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Abstract— Predicting the future trajectories of surrounding
vehicles based on their history trajectories is a critical task in
autonomous driving. However, when small crafted perturba-
tions are introduced to those history trajectories, the resulting
anomalous (or adversarial) trajectories can significantly mislead
the future trajectory prediction module of the ego vehicle,
which may result in unsafe planning and even fatal accidents.
Therefore, it is of great importance to detect such anomalous
trajectories of the surrounding vehicles for system safety,
but few works have addressed this issue. In this work, we
propose two novel methods for learning effective and efficient
representations for online anomaly detection of vehicle trajec-
tories. Different from general time-series anomaly detection,
anomalous vehicle trajectory detection deals with much richer
contexts on the road and fewer observable patterns on the
anomalous trajectories themselves. To address these challenges,
our methods exploit contrastive learning techniques and trajec-
tory semantics to capture the patterns underlying the driving
scenarios for effective anomaly detection under supervised
and unsupervised settings, respectively. We conduct extensive
experiments to demonstrate that our supervised method based
on contrastive learning and unsupervised method based on
reconstruction with semantic latent space can significantly
improve the performance of anomalous trajectory detection in
their corresponding settings over various baseline methods. We
also demonstrate our methods’ generalization ability to detect
unseen patterns of anomalies.

I. INTRODUCTION

Tremendous progress has been made for autonomous
driving in recent years. The autonomous driving pipeline
typically consists of several modules, such as sensing, per-
ception, prediction, planning, and control. In particular, the
prediction module encodes other vehicles’ past trajectories
along with map context and decodes them into potential
future trajectories of surrounding vehicles to facilitate the
planning module. Recent works [1]–[3] have developed
various deep learning-based models for trajectory prediction
and achieved great performance in terms of the average error
between predicted trajectories and ground truth. However,
only improving average performance is not enough for au-
tonomous driving systems, where system robustness, safety
and security are critical [4]–[9].

Due to the complexity of real traffic situations and limited
coverage of training data, the trajectory prediction task
suffers from the “long-tail” scenarios. The work in [10]
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further demonstrates that state-of-the-art trajectory prediction
models can be significantly misled by natural-looking but
carefully-crafted past trajectory of a certain surrounding ve-
hicle, and discusses several defense methods such as smooth-
ing and SVM-based detection. [11] shows that adversarial
training techniques can mitigate the effect of adversarial
trajectories. However, few works focus on advanced online
anomaly detection methods for vehicle trajectories. We be-
lieve that it is crucial to detect anomalous trajectories and
scenarios in the prediction stage during runtime, as online
anomalous trajectory detection will not only help monitor the
prediction module but also enhance the safety of downstream
modules in planning [12] and control [13], [14].

In this work, we consider two different settings – super-
vised and unsupervised, based on whether we have prior
knowledge of patterns of anomalous trajectories during the
training. Both scenarios are possible in real road situations,
but they may make a significant difference to methods of
learning representations. Thus, we focus on detecting various
patterns of anomalous vehicle trajectories in both supervised
and unsupervised settings, and investigate what kinds of
representations and corresponding learning techniques are
most effective for this safety-critical task.

The representation for anomalous vehicle trajectory detec-
tion is more complicated than that for general time-series
anomaly detection because that 1) the driving scenarios
contain rich contexts such as road maps and interactions
between agents and 2) the anomalous or adversarial trajec-
tories may be associated with specific driving behavior that
is difficult to model. To tackle these challenges, an ideal
anomaly detector should be able to effectively represent the
driving scenario at a single sample level and also model the
patterns underlying all normal and anomalous trajectories
at the distribution level. Therefore, we first apply a state-
of-the-art feature extractor based on graph neural networks
to represent the trajectories as well as the road contexts,
which is trained on a normal trajectory prediction dataset.
Based on the extracted feature, we further add an encoder to
capture the distribution-level patterns underlying the anoma-
lous and normal trajectories. In the supervised setting, we
add a contrastive-learning-based encoder to separate the two
patterns in the representation space. In the unsupervised
setting, we introduce semantics of driving behavior to learn
a general and effective latent space for anomaly detection in
complex scenarios without labels.

We extensively compare the anomaly detection perfor-
mance of different representations under various kinds of
anomalies and test scenarios and demonstrate that our pro-
posed representations significantly enhance anomalous tra-



jectory detection performance over baseline methods. The
contributions of our work are summarized as follows:
• We design a supervised contrastive learning-based method

and an unsupervised method with semantics-guided recon-
struction for the anomaly detection of vehicle trajectories
and demonstrate their effectiveness in different settings.

• We explore and compare various representations and
architectures for anomalous trajectory detection under
supervised and unsupervised settings. We evaluate their
performances with three metrics in two different datasets.

• We further demonstrate the algorithms’ generalization
ability to detect unseen patterns of anomalies and provide
a detailed study to analyze the effectiveness of different
modules in our methods.

II. BACKGROUND

A. Anomalous and Adversarial Trajectories

Recent work [10] shows that the trajectory prediction
module in autonomous driving pipelines can be easily misled
by adversarial (history) trajectories of a surrounding vehicle.
In a white-box setting, an anomalous trajectory is optimized
with Projected Gradient Decent (PGD) [15] and the maxi-
mum deviation between benign and anomalous trajectories
is limited to 1 m. There are different patterns of anomalous
trajectories – random anomalies and directional anomalies.
As shown in Fig. 1, both kinds of anomalous trajectories
can effectively interfere with the prediction module and
may lead to dangerous scenarios. The random anomaly is
a generated trajectory that maximizes the average of the
root mean squared error between the predicted and the
ground-truth trajectory waypoints. The directional anomalous
trajectory is to deliberately mislead the prediction of the
surrounding vehicle’s future trajectory to a wrong direction.
In this work, we apply the lateral directional anomalous
as a targeted anomalous pattern and the random attack
as a general anomalous pattern, so that we can evaluate
the anomaly detection algorithm comprehensively and study
their generalization ability to previously-unseen patterns of
anomalous trajectories. The detailed metrics for the optimiza-
tion of targeted attacks are shown in Eq. (1):

D(α,R) = (pα − sα)
T ·R (sα+1, sα) , (1)

where α denotes the time frame, R is a function to generate
the unit vector to a specific direction (lateral direction in
our setting), and p and s are vectors denoting predicted and
ground-truth vehicle locations, respectively.

B. Anomaly Detection

Anomaly detection refers to the problem of finding pat-
terns in data that do not conform to expected behavior
[16]. Supervised approaches, unsupervised approaches, and
semi-supervised approaches have been applied to anomaly
detection in different scenarios.

Supervised approaches generally have better performance
on classification tasks, but require prior knowledge of both
normal and anomalous samples. KNN-based methods [17],
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Fig. 1: Different patterns and corresponding effects of
anomalous trajectories. The figures in the top row are
anomalous (red line) and benign (blue line) input history
trajectories for prediction and they look very close to human
eyes. The figures in the bottom row show the corresponding
affected future trajectory prediction (red dashed line) and the
ground truth trajectory in the normal scenario (green dashed
line). The differences between the two are clearly visible,
showing the great influence caused by anomalous trajectories
on prediction modules. Figure (a) is the random anomalous
trajectory, which will randomly lead to maximum average
deviation. Figure (b) is the lateral directional anomaly, which
mainly leads the vehicle to deviate to the left or right.

[18] capture nominal data patterns from the local interaction
of nominal data points, and anomalous instances are expected
to lie further away from nominal data patterns. The support
vector machine (SVM) and neural networks are commonly
used to project the input to a feature space and then detect the
anomalies from normal data. Some other methods, such as
Bayesian networks [19] and inverse reinforcement learning
[20], are also effective in supervised anomaly detection.

When labels of anomalies are limited or even unavail-
able, we have to utilize semi-supervised [21] methods
and unsupervised methods for the anomaly detection tasks.
Reconstruction-based methods assume that anomalies are
not compressible and thus cannot be reconstructed from
low-dimensional projections [22]. Deep generative models,
such as variational autoencoder (VAE) [23], [24], Generative
Adversarial Networks [25], [26] and adversarial autoen-
coder [27], are commonly used to perform reconstruction-
based anomaly detection. One-class classification methods
including one-class SVM (OC-SVM) [28], [29] and one-
class neural network (OCNN) [30] are designed to learn a
discriminative boundary surrounding the normal samples.

C. Contrastive Learning

Contrastive learning [31] learns representations by con-
trasting positive pairs against negative pairs. Generally, the



augmented versions of the original samples are regarded as
positive pairs, and a memory bank is used to stabilize the
learning process. Recent works show that contrastive learning
techniques can benefit representation learning significantly
and there are also some advances in enhancing anomaly
detection by utilizing the idea of contrastive learning. For
instance, [32] proposes an unsupervised method TS2Vec
for learning representations of time series. The TS2Vec
method captures the contextual representation by leveraging
both instance-wise and temporal contrastive loss, and the
method shows great performance in time-series anomaly
detection. Under a supervised setting, [33] demonstrates that
the intermediate features of anomaly and normal data can
be considered as negative pairs and help learn an effective
representation based on contrast.

D. Adversarial Autoencoder

The variational autoencoder (VAE) [34] provides a princi-
pled method for jointly learning deep latent-variable models
and corresponding inference models using stochastic gradient
descent [35], which is commonly used to generate samples in
the target space from pre-defined latent distribution. Training
a VAE model consists of two kinds of loss: regularization
and reconstruction. The regularization is aimed to encode
the input as certain distributions over the latent space using
Kullback-Leibler (KL) divergence, while the reconstruction
is to decode the latent variables to the target or original
space. In contrast to VAE that uses KL divergence and
evidence lower bound, adversarial autoencoder (AAE) [36]
uses adversarial learning to impose a specific distribution on
the latent variables, making itself superior to VAE in terms
of imposing complicated distributions and shaping the latent
space. In our work, we utilize an AAE architecture to model
the semantics in the driving scenario.

III. OUR METHODS

A. Feature Extractor

The anomalous trajectory detection task is more com-
plex compared to general time-series anomaly detection
because anomalous trajectory detection highly depends on
rich contexts, such as the road map and the behavior of
surrounding vehicles. We first feed the map information and
the trajectories of vehicles into a feature extractor. Similar
to [1], we apply a one-dimensional convolutional network to
model history trajectories and utilize graph-neural networks
to represent map contexts and interactions between agents.
In the training process, we first train a feature extractor in
a trajectory prediction pipeline and fix the extractor in the
anomaly detection task.

B. Supervised Contrastive Learning-based Method

As shown in Fig. 2, after the feature extractor outputs
a representation combining vehicle trajectories and contexts,
we further develop a contrastive learning (CL) based encoder
to obtain a compact representation for anomalous trajectory
detection. Different from instance-wise contrastive learning,
the proposed method compares the patterns of two different

classes. This CL-based method is considered supervised be-
cause we build the negative pairs by contrasting the anomaly
and normal data. The CL-based encoder is designed to
maximize the similarity between benign scenarios and mini-
mize the similarity between benign and anomalous scenarios.
Finally, a simple binary classifier based on the encoded
representations will generate the decision on whether the
input is an anomalous scenario or not.

In every training mini-batch, we have M scenarios con-
taining anomalous trajectories and N normal scenarios, so
that we have N(N − 1) positive pairs and MN negative
pairs, as demonstrated in Fig. 2. We use the inner product
of two vectors to measure the cosine similarity between
encoded features and we set τ to control the concentration of
samples’ distribution [37]. More negative pairs will generally
improve the performance of the learned representation, but
it is difficult to calculate and optimize such a large model
with MN -way softmax vector. To fully utilize the labeled
data and keep the model efficient, we apply the idea of Noise
Contrastive Estimation (NCE) [38] to the optimization. We
have an (M+1)-way softmax classifier (one way for a certain
positive pair and M ways for negative pairs) to learn a 32-
dimensional representation. The loss function is shown in
Eq. (2), where sn and sa are the feature vectors of normal
and anomalous scenarios, respectively. We define the overall
loss function L for a mini-batch, as shown in Eq. (3):

Lij = − log
exp

(
sTnisnj/τ

)
exp

(
sTnisnj/τ

)
+

∑M
m=1 exp (sni

Tsam/τ)
,

(2)

L =
1

N(N − 1)

N∑
i=1

N∑
j=1

1j ̸=iLij . (3)

During the test time, we add a classifier after the CL-
based encoder to produce the detection result based on the
32-dimensional vector. It is feasible to set a threshold of the
distance between test samples and the average normal vector
to distinguish anomaly from normal data, but in this work,
we apply an SVM classifier for all kinds of representations so
that we can compare their results fairly. The overall pipeline
is demonstrated in Algorithm 1.

C. Unsupervised Method using Reconstruction with Seman-
tic Latent Space

In real road scenes, it may be challenging for us to get
valid negative labels for training due to the difficulty of
obtaining prior knowledge of surrounding vehicles’ potential
anomalous trajectories, which motivates us to explore unsu-
pervised detection algorithms. The unsupervised methods are
aimed to learn the representation underlying normal driving
scenarios and then detect unseen patterns of anomalous
trajectories at runtime. Most previous works directly use
VAE-based reconstruction, one-class SVM, or contrastive
learning (unsupervised) to detect anomalies for time-series
data. For vehicle trajectories, however, we can utilize more
contexts and domain knowledge to enhance unsupervised
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Fig. 2: Our supervised contrastive learning-based anomalous trajectory detector. The features of normal and anomalous
scenarios are regarded as negative pairs (red ones) and the normal scenarios form positive pairs (green ones).

Algorithm 1 Supervised Contrastive Learning Method

1: Initialize: feature extractor F , CL-based encoder E,
Cosine similarity Sc Softmax classifier C, and SVM-
detector D.

2: Input: past trajectories t and map graph g.
3: for each mini-batch do
4: 128-D Features x = F (t, g).
5: 32-D latent vectors z = E(x).
6: N benign trajectories and M anomalous trajectories

generate N(N-1) positive pairs and MN negative pairs
in the latent space.

7: Similarity scores of pairs s = Sc(z).
8: for each positive pair (i, j) do
9: Calculate NCE softmax loss Lij(s) as in (2).

10: end for
11: Update the encoder E by the CL loss as in (3).
12: end for
13: Based on the learned 32-D representation, train an SVM

classifier for online anomaly detection.

anomaly detection. In this work, we propose an unsuper-
vised detection method based on the adversarial autoencoder
architecture and semantics modeling in the latent space. The
encoder takes 128-dimensional features from the extractor
as inputs and projects them into a low-dimensional latent
space that is divided into three separate parts – a three-
dimensional vector representing lateral intention, a one-
dimensional vector representing longitudinal aggressiveness,
and a six-dimensional remaining latent vector. Here, we
introduce domain knowledge into latent space modeling.
We apply time headway to extract the longitudinal feature,
which measures the time difference between two successive
vehicles when crossing a given point. We assume that the
time headway follows a log-normal distribution, based on
the statistics in urban transportation systems [3], [39]. The
lateral intention is modeled by three simple but reasonable
classes that follow categorical distribution: moving forward,
turning/changing lanes to the left, and turning/changing lanes

to the right. All this semantic information can be collected
from benign input trajectory and no knowledge of anomaly
is required. For the remaining variables in the latent space,
we assume that they follow Gaussian distributions.

To optimize the latent space, we conduct a two-fold mod-
eling in both overall distributions and semantics of a single
vehicle’s trajectories. We apply the adversarial autoencoder
architecture to regularize these distributions of the latent
space. Specifically, for each latent vector, a discriminator is
trained to distinguish the generated latent vector from the
sample in real targeted distribution (log-normal, categorical,
or Gaussian). At the same time, we use behavior information
such as values of time headway and lateral intention to
further render the latent vectors with specific semantics.
Thereby, the model can further disentangle the latent space
and embed domain knowledge into it. The semantic rep-
resentation will benefit both unsupervised and supervised
anomalous trajectory detection. The loss for semantic latent
space modeling is shown below in Eq. (4):

Losssem(z, g) = −
3∑

i=1

gintent log zintent + (gagg − zagg)
2,

(4)
where z represents the predicted semantic vectors and g
represents the reference collected from the input trajectory.

The overall pipeline for our unsupervised method is shown
in Fig. 3. In addition to the semantic latent space modeling,
we use a decoder to reconstruct the input trajectories with a
smooth L1 loss as shown below in Eq. (5):

Lossrecon (yi, ŷi) =

{
0.5 (yi − ŷi)

2 if ∥yi − ŷi∥ < 1,

∥yi − ŷi∥ − 0.5 otherwise ,
(5)

where y and ŷ represent the input trajectories and recon-
structed trajectories, respectively. Both the encoder and the
decoder will be optimized by the reconstruction loss. The
overall optimization pipeline is shown in Algorithm 2.

Note that in an unsupervised setting, we use the error
between the input trajectory and reconstructed trajectory as
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Fig. 3: Our unsupervised reconstruction method based on semantic latent space. The latent space contains three kinds of
vectors – intention, aggressiveness, and the remaining vectors. The latent vectors are modeled by semantic labels and target
distributions in the adversarial autoencoder.

a signal for anomaly detection. We consider the input as an
anomalous trajectory if the reconstruction error is larger than
a threshold. The learned representation can also be used in a
supervised setting by adding common binary classifiers after
the latent space.

Algorithm 2 Unsupervised Semantic Reconstruction Method

1: Initialize: feature extractor F , AAE encoder E, decoder
R, discriminator Di, target distribution pi, i = 1,2,3.

2: Input: past trajectories t and map graph g.
3: for each batch do
4: Features x = F (t,m).
5: Let latent vectors z = E(x).
6: Sample si from target distribution pi and calculate

Di(zi) and Di(si).
7: Update E and Di by discrimination loss and genera-

tion loss as in [36].
8: Calculate the true value for intention and aggressive-

ness, respectively.
9: Update E by semantic loss Losssem as in (4).

10: Concatenate the latent vectors and feed them to the
detector R ŷ = R(z).

11: Update G, R by reconstruction loss Lossrecon(y, ŷ)
as in (5).

12: end for

IV. EXPERIMENTS

In this section, we present the anomaly detection results
of six methods under two patterns of anomalous scenarios.
Each method is tested in two commonly-used datasets with
three different metrics so as to comprehensively evaluate the
performance, especially under imbalanced data distribution.
The results show that the representation learned by our
supervised contrastive learning can significantly improve
detection performance. Moreover, the semantic latent space
we construct can effectively model the context and explicitly
encode driving behavior, enhancing anomaly detection in

both supervised and unsupervised settings. We conduct a
study to show to what extent the ‘semantics’ and ‘contrast’
can benefit the representation learning for anomaly trajectory
detection. In addition, we evaluate the generalization ability
of learned representations, which is critical for detecting
unseen patterns of anomalies.

A. Experiment Setup

1) Data Collection: We conduct experiments with both
random and directional anomalous trajectories on two
datasets: Argoverse 1 [40] and Argoverse 2 [41]. The Argov-
erse 1 motion forecasting dataset has more than 30K driving
scenarios collected in Miami and Pittsburgh, while Argoverse
2 collects longer and more complicated driving scenarios
in six cities. Each scenario used in this work consists of a
road graph and trajectories of multiple agents. The history
trajectories are 20 waypoints collected in the past 2 seconds.

To collect the anomalous trajectories, we apply the attack
methods mentioned in Sec. II-A to generate different patterns
of anomalies. For lateral directional anomalous trajectories,
we consider past trajectories that can lead to a prediction
error of more than 1.5 meters in a lateral direction as
anomalies. For random anomalous trajectories, the threshold
is set as 5-meter average displacement error (ADE).

2) Evaluation Metrics: We utilize three metrics to eval-
uate the performance of anomaly detection approaches –
ROC AUC (area under the receiver operating characteristic
curve), PR AUC (area under the precision-recall curve), and
F1 score. The ROC AUC is a general metric to evaluate the
binary classification ability at all classification thresholds, but
it can be overly optimistic on severely imbalanced classifica-
tion problems. For imbalance datasets in anomaly detection,
the PR AUC is a more powerful metric as both precision
and recall are focused on the anomaly class and unconcerned
with the majority class. The F1 score is the harmonic mean
of precision and recall. In the anomaly detection task, the
recall (detected anomalies over all anomalies) is expected to
be high. Thus we find the point where recall is fixed as 0.8
and calculate its corresponding F1 score.



B. Effectiveness of Our CL-based Supervised Method

In the supervised setting, the labels of anomalous driving
scenarios are available. We use SVM as a fixed classifier
to compare the results of different learned representations.
The naive SVM method builds an SVM directly on the
acceleration series of the input trajectories. For the methods
with semantic latent space and contrastive learning encoder,
we use the 128-dimensional feature produced by the feature
extractor as input. The results in Tables I and II show that
our contrastive learning-based supervised method greatly
outperforms other supervised methods in both directional
and random anomaly patterns. Compared to the method
using semantic latent space (‘Semantics + SVM’), our CL-
based supervised method (‘Sup-CL + SVM’) can effectively
model the distribution of normal and abnormal trajectories
and separate them in the CL-based representation space,
making it easy for a simple SVM classifier to detect anoma-
lies. The results of naive SVM (‘Naive SVM’) demonstrate
that it is difficult to directly distinguish anomaly from normal
data in the trajectory space, even with enough labels.

TABLE I: Results of supervised anomaly detection methods
for the Argoverse 1 dataset.

Methods Anomaly Pattern F1 score ROC AUC PR AUC
Naive SVM [10] Random 0.51 0.63 0.43
Naive SVM [10] Lateral 0.49 0.75 0.51

Semantics + SVM Random 0.68 0.85 0.74
Semantics + SVM Lateral 0.84 0.96 0.92
Sup-CL + SVM Random 0.81 0.93 0.86
Sup-CL + SVM Lateral 0.87 0.98 0.96

TABLE II: Results of supervised anomaly detection methods
for the Argoverse 2 dataset.

Methods Anomaly Pattern F1 score ROC AUC PR AUC
Naive SVM [10] Random 0.42 0.59 0.31
Naive SVM [10] Lateral 0.47 0.64 0.40

Semantics + SVM Random 0.62 0.84 0.65
Semantics + SVM Lateral 0.84 0.95 0.89
Sup-CL + SVM Random 0.80 0.94 0.87
Sup-CL + SVM Lateral 0.99 0.98 0.99

C. Effectiveness of Our Unsupervised Method with Semantic
Reconstruction

In the unsupervised case, without prior knowledge of
anomaly patterns, it is more difficult to learn an informative
representation. We utilize the one-class SVM on trajectory
space [28] and a state-of-the-art unsupervised contrastive
learning method – TS2Vec [32] as baselines. As shown in
Tables III and IV, the one-class SVM on trajectory space
method (‘OC-SVM’) and the unsupervised contrastive learn-
ing method (‘Unsup-CL + OC-SVM’) have relatively poor
performance and can hardly detect the anomalous trajecto-
ries. Our unsupervised method with semantic reconstruc-
tion (‘Semantic Recon’) has much better performance
on every metric over other unsupervised methods. In
addition, when detecting random anomalous trajectories, we
find that our unsupervised method has close performance to

its corresponding supervised version, which further demon-
strates the effectiveness of our semantic latent representation.
The ROC curves of all supervised and unsupervised methods
are shown in Fig. 4.

TABLE III: Results of unsupervised anomaly detection meth-
ods for the Argoverse 1 dataset.

Methods Anomaly Pattern F1 score ROC AUC PR AUC
OC-SVM [28] Random 0.51 0.58 0.36
OC-SVM [28] Lateral 0.47 0.64 0.30

Unsup-CL + OC-SVM [32] Random 0.41 0.54 0.30
Unsup-CL + OC-SVM [32] Lateral 0.40 0.56 0.29

Semantic Recon Random 0.65 0.81 0.61
Semantic Recon Lateral 0.60 0.83 0.56

TABLE IV: Results of unsupervised anomaly detection meth-
ods for the Argoverse 2 dataset.

Methods Anomaly Pattern F1 score ROC AUC PR AUC
OC-SVM [28] Random 0.42 0.55 0.28
OC-SVM [28] Lateral 0.40 0.54 0.26

Unsup-CL + OC-SVM [32] Random 0.41 0.54 0.30
Unsup-CL + OC-SVM [32] Lateral 0.38 0.57 0.27

Semantic Recon Random 0.53 0.77 0.47
Semantic Recon Lateral 0.53 0.79 0.48

D. Effectiveness of Components in Our Proposed Methods

We conduct more experiments to study to what extent
different components of our methods benefit the overall
performance improvement. In this study, we test all represen-
tations in a supervised manner for comparison. We evaluate
how much the feature extractor (embedding the contexts) and
the following encoder (semantics or CL-based) contribute
to the performance, respectively. The ‘NN + SVM’ stands
for the method of directly adding an SVM classifier after
the GNN-based feature extractor. In Table V, we find that
using such representation directly from the feature extractor
has a much poorer detection performance than our CL-based
representation (‘Sup-CL + SVM’). The latent space modeling
methods (‘Semantics + SVM’ and ‘Naive Latent + SVM’)
also outperform the pure feature extractor (‘NN + SVM’).
Moreover, Table VI reveals that our semantic latent space
modeling (‘Semantics + SVM’) significantly improves the
generalization ability to unseen patterns of anomalies when
compared to the naive latent space modeling without any
semantics (‘Naive Latent + SVM’) and the pure feature
extractor (‘NN + SVM’).

TABLE V: Effectiveness of components: trained and tested
on random anomalies.

Methods Anomaly Pattern F1 score ROC AUC PR AUC
NN + SVM Random 0.66 0.61 0.68

Naive Latent + SVM Random 0.68 0.86 0.74
Semantics + SVM Random 0.68 0.85 0.74
Sup-CL + SVM Random 0.81 0.93 0.86

E. Evaluation on Generalization Ability

In the supervised setting, one critical aspect is how the
representation learned from normal samples and a certain
pattern of anomalies can be generalized to other unseen
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Fig. 4: ROC curves of both supervised (solid lines) and unsupervised (dashed lines) anomalous trajectory detection approaches
The AUC values are shown in legends. The left figure shows the results of detecting random anomalous trajectories when all
supervised methods are trained on the random anomalies. The right figure shows the results of detecting lateral directional
anomalous trajectories when all supervised methods are trained on the directional anomalies.

(a) (b)

Fig. 5: ROC curves of both supervised (solid lines) and unsupervised (dashed lines) anomalous trajectory detection approaches
under unseen patterns of anomalies. The AUC values are shown in legends. The left figure shows the results of detecting
random anomalous trajectories when all supervised methods are trained on the lateral directional anomalies. The right
figure shows the results of detecting lateral directional anomalous trajectories when all supervised methods are trained on
the random anomalies.

TABLE VI: Effectiveness of components: trained on direc-
tional anomalies and tested on random anomalies.

Methods Anomaly Pattern F1 score ROC AUC PR AUC
NN + SVM Random 0.44 0.60 0.35

Naive Latent + SVM Random 0.44 0.58 0.45
Semantics + SVM Random 0.65 0.81 0.58
Sup-CL + SVM Random 0.70 0.89 0.75

patterns of anomalies. Fig. 5 shows the results when the su-
pervised methods are trained and tested on different patterns
of anomalies. Compared to Fig. 4, we find that the lateral
directional anomalies are relatively easy to detect, even when
the models are trained on another kind of anomaly. However,
when the models are trained on lateral directional anomalies
but tested on the random anomalous trajectories, the perfor-
mances of supervised methods drop significantly, although
the supervised CL-based method is still the best, which
reveals overfitting and a lack of ability to generalize. In this

setting, the unsupervised reconstruction with semantic latent
space even outperforms its corresponding supervised version.
Table VI further shows our semantics modeling can help in
learning a more generalized representation and mitigating
overfitting to a certain pattern of anomalies, compared to the
naive latent space.

V. CONCLUSIONS

We present novel contrastive learning-based supervised
method and semantic reconstruction-based unsupervised
method for anomalous vehicle trajectory detection. We em-
bed driving contexts and distributions underlying the nor-
mal (and anomalous) trajectories into the representation by
various methods. Experiments demonstrate that our methods
can significantly improve the detection performance over
baseline methods in supervise and unsupervised settings,
respectively. We also demonstrate that our methods have
better generalization ability to address unseen attack patterns.
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