
f nat of 0.01. (b) Elongation of very long chain fatty acids
een) with an I-RMSD of 3.3�A, an L-RMSD of 14.0�A, and
an I-RMSD of 20.2�A, and L-RMSD of 35.0�A, and an f nat
m-LZerD for cytochrome-c oxidase (PDB: 1M56). Cyan:

t of 0.71. Green: second hit, with an I-RMSD of 1.2�A, an
s between the two poses, with an RMSD of 2.5 �A RMSD
DB: 1CX2). Mem-LZerD yielded a model of acceptable
of 6.4 �A, and an f nat of 0.26, while doping with ground

I quality (cyan) with an I-RMSD of 1.7 �A, an L-RMSD of
ements are shown in orange and red respectively. (e)
). Left: Mem-LZerD yielded an incorrect model with an I-

02. Right: Mem-LZerD doped with ground truth subunit
an) with an I-RMSD of 3.7�A, an L-RMSD of 5.0�A, and an



C. Christoffer, K. Harini, G. Archit, et al. Journal of Molecular Biology 436 (2024) 168486
of 0.54, as shown in the right of Figure 4e. Thus, in
this case, the correct orientation was required for a
correct pose to be discovered by the scoring func-
tion. AlphaFold yielded a model of medium quality
with an I-RMSD of 3.7 �A, an L-RMSD of 3.4 �A,
and an f nat of 0.62.
In these five case studies, Mem-LZerD yielded

models of acceptable or medium quality within the
top 10 in four cases with predicted membrane
orientations and in all five cases when membrane
orientations are known. AlphaFold produced a
model of medium or high quality for three case
studies. Although AlphaFold produces accurate
models for membrane proteins as it does for other
types of proteins in general, Mem-LZerD has
notable advantageous features. As Mem-LZerD
performs docking with provided membrane
orientations, resulting models are intuitive and
interpretable in the context of the membrane
environment. Therefore, it is suitable for
conducting molecular dynamics simulation as we
discuss in the subsequent section. Also, Mem-
LZerD produces multiple distinct acceptable
poses, which may serve as multiple reasonable
initial conditions of molecular dynamics
simulations or to consider an ensemble of docking
conformations that may be useful to study
encounter complexes69 or cell-scale molecular
crowding dynamics.70 Also, Mem-LZerD can con-
sider user-input constraints, such as residue-
residue distances, as it is equipped with the LZerD
program. AlphaFold can be accurate, as mentioned
above, but often only produces one pose among its
models, and the models are difficult to modify in
cases where the generated model is obviously
incorrect. Unless a specific variant of the AlphaFold
program, such as Distance-AF,71 is used, Alpha-
Fold does not accept additional biological informa-
tion for such integrative modeling.
Preparation of molecular dynamics with
membrane docking in the LZerD webserver

Due to the limited ability of models like AlphaFold
to sample many interaction poses out-of-the-box,
biologists interested in modeling the dynamics of
proteins in a membrane may need to arrange
individual protein chains to begin modeling the
states desired, or even reasonable states. This
difficulty is exemplified by Case Study 2 above,
where despite experimental evidence to the
contrary, the AlphaFold models of ELOVL7 took
on entirely opposite orientations. Mem-LZerD can
assemble ELOVL7 into reasonable bound poses
which can then be modeled in explicit lipid solvent
and simulated. Mem-LZerD is freely accessible via
the LZerD webserver for protein docking, available
at https://lzerd.kiharalab.org,16,17 which allows
users without high-performance computers or with-
out computing experience to easily model the
13
assembly of protein complexes. Figure 5a shows
the input preparation for modeling poses of
ELOVL7 using the LZerD webserver. Input files for
docking can be taken directly from theOPMwebsite
https://opm.phar.umich.edu/)48 or can be oriented
using the PPM website or locally-installed applica-
tion. The webserver allows users to specify
residue-based distance constraints on the docking,
and more information on this and all functionality
can be found in previous works16,17 and the About
pages on the webserver. However, in this case
the default options are sufficient, and we can pro-
ceed to submit the docking. Shown in Figure 5b is
the results page of this docking. Note that the ligand
pose centroids, shown as spheres, highlight the
focus of the membrane docking search. From here,
we can download our desired models and upload
them to CHARMM-GUI (https://www.charmm-gui.
org).50 Figure 5c highlights the steps of processing
a docked model using CHARMM-GUI. In this
instance, we selected PLPC lipids and the NAMD
output format. Figure 5d shows ELOVL7 solvated
in the periodic membrane, and the left of Supple-
mental Video S2 shows the equilibration and a
1 ns production molecular dynamics trajectory of
this system. With these together, we see that the
dynamics simulation proceeds smoothly.
To demonstrate the general reliability of Mem-

LZerD in generating models suitable for molecular
dynamics simulation, we considered models
immersed in an explicit PLPC membrane and
using the same parameters as above. For each
case study complex, simulation runs were carried
out starting from both a model of at least
acceptable quality and an incorrect model (2 runs
per case study) for a total of 10 simulations overall
among the five case studies. While protein
docking methods can be vulnerable to steric
clashes, which can unphysically disturb or crash a
molecular dynamics simulation, the initial and final
scoring procedures of Mem-LZerD automatically
discourage severe clashes between chains
through consideration of excluded volume14 and
atomic distance-based potentials,15 respectively.
Following the cutoff used in CAPRI,18 two residues
are considered clashing if any of their nonbonded
heavy atoms are within 3 �A of each other. While
3 �A is too close for normal nonbonded atomic con-
tacts, any number of clashes near this cutoff are
easily resolved during minimization within molecu-
lar dynamics runs.15 Supplemental Videos S3, S2,
S4, S5, and S6 show the simulation trajectories
for each case study complex in that order respec-
tively, separately initialized from the noted accept-
able (left) and incorrect (right) models. In all
cases, the simulations completed without numerical
divergences, crashes, or other issues, thus demon-
strating that Mem-LZerD models are generally suit-
able for initializing simulations.

https://lzerd.kiharalab.org
https://opm.phar.umich.edu/
https://www.charmm-gui.org
https://www.charmm-gui.org
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Materials and methods

Dataset construction

The transmembrane dataset used in this work
was constructed by starting from 4218 nominally
transmembrane protein structures from the OPM
database.49 Monomers were excluded, and entries
were clustered at 25% sequence identity using
MMseqs2,72 yielding 390 complexes. Structure-
based clustering with an MM-align73 TM-score cut-
off of 0.50 yielded 85 complexes. From these, com-
plexes which were not oriented inside the
membrane and for which the publication did not
indicate that the complex was in fact studied in a
membrane were excluded, or which were otherwise
beyond the scope of Mem-LZerD, yielding the final
transmembrane dataset of 64 complexes. 20 com-
plexes from this dataset were separated to serve
as the training set for the scoring function, while
the remaining 44 complexes served as the test
set. For all targets, AlphaFold v2.2.212 with v2
weights and without template search was used to
generate unbound subunit models.
The peripheral membrane complex dataset was

constructed in a similar manner to the
transmembrane dataset. Starting from 1607
complexes listed by OPM as “monotopic/periph
eral”, 147 complexes with two subunits and each
interacting with the membrane were extracted.
After clustering as with the transmembrane
dataset, 92 complexes remained, constituting the
final peripheral membrane complex dataset.
Peripheral complexes were not used to train the
scoring function, and thus this dataset was not
partitioned.
Rigid-body docking of subunits with regular
LZerD

Each ligand protein structure subunit was docked
with the receptor subunit using LZerD.14,74 LZerD is
a shape complementarity-based rigid-body docking
algorithm which employs a soft representation of
the molecular surface to tolerate some small differ-
ences between the bound and unbound conforma-
tions. Using geometric hashing-based surface
searching, LZerD generates many candidate dock-
3

Figure 5. Example workflow using the LZerD webserver t
docked model of target elongation of very long chain fatty a
oriented receptor and ligand protein models uploaded to the
used in the absence of residue distance information. (b) Me
results viewer. Each sphere shows the centroid of a samp
input files using CHARMM-GUI. A PPM-oriented PDB file w
PLPC lipids and a box size of 100 were used to construct t
coordinates for simulation.

15
ing poses, which are then scored according to the
shape complementarity of their interfaces. These
initial candidate poses, before any truncation or
clustering, are referred to as the poses sampled
by LZerD. For a given pair of input subunits, the
set of docked models generated by LZerD was
ordered by the LZerD shape score and truncated
to a set of 50,000 models. This set was then clus-
tered with an RMSD cutoff of 4.0�A. The final stage
of the regular LZerD pipeline is a rescoring accord-
ing to the ranksum scoring function.15,75,76
Membrane-aware pose constraints

The orientations in the membrane of models to be
docked were predicted using the Positioning of
Proteins in Membranes (PPM) software
package48,49 using default settings. PPM outputs
an oriented version of each input structure and also
predicts the interior and exterior membrane sur-
faces. The separately oriented subunits were
assumed to share a membrane midplane. Mem-
brane type and thickness can be considered explic-
itly at this stage. In this study, the default membrane
parameters of PPMwere used. These predicted ori-
entations are then used to augment the LZerD
docking search. In LZerD, sample points on the sur-
faces of the receptor and the ligand proteins are
matched to each other in the geometric hashing dis-
cussed above. To accomplish this, reference
frames of, say, the ligand protein, are constructed
using pairs of nearby points on the surface in com-
bination with their surface normals. The other sur-
face points of the ligand in a fixed neighborhood of
the origin of this reference frame are translated
and rotated such that their basis is changed to the
reference frame, resulting in a fingerprint of the
molecular surface. This fingerprint is then matched
with fingerprints calculated from the receptor pro-
tein surface. This procedure was implemented
using a space-partitioning tree data structure,77

which is designed to efficiently search for points in
Euclidean space by querying only relevant regions
of space. By selecting appropriate planes with
which to divide the space of hashed points, individ-
ual queries in the accumulation and recognition
stage of the geometric hashing are made in sublin-
ear time.
o prepare and run a molecular dynamics simulation of a
cids protein 7 (PDB 6Y7F) in the membrane. (a) PPM-
LZerD webserver submission page. Default settings are
m-LZerD docking results shown in the LZerD webserver
led pose. (c) Certain options used in generating NAMD
as uploaded, and its precomputed orientation was kept.
he explicit simulation-ready files. (d) The final prepared
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In Mem-LZerD, this data structure is augmented
with the distance of each point to the membrane
midplane, which defines the height of the point.
These height values for each point come directly
from the output of PPM and are fixed once the
geometric hashing data structure has been built at
the beginning of the LZerD search. During a query
to the geometric hashing data structure, hashed
points tagged with a height different from the
query height (Dh in Figure 1b) by more than
the cutoff will not be emitted, and thus not
contribute to the match vote accumulation of the
geometric hashing. Unlike the 3-dimensional
coordinates of the sample points, the height value
is not transformed during the change of basis, and
the internal structure thus differs from otherwise
similar lifting transform techniques that bridge
related entities in computational geometry.78 This
augmentation facilitates efficient imposition of con-
straints in terms of the relative midplane distance,
essentially pruning the search space analyzed.
For Mem-LZerD we used a relative midplane dis-
tance of 8�A. As surface matches satisfying the rel-
ative midplane distance constraint are found, their
docked orientations relative to their predicted orien-
tations were further checked to satisfy a relative
midplane axis constraint of 0.4 radians (h in Fig-
ure 1c). The base orientation axes are fixed at the
start of docking based on PPM, and this tilt angle
check does not use the properties of the geometric
hashing data structure, as it requires that the full
rigid-body transformation have already been calcu-
lated. While these are the same numerical thresh-
olds as were previously used by Memdock, we
note that they are comparable but different quanti-
ties than those constrained in Memdock. We show
a validation of these hyperparameters on the
training set in Figure 2c based on the recall of mod-
els of at least acceptable CAPRI quality and the
enrichment factor (EF, the ratio of the fraction of hits
in the decoy set after constraining to the fraction of
hits in the decoy set before constraining) of the pose
space constrained to. When the parameter combi-
nations were ordered by their corresponding EF val-
ues, we found that the recall of the constrained
decoy set declined dramatically. As illustrated in
Figure 2ab, nearly all of the search space outside
this feasible region consists of incorrect models.
Additionally, the implementation of the height con-
straint into the geometric hashing results in a
running time 74 times faster compared to regular
LZerD. We note that in cases where the membrane
of the target membrane protein to model is known to
restrict the orientations of proteins more rigidly, it
can make sense for users to select a tighter tilt
angle cutoff.
Docked model scoring

For selecting docked poses, we constructed a
combined scoring function derived from methods
16
used in the scoring of IDP-LZerD and Flex-
LZerD.38–40 This scoring function uses a bagged
decision tree estimator79 to combine the
knowledge-based scoring functions GOAP80,
DFIRE,81 and ITScorePro,82 which are the three
re-scoring functions combined in the usual ranksum
score for competitive LZerD docking,15,75,76 as well
as LZerD initial docking score, the cluster size from
the 4�A RMSD clustering normally used with LZerD,
a membrane transfer energy defined as the sum of
calculated side chain transfer free energies from
water to the membrane environment83 weighted
by relative surface area, and order statistic terms
(OS 1ð Þ, OS 2ð Þ, and OS 3ð ÞÞ highlighting the most-
outlying values among the other scoring terms for
each model. The LZerD shape complementarity
scores and the cluster sizes are part of the regular
LZerD output.
The order statics terms allow models with any

outlying component scores a better chance at
inclusion among the top-ranked models, even if
some other component scores are low or
generally disagree with each other. Each model
score for all docked poses of a target is first
standardized in the usual way into a Z-score. For
example, the mean l and standard deviation r of
all ITScorePro scores x i of models of sucrose-
specific porin are calculated, and the Z-score of
model i will be zi ¼ ðx i � lÞ=r. For scoring terms
designed such that more positive values are more
favorable, e.g. the LZerD shape complementarity
term and cluster sizes, the values were multiplied
by �1 so that lower values would uniformly be
more favorable across all component scores.
Thus, for all the final standardized scoring terms,
a more negative Z-score is more favorable. From
these, the order statistic terms were calculated for
the Z-scores of the scoring terms. To compute
e.g. the order statistic OS(1) of a model, we first
check the Z-sores of all the scoring terms for the
model and select the smallest (the most favorable)
Z-score. Following the same logic, OS(2) and OS
(3) are the second and the third smallest Z-scores
among all the Z-scores of all the scoring terms. A
first-order version of this approach was previously
used successfully in IDP-LZerD for disordered
proteins,40 and a third-order version was used suc-
cessfully in Flex-LZerD for flexible proteins.38,39

Here, we use the third-order version. For example,
if a model has Z-scores of �1.7, �2.4, and �0.5
for three component scores, respectively, and some
arbitrary positive-valued Z-scores (i.e. insignificant
scores) for the remaining component scores, then
OS(1), OS(2), and OS(3) for that model will be
�2.4,�1.7, and�0.5, respectively. The three order
statistic terms are calculated across all the compo-
nent scores.
The component scores GOAP, DFIRE,

ITScorePro, ranksum, the LZerD shape score,
LZerD cluster size, membrane transfer energy,
OS 1ð Þ, OS 2ð Þ, and OS 3ð Þ, were then finally
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combined in the bagged estimator. Bagging is an
ensemble method which constructs multiple
decision trees using subsets of the training data,
and then averages their individual outputs to
produce a more robust classifier.79 To optimize
the bagged ensemble, docked models were gener-
ated for each target in the training dataset using the
same procedure as above. CAPRI statistics were
then calculated for each model. Each model was
labeled positive if it was of acceptable CAPRI qual-
ity, and negative if it was not. Each model was then
weighted to balance the number of positive and
negative cases within each target. Then, the
bagged estimator was trained using all the models
for all the training targets. The resulting scoring
function, with ranksum component scores used to
break ties, was used to rescore the docked models
after the clustering stage.
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